JP2011124118A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011124118A
JP2011124118A JP2009281324A JP2009281324A JP2011124118A JP 2011124118 A JP2011124118 A JP 2011124118A JP 2009281324 A JP2009281324 A JP 2009281324A JP 2009281324 A JP2009281324 A JP 2009281324A JP 2011124118 A JP2011124118 A JP 2011124118A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
negative electrode
tungsten
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009281324A
Other languages
Japanese (ja)
Other versions
JP5485674B2 (en
Inventor
Masanobu Takeuchi
正信 竹内
Yoshinori Kida
佳典 喜田
Ryuji Ito
隆二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
FDK Tottori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, FDK Tottori Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009281324A priority Critical patent/JP5485674B2/en
Publication of JP2011124118A publication Critical patent/JP2011124118A/en
Application granted granted Critical
Publication of JP5485674B2 publication Critical patent/JP5485674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an outstanding charge and discharge cycle characteristics in a nonaqueous electrolyte secondary battery using a tungsten dioxide as an active material by preventing the deterioration of conductivity and the like of a cathode and an anode which use the tungsten dioxides caused by charge and discharge. <P>SOLUTION: In the nonaqueous electrolyte secondary battery provided with the cathode 11, the anode 12 and the nonaqueous electrolyte, the active material with tungsten metal 2 formed on the surface of a primary particle of the tungsten dioxide is used for the anode or the cathode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極と負極と非水電解質とを備え、負極又は正極の活物質に二酸化タングステンを用いた非水電解質二次電池に関するものである。特に、負極の活物質に二酸化タングステンを用いた非水電解質二次電池において、充放電によって二酸化タングステンを用いた負極における導電性等が低下するのを防止し、優れた充放電サイクル特性が得られるようにした点に特徴を有するものである。   The present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, and using tungsten dioxide as an active material of the negative electrode or the positive electrode. In particular, in a non-aqueous electrolyte secondary battery using tungsten dioxide as the active material for the negative electrode, it is possible to prevent deterioration in conductivity and the like in the negative electrode using tungsten dioxide due to charge / discharge, and to obtain excellent charge / discharge cycle characteristics. It has the feature in the point made like this.

近年、携帯電話、ノートパソコン、PDAなどの移動情報端末の小型・軽量化が急速に進展しており、その電源として用いる電池の高容量化が要求されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and there is a demand for higher capacity batteries used as power sources.

そして、このような要求に対応するため、近年においては、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が広く利用されるようになった。   In order to meet such demands, in recent years, as a new secondary battery with high output and high energy density, a non-aqueous electrolyte is used, and lithium ions are moved between the positive electrode and the negative electrode to charge and discharge. Non-aqueous electrolyte secondary batteries designed to perform the above have come to be widely used.

ここで、上記のような非水電解質二次電池においては、その正極や負極における活物質に様々なものが用いられている。そして、例えば、高容量で、半導体の駆動電圧と同程度の適当な作動電圧を示すメモリーバックアップ用電源として用いる非水電解質二次電池として、その負極における活物質に二酸化タングステンを用いたものが知られている。   Here, in the nonaqueous electrolyte secondary battery as described above, various materials are used as active materials in the positive electrode and the negative electrode. For example, as a non-aqueous electrolyte secondary battery that is used as a memory backup power source that has a high capacity and an appropriate operating voltage comparable to that of a semiconductor, a non-aqueous electrolyte secondary battery using tungsten dioxide as an active material in its negative electrode is known. It has been.

しかし、負極における活物質に二酸化タングステンを用いた場合、特許文献1に指摘されているように、二酸化タングステンにインターカレーションされるリチウムイオンの量が多くなると構造変化が生じ、有効充放電容量が大きく低下するという問題があった。   However, when tungsten dioxide is used as the active material in the negative electrode, as pointed out in Patent Document 1, when the amount of lithium ions intercalated in tungsten dioxide increases, the structural change occurs, and the effective charge / discharge capacity increases. There was a problem of a significant drop.

そして、この特許文献1においては、負極活物質として、二酸化タングステンを非酸化雰囲気中で熱処理させた生成物を用い、非水電解質二次電池における有効充放電容量が大きく低下するのを抑制するようにしたものが提案されている。   And in this patent document 1, as a negative electrode active material, the product which heat-processed tungsten dioxide in the non-oxidizing atmosphere is used, and it suppresses that the effective charging / discharging capacity | capacitance in a nonaqueous electrolyte secondary battery falls significantly. What has been proposed is proposed.

しかし、上記のように負極活物質に二酸化タングステンを用いた非水電解質二次電池の場合、二酸化タングステンだけでは負極における導電性が悪く、適切な充放電が行えないという問題があった。   However, in the case of a non-aqueous electrolyte secondary battery using tungsten dioxide as the negative electrode active material as described above, there is a problem that tungsten dioxide alone has poor conductivity in the negative electrode and cannot be appropriately charged and discharged.

このため、二酸化タングステンを用いた負極に、人造黒鉛等の炭素材料や、銅,ニッケル等の金属粉末や金属繊維からなる導電剤を加えて、負極における導電性を高めることが行われている。   For this reason, a conductive material made of a carbon material such as artificial graphite, a metal powder such as copper or nickel, or a metal fiber is added to the negative electrode using tungsten dioxide to increase the conductivity of the negative electrode.

