JP2011143449A - 連続鋳造用タンディッシュにおける介在物除去方法 - Google Patents

連続鋳造用タンディッシュにおける介在物除去方法 Download PDF

Info

Publication number
JP2011143449A
JP2011143449A JP2010006058A JP2010006058A JP2011143449A JP 2011143449 A JP2011143449 A JP 2011143449A JP 2010006058 A JP2010006058 A JP 2010006058A JP 2010006058 A JP2010006058 A JP 2010006058A JP 2011143449 A JP2011143449 A JP 2011143449A
Authority
JP
Japan
Prior art keywords
tundish
molten steel
weir
inert gas
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010006058A
Other languages
English (en)
Inventor
功一 ▲高▼橋
Koichi Takahashi
Yusuke Kawabata
悠介 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010006058A priority Critical patent/JP2011143449A/ja
Publication of JP2011143449A publication Critical patent/JP2011143449A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】広い範囲の鋳造速度条件に対しても十分に介在物を除去できる、タンディッシュ内の介在物除去方法を提供する。
【解決手段】溶融金属が注入される連続鋳造用タンディッシュにおいて、該溶融金属の注入点と鋳型へ溶融金属を導出する流出孔との間に堰を配置し、該堰に設けた流通部を介して前記注入点側から流出孔側へ溶融金属流を導くに際し、前記堰の流出孔側のタンディッシュ底部から、所定の条件下に不活性ガスを溶融金属中に吹き込む。
【選択図】図1

Description

本発明は、連続鋳造工程において取鍋から注入された溶融金属を中継して鋳型に供給するためのタンディッシュにおいて、該タンディッシュ内に注入された溶融金属中の酸化物系非金属介在物を効率良く除去する方法に関するものである。
溶融金属、例えば溶鋼の連続鋳造では、取鍋内の溶鋼を、取鍋底部に設置した注入ノズル(「ロングノズル」ともいう)を介してタンディッシュに供給しながら、タンディッシュ内に所定量の溶鋼が滞在した状態にて、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した溶鋼流出孔を通して各鋳型に分配・注入し、鋳片を製造している。
溶鋼中には脱酸生成物を起源とするアルミナなどの酸化物系非金属介在物(以下「介在物」と記す)が懸濁しており、溶鋼が凝固する際に介在物が凝固層の中に取り込まれてしまうと、薄鋼板などの最終製品において介在物起因の欠陥を引き起こす。そのため、タンディッシュには、介在物を浮上分離させる機能も求められている。
従来、タンディッシュ内で介在物を浮上・分離させるために、タンディッシュ内に堰を設置し、この堰によってタンディッシュ内の溶鋼流動を制御することが行われており、介在物の少ない鋳片が製造できるようになってきた。しかし、50μm以下のような、粒径の小さい介在物は、溶鋼中の浮上速度が極めて遅いために、その浮上・分離が困難である。近年、軸受鋼などの高品質材料では、非常に高い清浄性が求められており、微小な介在物も取り除くことができる高度な介在物分離技術が求められている。
タンディッシュ内にて介在物の浮上・分離を促進する方法として、タンディッシュ内にアルゴンなどの不活性ガスを吹き込む方法が提案されている。
すなわち、特許文献1では、タンディッシュ内の底部複数箇所に先端が突出するように微細ノズルを設置し、微細な不活性ガスを吹き込むことによって介在物の除去を促進できるとされている。
また、特許文献2には、アルゴンと溶鋼に溶解可能な非酸化性ガスとの混合ガスを、タンディッシュ内の溶鋼中若しくはタンディッシュ内に注入される溶鋼中に吹き込みながら、タンディッシュ内の溶鋼を鋳型内に注湯することが記載されている。さらに、混合ガスは、タンディッシュの底部又は側壁下部に配置したポーラス煉瓦から吹き込むことが記載されている。
特開平9−10900号公報 特開2004−066335号公報
ところで、不活性ガスや混合ガスは、吹き込み流量を多くするほど溶鋼の上昇流れが促進され、微小介在物を浮上除去することができる反面、ガス流量を大きくしすぎるとタンディッシュ内の溶鋼浴面が揺らぎ、浴面に浮いているタンディッシュスラグを巻き込んで介在物の増加を引き起こしてしまうことが問題になる。
この点、特許文献1には、微細ノズルからガスを吹き込むことによって気泡を微細化することによって介在物の除去効果や浴面スラグの再巻き込みを防止するとある。しかし、不活性ガスの吹き込み位置における溶鋼流速が小さい場合は、不活性ガスの気泡群が溶鋼流動によって分散されず吹き込み位置上部に気泡が集中し、同じ不活性ガスの吹き込み量であっても吹き込み位置上部で非常に強い上昇流が発生する。溶鋼流速はタンディッシュの形状や鋳造速度によって変わるため、同じガス吹き込み条件でも条件によっては浴面スラグの巻き込みが起こり得る。特に、特許文献1には、タンディッシュ形状や鋳造条件に対するガス吹き込み量の値について記載されていないため、不十分である。すなわち、近年の高清浄鋼では、鋳造速度を小さく抑えて操業することが多いため、特許文献1のように鋳造条件に関係なく同じ不活性ガス吹き込み条件を用いる方法では、介在物の除去を十分に行うことが難しい。
一方、特許文献2に記載の技術は、溶鋼に溶解可能な非酸化性ガスを使用しているが、コストの観点から、この溶鋼に溶解可能な非酸化性ガスの使用を避けたい場合もあり、このような場合に、不活性ガスのみにて介在物の除去が可能であれば、極めて有意義である。
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、不活性ガスの吹き込み量を多くした際の浴面の揺らぎを抑制し、不活性ガスの吹き込みにて十分に介在物を除去できる、タンディッシュ内の介在物除去方法を提供することにある。
本発明の要旨構成は、次のとおりである。
1.溶融金属が注入される連続鋳造用タンディッシュにおいて、該溶融金属の注入点と鋳型へ溶融金属を導出する流出孔との間に堰を配置し、該堰に設けた流通部を介して前記注入点側から流出孔側へ溶融金属流を導くに際し、前記堰の流出孔側のタンディッシュ底部から、下記式(1)を満たす条件下に不活性ガスを溶融金属中に吹き込むことを特徴とする連続鋳造用タンディッシュにおける介在物除去方法。

