JP2011187858A - Method of manufacturing solar cell, and solar cell - Google Patents

Method of manufacturing solar cell, and solar cell Download PDF

Info

Publication number
JP2011187858A
JP2011187858A JP2010054061A JP2010054061A JP2011187858A JP 2011187858 A JP2011187858 A JP 2011187858A JP 2010054061 A JP2010054061 A JP 2010054061A JP 2010054061 A JP2010054061 A JP 2010054061A JP 2011187858 A JP2011187858 A JP 2011187858A
Authority
JP
Japan
Prior art keywords
solar cell
gas
diffusion layer
manufacturing
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010054061A
Other languages
Japanese (ja)
Inventor
Mitsuhito Takahashi
光人 高橋
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010054061A priority Critical patent/JP2011187858A/en
Publication of JP2011187858A publication Critical patent/JP2011187858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell allowing a silicon nitride film excelling in a passivation effect to be formed by a simple process without providing a separate process such as pretreatment before an insulating film formation process, and as a result, excelling in productivity and high in conversion efficiency. <P>SOLUTION: In a method of manufacturing the solar cell, at least at a part on the back face side of a silicon substrate, a diffusion layer of a conductivity type identical to that thereof is formed, thereafter an antireflective film formed of silicon nitride is formed on a light reception surface and the back face, and then a back electrode electrically connected to the diffusion layer is formed. In the method of manufacturing the solar cell, the antireflective film is formed using a mixture gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光エネルギーを直接電気エネルギーに変換する太陽電池の製造方法及びこの製造方法によって得られる太陽電池に関する。   The present invention relates to a method for manufacturing a solar cell that directly converts light energy into electric energy, and a solar cell obtained by the method.

太陽電池は、光エネルギーを電力に変換する半導体素子であり、p−n接合型、pin型、ショットキー型などがあり、特にp−n接合型が広く用いられている。また、太陽電池をその基板材料を基に分類すると、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分類される。シリコン結晶系太陽電池は、更に、単結晶系太陽電池と多結晶系太陽電池に分類される。太陽電池用シリコン結晶基板は、比較的容易に製造できることから、その生産規模は現在最大となっており、今後も更に普及していくものと思われる(例えば、特許文献1:特開平8−073297号公報)。   A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, a Schottky type, and the pn junction type is widely used. Further, when solar cells are classified based on their substrate materials, they are broadly classified into three types: silicon crystal solar cells, amorphous (amorphous) silicon solar cells, and compound semiconductor solar cells. Silicon crystal solar cells are further classified into single crystal solar cells and polycrystalline solar cells. Since a silicon crystal substrate for a solar cell can be manufactured relatively easily, its production scale is currently the largest, and it is expected that the silicon crystal substrate will become more widespread in the future (for example, Patent Document 1: JP-A-8-073297). Issue gazette).

太陽電池の出力特性は、一般に、ソーラーシミュレーターを用いて出力電流電圧曲線を測定することにより評価される。この曲線上で出力電流Imaxと出力電圧Vmaxとの積、Imax×Vmaxが最大となる点を最大出力Pmaxとよび、このPmaxを太陽電池に入射する総光エネルギー(S×I:Sは素子面積、Iは照射する光の強度)で除した値:
η={Pmax/(S×I)}×100(%)
が太陽電池の変換効率ηとして定義される。
The output characteristics of a solar cell are generally evaluated by measuring an output current voltage curve using a solar simulator. On this curve, the product of the output current I max and the output voltage V max , the point where I max × V max is the maximum is called the maximum output P max , and this P max is the total light energy (S × (I: S is the element area, I is the intensity of the irradiated light))
η = {P max / (S × I)} × 100 (%)
Is defined as the conversion efficiency η of the solar cell.

変換効率ηを高めるには、短絡電流Isc(電流電圧曲線にてV=0の時の出力電流値)あるいはVoc(電流電圧曲線にてI=0の時の出力電圧値)を大きくすること、及び出力電流電圧曲線をなるべく角形に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角形の度合いは、一般に、
FF=Pmax/(Isc×Voc
で定義されるフィルファクタ(曲線因子)により評価でき、このFFの値が1に近いほど出力電流電圧曲線が理想的な角形に近づき、変換効率ηも高められることを意味する。
To increase the conversion efficiency η, the short-circuit current I sc (output current value when V = 0 in the current-voltage curve) or V oc (output voltage value when I = 0 in the current-voltage curve) is increased. It is important to make the output current voltage curve as close to a square as possible. The squareness of the output current voltage curve is generally
FF = P max / (I sc × V oc )
It can be evaluated by a fill factor (curve factor) defined by the equation (1), and the closer the value of FF is to 1, the closer the output current-voltage curve is to an ideal square, and the higher the conversion efficiency η.

上記変換効率ηを向上させるには、キャリアの表面再結合を低減させることが重要である。シリコン結晶系太陽電池においては、太陽光の入射光によって光生成した少数キャリアが、主に拡散によってp−n接合面へ到達した後、受光面及び裏面に取り付けられた電極から多数キャリアとして外部へ取り出され、電気エネルギーとなる。
その際、電極面以外の基板表面に存在する界面準位を介して、本来電流として取り出すことのできたキャリアが再結合して失われることがあり、変換効率ηの低下に繋がる。
In order to improve the conversion efficiency η, it is important to reduce the surface recombination of carriers. In a silicon crystal solar cell, minority carriers generated by incident light of sunlight reach the pn junction surface mainly by diffusion, and then are transferred to the outside as majority carriers from the electrodes attached to the light receiving surface and the back surface. It is taken out and becomes electric energy.
At that time, carriers that could be extracted as current through the interface states existing on the substrate surface other than the electrode surface may be recombined and lost, leading to a decrease in conversion efficiency η.