しかし、二酸化タングステンを用いた負極に人造黒鉛等の炭素材料からなる導電剤を加えた非水電解質二次電池の場合、二酸化タングステンにおいてリチウムイオンを吸蔵・放出させる作動電位が約1.0〜0.5V(vs.Li/Li+)と低いため、二酸化タングステンにリチウムイオンを吸蔵させる際に、上記の炭素材料の表面で非水電解液が反応して分解したり、また上記の炭素材料にリチウムイオンが吸蔵されて、負極における導電性が低下し、適切な充放電が行えなくなるという問題があった。 However, in the case of a nonaqueous electrolyte secondary battery in which a conductive agent made of a carbon material such as artificial graphite is added to a negative electrode using tungsten dioxide, the operating potential for inserting and extracting lithium ions in tungsten dioxide is about 1.0 to 0. .5V (vs. Li / Li + ) is low, so when lithium ions are occluded in tungsten dioxide, the non-aqueous electrolyte reacts and decomposes on the surface of the carbon material, or the carbon material There is a problem that lithium ions are occluded, the conductivity of the negative electrode is lowered, and appropriate charge / discharge cannot be performed.

また、銅,ニッケル等の金属粉末や金属繊維からなる導電剤を加えた非水電解質二次電池の場合、充放電による二酸化タングステンの体積変化により上記の導電剤と適切に接触されなくなり、負極における導電性が低下して、適切な充放電が行えなくなるという問題があった。   In addition, in the case of a nonaqueous electrolyte secondary battery to which a conductive agent made of metal powder such as copper or nickel or a metal fiber is added, it is not properly contacted with the above conductive agent due to the volume change of tungsten dioxide due to charge and discharge, and in the negative electrode There was a problem that the electrical conductivity was lowered and proper charge / discharge could not be performed.

特開平6−215770号公報JP-A-6-215770

本発明は、正極と負極と非水電解質とを備えた非水電解質二次電池における上記のような問題を解決することを課題とするものであり、特に、負極の活物質に二酸化タングステンを用いた非水電解質二次電池において、充放電によって二酸化タングステンを用いた負極における導電性等が低下するのを防止し、優れた充放電サイクル特性が得られるようにすることを課題とするものである。   An object of the present invention is to solve the above-described problems in a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. In particular, tungsten dioxide is used as the active material of the negative electrode. It is an object of the present invention to prevent deterioration in conductivity and the like in a negative electrode using tungsten dioxide due to charge / discharge and to obtain excellent charge / discharge cycle characteristics in a non-aqueous electrolyte secondary battery. .

本発明においては、上記のような課題を解決するため、正極と負極と非水電解質とを備えた非水電解質二次電池において、上記の負極又は正極に、二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を用いるようにした。   In the present invention, in order to solve the above-described problems, in a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, tungsten is formed on the surface of primary particles of tungsten dioxide on the negative electrode or the positive electrode. An active material formed with a metal was used.

ここで、二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を負極に用いる場合、正極の活物質としては、非水電解質二次電池の正極に一般に使用されているコバルト酸リチウム、ニッケル酸リチウム、スピネル型マンガン酸リチウム、リチウム含有コバルト・ニッケル・マンガン複合酸化物、オリビン構造を有するリン酸鉄リチウムなどのリチウム含有遷移金属複合酸化物を用いることができる。特に、正極の活物質にオリビン構造を有するリン酸鉄リチウムを用いた場合、約3.0〜2.0Vの作動電圧を有し、電位平坦性にも優れた非水電解質二次電池が得られ、約3.0〜2.0Vの電圧範囲で動作する多くの半導体部品のバックアップ用電池等として好適に利用できるようになる。   Here, when an active material in which tungsten metal is formed on the surface of primary particles of tungsten dioxide is used for the negative electrode, the active material for the positive electrode is lithium cobalt oxide generally used for the positive electrode of the nonaqueous electrolyte secondary battery. Lithium-containing transition metal composite oxides such as lithium nickelate, spinel-type lithium manganate, lithium-containing cobalt-nickel-manganese composite oxide, and lithium iron phosphate having an olivine structure can be used. In particular, when lithium iron phosphate having an olivine structure is used as the positive electrode active material, a non-aqueous electrolyte secondary battery having an operating voltage of about 3.0 to 2.0 V and excellent potential flatness is obtained. Therefore, it can be suitably used as a backup battery for many semiconductor components operating in a voltage range of about 3.0 to 2.0V.

一方、二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を正極に用いる場合、負極の活物質としては、例えば、黒鉛等の炭素材料、アルミニウム,シリコン等のリチウムと合金化する金属などを用いることができ、これらの負極の活物質を用いた場合には、1.0〜0.5V程度の作動電圧を有する非水電解質二次電池が得られるようになる。   On the other hand, when an active material in which tungsten metal is formed on the surface of primary particles of tungsten dioxide is used for the positive electrode, examples of the negative electrode active material include alloying with carbon materials such as graphite and lithium such as aluminum and silicon. A metal etc. can be used, and when these negative electrode active materials are used, a non-aqueous electrolyte secondary battery having an operating voltage of about 1.0 to 0.5 V can be obtained.

