JP2011119855A - バースト光受信器 - Google Patents

バースト光受信器 Download PDF

Info

Publication number
JP2011119855A
JP2011119855A JP2009273636A JP2009273636A JP2011119855A JP 2011119855 A JP2011119855 A JP 2011119855A JP 2009273636 A JP2009273636 A JP 2009273636A JP 2009273636 A JP2009273636 A JP 2009273636A JP 2011119855 A JP2011119855 A JP 2011119855A
Authority
JP
Japan
Prior art keywords
end connected
burst
differential
circuit
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273636A
Other languages
English (en)
Inventor
Masaki Noda
雅樹 野田
Masamichi Nogami
正道 野上
Junichi Nakagawa
潤一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009273636A priority Critical patent/JP2011119855A/ja
Publication of JP2011119855A publication Critical patent/JP2011119855A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】ATC回路を不要とし、かつ受信感度特性に優れたバースト光受信器を得る。
【解決手段】バースト光受信器1において、光バースト信号を電流信号に変換する受光素子2と、電流信号を電圧信号に変換する差動型トランスインピーダンスアンプ回路3と、差動型トランスインピーダンスアンプ回路3からの電圧信号を識別する差動型識別回路4と、一端が電源に接続され他端が受光素子2のカソードに接続された誘導性素子62と、一端が受光素子2のアノードに接続され他端がGNDに接続された誘導性素子61と、一端が誘導性素子62と受光素子2との接続端に接続され他端が差動型トランスインピーダンスアンプ回路3に接続された容量性素子52と、一端が誘導性素子61と受光素子2との接続端に接続され他端が差動型トランスインピーダンスアンプ回路3に接続された容量性素子51と、を備える。
【選択図】図1