そこで、高効率太陽電池においては、シリコン基板の受光面及び裏面を、電極とのコンタクト部を除いて絶縁膜で保護し、シリコン基板と絶縁膜との界面におけるキャリア再結合を抑制し、変換効率ηの向上が図られている。このような絶縁膜として、窒化珪素膜が有用な膜として使われている。その理由は、窒化珪素膜は、結晶系シリコン太陽電池の反射防止膜としての機能と同時に、シリコン基板表面及び内部のパッシベーション効果にも優れているためである。   Therefore, in high-efficiency solar cells, the light-receiving surface and back surface of the silicon substrate are protected with an insulating film except for the contact portion with the electrode, and carrier recombination at the interface between the silicon substrate and the insulating film is suppressed, so that conversion efficiency is improved. η is improved. As such an insulating film, a silicon nitride film is used as a useful film. This is because the silicon nitride film is excellent in the passivation effect on the surface and inside of the silicon substrate as well as the function as an antireflection film of the crystalline silicon solar cell.

窒化珪素膜は、従来、熱CVD、プラズマCVD、触媒CVDなどのCVD法(Chemical Vapor Deposition:化学気相蒸着法)によって形成されている。これらの中で最も一般的に普及しているのは、プラズマCVD法である。図1は、一般にダイレクトプラズマCVDと呼ばれる平行平板型プラズマCVD装置を模式的に示すものである。図1に示すCVD装置10は、成膜室1を有し、この成膜室1内には、所定位置にシリコン基板2を載置するためのトレー3、このトレーを一定温度に保つためのヒーターブロック4、及びヒーターブロックの温度を制御する温度制御手段5が配設されている。また、成膜室1には、反応性ガスである所定の成膜用ガスを成膜室内に導入する成膜用ガス導入路6、導入されたガスにエネルギーを与えてプラズマを発生させる高周波電源7、及び排気装置8が備えられている。   Conventionally, the silicon nitride film is formed by a CVD method (chemical vapor deposition) such as thermal CVD, plasma CVD, or catalytic CVD. Of these, the most popular is the plasma CVD method. FIG. 1 schematically shows a parallel plate type plasma CVD apparatus generally called direct plasma CVD. A CVD apparatus 10 shown in FIG. 1 has a film forming chamber 1, a tray 3 for placing a silicon substrate 2 at a predetermined position, and a temperature for keeping the tray at a constant temperature. A heater block 4 and temperature control means 5 for controlling the temperature of the heater block are arranged. The film forming chamber 1 has a film forming gas introduction path 6 for introducing a predetermined film forming gas, which is a reactive gas, into the film forming chamber, and a high frequency power source for generating plasma by applying energy to the introduced gas. 7 and an exhaust device 8 are provided.

上記CVD装置にて絶縁膜を成膜する場合、成膜用ガス導入路6によって所定の成膜用ガスを所定の流量で成膜室1内に導入した後、高周波電源7を動作させて高周波電界を設定する。この操作により、高周波放電が発生して成膜用ガスがプラズマ化し、プラズマによって生じる反応を利用して、シリコン基板2の表面に絶縁膜が成膜される。例えば、窒化珪素膜を成膜する場合には、成膜用ガスとしてシランとアンモニアの混合ガスを成膜用ガス導入路6から成膜室1内へ導入し、プラズマ中でのシランの分解反応等を利用して窒化珪素膜を成膜する。   In the case where an insulating film is formed by the CVD apparatus, after a predetermined film forming gas is introduced into the film forming chamber 1 at a predetermined flow rate by the film forming gas introduction path 6, the high frequency power source 7 is operated to operate the high frequency. Set the electric field. By this operation, high-frequency discharge is generated and the film-forming gas is turned into plasma, and an insulating film is formed on the surface of the silicon substrate 2 by utilizing a reaction generated by the plasma. For example, when a silicon nitride film is formed, a mixed gas of silane and ammonia is introduced into the film formation chamber 1 from the film formation gas introduction path 6 as a film formation gas, and the decomposition reaction of silane in the plasma. A silicon nitride film is formed using the above.

プラズマCVD法は、プロセス温度が400℃程度と比較的低温であっても高い成膜速度を有するため、太陽電池の絶縁膜形成プロセスで多用されている。しかし、プラズマ中で生成される高エネルギー荷電粒子が、成膜した膜やシリコン基板表面にダメージを与えやすいため、得られる窒化珪素膜は界面準位密度が多くなり、十分なパッシベーション効果が得られない問題があった。そのためパッシベーション効果の向上には、水素等によるダングリングボンド(未結合手)の封止を図る必要があった。   The plasma CVD method is frequently used in an insulating film formation process of a solar cell because it has a high film formation rate even when the process temperature is as low as about 400 ° C. However, the high energy charged particles generated in the plasma tend to damage the deposited film and the silicon substrate surface, so that the resulting silicon nitride film has a high interface state density and a sufficient passivation effect is obtained. There was no problem. Therefore, in order to improve the passivation effect, it was necessary to seal dangling bonds (unbonded hands) with hydrogen or the like.

このような問題に対して、例えば、特許文献2(特開2009−117569号公報)には、表面波プラズマによる窒化珪素膜の成膜前に、前処理としてアンモニアガスを用いたプラズマ処理を行うことでパッシベーション効果が向上することが報告されている。また、特許文献3(特開2009−130041号公報)においては、窒化珪素膜の成膜前に、水素ガスとアンモニアガスとを含む混合ガスを用いて形成されるプラズマによって処理することでパッシベーション効果が向上することが報告されている。
しかしながら、上記方法においては、何れも、絶縁膜形成プロセスとは別のプロセスを要するため、製造コストが高くなり、また、生産性向上が難しいという問題があった。
In order to deal with such a problem, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 2009-117569), a plasma treatment using ammonia gas is performed as a pretreatment before forming a silicon nitride film by surface wave plasma. It has been reported that the passivation effect is improved. In Patent Document 3 (Japanese Patent Laid-Open No. 2009-130041), a passivation effect is obtained by processing with a plasma formed using a mixed gas containing hydrogen gas and ammonia gas before forming a silicon nitride film. Has been reported to improve.
However, any of the above methods requires a process different from the insulating film forming process, which increases the manufacturing cost and makes it difficult to improve productivity.

特開平8−073297号公報JP-A-8-073297 特開2009−117569号公報JP 2009-117569 A 特開2009−130041号公報JP 2009-130041 A

本発明は、上記事情に鑑みてなされたもので、生産性に優れ、パッシベーション効果の高い絶縁膜を有する太陽電池の製造方法及びこの製造方法により製造される高変換効率の太陽電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for manufacturing a solar cell having an insulating film with excellent productivity and a high passivation effect, and a solar cell with high conversion efficiency manufactured by this manufacturing method. With the goal.