ここで、上記のように二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を負極や正極に用いた場合、この非水電解質二次電池を充放電させても、二酸化タングステンの一次粒子の表面に形成されたタングステン金属によって十分な導電性が確保されるようになり、負極や正極における導電性が低下するのが防止されるようになる。特に、二酸化タングステンの一次粒子相互がその表面に形成されたタングステン金属によって結合されていると、このタングステン金属によって二酸化タングステンの粒子間における導電性がさらに高まり、負極や正極における導電性が低下するのが一層防止されるようになる。   Here, when an active material in which tungsten metal is formed on the surface of primary particles of tungsten dioxide as described above is used for a negative electrode or a positive electrode, even if this nonaqueous electrolyte secondary battery is charged and discharged, Sufficient conductivity is secured by the tungsten metal formed on the surface of the primary particles, and a decrease in conductivity in the negative electrode and the positive electrode is prevented. In particular, when the primary particles of tungsten dioxide are bonded to each other by tungsten metal formed on the surface, the conductivity between the tungsten dioxide particles is further increased by this tungsten metal, and the conductivity at the negative electrode and the positive electrode is decreased. Is further prevented.

また、上記の活物質において、二酸化タングステンに対するタングステン金属の割合が少なくなりすぎると、十分な導電性を確保することが困難になる一方、タングステン金属の割合が多くなりすぎると、充放電に関与する二酸化タングステンの割合が低下し、十分な充放電容量を得ることができなくなる。このため、上記の活物質中における二酸化タングステンとタングステン金属とのモル比が80:20〜25:75の範囲であることが好ましい。なお、二酸化タングステンとタングステン金属とのモル比が80:20の場合には、活物質中にタングステン金属が15体積%程度存在することになり、十分な導電性を確保することが可能になる。また、上記のタングステン金属は二酸化タングステンに比べて密度が非常に高いため、二酸化タングステンとタングステン金属とのモル比を25:75にしても、活物質中に十分な量の二酸化タングステンが存在し、十分な充放電容量を得ることができるようになる。   In the above active material, if the ratio of tungsten metal to tungsten dioxide is too small, it becomes difficult to ensure sufficient conductivity, while if the ratio of tungsten metal is too large, it is involved in charge / discharge. The proportion of tungsten dioxide decreases, and sufficient charge / discharge capacity cannot be obtained. For this reason, it is preferable that the molar ratio of tungsten dioxide and tungsten metal in the active material is in the range of 80:20 to 25:75. When the molar ratio of tungsten dioxide to tungsten metal is 80:20, about 15 volume% of tungsten metal is present in the active material, and sufficient conductivity can be ensured. Moreover, since the above tungsten metal has a very high density compared to tungsten dioxide, even if the molar ratio of tungsten dioxide to tungsten metal is 25:75, there is a sufficient amount of tungsten dioxide in the active material, Sufficient charge / discharge capacity can be obtained.

また、上記のような活物質を得るにあたっては、三酸化タングステン等のタングステン酸化物やパラタングステン酸アンモニウム等のタングステン酸塩を還元雰囲気中において焼成する方法や、タングステン金属を酸化させる方法がある。   In order to obtain the active material as described above, there are a method of baking tungsten oxide such as tungsten trioxide and a tungstate salt such as ammonium paratungstate in a reducing atmosphere, and a method of oxidizing tungsten metal.

ここで、タングステン金属を酸化させる方法の場合、タングステン金属が粒子の中心部に存在し、粒子の外部に二酸化タングステンが存在する粒子構造となり、タングステン金属によって導電性を十分に確保することが困難になるおそれがある。一方、タングステン酸化物やタングステン酸塩を還元雰囲気中において焼成する方法の場合、タングステン酸化物やタングステン酸塩が還元された二酸化タングステン粒子の表面にタングステン金属が存在する構造となり、タングステン金属によって導電性を十分に確保することができるようになるため好ましい。なお、上記のようにして二酸化タングステン粒子の表面にタングステン金属を存在させるにあたり、二酸化タングステン粒子の表面を被覆するタングステン金属が多くなりすぎると、十分な充放電ができなくなるため、タングステン金属の割合を少なくし、二酸化タングステンとタングステン金属とのモル比を80:20〜35:65の範囲にすることがより好ましい。   Here, in the case of the method of oxidizing tungsten metal, the tungsten metal is present in the center of the particle, and the particle structure is such that tungsten dioxide exists outside the particle, making it difficult to sufficiently secure the conductivity by the tungsten metal. There is a risk. On the other hand, in the method of firing tungsten oxide or tungstate in a reducing atmosphere, tungsten metal is present on the surface of the tungsten dioxide particles from which tungsten oxide or tungstate has been reduced. Is preferable because it can be sufficiently secured. When tungsten metal is present on the surface of the tungsten dioxide particles as described above, if too much tungsten metal covers the surface of the tungsten dioxide particles, sufficient charge / discharge cannot be performed. More preferably, the molar ratio of tungsten dioxide to tungsten metal is in the range of 80:20 to 35:65.