Description

本発明は、光通信システムに関するものであり、特に、アクセス系光通信システムの一つの方式であるPON(Passive Optical Network)システムに関するものである。
従来、光ファイバを用いた公衆回線網を実現する方式として、PON(Passive Optical Network)システムと呼ばれるポイント・トゥ・マルチポイントのアクセス系光通信システムが広く用いられている。
PONシステムは、局側装置である1台のOLT(Optical Line Terminal)と、光スターカプラを介して接続される複数の加入者端末装置であるONU(Optical Network Unit)により構成される。多数のONUに対して、OLTと伝送路である光ファイバの大部分は共有できるため運用コストの経済化が期待できることや、受動部品である光スターカプラには給電が必要なく屋外設置が容易であり、信頼性も高いという利点があることから、ブロードバンドネットワークを実現する切り札として近年活発に導入が進められている。
例えば、IEEE802.3ahで規格化されている伝送速度が1.25Gbit/sのGE−PON(Gigabit Ethernet(登録商標)−Passive Optical Network)システムにおいては、OLTからONUへの下り方向は、光波長1480〜1500nm帯を用いた同報通信方式を用い、各ONUは割り当てられたタイムスロットのデータのみ取り出す。一方、各ONUからOLTへの上り方向は、光波長1260〜1360nm帯を用い、各ONUのデータが衝突しないように送出タイミングを制御する時分割多重通信方式を用いている。
また、IEEE802.3avで規格化されている伝送速度が10.3Gbit/sの10G−EPONシステムにおいては、OLTからONUへの下り方向は、光波長1574〜1580nm帯を用いた同報通信方式を用い、各ONUは割り当てられたタイムスロットのデータのみ取り出す。一方、各ONUからOLTへの上り方向は、光波長1260〜1280nm帯を用い、各ONUのデータが衝突しないように送出タイミングを制御する時分割多重通信方式を用いている。
ここで、上記のようなPONシステムの上り方向の通信においては、各ONUは光スターカプラから異なる距離に位置することから、OLTにおける各ONUの受信レベルは受信パケット毎に異なるため、OLT用バースト光受信器には異なる受光レベルのバースト信号を高速に再生する広ダイナミックレンジ特性が求められる。従って、一般的にOLT用バースト光受信器には、受光レベルに応じて変換利得を変化させるAGC(Automatic Gain Control)回路と、識別再生する際の閾値電圧を生成するATC(Automatic Threshold Control)回路が備えられている。
PONシステム用バースト光受信器には様々な方式が提案されているが、例えば非特許文献1においては、受光素子とトランスインピーダンスアンプ回路と差動識別回路とによってバースト光受信器が構成されており、受光レベルに応じてパケット毎にトランスインピーダンスアンプ回路の利得を制御するAGC回路と、トランスインピーダンスアンプ回路の出力電圧波形のハイレベルとローレベルとを検出し、その中心電位を閾値電圧とするATC回路を備え、受光レベルが異なる各受信パケットに対して最適な受信特性を得る方式が開示されている。
S.Yamashita et al.、"Novel Cell-AGC Technique for Burst-Mode CMOS Preamplifier With Wide Dynamic Range and High Sensitivity for ATM-PON System、"IEEE J.Solid-State Circuits、vol.37、No.7、pp.881-886、July 2002.
世界に先駆けて導入された日本のFTTHサービスは、1997年からのSTM−PON(16Mbps)、2002年からのB−PON(622Mbps/156Mbps)を経て、2004年からのGE−PON(1.25Gbps)導入を契機に本格的な普及を遂げており、現在,次世代PONシステムとして10G−EPON(10.3Gbps)に関する研究開発が盛んに行われている。さらに、映像配信を中心とする様々なサービスによって、加入者系光ネットワークの需要は今後一層高まると期待されており、その伝送速度は25Gbpsや100Gbpsが必要になると予測されている。
ここで、上記非特許文献1にも示されているように、一般的にバースト光受信器は、受光素子とトランスインピーダンスアンプ回路と差動識別回路とによって構成されている。高感度化のためには、トランスインピーダンスアンプ回路の利得を最大限高くすることが有効であるが、通常、トランスインピーダンスアンプ回路の利得と帯域とはトレードオフの関係にあるため、上記PONシステムの高速化に伴い、トランスインピーダンスアンプ回路の利得を小さくせざるを得ない状況である。バースト光受信器の受信感度特性は、トランスインピーダンスアンプ回路の利得が高い場合には、後段の差動識別回路の識別感度にはほとんど依存しないが、トランスインピーダンスアンプ回路の利得が低い場合には、トランスインピーダンスアンプ回路の出力電圧振幅が小さいため、後段の差動識別回路の識別感度不足が受信感度劣化要因となり得る。従って、特に,将来の25Gbpsや100GbpsのPONシステムを実現するためには、後段の差動識別回路の識別感度にも十分配慮する必要がある。
しかしながら、上記非特許文献1に示された技術では、後段の差動識別回路への入力信号は、一方がトランスインピーダンスアンプ回路の出力電圧信号、もう一方がトランスインピーダンスアンプ回路の出力電圧信号から検出したハイレベルとローレベルの中心電位、すなわちDC電圧であり、差動信号が入力される場合と比較すると、入力信号振幅が半減したことと等価となり、受信感度が劣化し易いという問題があった。