本発明者らは、上記目的を達成するため鋭意検討した結果、特にn型のシリコン基板の裏面側の少なくとも一部にこれと同じ導電型の拡散層(n型拡散層)を形成した後、受光面及び裏面上に窒化珪素からなる反射防止膜を形成し、次いで上記n型拡散層に電気的に接続する裏面電極を形成して太陽電池を製造するに際し、又は特にp型のシリコン基板の受光面側にこれとは異なる導電型の拡散層(n型拡散層)を形成した後、この受光面上に窒化珪素からなる反射防止膜を形成した後、上記n型拡散層に電気的に接続する受光面電極を形成して太陽電池を製造するに際し、上記反射防止膜を、シランガス、アンモニア又は窒素ガスを含む混合ガスに水素ガスを添加したガスを用いて形成することで、水素によるシリコン基板表面のパッシベーション効果により、生産性に優れ、パッシベーション効果の高い窒化珪素絶縁膜が得られ、高効率な太陽電池を製造することができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have formed a diffusion layer (n-type diffusion layer) of the same conductivity type on at least a part of the back side of the n-type silicon substrate, When a solar cell is manufactured by forming an antireflection film made of silicon nitride on the light receiving surface and the back surface, and then forming a back electrode that is electrically connected to the n-type diffusion layer, or in particular for a p-type silicon substrate After a diffusion layer (n-type diffusion layer) having a different conductivity type is formed on the light-receiving surface side, an antireflection film made of silicon nitride is formed on the light-receiving surface, and then electrically connected to the n-type diffusion layer. When manufacturing a solar cell by forming a light-receiving surface electrode to be connected, the antireflection film is formed using a gas obtained by adding hydrogen gas to a mixed gas containing silane gas, ammonia or nitrogen gas, thereby forming silicon by hydrogen. Passive on the substrate surface The Deployment effect, excellent in productivity, high silicon nitride insulating film passivation effect can be obtained, found that it is possible to manufacture a high-efficiency solar cells, the present invention has been accomplished.

従って、本発明は、下記の太陽電池の製造方法及び太陽電池を提供する。
請求項1:
シリコン基板の裏面側の少なくとも一部にこれと同じ導電型の拡散層を形成した後、受光面及び裏面上に窒化珪素からなる反射防止膜を形成し、次いで上記拡散層に電気的に接続する裏面電極を形成する太陽電池の製造方法であって、上記反射防止膜をシランガスと、アンモニア又は窒素ガスと、水素ガスとを含む混合ガスを用いて形成することを特徴とする太陽電池の製造方法。
請求項2:
シリコン基板の受光面側にこれとは異なる導電型の拡散層を形成した後、この受光面上に窒化珪素からなる反射防止膜を形成した後、上記拡散層に電気的に接続する受光面電極を形成する太陽電池の製造方法であって、上記反射防止膜をシランガスと、アンモニア又は窒素ガスと、水素ガスとを含む混合ガスを用いて形成することを特徴とする太陽電池の製造方法。
請求項3:
シランガスとアンモニア又は窒素ガスとの総流量に対する水素ガスの流量比が0.1〜3倍である請求項1又は2記載の太陽電池の製造方法。
請求項4:
反射防止膜を、平行平板型プラズマCVD装置にてプラズマCVD法により形成する請求項1〜3のいずれか1項記載の太陽電池の製造方法。
請求項5:
請求項1〜4のいずれか1項記載の太陽電池の製造方法により製造されることを特徴とする太陽電池。
Accordingly, the present invention provides the following solar cell manufacturing method and solar cell.
Claim 1:
After forming a diffusion layer of the same conductivity type on at least a part of the back surface side of the silicon substrate, an antireflection film made of silicon nitride is formed on the light receiving surface and the back surface, and then electrically connected to the diffusion layer. A method of manufacturing a solar cell for forming a back electrode, wherein the antireflection film is formed using a mixed gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas .
Claim 2:
After forming a diffusion layer of a different conductivity type on the light receiving surface side of the silicon substrate, after forming an antireflection film made of silicon nitride on the light receiving surface, a light receiving surface electrode electrically connected to the diffusion layer A method for manufacturing a solar cell, wherein the antireflection film is formed using a mixed gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas.
Claim 3:
The method for manufacturing a solar cell according to claim 1 or 2, wherein the flow rate ratio of hydrogen gas to the total flow rate of silane gas and ammonia or nitrogen gas is 0.1 to 3 times.
Claim 4:
The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the antireflection film is formed by a plasma CVD method using a parallel plate type plasma CVD apparatus.
Claim 5:
It manufactures with the manufacturing method of the solar cell of any one of Claims 1-4, The solar cell characterized by the above-mentioned.

本発明によれば、窒化珪素膜形成工程前の前処理等の別工程を設けることなく、簡単な工程で、パッシベーション効果の優れた窒化珪素膜の形成が可能となり、その結果、生産性よく、高変換効率の太陽電池を提供することができる。   According to the present invention, it is possible to form a silicon nitride film having an excellent passivation effect in a simple process without providing a separate process such as a pretreatment before the silicon nitride film forming process. A solar cell with high conversion efficiency can be provided.

平行平板型プラズマCVD装置の一例を示す概略図である。It is the schematic which shows an example of a parallel plate type plasma CVD apparatus. 本発明の太陽電池の製造工程の一例を示す概略図である。(A)は基板、(B)は基板裏面にn型拡散層を形成した状態、(C)は基板表面にp型拡散層を形成した状態、(D)は基板表裏面に反射防止膜(窒化珪素膜)を形成した状態、(E)はフィンガー電極及び裏面電極を形成した状態、(F)はバスバー電極を形成した状態をそれぞれ示す。It is the schematic which shows an example of the manufacturing process of the solar cell of this invention. (A) is a substrate, (B) is a state where an n-type diffusion layer is formed on the back surface of the substrate, (C) is a state where a p-type diffusion layer is formed on the substrate surface, and (D) is an antireflection film ( (E) shows a state where finger electrodes and back electrodes are formed, and (F) shows a state where bus bar electrodes are formed. 本発明の太陽電池の製造工程の他の例を示す概略図である。(A)は基板、(B)は基板表面にn型拡散層を形成した状態、(C)は基板表面に反射防止膜(窒化珪素膜)を形成した状態、(D)はフィンガー電極、裏面電極及びバスバー電極を形成した状態をそれぞれ示す。It is the schematic which shows the other example of the manufacturing process of the solar cell of this invention. (A) is a substrate, (B) is a state where an n-type diffusion layer is formed on the surface of the substrate, (C) is a state where an antireflection film (silicon nitride film) is formed on the surface of the substrate, (D) is a finger electrode, back surface The state which formed the electrode and the bus-bar electrode is each shown.