また、上記のように二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を用いて負極や正極を作製する場合、炭素材料等の導電剤を別個に加えなくても、この活物質の表面におけるタングステン金属によって導電性が確保されるため、炭素材料等の導電剤を加える量を少なくし、また全く加えないようにすることができ、上記の活物質と結着剤とで構成された合剤を負極や正極の集電体に付与させて負極や正極を作製することができる。そして、このように炭素材料等の導電剤を加えないようにすると、炭素材料等の導電剤を加えた場合における前記のような問題の発生も防止される。   In addition, when a negative electrode or a positive electrode is manufactured using an active material in which tungsten metal is formed on the surface of primary particles of tungsten dioxide as described above, the active material can be obtained without adding a conductive agent such as a carbon material separately. Conductivity is ensured by the tungsten metal on the surface of the material, so the amount of conductive material such as carbon material added can be reduced and not added at all, and it consists of the above active material and binder The negative electrode or the positive electrode can be produced by applying the prepared mixture to the current collector of the negative electrode or the positive electrode. If the conductive agent such as the carbon material is not added as described above, the occurrence of the above problems when the conductive agent such as the carbon material is added can be prevented.

また、本発明の非水電解質二次電池における上記の非水電解質としては、非水系溶媒に溶質を溶解させた公知の非水電解液を用いることができる。   Moreover, as said nonaqueous electrolyte in the nonaqueous electrolyte secondary battery of this invention, the well-known nonaqueous electrolyte solution which melt | dissolved the solute in the nonaqueous solvent can be used.

そして、この非水電解液における非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート系溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート系溶媒や、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテルなど鎖状エーテル系溶媒などを用いることができる。   Examples of the non-aqueous solvent in the non-aqueous electrolyte include cyclic carbonate solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. Solvents and chain ether solvents such as 1,2-dimethoxyethane and diethylene glycol dimethyl ether can be used.

また、この非水系溶媒に溶解させる溶質としても、非水電解質二次電池において一般に使用されているリチウム塩を用いることができ、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。 Further, as a solute dissolved in the non-aqueous solvent, a lithium salt generally used in a non-aqueous electrolyte secondary battery can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used.

本発明の非水電解質二次電池においては、二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を負極や正極に用いるようにしたため、この非水電解質二次電池を充放電させても、二酸化タングステンの一次粒子の表面に形成されたタングステン金属によって十分な導電性が確保されるようになり、負極や正極における導電性が低下するのが防止されるようになる。   In the nonaqueous electrolyte secondary battery of the present invention, an active material in which tungsten metal is formed on the surface of the primary particles of tungsten dioxide is used for the negative electrode and the positive electrode. Therefore, the nonaqueous electrolyte secondary battery is charged and discharged. However, sufficient conductivity is ensured by the tungsten metal formed on the surface of the primary particles of tungsten dioxide, so that the conductivity of the negative electrode and the positive electrode is prevented from being lowered.

この結果、本発明の非水電解質二次電池においては、充放電によって二酸化タングステンを用いた負極や正極における導電性等が低下して充放電特性が低下するのが防止され、優れた充放電サイクル特性が得られるようになる。特に、上記の活物質を負極に用いると、適当な正極の活物質と組み合わせて使用することにより、高容量で適切な作動電圧を示す非水電解質二次電池が得られるようになる。   As a result, in the nonaqueous electrolyte secondary battery of the present invention, it is possible to prevent the charge and discharge characteristics from being deteriorated due to the decrease in conductivity and the like in the negative electrode and the positive electrode using tungsten dioxide due to charge and discharge, and an excellent charge and discharge cycle. Characteristics can be obtained. In particular, when the above active material is used for a negative electrode, a non-aqueous electrolyte secondary battery having a high capacity and an appropriate operating voltage can be obtained by using it in combination with an appropriate positive electrode active material.

本発明の実施例及び比較例において作製した非水電解質二次電池の概略断面図である。It is a schematic sectional drawing of the nonaqueous electrolyte secondary battery produced in the Example and comparative example of this invention. 実施例1の非水電解質二次電池に使用した負極活物質をSEMにより観察した図である。FIG. 3 is a diagram obtained by observing a negative electrode active material used in the nonaqueous electrolyte secondary battery of Example 1 with an SEM. 実施例1の非水電解質二次電池に使用した負極活物質の状態を示した模式断面説明図である。2 is a schematic cross-sectional explanatory view showing a state of a negative electrode active material used in the nonaqueous electrolyte secondary battery of Example 1. FIG. 比較例1の非水電解質二次電池に使用した負極活物質をSEMにより観察した図である。FIG. 3 is a view of an anode active material used in the nonaqueous electrolyte secondary battery of Comparative Example 1 observed by SEM.

以下、この発明に係る非水電解質二次電池について、実施例を挙げて具体的に説明すると共に、この実施例に係る非水電解質二次電池においては、充放電サイクル特性が向上されることを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the nonaqueous electrolyte secondary battery according to this example, the charge / discharge cycle characteristics are improved. It is clarified by giving a comparative example. The nonaqueous electrolyte secondary battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof.

(実施例1)
実施例1においては、下記のようにして作製した負極と正極と非水電解液とを用い、図1に示すような扁平なコイン型の非水電解質二次電池を作製した。
Example 1
In Example 1, a flat coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was manufactured using the negative electrode, the positive electrode, and the non-aqueous electrolyte prepared as described below.

[負極の作製]
負極活物質として、粒径が50〜100μm程度になった三酸化タングステンの粉末を700℃の水素気流中で所要時間焼成し、負極活物質中における酸素量が7.5質量%になったものを用いた。
[Production of negative electrode]
As a negative electrode active material, a powder of tungsten trioxide having a particle size of about 50 to 100 μm is fired for a required time in a hydrogen stream at 700 ° C., and the amount of oxygen in the negative electrode active material becomes 7.5% by mass Was used.