本発明は、上記に鑑みてなされたものであって、異なる受光レベルのバースト信号が時分割多重により混在するPONシステムにおいて、各パケットに対して高速に識別再生するための閾値電圧を生成するATC回路を不要とし、かつ受信感度特性に優れたバースト光受信器を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、光伝送路を介して複数の加入者側装置から伝送された光バースト信号を受信するバースト光受信器において、受信した光バースト信号を電流信号に変換する受光素子と、前記電流信号を電圧信号に変換する差動型トランスインピーダンスアンプ回路と、前記差動型トランスインピーダンスアンプ回路からの電圧信号を識別する差動型識別回路と、一端が電源に接続され、他端が前記受光素子のカソードに接続された第1の誘導性素子と、一端が前記受光素子のアノードに接続され、他端がGNDに接続された第2の誘導性素子と、一端が前記第1の誘導性素子の他端と前記受光素子のカソードとの接続端に接続され、他端が前記差動型トランスインピーダンスアンプ回路の一方の入力端に接続された容量性素子と、一端が前記第2の誘導性素子の一端と前記受光素子のアノードとの接続端に接続され、他端が前記差動型トランスインピーダンスアンプ回路の他方の入力端に接続された容量性素子と、を備えたことを特徴とする。
この発明によれば、ATC回路を不要とし、かつ受信感度特性に優れたバースト光受信器を得ることができるという効果を奏する。
図1は、本発明の実施の形態1にかかるバースト光受信器の構成を示す図である。 図2に、バースト信号受信時におけるバースト光受信器内各部の過渡応答波形の模式図である。 図3は、本発明の実施の形態2にかかるバースト光受信器の構成を示す図である。 図4は、本発明の実施の形態3にかかるバースト光受信器の構成を示す図である。
以下に、添付図面を参照して、本発明にかかるバースト光受信器の実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかるバースト光受信器1の構成を示す図である。図1において、バースト光受信器1は、主たる構成として、受光素子2、差動型トランスインピーダンスアンプ回路(以下単に「TIA回路」と称する)3、差動型識別回路4、容量性素子51、52、および誘導性素子61、62を有して構成されている。受光素子2のカソード端子は、誘導性素子(第1の誘導性素子)62を介して電源に接続され、受光素子2のアノード端子は、誘導性素子61(第2の誘導性素子)を介してGNDに接続されている。同時に受光素子2のカソード端子は、容量性素子52を介して、受光素子2のアノード端子は、容量性素子51を介して、それぞれTIA回路3の入力部に接続されている。すなわち、図1に示されるバースト光受信器1は、一端が電源に接続され他端が受光素子2のカソードに接続された誘導性素子62と、一端が受光素子2のアノードに接続され他端がGNDに接続された誘導性素子61と、一端が誘導性素子62の他端と受光素子2のカソードとの接続端に接続され他端がTIA回路3の一方の入力端に接続された容量性素子52と、一端が誘導性素子61の一端と受光素子2のアノードとの接続端に接続され他端がTIA回路3の他方の入力端に接続された容量性素子51と、を備えている。また、TIA回路3の出力部は、差動型識別回路4の入力部に接続され、差動型識別回路4の出力部がバースト光受信器1の出力部となっている。
次に動作について説明する。カソード端子が誘導性素子62を介して電源に接続され、アノード端子が誘導性素子61を介してGNDに接続された受光素子2は、DC的に逆バイアスされた状態となり、受信した光信号(光バースト信号)の受光レベルに応じた電流(電流信号)を出力する。受光素子2とTIA回路3とは、容量性素子51、52を介して接続されているため、受光素子2の出力電流の高周波成分がTIA回路3に差動電流信号として入力されることとなり、TIA回路3により差動電圧信号(電圧信号)に変換される。さらに、TIA回路3からの差動電圧信号は、差動型識別回路4によって識別・増幅され、再生された2値信号を出力する。
図2に、バースト信号受信時におけるバースト光受信器1内各部の過渡応答波形の模式図である。ここで、図2中に示しているように,受光素子2の電流波形をAと定義し、TIA回路3の出力電圧波形をB、Cと定義し、差動型識別回路4の出力電圧波形をD、Eと定義する。受光素子2は、光を電流に線形変換する素子であるため、電流波形Aは、受信したバースト光信号と同等の波形となる。受光素子2とTIA回路3とは、容量性素子51、52によって容量結合されているため、電圧波形B、およびCは、電流波形Aを微分した波形となる。また、電圧波形D、およびEは、電圧波形B、およびCを増幅した波形となるが、差動型識別回路4においては、所望の電圧振幅以上はリミッティング動作するために、出力振幅一定の波形となる。
ここで、容量性素子51、52のキャパシタンス値と、誘導性素子61、62のインダクタンス値とは、以下の条件を満足する必要がある。まず、容量性素子51、52のキャパシタンス値に関しては、受光素子2で電流信号に変換されたバースト信号に含まれる必要な周波数成分(所定の周波数成分)を通過させる必要があり、特に低域の成分が通過する所望のキャパシタンス値よりも大きな値とする必要がある。同時に、前記キャパシタンス値と前記微分波形の応答時定数とは比例関係にあり、信号再生する際の高速性を実現するためには、所望のキャパシタンス値よりも小さな値とする必要がある。つまり、容量性素子51、52のキャパシタンス値は、受信信号の必要な周波数成分を通過させるキャパシタンス値よりも大きく、かつ必要な高速応答性を実現するキャパシタンス値よりも小さくする必要がある。
一方、誘導性素子61、62のインダクタンス値に関しては、受光素子2で電流信号に変換されたバースト信号に含まれる必要な周波数成分(所定の周波数成分)を阻止する必要があり、同時に、受光素子2にDC的に逆バイアスを印加できるよう、DCを含む低周波成分を通過する必要がある。つまり、誘導性素子61、62のインダクタンス値は、受信信号の必要な周波数成分を阻止するインダクタンス値よりも大きくする必要がある。
このように、容量性素子51、52のキャパシタンス値は、バースト信号に含まれる所定の周波数成分を通過するキャパシタンス値以上に設定され、誘導性素子61、62のインダクタンス値は、バースト信号に含まれる所定の周波数成分を阻止するインダクタンス値以上に設定されている。
