JP2011160634A - 電力伝送システム及び送電装置 - Google Patents

電力伝送システム及び送電装置 Download PDF

Info

Publication number
JP2011160634A
JP2011160634A JP2010022645A JP2010022645A JP2011160634A JP 2011160634 A JP2011160634 A JP 2011160634A JP 2010022645 A JP2010022645 A JP 2010022645A JP 2010022645 A JP2010022645 A JP 2010022645A JP 2011160634 A JP2011160634 A JP 2011160634A
Authority
JP
Japan
Prior art keywords
coil
power transmission
power
resonance
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010022645A
Other languages
English (en)
Inventor
Kimiyasu Mifuji
仁保 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010022645A priority Critical patent/JP2011160634A/ja
Publication of JP2011160634A publication Critical patent/JP2011160634A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】磁界共鳴型の非接触電力伝送手法を、一定以上の送電限界距離を確保しつつ、低コストかつ簡素で小型な構成で実現すること。
【解決手段】送電装置11の送電コイル22は、送電回路21からの交流に基づいて、共鳴周波数の振動電磁場を周囲に発生させることによって、電力を送電する。中継コイル61は、送電コイル22の周囲の振動電磁場の共鳴により交流が流れて、共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、電力を中継する。受電装置12の受電コイル41は、中継コイル61の周囲の振動電磁場の共鳴により交流が流れて、共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、電力を受電して、受電回路42を介して各種電子電気機器に供給する。
【選択図】図2