以下、本発明の太陽電池の製造方法を図面を参照して説明するが、本発明はこれに限定されるものではない。
図2,3は、本発明の太陽電池の製造方法における一実施形態の製造工程を示す概略図である。以下、各工程について詳細に説明する。
Hereinafter, although the manufacturing method of the solar cell of this invention is demonstrated with reference to drawings, this invention is not limited to this.
2 and 3 are schematic views showing manufacturing steps of an embodiment in the method for manufacturing a solar cell of the present invention. Hereinafter, each step will be described in detail.

(1)基板
図2,3に示すように、本発明において用いられるシリコン基板11はn型でもp型でもよく、図2(A)にn型シリコン基板を、図3(A)にp型シリコン基板を示す。シリコン単結晶基板の場合、チョクラルスキー(CZ)法及びフロートゾーン(FZ)法のいずれの方法によって作製されていてもよい。シリコン基板の比抵抗は、高性能の太陽電池を作る点から、0.1〜20Ω・cmが好ましく、0.5〜2.0Ω・cmがより好ましい。シリコン基板としては、比較的高いライフタイムが得られる点から、リンドープn型単結晶シリコン基板が好ましい。リンドープのドーパント濃度は1×1015cm-3〜5×1016cm-3が好ましい。
(1) Substrate As shown in FIGS. 2 and 3, the silicon substrate 11 used in the present invention may be n-type or p-type. FIG. 2 (A) shows an n-type silicon substrate, and FIG. 3 (A) shows a p-type. A silicon substrate is shown. In the case of a silicon single crystal substrate, it may be produced by any one of the Czochralski (CZ) method and the float zone (FZ) method. The specific resistance of the silicon substrate is preferably from 0.1 to 20 Ω · cm, more preferably from 0.5 to 2.0 Ω · cm, from the viewpoint of producing a high-performance solar cell. As the silicon substrate, a phosphorus-doped n-type single crystal silicon substrate is preferable because a relatively high lifetime can be obtained. The dopant concentration of phosphorus doping is preferably 1 × 10 15 cm −3 to 5 × 10 16 cm −3 .

(2)ダメージエッチング/テクスチャ形成
例えば、シリコン基板11を水酸化ナトリウム水溶液に浸し、スライスによるダメージ層をエッチングで取り除く。この基板のダメージ除去は、水酸化カリウム等の強アルカリ水溶液を用いてもよく、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。
ダメージエッチングを行った基板11に、ランダムテクスチャを形成する。太陽電池は通常、表面(受光面)に凹凸形状を形成するのが好ましい。その理由は、可視光域の反射率を低減させるために、できる限り2回以上の反射を受光面で行わせる必要があるためである。凹凸形状を形成する一つ一つの山のサイズは1〜20μm程度が好ましい。代表的な表面凹凸構造としては、V溝、U溝が挙げられる。これらは、研削機を利用して形成可能である。また、ランダムな凹凸構造を作るには、水酸化ナトリウムにイソプロピルアルコールを加えた水溶液に浸すウェットエッチングや、他には、酸エッチングやリアクティブ・イオン・エッチング等を用いることができる。なお、図2,3中では両面に形成したテクスチャ構造は微細なため省略する。
(2) Damage etching / texture formation For example, the silicon substrate 11 is immersed in an aqueous sodium hydroxide solution, and a damaged layer caused by slicing is removed by etching. For removing damage from the substrate, a strong alkaline aqueous solution such as potassium hydroxide may be used, and a similar purpose can be achieved with an acid aqueous solution such as hydrofluoric acid.
A random texture is formed on the substrate 11 subjected to damage etching. In general, a solar cell preferably has an uneven shape on the surface (light receiving surface). The reason is that in order to reduce the reflectance in the visible light region, it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible. The size of each mountain forming the irregular shape is preferably about 1 to 20 μm. Typical surface uneven structures include V-grooves and U-grooves. These can be formed using a grinding machine. In order to create a random concavo-convex structure, wet etching immersed in an aqueous solution of sodium hydroxide and isopropyl alcohol, or acid etching, reactive ion etching, or the like can be used. In FIGS. 2 and 3, the texture structure formed on both sides is fine, and is omitted.

(3)n型拡散層形成
図2に示すように、シリコン基板11がn型の場合は、裏面にドーパントを含む塗布剤を塗布した後に熱処理を行うことで、n型拡散層13を裏面側の少なくとも一部に、特に裏面全面に形成する[図2(B)]。また、図3に示すように、シリコン基板がp型の場合は、受光面にドーパントを含む塗布剤を塗布した後に熱処理を行うことで、n型拡散層13を受光面に形成する[図3(B)]。ドーパントはリンが好ましい。n型拡散層13の表面ドーパント濃度は、1×1018cm-3〜5×1020cm-3が好ましく、5×1018cm-3〜1×1020cm-3がより好ましい。
熱処理後、シリコン基板11に付いたガラス成分はガラスエッチング等により洗浄する。
(3) Formation of n-type diffusion layer As shown in FIG. 2, when the silicon substrate 11 is n-type, the n-type diffusion layer 13 is moved to the back side by applying heat treatment after applying a coating agent containing a dopant on the back surface. Is formed on at least a part of the surface, particularly on the entire back surface [FIG. 2 (B)]. As shown in FIG. 3, when the silicon substrate is p-type, an n-type diffusion layer 13 is formed on the light-receiving surface by applying a coating agent containing a dopant to the light-receiving surface and then performing heat treatment [FIG. (B)]. The dopant is preferably phosphorus. The surface dopant concentration of the n-type diffusion layer 13 is preferably 1 × 10 18 cm −3 to 5 × 10 20 cm −3, and more preferably 5 × 10 18 cm −3 to 1 × 10 20 cm −3 .
After the heat treatment, the glass component attached to the silicon substrate 11 is washed by glass etching or the like.