0.00014≦Ql・A/(Q2・W)≦0.00025 …(1)
但し、
Ql:1ストランド当たりの不活性ガス吹き込み流量(標準状態換算Nm/s)
Q2:1ストランド当たりの溶鋼流量(m/s)
A:堰の流通部の総断面積(m
W:堰の位置におけるタンディッシュの平均幅(m)
2.前記不活性ガスの吹き込み量を、連続鋳造における鋳造速度に応じて調整することを特徴とする前記1に記載の連続鋳造用タンディッシュにおける介在物除去方法。
本発明によれば、タンディッシュの形状および溶鋼の流量に対応させて不活性ガスの吹き込み量を適正化するため、広い鋳造条件に対して浴面スラグの巻き込みを起こすことなく不活性ガスによる介在物除去効果を得ることができる。また、鋳造速度の変動に対応して不活性ガスの吹き込み量を適正な値に制御することによって、鋳造中に鋳造速度が変更された場合であっても優れた介在物除去効果を維持できる。
連続鋳造用タンディッシュの概略を示す図である。 ガス吹き込み領域における溶鋼の浮上挙動を示す模式図である。 連続鋳造用タンディッシュにおける他の堰の形状を示す図である。 タンディッシュの平均幅Wの定義を示す図である。 連続鋳造用タンディッシュにおける他の堰の構成を示す図である。 堰配置が異なる他の連続鋳造用タンディッシュの概略を示す図である。 ガス吹き込み条件と鋳型への介在物流出数との関係を示すグラフである。
以下、図面を参照して、本発明を詳しく説明する。
図1に、本発明の方法の実施に使用する連続鋳造用タンディッシュ1の概略を示す。この連続鋳造用タンディッシュ1は、例えば上面が開口した直方体状の容器であり、取鍋(図示せず)から注入ノズル2を介して溶鋼3が供給され、貯留した溶鋼3を、底部に設けた図示例で2つの流出孔4aおよび4bからそれぞれ鋳型(図示せず)に供給するものである。
すなわち、図示例では、前記注入ノズル2をタンディッシュ1の幅方向(長手方向)中央部に挿入配置するが、この際の注入ノズル2先端の開口位置を溶鋼注入点Pとすると、この溶鋼注入点Pを挟んで幅方向で対向するそれぞれの側の底部に、鋳型へ溶鋼3を分配・供給するための流出孔4aおよび4bを形成し、さらに、溶鋼注入点Pと溶鋼流出孔4aおよび4bとの間に、溶鋼注入点Pを挟んで対をなす堰5aおよび5bを設置してある。
これら堰5aおよび5bには、注入ノズル2から注入された溶鋼3を流出孔4aおよび4b側へ導く、図示例で長方形の流通部6を設けてある(図1(B)参照)。さらに、堰5aおよび5bと流出孔4aおよび4bとの間の底部には、不活性ガス7を吹き込むための多孔質煉瓦による吹き込み口8aおよび8bを有する。
以上の構成のタンディッシュ1内に注入ノズル2を介して溶鋼3を連続注入すると、流入してきた溶鋼3は、堰5aおよび5bの流通部6を通って不活性ガス7の吹き込み領域に流れ込む。不活性ガス7を吹き込んでいる領域では、溶鋼3中に気泡7aが分散上昇するのに伴い浮力が働き、溶鋼3に上昇流を与える。そのとき、溶鋼3中の介在物、特に50μm以下の微小介在物は、溶鋼3の上昇流に帯同して浴面に浮上する。この介在物の浮上を促進することによって介在物の除去効率を引き上げることができるため、浴面スラグの巻き込みが起こらない範囲では溶鋼の浮上流速が大きいほど介在物の除去効率は高くなる。溶鋼の上昇流速は、不活性ガス吹き込み量が多いほど高くなるから、浴面に揺らぎが発生しない上昇流速の範囲内において、最大流量の不活性ガスを吹き込むことが望ましい。そこで、最大流量の不活性ガスを吹き込む条件について、以下のように鋭意検討した。
まず、ガス吹き込み領域における溶鋼の浮上挙動を、図2に模式的に示す。溶鋼が不活性ガス吹き込み領域を通過した後の溶鋼流速の浮上成分Vyは、不活性ガスによる浮力Fおよび浮力付与時間△tを用いて、
Vy∝F・△t ・・・(2)
と表せる。
次に、不活性ガスによる浮力Fは、溶鋼中の気泡の体積分率に比例する。ここに、ガス吹き込み領域において気泡の体積分率は一定と見做せるから、浮力Fは、
F=γQ1・ρ・g/(Vg・W・X)・・・(3)
ここで、γ:溶鋼中における不活性ガスの膨張比
Q1:不活性ガスの吹き込み量(標準状態換算)(Nm/s)
ρ:溶鋼の密度(kg/m
g:重力加速度(=9.8m/s
Vg:気泡の平均上昇速度(m/s)
W:タンディッシュの平均幅(m)
X:不活性ガス吹き込み領域のタンディッシュ幅方向長さ(m)
と表せる。なお、上記γ、ρおよびVgは、連続鋳造の操業条件およびタンディッシュ設備の仕様によって決まる値である。
一方、浮力付与時間△tは、堰近傍の溶鋼の水平方向速度Vxと不活性ガス吹き込み領域のタンディッシュ幅方向長さX(m)を用いると、
△t=X/Vx=X・A/Q2
となり、さらに水平方向速度Vxは、
Vx=Q2/A
ここで、Q2:1ストランド当たりの溶鋼流量(m/s)
A:各堰の流通部の総断面積(m
であるから、
△t=X/Vx=X・A/Q2…(4)
となる。
従って、上記した式(2)、式(3)および式(4)より、溶鋼の上昇流速Vyは
Vy∝Ql・A/(Q2・W) …(5)
となる。
上述したとおり、溶鋼中介在物の除去効率およびタンディッシュ浴面の湯面揺らぎによるスラグ巻き込み発生の有無は、上昇流速Vyによって決まることから、不活性ガス流量Ql(m/s)、堰の流通部の総断面積A(m)、1ストランド当たりの溶鋼流量Q2(m/s)およびタンディッシュの平均幅W(m)を調整することによって、不活性ガス吹き込み時のタンディッシュ内介在物の除去能力を最大限にまで引き上げることが可能になる。
そこで、Ql・A/(Q2・W)の値を種々に変化させて、溶鋼中介在物の除去効率および浴面の湯面揺らぎの発生との関係を調査した。その結果を、後述する実施例において図7として示すように、Ql・A/(Q2・W)の値が0.00025を超える条件下に不活性ガスの吹き込みを行うと、タンディッシュ浴面が大きく揺らぎ浴面スラグの巻き込みや溶鋼の飛散を引き起こしてしまう。一方、不活性ガスの吹き込み時の条件によってQl・A/(Q2・W)の値が0.00014未満になると、溶鋼の浮上が弱すぎて介在物を十分に除去できなくなる。
なお、上記した溶鋼の流通部の総断面積Aは、堰において溶鋼が流通できる部分の断面積の総和とする。例えば、図3に示す形状の堰5である場合、複数の円形流通部6aの面積の合計と浴面より堰上端が低いことによる矩形状流通部6bの面積との総和が流通部の断面積Aとなる。
また、タンディッシュの平均幅Wは、図1に示した堰の場合を例として図4に示すように、堰5bを設けた位置における溶鋼3が占める全断面積S(図4中に斜線で表示した部分)を当該部分の溶鋼深さHで除した値(W=S/H)と定義する。
ちなみに、タンディッシュの側壁は必ずしも垂直である必要はない。タンディッシュの側壁に傾斜がある場合や側壁が曲面形状である場合も上記と同様に全断面積Sおよび深さHを用いて、W=S/Hから平均幅を求めればよい。
さらに、安定して介在物の除去を行うために、不活性ガスの吹き込み位置は、設備的に干渉の問題がない限りなるべく堰の近くにする方がよく、具体的には、堰から不活性ガス吹き込み位置までの距離を1000mm以内とすることが望ましい。この不活性ガスには、アルゴンや窒素などを単独または複合して用いればよい。
堰の高さや幅、流通部の開口形状などは、流通部の面積Aに関して、上述の式(1)が満足されるならば、どのような形状でもよいが、堰の流通部が大きすぎると不活性ガス吹き込み領域の溶鋼流れが偏り、安定した溶鋼の浮上特性を得られなくなる、おそれがあるため、堰断面の全断面積Sに対して流通部の面積AがA/S<0.5を満たす範囲に規制することが望ましい。
さらに、図5に示すように、タンディッシュの溶鋼3の流出孔4が1個所である場合は、堰5は注入点Pの流出孔4側に単独で設け、堰5の流出孔4側のタンディッシュ底部の吹き込み口8から不活性ガス7を噴き込めばよい。
以上に従って、不活性ガスの吹き込み量を調整するに当たって、連続鋳造中の鋳造速度を監視し、鋳造速度に応じて溶鋼流量を算出し、上記した式(1)を満たすように不活性ガスの吹き込み量を調整することが好ましい。なぜなら、実際の連続鋳造の操業では、取鍋交換やスラブ幅変更などのため鋳造速度が変化することがあり、それにともなってタンディッシュに流入する溶鋼流量も時々刻々と変化する場合がある。そこで、不活性ガス流量も時々の溶鋼流量条件に合わせて最適値に変化させていくことにより、その時々の操業条件に応じた最適な介在物除去条件を保つことが可能となる。
なお、鋳造速度に応じて溶鋼流量を求める方法は、公知の方法を用いればよいが、例えば、以下の方法が利用できる。すなわち、連続鋳造機の鋳造速度をVc(m/s)、スラブ幅をWc(m)、スラブ厚をDc(m)としたとき、1ストランド当たりの溶鋼流量Q2(m/s)は
Q2=Vc×Wc×Dc
として算出できる。
溶鋼容量が75tおよび48tの2機のタンディッシュを用いて、溶鋼の連続鋳造を実施し、タンディッシュ内の浴面揺らぎの有無と鋳型への介在物流出量を調査した。タンディッシュ内の浴面揺らぎの有無は、この実施例における観察結果である。一方の鋳型への介在物流出量は、後述する数値解析方法により算出した。なぜなら、得られたスラブから介在物量を求めると、不活性ガス以外の要因も含まれてしまい、かような測定結果では本発明による効果が不明瞭となる為である。
ここで、タンディッシュに関する条件は、図6に示すように注入点Pに近い側に浴面まで覆う大型堰5aおよび5bを配置した。大型堰から見てタンディッシュ幅方向600mm流出孔側のタンディッシュ底部に、多孔質レンガによる吹込み口8aおよび8bを設け、そこからアルゴンを吹き込んだ。
なお、1ストランド当たりの溶鋼流量は、75tタンディッシュが0.0119m/sおよび48tタンディッシュが0.00660m/sとした。タンディッシュの幅は、75tタンディッシュが0.107mおよび48tタンディッシュが0.106mであり、また大型堰の流通部総面積は75tタンディッシュが0.0728mおよび48tタンディッシュが0.0776mである。
各タンディッシュにおいて、アルゴンの吹き込み量を変えて連続鋳造を行った。その際のタンディッシュ内の浴面揺らぎの有無を目視にて観察した。
一方、介在物流出量は、上記タンディッシュの条件下において、溶鋼流動解析と介在物粒子軌道解析とにより鋳型への介在物流出個数を計算し、この計算した介在物流出個数から介在物指数を算出し、これを介在物流出量として比較した。
すなわち、溶鋼流動解析では、k−ε乱流モデルを用い、表1の溶鋼流量にしたがって注入点と流出孔にそれぞれ流入・流出境界条件を与え、溶鋼流動を計算した。介在物粒子軌道解析では、注入点より50μmの介在物粒子を投入し、溶鋼流動解析結果に従って介在物粒子の運動軌跡を計算した。この際、上記の目視観察により湯面揺らぎが起こっている試験条件(表1の試験No.1、2、9および10が該当)では、Arガス吹き込み位置上部の湯面の介在物吸着は起こらないとして、介在物粒子軌道解析を行っている。また、湯面揺らぎが起こっていない試験条件(表1の試験No.3、4、5、6、7、8、11、12および13が該当)では、湯面に到達した介在物が全て浴面スラグに吸着するとして、介在物粒子軌道解析を行っている。この介在物粒子起動解析結果から、鋳型へ流入する介在物個数を、それぞれの試験条件において算出した。
さらに、介在物指数の求め方は以下の通りである。下記の表1におけるNo.8の条件、すなわち75tタンディッシュにおいて、不活性ガスを吹き込まない条件を基準条件とした。そして、この基準条件において50μm介在物が鋳型へ流出する個数を基準値(指数1)とした。その他の条件は基準値に対する介在物流出個数の比として表し、これを介在物指数とした。
各試験条件、Ql・A/(Q2・W)の値、タンディッシュ内の浴面揺らぎの有無およびタンディッシュから鋳型へ介在物が流出した介在物指数を、それぞれ表1に示す。さらに、表1の各試験条件において鋳造した際、タンディッシュから鋳型へ介在物が流出した介在物指数と、Ql・A/(Q2・W)の値との関係をグラフ化して図7に示す。
表1および図7の介在物指数が大きいほど、タンディッシュから鋳型へ介在物が多く流出したことを意味する。本発明の範囲では、介在物指数が低く抑えられている。また、Ql・A/(Q2・W)の値が本発明範囲より小さいところでは、介在物の浮上不足によって介在物流出が起こっており、Ql・A/(Q2・W)の値が本発明範囲より大きなところでは、タンディッシュ内の浴面揺らぎによって介在物流出が起きている。
Figure 2011143449
以上より、本発明の範囲を満たす条件で不活性ガスを吹き込めば、浴面の揺らぎを引き起こすことなく最良な介在物の除去性能を達成できることが確認できた。
本発明の介在物除去方法は溶鋼に限らず、鋼以外のアルミニウムやチタン等の非鉄金属にも適用可能である。
1 タンディッシュ
2 注入ノズル
3 溶鋼
4a、4b 流出孔
5、5a、5b 堰
6 流通部
7 不活性ガス
8a、8b 吹き込み口

Claims (2)

  1. 溶融金属が注入される連続鋳造用タンディッシュにおいて、該溶融金属の注入点と鋳型へ溶融金属を導出する流出孔との間に堰を配置し、該堰に設けた流通部を介して前記注入点側から流出孔側へ溶融金属流を導くに際し、前記堰の流出孔側のタンディッシュ底部から、下記式(1)を満たす条件下に不活性ガスを溶融金属中に吹き込むことを特徴とする連続鋳造用タンディッシュにおける介在物除去方法。

    0.00014≦Ql・A/(Q2・W)≦0.00025・・・(1)
    但し、
    Ql:1ストランド当たりの不活性ガス吹き込み流量(標準状態換算Nm/s)
    Q2:1ストランド当たりの溶鋼流量(m/s)
    A:堰の流通部の総断面積(m
    W:堰の位置におけるタンディッシュの平均幅(m)
  2. 前記不活性ガスの吹き込み量を、連続鋳造における鋳造速度に応じて調整することを特徴とする請求項1に記載の連続鋳造用タンディッシュにおける介在物除去方法。
JP2010006058A 2010-01-14 2010-01-14 連続鋳造用タンディッシュにおける介在物除去方法 Withdrawn JP2011143449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006058A JP2011143449A (ja) 2010-01-14 2010-01-14 連続鋳造用タンディッシュにおける介在物除去方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006058A JP2011143449A (ja) 2010-01-14 2010-01-14 連続鋳造用タンディッシュにおける介在物除去方法

Publications (1)

Publication Number Publication Date
JP2011143449A true JP2011143449A (ja) 2011-07-28

Family

ID=44458769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006058A Withdrawn JP2011143449A (ja) 2010-01-14 2010-01-14 連続鋳造用タンディッシュにおける介在物除去方法

Country Status (1)

Country Link
JP (1) JP2011143449A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044292A1 (ja) * 2017-08-30 2019-03-07 Jfeスチール株式会社 鋼の連続鋳造方法および薄鋼板の製造方法
JP2019214057A (ja) * 2018-06-11 2019-12-19 日本製鉄株式会社 連続鋳造方法
JP2021013944A (ja) * 2019-07-11 2021-02-12 日本製鉄株式会社 連続鋳造方法
JP2021517070A (ja) * 2018-03-30 2021-07-15 宝山鋼鉄股▲分▼有限公司 溶鋼中の介在物をろ過できる流動制御式タンディッシュ構造

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044292A1 (ja) * 2017-08-30 2019-03-07 Jfeスチール株式会社 鋼の連続鋳造方法および薄鋼板の製造方法
JP2021517070A (ja) * 2018-03-30 2021-07-15 宝山鋼鉄股▲分▼有限公司 溶鋼中の介在物をろ過できる流動制御式タンディッシュ構造
JP7171756B2 (ja) 2018-03-30 2022-11-15 宝山鋼鉄股▲分▼有限公司 溶鋼中の介在物をろ過できる流動制御式タンディッシュ構造
JP2019214057A (ja) * 2018-06-11 2019-12-19 日本製鉄株式会社 連続鋳造方法
JP7238275B2 (ja) 2018-06-11 2023-03-14 日本製鉄株式会社 連続鋳造方法
JP2021013944A (ja) * 2019-07-11 2021-02-12 日本製鉄株式会社 連続鋳造方法
JP7234837B2 (ja) 2019-07-11 2023-03-08 日本製鉄株式会社 連続鋳造方法

Similar Documents

Publication Publication Date Title
EP1996353B1 (en) Distributor device for use in metal casting
JP5807719B2 (ja) 高清浄度鋼鋳片の製造方法及びタンディッシュ
JP2011143449A (ja) 連続鋳造用タンディッシュにおける介在物除去方法
JP4714539B2 (ja) 連続鋳造用タンディッシュ
JP2005131661A (ja) タンディッシュによる高清浄度鋼の連続鋳造方法と装置
JP2017177178A (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP5510047B2 (ja) 連続鋳造方法および連続鋳造装置
JP5751078B2 (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP4725245B2 (ja) 連続鋳造用タンディッシュ及び鋳片の製造方法
JP4474948B2 (ja) 鋼の連続鋳造方法
JP4998705B2 (ja) 鋼の連続鋳造方法
Hackl et al. Innovative Flow Control Refractory Products for the Continuous Casting Process
JP5510061B2 (ja) 連続鋳造方法
JP5673162B2 (ja) 連続鋳造方法および連続鋳造装置
JP5053226B2 (ja) 連続鋳造用タンディッシュ
Gushchin et al. Technical solutions for controlling flows of melts in the tundishes of continuous casters.
JP2000202602A (ja) 連続鋳造用タンディッシュにおける介在物除去方法
JP5450205B2 (ja) 注湯ノズル
JP2005028402A (ja) 加熱機能を備えた鋼の連続鋳造用タンディッシュ
JP2020171955A (ja) 鋼の連続鋳造方法
JP2005103567A (ja) 連続鋳造用タンディッシュ及び連続鋳造方法
JP2023066986A (ja) ノズルシステム
JP5009033B2 (ja) 鋼の連続鋳造方法および連続鋳造装置
JP2008132504A (ja) 連続鋳造用タンディッシュ
JP2024085134A (ja) 連続鋳造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402