Description

本発明は、電力伝送システム及び送電装置に関し、特に、磁界共鳴型の非接触電力伝送手法を、一定以上の送電限界距離を確保しつつ、低コストかつ簡素で小型な構成で実現可能にする技術に関する。
従来より、非接触で電力を伝送する手法(以下、「非接触電力伝送手法」と呼ぶ)の研究開発が行われてきた。代表的な非接触電力伝送手法として、電磁誘導型の非接触電力伝送手法が知られている(特許文献1参照)。さらに、近年、このような電磁誘導型の非接触電力伝送手法と比較して長距離伝送が可能となる、磁界共鳴型の非接触電力伝送手法も登場してきた(特許文献2参照)。
特開平11−066250号公報 特開2009−501510号公報
しかしながら、このような非接触電力伝送手法を各種電子電気機器の電源システムに適用したいという要望が近年挙げられているところ、特許文献1及び2を含め従来の非接触電力伝送手法では、このような要望に十分に応えることができない。即ち、このような要望に応えるためには、数m単位での送電限界距離を確保しつつ、簡素で小型な構成の電源システムを低コストで提供する必要がある。しかしながら、特許文献1及び2を含め従来の非接触電力伝送手法を適用しても、このような電源システムを具現化することは非常に困難である。
例えば、電磁誘導型の非接触電力手法を単に適用しても、数m単位での送電限界距離を確保することは非常に困難である。このため、特許文献1には、送電装置と受電装置との間に中継器を配置させることで、送電限界距離を伸長させる手法が提案されている。しかしながら、この手法で提案されている中継器は、増幅器や変調回路を有するアクティブな装置であるため、送電装置よりも大掛かりなものとなり、その分だけ高コストになる。このような中継器を必要とする電源システムは、たとえ数m単位での送電限界距離を確保できたとしても、簡素で小型であるとは言い難いし、コストの面でも低コストであるとは言い難い。
一方、例えば、磁界共鳴型の非接触電力伝送手法を適用することで、数m単位での送電限界距離を確保することは可能になる。しかしながら、磁界共鳴型の非接触電力伝送手法における送電限界距離は、共鳴周波数、コイル径、Q値、送電電力、送電効率等の要素によって定まる。このため、コイル径以外の要素を固定として、送電限界距離を伸長するためには、その分だけコイル径を大きくする必要がある。従って、数m単位の送電限界距離を確保するためには、大きなコイル径の送電コイルや受電コイルを採用しなければならず、簡素で小型の電源システムを実現することは非常に困難である。また、各種電子電気機器の電源システムの用途として考えた場合には、コイル径以外の要素を犠牲にして、送電限界距離を伸長することは現実的でない。さらに、これらの要素以外を利用して送電限界距離を伸長できる適切な手法は現状見受けられない。
そこで、本発明は、このような状況に鑑みてなされたものであり、磁界共鳴型の非接触電力伝送手法を、一定以上の送電限界距離を確保しつつ、低コストかつ簡素で小型な構成で実現可能にすることを目的とする。
本発明の第1の観点によると、
磁界共鳴型の電力伝送手法に従って電力を伝送する電力伝送システムであって、
交流電源に基づく交流が流れて、共鳴周波数の振動電磁場を周囲に発生させることによって、電力を送電する送電コイルと、
前記送電コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を中継する中継コイルと、
前記中継コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を受電する受電コイルと、
を備える電力伝送システムを提供する。
本発明の第2の観点によると、
前記送電コイルと前記受電コイルとの間に、n個(nは1以上の整数値)の中継コイルが配設されている、
電力伝送システムを提供する。
本発明の第3の観点によると、
前記n個の中継コイルの各々は、隣接するコイルとの間の距離が、前記中継コイルが存在しない場合の前記送電コイルと前記受電コイルとの間の送電限界距離以下となるように配設されている、
電力伝送システムを提供する。
本発明の第4の観点によると、
前記n個の中継コイルの各々は、前記送電コイル及び前記受電コイルのコイル径と略同一のコイル径を有し、隣接するコイルとの間の距離が、前記コイル径の略(1/2)倍以上の距離となるように配設されている、
電力伝送システムを提供する。
本発明の第5の観点によると、
前記送電コイル、前記n個の中継コイルの各々、及び前記受電コイルは、略同軸となるようにその順番で配設されている、
電力伝送システムを提供する。
本発明の第6の観点によると、
前記送電コイルと前記受電コイルとは軸を一致させずに配置されており、
前記n個の中継コイルは、前記送電コイルと前記受電コイルとの中心を結んだ線が略中心を通り、かつ、前記送電コイルと前記受電コイルとのなす角度に対して略{1/(n+1)}倍の角度ずつずらして配設されている、
電力伝送システムを提供する。
本発明の第7の観点によると、
磁界共鳴型の電力伝送手法に従って電力を送電する送電装置であって、
交流電源に基づく交流が流れて、共鳴周波数の振動電磁場を周囲に発生させることによって、電力を送電する送電コイルと、
前記送電コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を中継する中継コイルと、
を備える送電装置を提供する。
本発明によれば、磁界共鳴型の非接触電力伝送手法を、一定以上の送電限界距離を確保しつつ、低コストかつ簡素で小型な構成で実現することができる。
本発明の実施の形態の電力伝送システムの原理を説明するための基本電力伝送システムの構成を示すブロック図である。 本発明の第1の実施の形態の電力伝送システムの構成を示すブロック図である。 図2の電力伝送システムの中継コイルの外観構成を示す図である。 図2の電力伝送システムの送電コイルの外観構成を示す図である。 本発明の第2の実施の形態の電力伝送システムの構成を示すブロック図である。 図5の電力伝送システムにおいて、送電コイルと受電コイルとの軸が一致しない場合における中継コイルの配置形態を説明する図である。 図5の電力伝送システムにおいて、送電コイルと受電コイルとの軸が一致しない場合における中継コイルの配置形態であって、図6とは異なる配置形態を説明する図である。 図5の電力伝送システムにおいて、送電コイルと受電コイルとの軸が一致しない場合における中継コイルの配置形態であって、図6や図7とは異なる配置形態を説明する図である。