(4)p型拡散層形成
図2(C)に示すように、n型拡散層形成と同様の処理を受光面で行い、p型拡散層12を受光面全体に形成する。受光面にドーパントを含む塗布剤を塗布して熱処理を行い、p型拡散層を形成するが、ドーパントはボロンが好ましく、また、p型拡散層12の表面ドーパント濃度は、1×1018cm-3〜5×1020cm-3が好ましく、更には5×1018cm-3〜1×1020cm-3がより好ましい。
(4) Formation of p-type diffusion layer As shown in FIG. 2 (C), the same process as the formation of the n-type diffusion layer is performed on the light-receiving surface, and the p-type diffusion layer 12 is formed on the entire light-receiving surface. A p-type diffusion layer is formed by applying a coating agent containing a dopant on the light-receiving surface to form a p-type diffusion layer. The dopant is preferably boron, and the surface dopant concentration of the p-type diffusion layer 12 is 1 × 10 18 cm −. 3 to 5 × 10 20 cm −3 is preferable, and 5 × 10 18 cm −3 to 1 × 10 20 cm −3 is more preferable.

(5)pn接合分離
プラズマエッチャーを用い、pn接合分離を行う。このプロセスでは、プラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で端面を数ミクロン削る。接合分離後、基板に付いたガラス成分、シリコン粉等はガラスエッチング等により洗浄する。
(5) Pn junction isolation Pn junction isolation is performed using a plasma etcher. In this process, the sample is stacked so that plasma and radicals do not enter the light-receiving surface and the back surface, and the end face is cut by several microns in this state. After bonding and separation, glass components, silicon powder, and the like attached to the substrate are washed by glass etching or the like.

(6)反射防止膜形成
引き続き、太陽光の光を有効的にシリコン基板内に取り込むために、シリコン基板表面及び裏面の両方[図2(D)]又は受光面[図3(C)]に、反射防止膜である窒化珪素膜14を形成する。この窒化珪素膜は、シリコン基板表面及び内部のパッシベーション膜としても機能する。窒化珪素膜の形成方法としては、平行平板型プラズマCVD装置等を用いたプラズマCVD法により形成するのが好ましい。本発明においては、成膜用ガスとして、SiH4、Si26等のシランガス、アンモニア(NH3)又は窒素(N2)ガス、及び水素(H2)ガスを用いる。シラン、アンモニア又は窒素に、水素を加えることでより高い基板表面のパッシベーション効果が得られる。
(6) Antireflection film formation Subsequently, in order to effectively capture sunlight light into the silicon substrate, both the front and back surfaces of the silicon substrate [FIG. 2 (D)] or the light receiving surface [FIG. 3 (C)]. Then, a silicon nitride film 14 which is an antireflection film is formed. This silicon nitride film also functions as a surface of the silicon substrate and an internal passivation film. As a method for forming the silicon nitride film, it is preferable to form the silicon nitride film by a plasma CVD method using a parallel plate type plasma CVD apparatus or the like. In the present invention, silane gas such as SiH 4 and Si 2 H 6 , ammonia (NH 3 ) or nitrogen (N 2 ) gas, and hydrogen (H 2 ) gas are used as the film forming gas. By adding hydrogen to silane, ammonia or nitrogen, a higher substrate surface passivation effect can be obtained.

成膜ガス条件は、成膜室の形状及び大きさにより適宜設定すればよいが、例えば、サイズ約10cm×10cm〜16cm×16cmのシリコン基板1〜50枚程度の表面に窒化珪素膜を成膜する場合、シラン50〜500sccm、アンモニア又は窒素50〜2,000sccm、及び水素10〜8,000sccmの範囲であるのが好ましい。特にシラン200〜500sccm、アンモニア又は窒素1,500〜1,800sccm、及び水素1,000〜2,000sccmの範囲であるのがより好ましい。ガス流量が上記範囲より少なすぎると均一な窒化珪素膜が形成できない場合があり、多すぎると材料ガスが無駄になる場合がある。   The deposition gas conditions may be appropriately set depending on the shape and size of the deposition chamber. For example, a silicon nitride film is formed on the surface of about 1 to 50 silicon substrates having a size of about 10 cm × 10 cm to 16 cm × 16 cm. In this case, it is preferable that silane is 50 to 500 sccm, ammonia or nitrogen is 50 to 2,000 sccm, and hydrogen is 10 to 8,000 sccm. In particular, silane 200 to 500 sccm, ammonia or nitrogen 1,500 to 1,800 sccm, and hydrogen 1,000 to 2,000 sccm are more preferable. If the gas flow rate is less than the above range, a uniform silicon nitride film may not be formed, and if it is too much, the material gas may be wasted.

また、シランガスとアンモニア又は窒素ガスとの流量比は、1:10〜1:3が好ましく、より好ましくは1:6〜1:4である。この割合が小さすぎると形成された窒化珪素膜の屈折率が高くなりすぎる場合があり、大きすぎると低くなりすぎる場合がある。また、シランガスとアンモニア又は窒素ガスとの総流量に対する水素ガスの割合は、0.1〜3倍であることが好ましく、より好ましくは0.2〜1倍である。水素ガスの割合が少なすぎると高いパッシベーション効果が得られない場合があり、多すぎると無駄になる場合がある。   Further, the flow rate ratio between the silane gas and ammonia or nitrogen gas is preferably 1:10 to 1: 3, more preferably 1: 6 to 1: 4. If this ratio is too small, the refractive index of the formed silicon nitride film may be too high, and if it is too large, it may be too low. Moreover, it is preferable that the ratio of the hydrogen gas with respect to the total flow rate of silane gas and ammonia or nitrogen gas is 0.1 to 3 times, More preferably, it is 0.2 to 1 time. If the proportion of hydrogen gas is too small, a high passivation effect may not be obtained, and if too much, it may be wasted.