ここで、このように作製した負極活物質をSEMにより観察した結果を図2に示すと共に、図3に模式的にこの負極活物質の断面状態を示した。この結果、この負極活物質においては、図3に示すように、二酸化タングステン粒子1の表面にタングステン金属2が焼結により形成されると共に、このタングステン金属2によって二酸化タングステン粒子1相互が結合された状態になっていた。また、このようにして得た負極活物質をXRD(RIGAKU Co. RINT−TTRII)で調べたところ、二酸化タングステンとタングステン金属からなり、酸素分析装置(LECO Co. RO600)で求めた酸素濃度から負極活物質の組成を算出した結果、二酸化タングステンとタングステン金属とのモル比が50:50になっていた。   Here, the result of observing the thus prepared negative electrode active material by SEM is shown in FIG. 2, and the cross-sectional state of this negative electrode active material is schematically shown in FIG. As a result, in this negative electrode active material, as shown in FIG. 3, tungsten metal 2 was formed on the surface of tungsten dioxide particles 1 by sintering, and tungsten dioxide particles 1 were bonded to each other by this tungsten metal 2. It was in a state. Further, when the negative electrode active material thus obtained was examined by XRD (RIGAKU Co. RINT-TTRII), it was composed of tungsten dioxide and tungsten metal, and the negative electrode was determined from the oxygen concentration determined by an oxygen analyzer (LECO Co. RO600). As a result of calculating the composition of the active material, the molar ratio of tungsten dioxide to tungsten metal was 50:50.

そして、上記のように作製した負極活物質と結着剤のポリフッ化ビニリデンとを97.5:2.5の質量比になるようにして、N−メチル−2−ピロリドン溶剤中において混合し、これを乾燥させた後、粉砕させて負極合剤を得た。次いで、この負極合剤を直径4.16mmの成型冶具に入れて、800kg・fの圧力で加圧成型し、円板状になった負極を作製した。   Then, the negative electrode active material produced as described above and the polyvinylidene fluoride binder were mixed in an N-methyl-2-pyrrolidone solvent so as to have a mass ratio of 97.5: 2.5, This was dried and then pulverized to obtain a negative electrode mixture. Next, this negative electrode mixture was put in a molding jig having a diameter of 4.16 mm, and pressure-molded with a pressure of 800 kg · f to produce a disc-shaped negative electrode.

[正極の作製]
正極活物質にオリビン構造を有するリン酸鉄リチウムLiFePOを用い、この正極活物質と、結着剤のポリフッ化ビニリデンと、導電剤の人造黒鉛を92.5:5:2.5の質量比になるようにして、N−メチル−2−ピロリドン溶剤中において混合し、これを乾燥させた後、粉砕させて正極合剤を得た。次いで、この正極合剤を直径4.16mmの成型冶具に入れて、800kg・fの圧力で加圧成型し、円板状になった正極を作製した。
[Production of positive electrode]
Lithium iron phosphate LiFePO 4 having an olivine structure is used as the positive electrode active material, and the positive electrode active material, the polyvinylidene fluoride as the binder, and the artificial graphite as the conductive agent in a mass ratio of 92.5: 5: 2.5 The mixture was mixed in an N-methyl-2-pyrrolidone solvent, dried, and pulverized to obtain a positive electrode mixture. Next, this positive electrode mixture was put into a molding jig having a diameter of 4.16 mm and subjected to pressure molding at a pressure of 800 kg · f to produce a disc-shaped positive electrode.

[非水電解液の作製]
ジエチレングリコールジメチルエーテルからなる非水系溶媒に、溶質としてリチウムビストリフルオロメタンスルホニルイミドLiN(CFSOを1.0mol/lの濃度になるように溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
Lithium bistrifluoromethanesulfonylimide LiN (CF 3 SO 2 ) 2 was dissolved as a solute in a non-aqueous solvent composed of diethylene glycol dimethyl ether to a concentration of 1.0 mol / l to prepare a non-aqueous electrolyte.

[電池の作製]
電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極11と負極12との間に、ポリフェニレンサルファイドの不織布からなるセパレータ13を介在させ、これらに上記の非水電解液を含浸させて、正極缶14aと負極缶14bとで形成される電池ケース14内に収容させるようにした。そして、上記の正極11を炭素の導電性ペーストを用いた正極集電体15を介して正極缶14aに接続させる一方、上記の負極12を炭素の導電性ペーストを用いた負極集電体16を介して負極缶14bに接続させ、この正極缶14aと負極缶14bとをポリプロピレン製の絶縁パッキン17によって電気的に絶縁させて、直径が6mm、厚さが1.4mmになった扁平なコイン型の非水電解質二次電池を作製した。
[Production of battery]
In producing the battery, as shown in FIG. 1, a separator 13 made of a polyphenylene sulfide non-woven fabric is interposed between the positive electrode 11 and the negative electrode 12 produced as described above, and the non-aqueous electrolysis described above is interposed therebetween. The liquid was impregnated and contained in the battery case 14 formed of the positive electrode can 14a and the negative electrode can 14b. The positive electrode 11 is connected to the positive electrode can 14a through the positive electrode current collector 15 using a carbon conductive paste, while the negative electrode 12 is connected to the negative electrode current collector 16 using a carbon conductive paste. A flat coin type having a diameter of 6 mm and a thickness of 1.4 mm, wherein the positive electrode can 14a and the negative electrode can 14b are electrically insulated by an insulating packing 17 made of polypropylene. A non-aqueous electrolyte secondary battery was prepared.