最初に、本発明の理解を容易にし、かつ、その背景を明らかにするため、本発明の実施の形態の電力伝送システムの基本となる、磁界共鳴型の非接触電力伝送手法が適用された電力伝送システム(以下、「基本電力伝送システム」と呼ぶ)について、図1を参照して説明する。
図1は、基本電力伝送システムの構成を示すブロック図である。
基本電力伝送システムは、送電装置11と、受電装置12と、を備えている。送電装置11と受電装置12とは、送電限界距離L以下の一定の距離だけ離間して、物理的に相互に分離して配設される。
送電装置11は、送電回路21と、送電コイル22と、を備えている。送電回路21は、商用交流電源等(図示せず)に接続される発振回路31を備えている。送電コイル22は、発振回路31により電力が投入される電力投入コイル32と、受電側と磁界共鳴する共鳴コイル33と、を備えている。共鳴コイル33は、次の式(1)で示される共鳴周波数fを有している。
Figure 2011160634
・・・(1)
式(1)において、Lは、共鳴コイル33のインダクタンスを示している。Cは共鳴コイル33の両端部が所定の距離だけ離間して配置されることにより生ずる浮動容量を示している。即ち、共鳴コイル33の等価回路は、図1に示すように、このようなインダクタンスLとキャパシタCとが接続されたLC回路になる。ただし、Cは、浮動容量の代わりに、共鳴コイル33に接続したコンデンサ素子の容量としてもよい。
受電装置12は、受電コイル41と、受電回路42と、を備えている。受電コイル41は、送電側と磁界共鳴する共鳴コイル51と、受電回路42によって電力が取り出される電力取出コイル52と、を備えている。受電回路42は、ブリッジ整流回路53と、平滑コンデンサ54と、を備えている。ブリッジ整流回路53において、その入力端には、電力取出コイル52が接続され、その出力端には、平滑コンデンサ54が接続される。平滑コンデンサ54の両端にはまた、直流駆動する各種電子電気機器(図示せず)が接続される。
このような構成を有する基本電力伝送システムは、次のように動作する。
即ち、送電装置11において、発振回路31は、商用交流電源等(図示せず)から供給された電力によって駆動される。発振回路31の発振周波数は、前述した共振コイル33の共鳴周波数fにセットされている。発振動作により発振回路31から出力された交流が電力投入コイル32を流れると、周波数fの交流の振動電磁場が電力投入コイル32の周囲に発生する。すると、共鳴コイル33には、電力投入コイル32の周囲の振動電磁場に誘導されて交流が流れる。その結果、共鳴周波数fの振動電磁場が共鳴コイル33の周囲に発生する。
受電装置12において、共鳴コイル51の等価回路もまた、図1に示すように、共鳴コイル33の等価回路と同様のLC回路になる。このため、共鳴コイル51には、送電装置11側の共鳴コイル33の周囲の振動電磁場の共鳴により、交流が流れる。即ち、振動共鳴の電磁場モードを用いた無線非放射型のエネルギー転送が、共鳴コイル33から共鳴コイル51に対してなされることによって、共鳴コイル51に交流が流れる。その結果、共鳴周波数fと略同一の周波数の振動電磁場が、共鳴コイル51の周囲に発生する。すると、この振動電磁場に誘導されて、電力取出コイル52に交流が流れる。電力取出コイル52に流れた交流は、ブリッジ整流回路53において全波整流される。全波整流された電流(脈流電流)は、平滑コンデンサ54によって平滑され、直流駆動する各種電子電気機器(図示せず)に供給される。
このようにして、基本電力伝送システムにおいては、送電装置11から受電装置12に対して、磁場の共鳴により非接触で電力が供給される。
ここで、上述の[発明が解決しようとする課題]の欄でも説明したように、基本電力伝送システムの送電限界距離L(以下、「基本送電限界距離L」と呼ぶ)は、共鳴周波数f、送電コイル22や受電コイル41のコイル径、Q値、送電電力、送電効率等の要素によって定まる。このため、コイル径以外の要素を固定として、基本送電限界距離Lを伸長するためには、その分だけコイル径を大きくする必要がある。従って、基本電力伝送システムの構成で、数m単位の送電限界距離Lを確保するためには、コイル径の大きな送電コイル22や受電コイル41を用意する必要があることから、簡素で小型の電源システムを実現することは非常に困難である。また、各種電子電気機器の電源システムの用途として考えた場合には、コイル径以外の要素を犠牲にして、送電限界距離Lを伸長することは現実的でない。
そこで、本発明の実施の形態が適用される磁界共鳴型の電力システムは、基本送電限界距離Lよりも長い送電限界距離を確保すべく、例えば数m単位の送電限界距離を確保すべく、図2に示すように構成されている。
図2は、本発明の第1の実施の形態の電力伝送システムの構成を示すブロック図である。
図2において、図1と対応する箇所については対応する符号を付してある。これらの箇所については、図1を参照して説明済みであるので、適宜説明を省略する。
図2に示す電力伝送システムは、図1に示す基本電力伝送システムと同様に、送電装置11と、受電装置12と、を備えている。図2に示す電力伝送システムは、さらに、送電装置11と受電装置12との間に配設される共鳴コイル61(以下、「中継コイル61」と呼ぶ)を備えている。
図3は、中継コイル61の外観構成を示している。即ち、図3Aは、中継コイル61の外観構成の正面図を示し、図3Bは、中継コイル61の外観構成の側面図を示している。図4は、送電装置11の送電コイル22の外観構成を示している。即ち、図4Aは、送電コイル22の外観構成の正面図を示し、図4Bは、送電コイル22の外観構成の側面図を示している。