この場合、装置内の圧力10〜100Pa、温度250〜600℃が好ましく、処理時間は材料ガスの流量比等により異なるが、形成される窒化珪素膜の膜厚が60〜100nmになる範囲であるのが好ましい。このような成膜条件で平行平板型プラズマCVD装置等により窒化珪素膜を形成することで、パッシベーション効果が優れた窒化珪素膜を形成することができる。   In this case, the pressure in the apparatus is preferably 10 to 100 Pa, the temperature is 250 to 600 ° C., and the processing time varies depending on the flow rate ratio of the material gas, but the thickness of the formed silicon nitride film is in the range of 60 to 100 nm. Is preferred. By forming a silicon nitride film with a parallel plate plasma CVD apparatus or the like under such film formation conditions, a silicon nitride film having an excellent passivation effect can be formed.

窒化珪素膜の厚さは、膜の反射率やシリコン基板表面形状により適宜設定すればよく、通常60〜100nm程度、特に70〜90nm程度の厚さであることが好ましい。   The thickness of the silicon nitride film may be appropriately set depending on the reflectivity of the film and the surface shape of the silicon substrate, and is usually about 60 to 100 nm, particularly about 70 to 90 nm.

(7)電極形成
スクリーン印刷装置等を用い、受光面側及び裏面側に、例えば銀を含むペーストをp型拡散層及びn型拡散層上に印刷し、櫛形電極パターン状15(16)に塗布して乾燥させる[図2(E),図3(D)]。特にシリコン基板にp型を使用する場合は、裏面側にアルミニウム(Al)粉末を有機バインダで混合したペーストをスクリーン印刷し、乾燥させて裏面電極16を形成することが好ましい。次いで、受光面及び裏面の両方に[図2(F)]又は受光面に[図3(D)]銀ペースト等でバスバー電極17をスクリーン印刷等により形成する。最後に、焼成炉において、500〜900℃で1〜30分焼成を行い、p型拡散層又はn型拡散層と電気的に接続する、フィンガー電極15、裏面電極16、及びバスバー電極17を形成する。なお、図2(F)ではフィンガー電極15、裏面電極16が拡散層12,13と、図3(D)ではフィンガー電極15は拡散層13と接続されていないように示されているが、焼成によりファイヤースルーされ、実際は拡散層と接続されている。
(7) Electrode formation Using a screen printing device or the like, a paste containing silver, for example, is printed on the p-type diffusion layer and the n-type diffusion layer on the light-receiving surface side and back surface side, and applied to the comb-shaped electrode pattern 15 And dried [FIG. 2 (E), FIG. 3 (D)]. In particular, when the p-type is used for the silicon substrate, it is preferable to form the back electrode 16 by screen printing a paste in which aluminum (Al) powder is mixed with an organic binder on the back side and drying it. Next, the bus bar electrode 17 is formed by screen printing or the like with silver paste or the like on the light receiving surface [FIG. 2 (F)] or on the light receiving surface [FIG. 3 (D)]. Finally, firing is performed at 500 to 900 ° C. for 1 to 30 minutes in a firing furnace to form the finger electrode 15, the back electrode 16, and the bus bar electrode 17 that are electrically connected to the p-type diffusion layer or the n-type diffusion layer. To do. In FIG. 2F, the finger electrode 15 and the back electrode 16 are shown as not being connected to the diffusion layers 12 and 13, and in FIG. 3D, the finger electrode 15 is shown as not being connected to the diffusion layer 13. And is actually connected to the diffusion layer.

以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example.

[実施例1]
図2に示すように、結晶面方位(100)、15.65cm角、200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板11を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った[図2(A)]。
得られたシリコン基板11の裏面に、リンドーパントを含む塗布剤を塗布した後に、900℃,1時間熱処理を行い、n型拡散層13を裏面に形成した[図2(B)]。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
引き続き、受光面にボロンドーパントを含む塗布剤を塗布した後に、1,000℃,1時間熱処理を行い、p型拡散層12を受光面全体に形成した[図2(C)]。
次に、プラズマエッチャーを用い、pn接合分離を行った。プラズマやラジカルが受光面や裏面に侵入しないよう、対象をスタックした状態で端面を数ミクロン削った。その後、基板に付いたガラス成分を高濃度フッ酸溶液により除去後、洗浄した。
[Example 1]
As shown in FIG. 2, the crystal plane orientation (100), 15.65 cm square, 200 μm thickness, as-slice specific resistance 2 Ω · cm (dopant concentration 7.2 × 10 15 cm −3 ) phosphorus-doped n-type single crystal silicon substrate 11 Was immersed in an aqueous solution of sodium hydroxide to remove the damaged layer by etching, and was immersed in an aqueous solution obtained by adding isopropyl alcohol to an aqueous solution of potassium hydroxide to perform alkali etching [FIG. 2 (A)].
After applying the coating agent containing a phosphorus dopant to the back surface of the obtained silicon substrate 11, heat treatment was performed at 900 ° C. for 1 hour to form the n-type diffusion layer 13 on the back surface [FIG. 2 (B)]. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.
Subsequently, a coating agent containing a boron dopant was applied to the light receiving surface, followed by heat treatment at 1,000 ° C. for 1 hour to form the p-type diffusion layer 12 over the entire light receiving surface [FIG. 2 (C)].
Next, pn junction isolation was performed using a plasma etcher. In order to prevent plasma and radicals from entering the light-receiving surface and back surface, the end face was cut several microns with the target stacked. Thereafter, the glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.

続いて、図1に示す平行平板型CVD装置を用い、成膜用ガスとしてモノシラン(SiH4)、アンモニア及び水素の混合ガスを使用して、受光面側p型拡散層12及び裏面n型拡散層13上に誘電体膜である窒化珪素膜14を積層した[図2(D)]。この膜厚は70nmであった。成膜条件は、モノシラン:アンモニア:水素=1:4:2.5(sccm)の混合比で、装置内圧力90Pa、温度450℃、時間3分であった。
最後に、受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後、800℃で20分焼成を行い、フィンガー電極15、裏面電極16及びバスバー電極17を形成した[図2(E),(F)]。
Subsequently, using the parallel plate type CVD apparatus shown in FIG. 1 and using a mixed gas of monosilane (SiH 4 ), ammonia and hydrogen as a film forming gas, the light receiving surface side p-type diffusion layer 12 and the back surface n-type diffusion are used. A silicon nitride film 14 which is a dielectric film was stacked on the layer 13 [FIG. 2D]. This film thickness was 70 nm. The film formation conditions were monosilane: ammonia: hydrogen = 1: 4: 2.5 (sccm), an apparatus internal pressure of 90 Pa, a temperature of 450 ° C., and a time of 3 minutes.
Finally, a silver paste was electrode-printed on each of the light-receiving surface side and the back surface side, dried, and then fired at 800 ° C. for 20 minutes to form the finger electrode 15, the back electrode 16, and the bus bar electrode 17 [FIG. , (F)].