ここで、受光素子2としては、PINフォトダイオードやアバランシェフォトダイオードなどが代表的である。中でもアバランシェフォトダイオードは、半導体のp−n接合部に数十V程度の大きな逆バイアス電圧を印加することにより得られる電流増倍作用を利用する受光素子であり、信号対雑音比を大きく取れる利点を有している。この場合、受光素子2のアノード端子とカソード端子間には数十V程度の電圧が印加されることとなるが、受光素子2とTIA回路3とは容量性素子51、52を介して接続されているため、TIA回路3の入力端子間に数十V程度の電圧が印加されることにはならない。一般的に、高速用半導体集積回路の耐圧は数V程度であるが、上記のように受光素子2としてアバランシェフォトダイオードを適用する場合であっても、受光素子2とTIA回路3とは容量性素子51、52を介して容量結合されているため、すなわちDCカットされているため、受光素子への高逆バイアス電圧印加と半導体集積回路の耐圧とを両立可能である。
また、受光素子2の両端子がTIA回路3と高周波的に接続されているため、差動信号がTIA回路3に入力されていることとなり、従来例で単相信号を差動信号に変換するために必要であったATC回路は不要となる。
同時に、受光素子2の吐き出し電流のみならず、吸い込み電流をもTIA回路3で増幅できるため、受信感度特性に優れたバースト光受信器1を得ることができる。
さらに、差動型識別回路4には、自ずと差動信号が入力されることとなるため、入力の片側がDC電圧である従来例と比較して、入力信号振幅が倍増したことと等価となり、受信感度特性に優れたバースト光受信器1を得ることができる。
このように、本実施の形態にかかるバースト光受信器1においては、受光素子22の両端子がTIA回路3に容量結合され、受光素子2にDC的に逆バイアスを印加し、かつ受信信号に含まれる周波数成分は後段のTIA回路3にのみ流れるよう誘導性素子61、62を備え、さらに、TIA回路3と差動型識別回路4とは、差動型増幅回路で構成されている。従って、従来例と比較して、受信感度特性に優れ、かつATC回路が不要な経済的なバースト光受信器1を実現できる。
実施の形態2.
図3は、本発明の実施の形態2にかかるバースト光受信器1の構成を示す図である。図3において、1〜4、51、52、61、62は、実施の形態1による図1に示すものと同様であり、TIA回路3は、同一回路、同一レイアウトのペアリングに優れた一対の単相型トランスインピーダンスアンプ回路(以下単に「単相型TIA回路」と称する)31、32により構成されている。
一般的に、半導体集積回路においては、同一回路であっても、集積回路製造プロセスにおける製造条件の揺らぎに伴う特性ばらつきが生じる。この特性ばらつきは、同一ウェハ内の近接した場所に、同一レイアウトで対称配置とすることにより、軽減することが可能であり、前記一対の単相型TIA回路31、32は、同一回路、同一レイアウトのペアリングに優れたことを特徴としている。より具体的に説明すると、差動型増幅回路においては、入力される正相信号と逆相信号との間にオフセットが生じると感度劣化が懸念されるが、TIA回路3を、同一回路、同一レイアウトのペアリングに優れた一対の単相型TIA回路31、32により構成することにより、入力ならびに出力バイアスのオフセットを抑圧することが可能である。つまり、TIA回路3の入力バイアスオフセット、ならびに差動型識別回路4の入力バイアスオフセットを極力低減することができ、差動型増幅回路における感度劣化の懸念を払拭できる。
このように、本実施の形態にかかるバースト光受信器1においては、TIA回路3を、同一回路、同一レイアウトのペアリングに優れた一対の単相型TIA回路31、32により構成しているため、実施の形態1で得られる効果に加えて、さらに受信感度特性に優れたバースト光受信器1を実現できる。
実施の形態3.
図4は、本発明の実施の形態3にかかるバースト光受信器1の構成を示す図である。図4において、1〜4、51、52、61、62は、実施の形態1による図1に示すものと同様であり、TIA回路3は、差動型リミッティング増幅回路33により構成されている。
差動型リミッティング増幅回路33は、入力信号の振幅が小さい場合には線形増幅し、所望の振幅以上の入力信号に対しては、一定振幅を出力するよう動作する。
非特許文献1にも示されているように、通常、PONシステムで用いられるバースト光受信器1には、広ダイナミックレンジ化を実現するためにAGC回路が備えられている。一般的な単相型TIA回路においては、帰還抵抗値によりその利得が決まるが、帰還抵抗値と入力電流振幅値との積で決まる出力電圧振幅値が、ある一定値以上となる領域では、回路的に飽和するために正常に増幅動作しなくなる。これを回避するために、入力電流振幅、ないしは出力電圧振幅を検出し、その検出結果を基に帰還抵抗値を可変制御するAGC回路を用いることが一般的である。
一方、一般的な差動型リミッティング増幅回路は、正相、逆相にそれぞれ配設された一対のトランジスタのON/OFF動作により、固定電流値の分岐比を切り替えるよう動作する。所望の振幅以上の信号が入力された場合には、その分岐比は0%対100%、ないしは100%対0%と完全にスイッチング動作するが、特に回路的に飽和する要素はなく、正常に一定振幅を出力する。
従って、TIA回路3を、差動型リミッティング増幅回路33により構成する場合には、従来のようなAGC回路を特段設けることなく広ダイナミックレンジ化を実現できる。
このように、本実施の形態にかかるバースト光受信器1においては、TIA回路3を、差動型リミッティング増幅回路33により構成しているため、従来必要であったAGC回路が不要となり、実施の形態1で得られる効果に加えて、さらに経済性に優れたバースト光受信器1を実現できる。
以上のように、本発明は、アクセス系光通信システムの一つの方式であるPONシステムに適用可能であり、特に、ATC回路を不要とし、かつ受信感度特性に優れたバースト光受信器を得ることができる発明として有用である。
1 バースト光受信器
2 受光素子
3 差動型トランスインピーダンスアンプ回路
4 差動型識別回路
31,32 単相型トランスインピーダンスアンプ回路
33 差動型リミッティング増幅回路
51,52 容量性素子
61 誘導性素子(第2の誘導性素子)
62 誘導性素子(第1の誘導性素子)