図3と図4と比較するに、中継コイル61は、送電コイル22の共鳴コイル33と同様の構成を有していることがわかる。即ち、中継コイル61と共鳴コイル33とは共に、略同一素材で略同一太さの導線が、6ターン程円周状に略同一に配設されることによって構成されている。これにより、中継コイル61は、共鳴コイル33と略同一のインダクタンスLを有し、かつ共鳴コイル33と略同一の浮動容量Cを有することになる。即ち、中継コイル61の等価回路は、図1に示す共鳴コイル33の等価回路と同様のLC回路になる。よって、中継コイル61は、共鳴コイル33の共鳴周波数fと略同一の共鳴周波数を持つことになる。
なお、図示はしないが、受電装置12の受電コイル41も、図4の送電コイル22と同様の外観構成を有している。即ち、本実施の形態では、中継コイル61、送電コイル22の共鳴コイル33、及び受電コイル41の共鳴コイル51の各コイル径は略同一となっている。
このような構成を有する本実施の形態の電力伝送システムは、次のように動作する。
即ち、送電装置11は、基本電力伝送システムの動作として上述した動作を実行する。その結果、上述の式(1)で示される共鳴周波数fの振動電磁場が共鳴コイル33の周囲に発生する。
ここで、図3と図4を用いて上述したように、中継コイル61の等価回路もまた、共鳴コイル33の等価回路と同様のLC回路になる。このため、中継コイル61には、送電装置11側の共鳴コイル33の周囲の振動電磁場の共鳴により、交流が流れる。即ち、振動共鳴の電磁場モードを用いた無線非放射型のエネルギー転送が、共鳴コイル33から中継コイル61に対してなされることによって、中継コイル61に交流が流れる。その結果、共鳴周波数fと略同一の周波数の振動電磁場が、中継コイル61の周囲に発生する。
受電装置12において、共鳴コイル51には、中継コイル61の周囲の振動電磁場の共鳴により、交流が流れる。即ち、振動共鳴の電磁場モードを用いた無線非放射型のエネルギー転送が、中継コイル61から共鳴コイル51に対してなされることによって、共鳴コイル51に交流が流れる。その結果、共鳴周波数fと略同一の周波数の振動電磁場が、共鳴コイル51の周囲に発生する。その後、受電装置12は、基本電力伝送システムの動作として上述した動作を実行することで、直流駆動する各種電子電気機器(図示せず)に電力を供給する。
このようにして、本実施の形態の電力伝送システムにおいては、送電装置11から受電装置12に対して、中継コイル61を介して、磁場の共鳴により非接触で電力が供給される。
このような動作をする本実施の形態の電力伝送システムでは、図2に示すように、送電装置11の送電コイル22、中継コイル61、及び受電装置12の受電コイル41を、基本送電限界距離L程度ずつ相互に離間させて略同軸となるように配設することによって、電力伝送を可能にしている。即ち、送電装置11と受電装置12との間の送電限界距離を、基本送電限界距離Lの略2倍(≒2L)に伸長することが可能になる。
換言すると、送電装置11と受電装置12との最大離間距離が、仕様等で固定距離T(Tは任意の正数値)に決定されている場合には、基本電力伝送システムでは、基本送電限界距離Lは固定距離T(L=T)となる。これに対して、本実施の形態の電力伝送システムでは、基本送電限界距離Lは固定距離Tの略(1/2)倍(L≒T/2)となるため、基本送電限界距離Lを短縮することができる。ここで、送電コイル22や受電コイル41のコイル径の大きさは、固定距離Tではなく、上述したように、基本送電限界距離Lに依存する。従って、本実施の形態の電力伝送システムでは、基本電力伝送システムと比較してコイル径の小さな送電コイル22や受電コイル41を採用することが可能になる。その結果、本実施の形態の電力伝送システムを、低コストかつ簡素で小型な構成で実現することが可能になる。ただし、コイル同士の干渉を避けるために、中継コイル61と送電コイル22又は受電コイル41との間の距離は、各コイル径の略(1/2)倍以上であって、略(L×0.9)以下の距離が好適である。
ここで、本実施の形態の電力伝送システムは、基本電力伝送システムには存在しない中継コイル61を備えている。しかしながら、中継コイル61は、図3を用いて上述したように、回路や電源等を一切持たないパッシブで簡素な構成を有しているため、本実施の形態の電力伝送システムを低コストかつ簡素で小型な構成で実現することに対して何ら障害とはならない。
むしろ、このようなパッシブで簡素な構成の中継コイル61は、様々な場所に容易に配設することができるため、さらに次のような効果を奏することも可能になる。即ち、ユーザは、中継コイル61を、例えば机の裏に貼り付けたり、壁やドア、天井、床等に貼り付けたり、又は埋め込んだりすることが容易にできる。その結果、ユーザは、送電装置11の配置位置によらず、受電装置12を所望の位置に容易に配設できる、という効果を奏することが可能になる。かかる効果について、以下、具体的に説明する。
例えば、送電装置11は、商用交流電源等に接続されて電力の供給を受けるため、商用交流電源等の周囲に配設される。一方、受電装置12は、各種電子電気機器に電力を供給するため、ユーザにとっての受電装置12の所望の配設位置は、各種電子電気機器の周囲の場所になる。具体的には例えば、机の下に商用交流電源が存在する場合には、送電装置11は、机の下の床や棚に配置される。一方、例えばユーザが使用する各種電子電気機器は机上に配設されるので、ユーザにとっての受電装置12の所望の配設位置は、机の上になる。この場合、基本電力伝送システムでは、送電装置11と受電装置12との間の距離が、基本送電限界距離Lを超えてしまい、送電が不可能となったり、送電ができたとしても送電効率が悪化する場合がある。このような場合に、中継コイル61を机の裏に張り付けたり又は埋め込む(引き出しに入れる等含む)ことによって、送電限界距離が基本送電限界距離Lの略2倍(≒2L)まで伸長するため、送電効率が向上して、良好な状態で送電が可能になる。