[実施例2]
図3に示すように、実施例1と同様のシリコン基板11にp型単結晶シリコン基板を使用し、実施例1同様、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った[図3(A)]。
得られたシリコン基板11の受光面に、リンドーパントを含む塗布剤を塗布した後に、800℃で1時間熱処理を行い、n型拡散層13を形成した[図3(B)]。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
[Example 2]
As shown in FIG. 3, a p-type single crystal silicon substrate is used for the same silicon substrate 11 as in Example 1, and as in Example 1, it is immersed in an aqueous sodium hydroxide solution to remove the damaged layer by etching. Texture formation was performed by immersion in an aqueous solution containing isopropyl alcohol and alkali etching [FIG. 3A].
After applying a coating agent containing a phosphorus dopant to the light receiving surface of the obtained silicon substrate 11, heat treatment was performed at 800 ° C. for 1 hour to form an n-type diffusion layer 13 [FIG. 3B]. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.

次に、図1に示す平行平板型CVD装置を用い、成膜用ガスとしてモノシラン(SiH4)、アンモニア及び水素の混合ガスを使用して、受光面側n型拡散層13上に誘電体膜である窒化珪素膜14を積層した[図3(C)]。この膜厚は90nmであった。成膜条件は、モノシラン:アンモニア:水素=1:4:2.5(sccm)の混合比で、装置内圧力90Pa、温度450℃、時間3分であった。
引き続き、受光面側及び裏面側にそれぞれ銀ペースト及びアルミニウムペーストを電極印刷し、乾燥後、800℃で20分焼成を行い、フィンガー電極15、裏面電極16及びバスバー電極17を形成した[図3(D)]。
Next, using the parallel plate type CVD apparatus shown in FIG. 1, using a mixed gas of monosilane (SiH 4 ), ammonia and hydrogen as a film forming gas, a dielectric film is formed on the light receiving surface side n-type diffusion layer 13. A silicon nitride film 14 is stacked [FIG. 3C]. This film thickness was 90 nm. The film formation conditions were monosilane: ammonia: hydrogen = 1: 4: 2.5 (sccm), an apparatus internal pressure of 90 Pa, a temperature of 450 ° C., and a time of 3 minutes.
Subsequently, silver paste and aluminum paste were electrode-printed on the light-receiving surface side and the back surface side, respectively, dried, and then fired at 800 ° C. for 20 minutes to form the finger electrode 15, the back electrode 16 and the bus bar electrode 17 [FIG. D)].

[比較例1]
窒化珪素膜形成時、成膜用ガスとして水素の代わりに窒素を用いた以外は、実施例1と同様な方法にて作製した[図2(A)〜(F)]。
即ち、図1に示す平行平板型プラズマCVD装置により、窒化珪素膜14を受光面側p型拡散層12、及び裏面n型拡散層13上に形成する際の成膜用ガスとして、モノシラン、アンモニア及び窒素の混合ガスを用いて形成した。
[Comparative Example 1]
The silicon nitride film was formed in the same manner as in Example 1 except that nitrogen was used instead of hydrogen as a film forming gas [FIGS. 2A to 2F].
That is, monosilane, ammonia as a film forming gas when the silicon nitride film 14 is formed on the light receiving surface side p-type diffusion layer 12 and the back surface n-type diffusion layer 13 by the parallel plate type plasma CVD apparatus shown in FIG. And a mixed gas of nitrogen.

[比較例2]
窒化珪素膜形成時、成膜用ガスとして水素の代わりに窒素を用いた以外は、実施例2と同様な方法にて作製した[図3(A)〜(D)]。
即ち、図1に示す平行平板型プラズマCVD装置により、シリコン窒化膜14を受光面側n型拡散層13上に形成する際の成膜用ガスとして、モノシラン、アンモニア及び窒素の混合ガスを用いて形成した。
[Comparative Example 2]
The silicon nitride film was formed in the same manner as in Example 2 except that nitrogen was used instead of hydrogen as a film forming gas [FIGS. 3A to 3D].
That is, a mixed gas of monosilane, ammonia and nitrogen is used as a film forming gas when the silicon nitride film 14 is formed on the light receiving surface side n-type diffusion layer 13 by the parallel plate type plasma CVD apparatus shown in FIG. Formed.

実施例1,2及び比較例1,2で得られた太陽電池を、25℃の雰囲気の中、ソーラーシミュレーター(光強度:1kW/m2,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。結果を表1に示す。なお、表中の数字は、実施例1,2及び比較例1,2で作製したセルそれぞれ10枚の平均値である。 The current-voltage characteristics of the solar cells obtained in Examples 1 and 2 and Comparative Examples 1 and 2 in a 25 ° C. atmosphere under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global) Was measured. The results are shown in Table 1. In addition, the number in a table | surface is an average value of ten cells each produced by Example 1, 2 and Comparative Example 1,2.

Figure 2011187858
Figure 2011187858

上記のように、実施例1,2による太陽電池は、窒化珪素膜がシランガスと、アンモニア又は窒素ガスと、水素ガスとを含む混合ガスを用いて形成されることで、パッシベーション効果が優れた窒化珪素膜が形成され、高い変換効率の太陽電池が得られた。   As described above, in the solar cells according to the first and second embodiments, the silicon nitride film is formed using a mixed gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas, so that nitriding has excellent passivation effect. A silicon film was formed, and a solar cell with high conversion efficiency was obtained.

1 成膜室
2 シリコン基板
3 トレー
4 ヒーターブロック
5 温度制御手段
6 成膜用ガス導入路
7 高周波電源
8 排気装置
10 CVD装置
11 シリコン基板(n型又はp型)
12 p型拡散層
13 n型拡散層
14 反射防止膜(窒化珪素膜)
15 フィンガー電極
16 裏面電極
17 バスバー電極
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Silicon substrate 3 Tray 4 Heater block 5 Temperature control means 6 Deposition gas introduction path 7 High frequency power supply 8 Exhaust device 10 CVD apparatus 11 Silicon substrate (n-type or p-type)
12 p-type diffusion layer 13 n-type diffusion layer 14 antireflection film (silicon nitride film)
15 Finger electrode 16 Back electrode 17 Bus bar electrode

Claims (5)

シリコン基板の裏面側の少なくとも一部にこれと同じ導電型の拡散層を形成した後、受光面及び裏面上に窒化珪素からなる反射防止膜を形成し、次いで上記拡散層に電気的に接続する裏面電極を形成する太陽電池の製造方法であって、上記反射防止膜をシランガスと、アンモニア又は窒素ガスと、水素ガスとを含む混合ガスを用いて形成することを特徴とする太陽電池の製造方法。   After forming a diffusion layer of the same conductivity type on at least a part of the back surface side of the silicon substrate, an antireflection film made of silicon nitride is formed on the light receiving surface and the back surface, and then electrically connected to the diffusion layer. A method of manufacturing a solar cell for forming a back electrode, wherein the antireflection film is formed using a mixed gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas . シリコン基板の受光面側にこれとは異なる導電型の拡散層を形成した後、この受光面上に窒化珪素からなる反射防止膜を形成した後、上記拡散層に電気的に接続する受光面電極を形成する太陽電池の製造方法であって、上記反射防止膜をシランガスと、アンモニア又は窒素ガスと、水素ガスとを含む混合ガスを用いて形成することを特徴とする太陽電池の製造方法。   After forming a diffusion layer of a different conductivity type on the light receiving surface side of the silicon substrate, after forming an antireflection film made of silicon nitride on the light receiving surface, a light receiving surface electrode electrically connected to the diffusion layer A method for manufacturing a solar cell, wherein the antireflection film is formed using a mixed gas containing silane gas, ammonia or nitrogen gas, and hydrogen gas. シランガスとアンモニア又は窒素ガスとの総流量に対する水素ガスの流量比が0.1〜3倍である請求項1又は2記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1 or 2, wherein the flow rate ratio of hydrogen gas to the total flow rate of silane gas and ammonia or nitrogen gas is 0.1 to 3 times. 反射防止膜を、平行平板型プラズマCVD装置にてプラズマCVD法により形成する請求項1〜3のいずれか1項記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the antireflection film is formed by a plasma CVD method using a parallel plate type plasma CVD apparatus. 請求項1〜4のいずれか1項記載の太陽電池の製造方法により製造されることを特徴とする太陽電池。   It manufactures with the manufacturing method of the solar cell of any one of Claims 1-4, The solar cell characterized by the above-mentioned.
JP2010054061A 2010-03-11 2010-03-11 Method of manufacturing solar cell, and solar cell Pending JP2011187858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054061A JP2011187858A (en) 2010-03-11 2010-03-11 Method of manufacturing solar cell, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054061A JP2011187858A (en) 2010-03-11 2010-03-11 Method of manufacturing solar cell, and solar cell

Publications (1)

Publication Number Publication Date
JP2011187858A true JP2011187858A (en) 2011-09-22

Family

ID=44793745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054061A Pending JP2011187858A (en) 2010-03-11 2010-03-11 Method of manufacturing solar cell, and solar cell

Country Status (1)

Country Link
JP (1) JP2011187858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611082A (en) * 2016-07-12 2018-01-19 美普森半导体公司(股) For the method for the passivation layer for forming the power semiconductor with high reliability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2004193350A (en) * 2002-12-11 2004-07-08 Sharp Corp Solar battery cell and its manufacturing method
WO2006011595A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Solar cell device and method for manufacturing same
JP2006310368A (en) * 2005-04-26 2006-11-09 Shin Etsu Handotai Co Ltd Solar cell manufacturing method and solar cell
JP2008034543A (en) * 2006-07-27 2008-02-14 Kyocera Corp Photoelectric conversion element, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2004193350A (en) * 2002-12-11 2004-07-08 Sharp Corp Solar battery cell and its manufacturing method
WO2006011595A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Solar cell device and method for manufacturing same
JP2006310368A (en) * 2005-04-26 2006-11-09 Shin Etsu Handotai Co Ltd Solar cell manufacturing method and solar cell
JP2008034543A (en) * 2006-07-27 2008-02-14 Kyocera Corp Photoelectric conversion element, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611082A (en) * 2016-07-12 2018-01-19 美普森半导体公司(股) For the method for the passivation layer for forming the power semiconductor with high reliability

Similar Documents

Publication Publication Date Title
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
JP6285545B2 (en) Solar cell element and solar cell module
EP2782146A1 (en) Solar cell with reduced potential induced degradation and manufacturing method thereof
JP2013165160A (en) Method for manufacturing solar cell, and solar cell
JP5884911B2 (en) Manufacturing method of solar cell
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
JP5477220B2 (en) Solar cell and manufacturing method thereof
TWI390755B (en) Method of fabricating solar cells
WO2014196253A1 (en) METHOD FOR FORMING p-TYPE SELECTIVE EMITTER AND SOLAR CELL
JP5817046B2 (en) Manufacturing method of back contact type crystalline silicon solar cell
JP5623131B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP5375414B2 (en) Solar cell and manufacturing method thereof
US20120064659A1 (en) Method for manufacturing solar cell
JP6224513B2 (en) Method for manufacturing solar cell element
JP2011187858A (en) Method of manufacturing solar cell, and solar cell
JP2012212769A (en) Solar cell element
JP5516611B2 (en) Solar cell manufacturing method and solar cell
TWI686958B (en) Solar cell and method of fabricating the same
JP5494511B2 (en) Manufacturing method of solar cell
JP6076814B2 (en) Manufacturing method of solar cell
KR20130109308A (en) Processing method for crystalline silicon solar cell
Kuo et al. Investigation of laser pattern for high efficiency PERC mono silicon solar cells
CN110137270A (en) A kind of preparation method of selectivity front passivation PERC solar battery
JP2005108884A (en) Process for producing solar cell element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701