Claims (4)

  1. 光伝送路を介して複数の加入者側装置から伝送された光バースト信号を受信するバースト光受信器において、
    受信した光バースト信号を電流信号に変換する受光素子と、
    前記電流信号を電圧信号に変換する差動型トランスインピーダンスアンプ回路と、
    前記差動型トランスインピーダンスアンプ回路からの電圧信号を識別する差動型識別回路と、
    一端が電源に接続され、他端が前記受光素子のカソードに接続された第1の誘導性素子と、
    一端が前記受光素子のアノードに接続され、他端がGNDに接続された第2の誘導性素子と、
    一端が前記第1の誘導性素子の他端と前記受光素子のカソードとの接続端に接続され、他端が前記差動型トランスインピーダンスアンプ回路の一方の入力端に接続された容量性素子と、
    一端が前記第2の誘導性素子の一端と前記受光素子のアノードとの接続端に接続され、他端が前記差動型トランスインピーダンスアンプ回路の他方の入力端に接続された容量性素子と、
    を備えたことを特徴とするバースト光受信器。
  2. 前記各容量性素子は、前記光バースト信号に含まれる所定の周波数成分を通過するキャパシタンス値以上に設定され、
    前記各誘導性素子は、前記所定の周波数成分を阻止するインダクタンス値以上に設定されていることを特徴とする請求項1に記載のバースト光受信器。
  3. 前記差動型トランスインピーダンスアンプ回路は、同一回路、かつ、同一レイアウトのペアリングした一対の単相型トランスインピーダンスアンプ回路で構成されていることを特徴とする請求項1または2に記載のバースト光受信器。
  4. 前記差動型トランスインピーダンスアンプ回路は、所望の振幅以上の入力信号に対して一定振幅を出力する差動型リミッティング増幅回路で構成されていることを特徴とする請求項1または2に記載のバースト光受信器。
JP2009273636A 2009-12-01 2009-12-01 バースト光受信器 Pending JP2011119855A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273636A JP2011119855A (ja) 2009-12-01 2009-12-01 バースト光受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273636A JP2011119855A (ja) 2009-12-01 2009-12-01 バースト光受信器

Publications (1)

Publication Number Publication Date
JP2011119855A true JP2011119855A (ja) 2011-06-16

Family

ID=44284678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273636A Pending JP2011119855A (ja) 2009-12-01 2009-12-01 バースト光受信器

Country Status (1)

Country Link
JP (1) JP2011119855A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621279B2 (en) 2013-03-27 2017-04-11 Nec Corporation Optical receiver circuit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224652A (ja) * 1993-01-26 1994-08-12 Toshiba Corp 光受信回路
JP2000261385A (ja) * 1999-03-11 2000-09-22 Fujitsu Denso Ltd 光信号受信回路
JP2001177355A (ja) * 1999-12-15 2001-06-29 Nec Corp オフセット制御回路及びそれを用いた光受信器並びに光通信システム
JP2002523952A (ja) * 1998-08-20 2002-07-30 ビテッセ セミコンダクター コーポレイション 自動利得制御付きトランスインピーダンス増幅器
JP2006311030A (ja) * 2005-04-27 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2007189294A (ja) * 2006-01-11 2007-07-26 Nec Corp 信号検出システム、信号検出回路、信号検出方法およびプログラム
JP2007189571A (ja) * 2006-01-16 2007-07-26 Dx Antenna Co Ltd 光受信機
JP2008510383A (ja) * 2004-08-12 2008-04-03 トリアクセス テクノロジーズ インコーポレイテッド 信号パワーレベル検出方法及び回路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224652A (ja) * 1993-01-26 1994-08-12 Toshiba Corp 光受信回路
JP2002523952A (ja) * 1998-08-20 2002-07-30 ビテッセ セミコンダクター コーポレイション 自動利得制御付きトランスインピーダンス増幅器
JP2000261385A (ja) * 1999-03-11 2000-09-22 Fujitsu Denso Ltd 光信号受信回路
JP2001177355A (ja) * 1999-12-15 2001-06-29 Nec Corp オフセット制御回路及びそれを用いた光受信器並びに光通信システム
JP2008510383A (ja) * 2004-08-12 2008-04-03 トリアクセス テクノロジーズ インコーポレイテッド 信号パワーレベル検出方法及び回路
JP2006311030A (ja) * 2005-04-27 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2007189294A (ja) * 2006-01-11 2007-07-26 Nec Corp 信号検出システム、信号検出回路、信号検出方法およびプログラム
JP2007189571A (ja) * 2006-01-16 2007-07-26 Dx Antenna Co Ltd 光受信機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621279B2 (en) 2013-03-27 2017-04-11 Nec Corporation Optical receiver circuit

Similar Documents

Publication Publication Date Title
US8660439B2 (en) Digital automatic gain control apparatus and method in burst mode optical receiver
JP4820880B2 (ja) 局側終端装置
US8346098B2 (en) Receiving apparatus and receiving method
JP2005006313A (ja) 受動光通信網の光パワー等化装置
JP5305932B2 (ja) 前置増幅器
US10250959B2 (en) Optical and RF techniques for aggregation of photo diode arrays
JP2008211702A (ja) 前置増幅器およびそれを用いた光受信装置
KR101544077B1 (ko) 친국측 장치
KR101854054B1 (ko) 전류 전압 변환 회로, 광 수신기 및 광 종단 장치
US9450542B2 (en) Preamplifier, optical receiver, optical termination device, and optical communication system
JP4536770B2 (ja) オンチップ・リセット信号を生成するバーストモード受信機及びバーストモード受信方法
JP2013219599A (ja) マルチレート光信号受信装置および方法
JP2010199697A (ja) バースト受信機およびバースト受信方法
JP2015089047A (ja) 光受信装置及び伝送装置
KR100547840B1 (ko) 빠른 세틀링 시간을 갖는 자동 이득 제어 장치
CN114975677B (zh) 光接收装置、光接收封装装置、相关设备和方法
JP2011119855A (ja) バースト光受信器
Lee et al. A single-chip 2.5-Gb/s burst-mode optical receiver with wide dynamic range
JP5368370B2 (ja) 光受信器
JP5512040B2 (ja) 帯域可変増幅器
CN112865878A (zh) 一种接收机、光线路终端和无源光网络***
Nishihara et al. 10.3 Gbit/s burst-mode PIN-TIA module with high sensitivity, wide dynamic range and quick response
KR100948829B1 (ko) 온칩 리셋 신호를 생성하는 버스트 모드 수신기 및 버스트모드 수신 방법
CN116961777A (zh) 一种光接收机
CN116961773A (zh) 一种光接收机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225