また例えば、1つの電源で複数の部屋に存在する各種電子電気機器に送電させたい、という要望が存在する。即ち、ユーザにとって、所定の部屋に存在する商用交流電源等に送電装置11を接続させ、当該所定の部屋とは別の部屋の所望の場所に受電装置12を配置させて、当該受電装置12から、当該別の部屋に存在する各種電子電気機器に電力を供給させたい、という要望が存在する。しかしながら、基本電力伝送システムを採用しても、このような要望に応えることは非常に困難である。これに対して、本実施の形態の電力伝送システムを採用することで、このような要望に応えることが可能になる。即ち、例えば送電装置11と受電装置12とを隣接する2つの部屋に別々に配設しても、2つの部屋を区分しているドア若しくは壁、又は天井や床等に中継コイル61を配設することで、送電装置11から隣の部屋の受電装置12に対しての送電が可能になる。このようにして、1つの電源で複数の部屋に存在する各種電子電気機器に送電させたいという要望に応えることが可能になり、その結果、電源システムを節減でき、各種電子電気機器の設置コストも節減できるようになる。
以上説明したように、本実施の形態の電力伝送システムを採用することで、磁界共鳴型の非接触電力伝送手法を、一定以上の送電限界距離を確保しつつ、低コストかつ簡素で小型な構成で実現することが可能になる。
なお、本発明は前記実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述した実施の形態では、中継コイル61は1つのみ配設されたが、中継コイル61の配設数は特に上述した例に限定されず、図5に示すようにn個(nは1以上の任意の整数値)としてもよい。また、上述した実施の形態では、中継コイル61と共鳴コイル33とは共に、略同一素材で略同一形状としたが、略同一の共鳴周波数を持つことができるのであれば、素材、形状をこれに限定するものでは無い。
図5は、本発明の第2の実施の形態の電力伝送システムの構成を示すブロック図である。
図5において、図2と対応する箇所については対応する符号を付してある。これらの箇所については、図2を参照して説明済みであるので、適宜説明を省略する。
図5に示す電力伝送システムは、図2に示す電力伝送システムと同様に、送電装置11と、受電装置12と、を備えている。図5に示す電力伝送システムは、さらに、送電装置11と受電装置12との間に配設されるn個の中継コイル61−1乃至61−nを備えている。なお、以下、中継コイル61−1乃至61−nを個々に区別する必要が無い場合、これらをまとめて「中継コイル61」と呼ぶ。
この場合、例えば、基本送電限界距離L程度の等間隔でn個の中継コイル61をそれぞれ略同軸に配置させることで、図5に示すように、送電装置11と受電装置12との間の送電限界距離を、基本送電限界距離Lの略(n+1)倍{≒L×(n+1)}に伸長させることが可能になる。
換言すると、送電装置11と受電装置12との間の最大離間距離が、仕様等によって上述の固定距離Tに決定されている場合には、図5に示す電力伝送システムでは、基本送電限界距離Lは固定距離Tの略{1/(n+1)}倍{L≒T/(n+1)}になる。即ち、中継コイル61の個数nを増やすほど、基本送電限界距離Lを短縮することができる。ここで、送電コイル22、n個の中継コイル61、及び受電コイル41の各コイル径は、固定距離Tではなく、上述したように、基本送電限界距離Lに依存する。従って、中継コイル61の個数nを増やすほど、各コイル径を小さくすることが可能になる。その結果、電力伝送システムを、より一段と低コストかつ簡素で小型な構成で実現することが可能になる。ただし、コイル同士の干渉を避けるために、中継コイル61と、隣接するコイル(別の中継コイル61、送電コイル22、又は受電コイル41)との間の距離は、各コイル径の略(1/2)倍以上であって、略(L×0.9)以下の距離が好適である。
このように、電力伝送システムに求められる仕様、例えば送電限界距離、コストやサイズ等の各種各様の仕様に応じて、中継コイル61の個数nを適切に設定することで、仕様を満たす電力伝送システムを容易かつ適切に具現化することが可能になる。
また例えば、上述した実施例では、送電コイル22と受電コイル41とは、略同軸となるように配設されていたが、配設場所の関係は特に上述した例に限定されない。例えば図6乃至図8に示すように、送電コイル22と受電コイル41とは、相互の軸を一致させずに、角度や軸ズレが生じるように自在に配設させることができる。この場合、中継コイル61の配置場所は、特に限定されないが、送電効率等を考慮すると、図6乃至図8に示す配置場所が好適である。
図6乃至図8の各々は、図5の電力伝送システムにおいて、送電コイル22と受電コイル41との軸が一致しない場合における中継コイル61の配置形態の3つの形態の各々を説明する図である。
図6乃至図8に示すように、n個の中継コイル61の各々は、送電コイル22と受電コイル41との中心を結んだ線(同図中一点鎖線)が略中心を通り、かつ、送電コイル22と受電コイル41とのなす角度に対して略{1/(n+1)}倍の角度ずつずらして、基本送電限界距離L以下の等間隔で配設させるとよい。ただし、この場合においても、コイル同士の干渉を避けるために、中継コイル61と、隣接するコイル(別の中継コイル61、送電コイル22、又は受電コイル41)との間の距離は、各コイル径の略(1/2)倍以上であって、略(L×0.9)以下の距離が好適である。
このように、ユーザは、n個の中継コイル61の各々を独立して自在に配設することができる。その結果、送電装置11の配置位置によらず、受電装置12を所望の位置に容易に配設できる、という上述した効果は、より一段と顕著なものになる。
なお、本明細書において、システムとは、複数の装置や複数の部等より構成される全体的な装置を意味する。換言すると、本発明の実施の形態の電力伝送システムの構成要素の把握の仕方は、送電装置11と、n個の中継コイル61からなる中継部位と、受電装置12とからなるという上述した把握の仕方を採用する必要は特にない。即ち、上述の例では送電装置11と呼称していた装置と、n個の中継コイル61のうち少なくとも1個とから、送電装置が構成されると把握してもよい。同様に、上述の例では受電装置12と呼称していた装置と、n個の中継コイル61のうち少なくとも1個とから、受電装置が構成されると把握してもよい。
11・・・送電装置11・・・受電装置、21・・・送電回路、22・・・送電コイル、31・・・発振回路、32・・・電力投入コイル、33・・・共鳴コイル、41・・・受電コイル41・・・受電回路、51・・・共鳴コイル、52・・・電力取出コイル、53・・・ブリッジ整流回路、54・・・平滑コンデンサ、61・・・中継コイル