(比較例1)
比較例1においては、実施例1における負極の作製において、負極活物質を得るにあたり、上記の粒径が50〜150μm程度になった三酸化タングステンの粉末を700℃の水素気流中で焼成させる時間を短くし、負極活物質中における酸素量が14.8質量%になったものを用いた。
(Comparative Example 1)
In Comparative Example 1, in preparing the negative electrode in Example 1, when obtaining the negative electrode active material, the time for firing the tungsten trioxide powder having a particle size of about 50 to 150 μm in a hydrogen stream at 700 ° C. The oxygen content in the negative electrode active material was 14.8% by mass.

ここで、このように作製した負極活物質をSEMにより観察した結果を図4に示した。また、このようにして得た負極活物質の組成を前記実施例1と同様の方法で調べた結果、二酸化タングステン粒子だけで構成されていた。   Here, the result of observing the thus prepared negative electrode active material by SEM is shown in FIG. Moreover, as a result of examining the composition of the negative electrode active material thus obtained by the same method as in Example 1, it was composed only of tungsten dioxide particles.

そして、上記の二酸化タングステン粒子からなる負極活物質を用いる以外は、上記の実施例1と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like said Example 1 except using the negative electrode active material which consists of said tungsten dioxide particle.

(比較例2)
比較例2においては、実施例1における負極の作製において、負極活物質として、上記の比較例1と同じ二酸化タングステン粒子からなる負極活物質を用いると共に導電剤として人造黒鉛を用い、この負極活物質と結着剤のポリフッ化ビニリデンと導電剤の人造黒鉛とを92.5:2.5:5の質量比になるようにして、N−メチル−2−ピロリドン溶剤中において混合し、これを乾燥させた後、粉砕させて負極合剤を得た。
(Comparative Example 2)
In Comparative Example 2, in the production of the negative electrode in Example 1, the negative electrode active material composed of the same tungsten dioxide particles as in Comparative Example 1 was used as the negative electrode active material, and artificial graphite was used as the conductive agent. And polyvinylidene fluoride as a binder and artificial graphite as a conductive agent are mixed in an N-methyl-2-pyrrolidone solvent at a mass ratio of 92.5: 2.5: 5 and dried. Then, the mixture was pulverized to obtain a negative electrode mixture.

そして、このようにして得た負極合剤を用いる以外は、上記の実施例1と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the said Example 1 except using the negative mix obtained in this way.

(比較例3)
比較例3においては、実施例1における負極の作製において、負極活物質として、上記の比較例1と同じ二酸化タングステン粒子からなる負極活物質を用いると共に導電剤として粒径が600nm程度になったタングステン粉末を用い、この負極活物質と結着剤のポリフッ化ビニリデンと導電剤のタングステン粉末とを92.5:2.5:5の質量比になるようにして、N−メチル−2−ピロリドン溶剤中において混合し、これを乾燥させた後、粉砕させて負極合剤を得た。
(Comparative Example 3)
In Comparative Example 3, in the production of the negative electrode in Example 1, the negative electrode active material composed of the same tungsten dioxide particles as in Comparative Example 1 was used as the negative electrode active material, and tungsten having a particle size of about 600 nm as the conductive agent. N-methyl-2-pyrrolidone solvent using a powder so that the negative electrode active material, polyvinylidene fluoride as a binder, and tungsten powder as a conductive agent are in a mass ratio of 92.5: 2.5: 5 The mixture was mixed in, dried, and then pulverized to obtain a negative electrode mixture.

そして、このようにして得た負極合剤を用いる以外は、上記の実施例1と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the said Example 1 except using the negative mix obtained in this way.

次に、上記のようにして作製した実施例1及び比較例1〜3の各非水電解質二次電池を、それぞれ室温環境下において、100μAの定電流で電池電圧が3.2Vになるまで充電させて10秒間休止させた後、100μAの定電流で電池電圧が0.01Vになるまで放電させて10秒間休止させ、これに1サイクルとして10サイクルの充放電を繰り返した。   Next, the nonaqueous electrolyte secondary batteries of Example 1 and Comparative Examples 1 to 3 manufactured as described above were charged at a constant current of 100 μA and a battery voltage of 3.2 V under a room temperature environment. After 10 seconds of rest, the battery was discharged at a constant current of 100 μA until the battery voltage reached 0.01 V, rested for 10 seconds, and 10 cycles of charge / discharge were repeated as one cycle.