Claims (7)

  1. 磁界共鳴型の電力伝送手法に従って電力を伝送する電力伝送システムであって、
    交流電源に基づく交流が流れて、共鳴周波数の振動電磁場を周囲に発生させることによって、電力を送電する送電コイルと、
    前記送電コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を中継する中継コイルと、
    前記中継コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を受電する受電コイルと、
    を備える電力伝送システム。
  2. 前記送電コイルと前記受電コイルとの間に、n個(nは1以上の整数値)の中継コイルが配設されている、
    請求項1に記載の電力システム。
  3. 前記n個の中継コイルの各々は、隣接するコイルとの間の距離が、前記中継コイルが存在しない場合の前記送電コイルと前記受電コイルとの間の送電限界距離以下となるように配設されている、
    請求項2に記載の電力システム。
  4. 前記n個の中継コイルの各々は、前記送電コイル及び前記受電コイルのコイル径と略同一のコイル径を有し、隣接するコイルとの間の距離が前記コイル径の略(1/2)倍以上の距離となるように配設されている、
    請求項3に記載の電力システム。
  5. 前記送電コイル、前記n個の中継コイルの各々、及び前記受電コイルは、略同軸となるようにその順番で配設されている、
    請求項3又は4に記載の電力システム。
  6. 前記送電コイルと前記受電コイルとは軸を一致させずに配置されており、
    前記n個の中継コイルは、前記送電コイルと前記受電コイルとの中心を結んだ線が略中心を通り、かつ、前記送電コイルと前記受電コイルとのなす角度に対して略{1/(n+1)}倍の角度ずつずらして略等間隔で配設されている、
    請求項3又は4に記載の電力システム。
  7. 磁界共鳴型の電力伝送手法に従って電力を送電する送電装置であって、
    交流電源に基づく交流が流れて、共鳴周波数の振動電磁場を周囲に発生させることによって、電力を送電する送電コイルと、
    前記送電コイルの周囲の振動電磁場の共鳴により交流が流れて、前記共鳴周波数と略同一の周波数の振動電磁場が周囲に発生することによって、前記電力を中継する中継コイルと、
    を備える送電装置。
JP2010022645A 2010-02-04 2010-02-04 電力伝送システム及び送電装置 Pending JP2011160634A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022645A JP2011160634A (ja) 2010-02-04 2010-02-04 電力伝送システム及び送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022645A JP2011160634A (ja) 2010-02-04 2010-02-04 電力伝送システム及び送電装置

Publications (1)

Publication Number Publication Date
JP2011160634A true JP2011160634A (ja) 2011-08-18

Family

ID=44592073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022645A Pending JP2011160634A (ja) 2010-02-04 2010-02-04 電力伝送システム及び送電装置

Country Status (1)

Country Link
JP (1) JP2011160634A (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031272A (ja) * 2011-07-27 2013-02-07 Nec Corp 無線電力伝送装置および方法
WO2013042291A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 無線給電システム及び無線給電方法
WO2013065277A1 (ja) * 2011-10-31 2013-05-10 日本電気株式会社 無線給電装置、コイル使用方法
CN103135138A (zh) * 2011-11-30 2013-06-05 索尼公司 检测装置和方法、电力接收装置及非接触式电力传输***
WO2013128518A1 (ja) * 2012-02-29 2013-09-06 日本電気株式会社 送電装置、受電装置、電力供給システム及び電子機器
JP2014036545A (ja) * 2012-08-10 2014-02-24 Panasonic Corp 非接触式電力伝送装置
JP2014090650A (ja) * 2012-10-31 2014-05-15 Mitsubishi Electric Engineering Co Ltd 無線電力伝送による多重化伝送システム
JP2014110742A (ja) * 2012-12-04 2014-06-12 Advantest Corp ワイヤレス送電システムの中継器およびそれを用いたワイヤレス送電システム
CN103887863A (zh) * 2014-04-04 2014-06-25 长春中信光电科技发展有限公司 一种基于谐振电感技术的手机无线充电***及应用
WO2014196424A1 (ja) * 2013-06-05 2014-12-11 株式会社村田製作所 電子装置およびワイヤレス電力伝送システム
CN104234474A (zh) * 2014-08-29 2014-12-24 陈业军 一种多向无线充电的停车棚
JP2015035935A (ja) * 2013-08-09 2015-02-19 積水化学工業株式会社 給電システム、給電方法および建築部材
WO2015025881A1 (ja) 2013-08-23 2015-02-26 三菱電機エンジニアリング株式会社 共振型電力伝送装置及び共振型電力多重伝送システム
EP2869315A1 (en) * 2013-10-31 2015-05-06 Samsung Electro-Mechanics Co., Ltd. Wireless power relay apparatus and case including the same
WO2015151492A1 (ja) * 2014-04-02 2015-10-08 株式会社デンソー 非接触給電装置及び非接触給電システム
EP2752970A4 (en) * 2011-09-02 2015-10-21 Fujitsu Ltd FEED RELAY
WO2015167054A1 (ko) * 2014-05-02 2015-11-05 엘에스전선 주식회사 무선 전력 중계 장치 및 무선 전력 전송 시스템
JP2016220355A (ja) * 2015-05-18 2016-12-22 一般財団法人電力中央研究所 非接触電力伝送回路及び非接触電力伝送装置
WO2017039072A1 (ko) * 2015-09-01 2017-03-09 한국과학기술원 하이브리드 무선전력 전송 시스템 및 방법
CN113162253A (zh) * 2021-04-23 2021-07-23 上海科技大学 一类基于中继线圈的平面无线充电发射器
JP2021170932A (ja) * 2016-06-30 2021-10-28 パナソニック株式会社 送電装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031272A (ja) * 2011-07-27 2013-02-07 Nec Corp 無線電力伝送装置および方法
US9558884B2 (en) 2011-09-02 2017-01-31 Fujitsu Limited Power transmission apparatus
EP2752970A4 (en) * 2011-09-02 2015-10-21 Fujitsu Ltd FEED RELAY
JPWO2013042291A1 (ja) * 2011-09-21 2015-03-26 日本電気株式会社 無線給電システム及び無線給電方法
WO2013042291A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 無線給電システム及び無線給電方法
CN103828190A (zh) * 2011-09-21 2014-05-28 日本电气株式会社 无线电力馈送***和无线电力馈送方法
US9641027B2 (en) 2011-09-21 2017-05-02 Nec Corporation Wireless power feeding system and wireless power feeding method
WO2013065277A1 (ja) * 2011-10-31 2013-05-10 日本電気株式会社 無線給電装置、コイル使用方法
CN103135138A (zh) * 2011-11-30 2013-06-05 索尼公司 检测装置和方法、电力接收装置及非接触式电力传输***
WO2013128518A1 (ja) * 2012-02-29 2013-09-06 日本電気株式会社 送電装置、受電装置、電力供給システム及び電子機器
JP2014036545A (ja) * 2012-08-10 2014-02-24 Panasonic Corp 非接触式電力伝送装置
JP2014090650A (ja) * 2012-10-31 2014-05-15 Mitsubishi Electric Engineering Co Ltd 無線電力伝送による多重化伝送システム
JP2014110742A (ja) * 2012-12-04 2014-06-12 Advantest Corp ワイヤレス送電システムの中継器およびそれを用いたワイヤレス送電システム
US9893534B2 (en) 2012-12-04 2018-02-13 Advantest Corporation Relay device of wireless power transmission system
US9866042B2 (en) 2013-06-05 2018-01-09 Murata Manufacturing Co., Ltd. Electronic apparatus and wireless power transmission system
WO2014196424A1 (ja) * 2013-06-05 2014-12-11 株式会社村田製作所 電子装置およびワイヤレス電力伝送システム
JP2015035935A (ja) * 2013-08-09 2015-02-19 積水化学工業株式会社 給電システム、給電方法および建築部材
TWI549398B (zh) * 2013-08-23 2016-09-11 三菱電機工程技術股份有限公司 共振型電力傳送裝置、共振型電力多重傳送系統及共振型電力接收裝置
WO2015025881A1 (ja) 2013-08-23 2015-02-26 三菱電機エンジニアリング株式会社 共振型電力伝送装置及び共振型電力多重伝送システム
US9712000B2 (en) 2013-08-23 2017-07-18 Mitsubishi Electric Engineering Company, Limited Resonance type power transmission device and resonance type power multiplex transmission system
EP2869315A1 (en) * 2013-10-31 2015-05-06 Samsung Electro-Mechanics Co., Ltd. Wireless power relay apparatus and case including the same
WO2015151492A1 (ja) * 2014-04-02 2015-10-08 株式会社デンソー 非接触給電装置及び非接触給電システム
CN103887863A (zh) * 2014-04-04 2014-06-25 长春中信光电科技发展有限公司 一种基于谐振电感技术的手机无线充电***及应用
WO2015167054A1 (ko) * 2014-05-02 2015-11-05 엘에스전선 주식회사 무선 전력 중계 장치 및 무선 전력 전송 시스템
CN106256069A (zh) * 2014-05-02 2016-12-21 Ls电线有限公司 无线电力中继装置以及无线电力传输***
US10158253B2 (en) 2014-05-02 2018-12-18 Ls Cable & System Ltd. Wireless power relay device and wireless power transmission system
CN104234474A (zh) * 2014-08-29 2014-12-24 陈业军 一种多向无线充电的停车棚
JP2016220355A (ja) * 2015-05-18 2016-12-22 一般財団法人電力中央研究所 非接触電力伝送回路及び非接触電力伝送装置
WO2017039072A1 (ko) * 2015-09-01 2017-03-09 한국과학기술원 하이브리드 무선전력 전송 시스템 및 방법
JP2021170932A (ja) * 2016-06-30 2021-10-28 パナソニック株式会社 送電装置
JP7222035B2 (ja) 2016-06-30 2023-02-14 パナソニックホールディングス株式会社 送電装置
CN113162253A (zh) * 2021-04-23 2021-07-23 上海科技大学 一类基于中继线圈的平面无线充电发射器