そして、上記の各非水電解質二次電池について、それぞれ1サイクル目の放電容量Q1と10サイクル目の放電容量Q10とを測定し、下記の式により、10サイクル後の容量維持率を求め、その結果を下記の表1に示した。なお、表中の負極合剤の組成に関しては、結着剤のポリフッ化ビニリデンをPVdFとして示した。
10サイクル後の容量維持率(%)=(Q10/Q1)×100
And about each said nonaqueous electrolyte secondary battery, discharge capacity Q1 of the 1st cycle and discharge capacity Q10 of the 10th cycle are measured, respectively, and the capacity maintenance rate after 10 cycles is calculated by the following formula, The results are shown in Table 1 below. In addition, regarding the composition of the negative electrode mixture in the table, the binder polyvinylidene fluoride was shown as PVdF.
Capacity maintenance rate after 10 cycles (%) = (Q10 / Q1) × 100

この結果、二酸化タングステン粒子の表面にタングステン金属が形成された負極活物質を用いた実施例1の非水電解質二次電池は、上記の比較例1〜3の各非水電解質二次電池に比べて、10サイクル後の容量維持率が大きく向上しており、充放電サイクル特性が大きく改善されることが分かった。   As a result, the nonaqueous electrolyte secondary battery of Example 1 using the negative electrode active material in which tungsten metal was formed on the surface of the tungsten dioxide particles was compared with the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 3 described above. Thus, it was found that the capacity retention rate after 10 cycles was greatly improved, and the charge / discharge cycle characteristics were greatly improved.

これは、上記のような負極活物質を用いた実施例1の非水電解質二次電池の場合、二酸化タングステン粒子からなる負極活物質を用いた比較例1の非水電解質二次電池に比べて、前記のように二酸化タングステンの一次粒子の表面に形成されたタングステン金属によって負極における導電性が大きく向上されたためであると考えられる。   This is because the non-aqueous electrolyte secondary battery of Example 1 using the negative electrode active material as described above is compared with the non-aqueous electrolyte secondary battery of Comparative Example 1 using the negative electrode active material made of tungsten dioxide particles. This is probably because the conductivity of the negative electrode was greatly improved by the tungsten metal formed on the surface of the primary particles of tungsten dioxide as described above.

また、比較例2の非水電解質二次電池のように、二酸化タングステン粒子からなる負極活物質の他に導電剤の人造黒鉛を添加させた負極合剤を用いた場合、前記のように導電剤として添加した人造黒鉛の表面で非水電解液が反応して分解したり、また人造黒鉛にリチウムイオンが吸蔵されて、負極における導電性が低下したため、実施例1の非水電解質二次電池に比べて、10サイクル後の容量維持率が低下したものと考えられる。   Further, as in the case of the non-aqueous electrolyte secondary battery of Comparative Example 2, when a negative electrode mixture in which artificial graphite as a conductive agent is added in addition to the negative electrode active material composed of tungsten dioxide particles, the conductive agent is used as described above. As the non-aqueous electrolyte reacts and decomposes on the surface of the artificial graphite added as above, or the lithium ions are occluded in the artificial graphite and the conductivity in the negative electrode is lowered, the non-aqueous electrolyte secondary battery of Example 1 is obtained. In comparison, it is considered that the capacity retention rate after 10 cycles was lowered.

また、比較例3の非水電解質二次電池のように、二酸化タングステン粒子からなる負極活物質の他に導電剤のタングステン粉末を添加させた負極合剤を用いた場合、タングステン粉末の粒径が大きくて、二酸化タングステン粒子とタングステン粉末との密着性が悪くなり、また充放電による二酸化タングステン粒子の体積変化によって、二酸化タングステン粒子がタングステン粉末から離れて、負極における導電性が大きく低下したため、実施例1の非水電解質二次電池に比べて、10サイクル後の容量維持率が大きく低下したものと考えられる。   Further, when a negative electrode mixture in which tungsten powder of a conductive agent is added in addition to a negative electrode active material composed of tungsten dioxide particles as in the non-aqueous electrolyte secondary battery of Comparative Example 3, the particle size of the tungsten powder is Since the adhesion between the tungsten dioxide particles and the tungsten powder is poor and the tungsten dioxide particles are separated from the tungsten powder due to the volume change of the tungsten dioxide particles due to charge and discharge, the conductivity in the negative electrode is greatly reduced. It is considered that the capacity retention rate after 10 cycles was greatly reduced as compared with the nonaqueous electrolyte secondary battery of No. 1.

1 二酸化タングステン粒子
2 タングステン金属
11 正極
12 負極
13 セパレータ
14 電池ケース
14a 正極缶
14b 負極缶
15 正極集電体
16 負極集電体
17 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Tungsten dioxide particle 2 Tungsten metal 11 Positive electrode 12 Negative electrode 13 Separator 14 Battery case 14a Positive electrode can 14b Negative electrode can 15 Positive electrode collector 16 Negative electrode collector 17 Insulation packing

Claims (7)