Similar Documents

Publication Publication Date Title
JP2011160634A (ja) 電力伝送システム及び送電装置
JP5698626B2 (ja) ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
US9941744B2 (en) Non-contact power supply circuit
JP5526796B2 (ja) ワイヤレス給電ラック
US8952572B2 (en) Electromagnetic interference mitigation
JP5764032B2 (ja) ワイヤレス給電装置、受電装置および給電システム
JP2010239777A (ja) 無線電力装置、無線電力受信方法
TW201134052A (en) Wireless power feed system
JP2010063245A (ja) 非接触給電装置
JP2007060829A (ja) 給電システム
JP5790189B2 (ja) 非接触給電装置
JP5530497B2 (ja) 無線電力中継装置
JP6331902B2 (ja) 送電装置
JP2011151946A (ja) 中継コイルシートおよびワイヤレス給電システム
KR102538112B1 (ko) 무선으로 전력을 공급하는 디스플레이 시스템
CN104124764B (zh) 无线电力传输接收端、***及接收方法
CN105706195B (zh) 包含箔型发射器和接收器线圈的无线电力传输***
KR20150003491U (ko) 초음파가습기
JP6156872B2 (ja) 無線電力伝送システム
KR20130033837A (ko) 무선 전력 전송 기기 및 그 방법
JP5612956B2 (ja) 非接触電力伝送装置
Menon et al. Efficient wireless power transfer using underground relay coils
Sharma Application of wireless power transfer for home appliances using inductive resonance coupling
KR101172757B1 (ko) 비접촉 방식의 전력 중계장치, 중계집전 장치 및 급집전장치
JP2008054458A (ja) 非接触給電装置