正極と負極と非水電解質とを備えた非水電解質二次電池において、上記の負極又は正極に、二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質を用いたことを特徴とする非水電解質二次電池。   In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, an active material in which tungsten metal is formed on the surface of primary particles of tungsten dioxide is used for the negative electrode or the positive electrode. Non-aqueous electrolyte secondary battery. 請求項1に記載の非水電解質二次電池において、前記の活物質を負極に用いたことを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the active material is used for a negative electrode. 請求項1又は請求項2に記載の非水電解質二次電池において、前記の活物質は、二酸化タングステンの一次粒子相互がその表面に形成されたタングステン金属によって結合されていることを特徴とする非水電解質二次電池。   3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material is formed by bonding primary particles of tungsten dioxide with tungsten metal formed on a surface thereof. Water electrolyte secondary battery. 請求項1〜請求項3の何れか1項に記載の非水電解質二次電池において、前記の活物質中における二酸化タングステンとタングステン金属とのモル比が80:20〜25:75の範囲であることを特徴とする非水電解質二次電池。   4. The non-aqueous electrolyte secondary battery according to claim 1, wherein a molar ratio of tungsten dioxide to tungsten metal in the active material is in a range of 80:20 to 25:75. 5. A non-aqueous electrolyte secondary battery. 請求項1〜請求項4の何れか1項に記載の非水電解質二次電池において、前記の二酸化タングステンの一次粒子の表面にタングステン金属が形成されてなる活物質が、タングステン酸化物又はタングステン酸塩を還元雰囲気中で焼結させたものであることを特徴とする非水電解質二次電池。   5. The non-aqueous electrolyte secondary battery according to claim 1, wherein an active material in which tungsten metal is formed on the surface of primary particles of the tungsten dioxide is tungsten oxide or tungstic acid. A non-aqueous electrolyte secondary battery, wherein the salt is sintered in a reducing atmosphere. 請求項1〜請求項5の何れか1項に記載の非水電解質二次電池において、前記の負極又は正極における集電体に、前記の活物質と結着剤とで構成された合剤が付与されていることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein a mixture composed of the active material and the binder is present on the current collector of the negative electrode or the positive electrode. A non-aqueous electrolyte secondary battery characterized by being provided. 請求項1〜請求項6の何れか1項に記載の非水電解質二次電池において、前記の活物質を負極に用いると共に、正極の活物質にリン酸鉄リチウムを用いたことを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the active material is used for a negative electrode and lithium iron phosphate is used for a positive electrode active material. Non-aqueous electrolyte secondary battery.
JP2009281324A 2009-12-11 2009-12-11 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5485674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281324A JP5485674B2 (en) 2009-12-11 2009-12-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281324A JP5485674B2 (en) 2009-12-11 2009-12-11 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011124118A true JP2011124118A (en) 2011-06-23
JP5485674B2 JP5485674B2 (en) 2014-05-07

Family

ID=44287806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281324A Expired - Fee Related JP5485674B2 (en) 2009-12-11 2009-12-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5485674B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118371A1 (en) * 2012-02-08 2013-08-15 昭和電工株式会社 Solid electrolytic capacitor
WO2013172453A1 (en) * 2012-05-18 2013-11-21 昭和電工株式会社 Method for manufacturing capacitor element
KR20190104615A (en) * 2017-05-25 2019-09-10 가부시끼가이샤 도시바 Power storage unit and power storage system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215770A (en) * 1993-01-18 1994-08-05 Seiko Instr Inc Non-aquaous electrolytic secondary battery and preparation of negative pole active material therefor
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JP2000106177A (en) * 1998-09-28 2000-04-11 Haruichiro Eguchi Manufacture of negative electrode material for alkaline secondary battery
JP2000277111A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2002063942A (en) * 2000-08-18 2002-02-28 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2004259675A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
JP2007018985A (en) * 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2008016234A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008277120A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle, its manufacturing method, and electrochemical device
JP2010244727A (en) * 2009-04-01 2010-10-28 Namics Corp Electrode material, method for producing same, and lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215770A (en) * 1993-01-18 1994-08-05 Seiko Instr Inc Non-aquaous electrolytic secondary battery and preparation of negative pole active material therefor
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JP2000106177A (en) * 1998-09-28 2000-04-11 Haruichiro Eguchi Manufacture of negative electrode material for alkaline secondary battery
JP2000277111A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2002063942A (en) * 2000-08-18 2002-02-28 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2004259675A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
JP2007018985A (en) * 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2008016234A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008277120A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle, its manufacturing method, and electrochemical device
JP2010244727A (en) * 2009-04-01 2010-10-28 Namics Corp Electrode material, method for producing same, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118371A1 (en) * 2012-02-08 2013-08-15 昭和電工株式会社 Solid electrolytic capacitor
US9396881B2 (en) 2012-02-08 2016-07-19 Showa Denko K.K. Solid electrolytic capacitor
WO2013172453A1 (en) * 2012-05-18 2013-11-21 昭和電工株式会社 Method for manufacturing capacitor element
JP5412606B1 (en) * 2012-05-18 2014-02-12 昭和電工株式会社 Capacitor element manufacturing method
US9601277B2 (en) 2012-05-18 2017-03-21 Showa Denko K.K. Method for manufacturing capacitor element
KR20190104615A (en) * 2017-05-25 2019-09-10 가부시끼가이샤 도시바 Power storage unit and power storage system
KR102194132B1 (en) 2017-05-25 2020-12-22 가부시끼가이샤 도시바 Power storage unit and power storage system

Also Published As

Publication number Publication date
JP5485674B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP4853608B2 (en) Lithium secondary battery
WO2017094416A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
JP5278994B2 (en) Lithium secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2007234565A (en) Nonaqueous electrolyte secondary battery
KR20130052500A (en) Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
CN109155431B (en) Lithium ion secondary battery
JP5017778B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
WO2009142283A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2013110105A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode
JP2009295533A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
TW201640724A (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP7262999B2 (en) Manufacturing method of positive electrode active material, manufacturing method of non-aqueous electrolyte secondary battery, positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
CN107172888B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
JP2005302300A (en) Nonaqueous electrolyte battery
JP5485674B2 (en) Nonaqueous electrolyte secondary battery
JP2006032232A (en) Nonaqueous electrolyte secondary battery
JP5445912B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5441196B2 (en) Lithium ion battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees