JP2011105836A - Carbon filament reinforced polyamide composite material - Google Patents

Carbon filament reinforced polyamide composite material Download PDF

Info

Publication number
JP2011105836A
JP2011105836A JP2009261593A JP2009261593A JP2011105836A JP 2011105836 A JP2011105836 A JP 2011105836A JP 2009261593 A JP2009261593 A JP 2009261593A JP 2009261593 A JP2009261593 A JP 2009261593A JP 2011105836 A JP2011105836 A JP 2011105836A
Authority
JP
Japan
Prior art keywords
composite material
polyamide resin
polyamide
mass
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261593A
Other languages
Japanese (ja)
Other versions
JP5471338B2 (en
Inventor
Nori Yoshihara
法 葭原
Satoshi Nago
聡 名合
Hitoshi Kitamura
北村仁志
Hidetoshi Sonoda
園田秀利
Shoji Tsujii
辻井彰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009261593A priority Critical patent/JP5471338B2/en
Publication of JP2011105836A publication Critical patent/JP2011105836A/en
Application granted granted Critical
Publication of JP5471338B2 publication Critical patent/JP5471338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg for a structural material having a high flexural strength and a compressive strength as a composite material made of a carbon filament, a phyllosilicate and a nanocomposite polyamide resin. <P>SOLUTION: The carbon filament reinforced polyamide composite material includes with respect to 100 pts.mass of (A) a carbon filament having a 10 mm or longer weight average fiber length, 50 to 250 pts.mass of a polyamide resin and 0.1 to 12 pts.mass of a phyllosilicate. The polyamide resin is at least one selected from the group consisting of polyamide resins polymerizable from a single monomer, or at least one selected from the group consisting of a methaxylylene adipamide and a terephthalamide copolymer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素長繊維とポリアミド樹脂からなる複合材料に関する。詳しくは、炭素長繊維と、層状珪酸塩とナノコンポジット化されたポリアミド樹脂からなる複合材料に関する。更に詳しくは、座屈強度が著しく改善され高い曲げ強度や圧縮強度を有し、比強度が非常に高い構造材用複合材料に関する。   The present invention relates to a composite material composed of long carbon fibers and a polyamide resin. Specifically, the present invention relates to a composite material composed of a long carbon fiber, a layered silicate, and a nanocomposite polyamide resin. More specifically, the present invention relates to a composite material for structural material that has a significantly improved buckling strength, a high bending strength and a compressive strength, and a very high specific strength.

従来、電線被覆法を応用したガラス長繊維強化ポリアミド樹脂複合材料は知られていた(例えば、非特許文献1参照)。しかし、かかる従来技術は、ガラス繊維とポリアミド樹脂のコンパウンド材料を射出成形により成形品を得ていた。コンパウンド工程や射出成形工程でガラス繊維の折損が著しく、ガラス繊維の強度や弾性率への補強効果が低下し、構造材としての実用性能には不満足であった。   Conventionally, a long glass fiber reinforced polyamide resin composite material using an electric wire coating method has been known (see, for example, Non-Patent Document 1). However, according to such conventional technology, a molded product is obtained by injection molding a compound material of glass fiber and polyamide resin. In the compounding process and injection molding process, breakage of the glass fiber was remarkable, the reinforcing effect on the strength and elastic modulus of the glass fiber was lowered, and the practical performance as a structural material was unsatisfactory.

高強度・高剛性成形品を得るために、炭素繊維とポリアミド樹脂の複合材料も研究開発された。しかし、射出成形や押出成形工程で炭素繊維が折損し、その効果は要求に大幅に未達であった。また、強化繊維の折損を避けるために、成形時のせん断変形の小さい圧縮成形についても検討された。しかし、強化繊維が長くなると繊維のからみ合いが起こり、流動性が著しく低下して、大型成形品や細いリブやボス構造を有する成形品は、欠肉が起こり良好な成形品が得られなかった。
繊維の絡み合いが起こらないように、繊維のロービングを単繊維状に開繊した後、ポリアミド樹脂を含浸して、強化繊維とポリアミド樹脂からなる一軸のテープ状プリプレグを予備成形した後、加熱圧縮成形する方法も開示された(例えば、非特許文献2参照)。しかし、一般のポリアミド樹脂の場合、絶乾状態では、高い剛性や強度が得られるが、空気中の水分を吸湿しやすく、多湿状態では、剛性や強度が著しく低下して、目的とする構造材の要求には未達であった。
In order to obtain high-strength and high-rigidity molded products, composite materials of carbon fiber and polyamide resin have also been researched and developed. However, the carbon fiber was broken in the injection molding and extrusion molding processes, and the effect was not fully met. In order to avoid breakage of the reinforcing fiber, compression molding with small shear deformation at the time of molding was also examined. However, when the reinforcing fiber becomes longer, the fibers are entangled and the fluidity is remarkably lowered, and a large molded product or a molded product having a thin rib or boss structure is thinned and a good molded product cannot be obtained. .
To prevent fiber entanglement, fiber roving is opened into a single fiber, then impregnated with polyamide resin, pre-molded with a uniaxial tape-shaped prepreg composed of reinforcing fibers and polyamide resin, and then heat compression molded The method of doing is also disclosed (for example, refer nonpatent literature 2). However, in the case of a general polyamide resin, high rigidity and strength can be obtained in the absolutely dry state, but it easily absorbs moisture in the air. The request was not met.

ポリアミド樹脂としては、吸湿率の低い、芳香族環を有するポリアミド樹脂の複合材料も、特開平05−005060(特許文献1)や特開2002−234999(特許文献2)の様に開示された。平衡吸水状態での強度や剛性低下は抑制されたが、まだ構造材としては不十分であった。
炭素長繊維強化ポリアミド樹脂は、曲げ変形を受けた場合、圧縮側で座屈しやすく、引張り強さに比較して、曲げ強さは著しく低く、炭素繊維含有率を高くしても向上せず、曲げモードの変形を受ける構造材としての要求にはかなり未達であった。
As the polyamide resin, a composite material of a polyamide resin having an aromatic ring with a low moisture absorption rate has also been disclosed as in JP-A Nos. 05-005060 (Patent Document 1) and 2002-234999 (Patent Document 2). Although the strength and rigidity decrease in the equilibrium water absorption state were suppressed, it was still insufficient as a structural material.
When subjected to bending deformation, the carbon long fiber reinforced polyamide resin is likely to buckle on the compression side, the bending strength is significantly lower than the tensile strength, and even if the carbon fiber content is increased, it does not improve, The requirements for structural materials that are subject to bending mode deformation have not been met.

一方、非特許文献3に開示されているように、クレー系フィラーによるポリアミド6のナノコンポジット化により、弾性率や熱変形温度が改善されることが開示されている。比弾性率が改善されるが、絶対値としての強度や弾性率の改善効果は不十分であり、本発明の目的である構造材としての要求とは大きな乖離があった。 On the other hand, as disclosed in Non-Patent Document 3, it is disclosed that the elastic modulus and the heat distortion temperature are improved by making the polyamide 6 into a nanocomposite with a clay filler. Although the specific elastic modulus is improved, the effect of improving the strength and elastic modulus as absolute values is insufficient, and there is a great difference from the demand as a structural material that is the object of the present invention.

上記の特開2002−234999(特許文献2)加え、特開2004−39950(特許文献3)や特開2004−107626(特許文献4)に、炭素繊維と熱可塑性複合材料に、発明の目的を損なわない範囲で無機充填材を含有してもよいとして、無機充填材を列記した中に、層状珪酸が上げられている。しかし、層状珪酸塩が列記した他の充填材と比較して、曲げ特性や圧縮特性改善への特別な効果や特定のナノ分散の効果については全く想定されておらず、実施例にも示されていない。また、特表2008−527119(特許文献5)には、炭素系ナノ粒子を含有する成形材料に層状珪酸塩を組み込むことによって、複合材料の表面特性を親水性や疎水性にすることができると開示している。しかし、曲げ特性や圧縮特性改善への特別な効果やナノ分散の効果については、全く想定されていない。   In addition to the above-mentioned JP-A-2002-234999 (Patent Document 2), JP-A-2004-39950 (Patent Document 3) and JP-A-2004-107626 (Patent Document 4) describe the object of the invention in carbon fiber and a thermoplastic composite material. Layered silicic acid is raised in the list of inorganic fillers as it may contain an inorganic filler as long as it is not damaged. However, compared to other fillers listed with layered silicates, no special effects on bending properties and compression properties and specific nanodispersion effects are assumed, and they are also shown in the examples. Not. In addition, in Japanese translation of PCT International Publication No. 2008-527119 (Patent Document 5), the surface characteristics of a composite material can be made hydrophilic or hydrophobic by incorporating layered silicate into a molding material containing carbon-based nanoparticles. Disclosure. However, no special effects on the improvement of bending characteristics and compression characteristics and the effects of nano-dispersion are assumed.

構造材の場合、曲げ変形を受ける部品も多く、曲げや圧縮変形に強い構造材用ポリアミド複合材料について、市場の高い開発要求があった。 In the case of structural materials, there are many parts that undergo bending deformation, and there has been a high market development demand for polyamide composite materials for structural materials that are resistant to bending and compression deformation.

特開平05−005060号公報JP 05-005060 A 特開2002−234999号公報JP 2002-234999 A 特開2004−39950号公報JP 2004-39950 A 特開2004−107626号公報JP 2004-107626 A 特表2008−527119号公報Special table 2008-527119 gazette

Composites,July, 150 (1973)Composites, July, 150 (1973) SPI(Society of Plastics Industry) 30th 11−C (1975)SPI (Society of Plastics Industry) 30th 11-C (1975) プラスチックス Vol.51(No.12),98−107(2000)Plastics Vol. 51 (No. 12), 98-107 (2000)

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、曲げ強さや圧縮強さが飛躍的に優れた比強度の高い構造材用複合材組成物を提供することにある。 The present invention has been made against the background of such prior art problems. That is, an object of the present invention is to provide a composite material composition for a structural material having a high specific strength that is remarkably excellent in bending strength and compressive strength.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
1.重量平均10mm以上の炭素長繊維(A)100質量部に対して、ポリアミド樹脂50〜250質量部、層状珪酸塩を0.1〜12質量部を含有することを特徴とする炭素長繊維強化ポリアミド複合材料。
2.ポリアミド樹脂が、単一モノマーから重合可能なポリアミド樹脂から選ばれた少なくとも1種以上で有ることを特徴とする1.の炭素長繊維強化ポリアミド複合材料。
3.ポリアミド樹脂が、メタキシリレンアジパミド、テレフタルアミド共重合体から選ばれた少なくとも1種以上であることを特徴とする1.の炭素長繊維強化ポリアミド複合材料。
4.層状珪酸塩、モンモリロナイトであることを特徴とする1.2.3.のいずれかに記載の炭素長繊維強化ポリアミド複合材料。
5.ポリアミド樹脂中に、層状珪酸塩の積層方向の厚さの数平均が0.5〜10nmに分散していることを特徴とすると1.2.3.4.のいずれかに記載の炭素長繊維強化ポリアミド複合材料。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
1. Carbon long fiber reinforced polyamide characterized by containing 50 to 250 parts by mass of polyamide resin and 0.1 to 12 parts by mass of layered silicate with respect to 100 parts by mass of carbon long fibers (A) having a weight average of 10 mm or more. Composite material.
2. The polyamide resin is at least one selected from polyamide resins polymerizable from a single monomer. Carbon long fiber reinforced polyamide composite material.
3. 1. The polyamide resin is at least one selected from metaxylylene adipamide and terephthalamide copolymer. Carbon long fiber reinforced polyamide composite material.
4). It is a layered silicate and montmorillonite. The carbon long fiber reinforced polyamide composite material according to any one of the above.
5. If the number average of thickness in the laminating direction of the layered silicate is dispersed in the polyamide resin in the range of 0.5 to 10 nm, 1.2.3.4. The carbon long fiber reinforced polyamide composite material according to any one of the above.

本発明により、曲げ強度や圧縮強度が飛躍的に高く、いろいろな変形モードを受ける構造材の要求を満たす複合材料を工業的に提供することができる。本発明により得られた複合材組成物を成形して得られる成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。本発明により、高い曲げ強度や圧縮強度を有する複合材組成物が提供される理由は、未だ明確でないが、母相を成すポリアミド樹脂が層状珪酸塩とナノコンポジット化されることにより、飛躍的に弾性率が高くなり、複合材が圧縮を受けた場合、強化材の炭素繊維の弾性率の差が小さくなることにより、炭素繊維が座屈しにくくなるため、炭素繊維の高い性能を有効に作用させて、圧縮強度や引張りと曲げの合成である曲げ強度が驚くほど改善されたものと考えられる。   According to the present invention, it is possible to industrially provide a composite material satisfying the requirements of a structural material that has dramatically high bending strength and compressive strength and undergoes various deformation modes. A molded product obtained by molding the composite composition obtained according to the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like. The reason why a composite composition having high bending strength and compressive strength is provided by the present invention is not yet clear, but the polyamide resin forming the parent phase is nanocomposited with a layered silicate, so When the elastic modulus increases and the composite material is compressed, the difference in elastic modulus of the carbon fiber of the reinforcing material becomes small, which makes it difficult for the carbon fiber to buckle. Thus, it is considered that the compressive strength and the bending strength, which is a combination of tension and bending, are surprisingly improved.

以下、本発明を詳述する。
本発明には、重量平均繊維長が10mm以上、好ましくは30mm以上、更に好ましくは100mm以上の炭素長繊維や連続繊維が使用される。重量平均繊維長が10mm未満では、構造材としての強度が未達となり、好ましくない。機械物性上は連続繊維が好ましいが、成形時の金型内における流動性が必要なことからプリプレグとしてより短く切断されたものが使用される。炭素繊維としては、製造法に特に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引張り強度20t/cm以上、引張り弾性率200GPa以上の炭素繊維が好ましい。本発明に使用される単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜25μmが好ましく、特に4〜15μmが好ましい。3μm未満では、含浸や脱泡が難しく、25μmを超えると、比表面積が小さくなり、複合化の効果が小さくなり好ましくない。本発明に使用される炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理されたものが好ましい。また本発明の複合材料製造に使用される炭素繊維は、作業工程の取り扱い性から、100℃以下で軟化する集束剤により集束されていることが好ましい。集束フィラメント数には特に制限ないが、1000〜30000フィラメント、好ましくは、3000〜25000フィラメントが好ましい。本発明に使用される炭素繊維の集束剤は特に限定されないが、炭素繊維と母相のポリアミド樹脂に高い接着力を有するウレタン系やエポキシ系集束剤が好ましい。
The present invention is described in detail below.
In the present invention, carbon long fibers or continuous fibers having a weight average fiber length of 10 mm or more, preferably 30 mm or more, more preferably 100 mm or more are used. If the weight average fiber length is less than 10 mm, the strength as a structural material is not achieved, which is not preferable. In view of mechanical properties, continuous fibers are preferable, but since fluidity in the mold at the time of molding is required, a prepreg that is cut shorter is used. Although it does not restrict | limit especially in a manufacturing method as carbon fiber, After processing fibers, such as a polyacrylonitrile fiber and a cellulose fiber, in air at 200-300 degreeC, it is baked at 1000-3000 degreeC or more in inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. Although the diameter of the single fiber used in the present invention is not particularly limited, it is preferably 3 to 25 μm, particularly preferably 4 to 15 μm, from the production line process of the composite. If it is less than 3 μm, impregnation and defoaming are difficult, and if it exceeds 25 μm, the specific surface area becomes small and the effect of compositing becomes unfavorable. The carbon fiber used in the present invention is preferably treated for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber used for composite material manufacture of this invention is bundled by the bundling agent which softens at 100 degrees C or less from the handleability of a work process. Although there is no restriction | limiting in particular in the number of focusing filaments, 1000-30000 filaments, Preferably 3000-25000 filaments are preferable. The carbon fiber sizing agent used in the present invention is not particularly limited, but a urethane-based or epoxy-based sizing agent having high adhesion to the carbon fiber and the polyamide resin of the parent phase is preferable.

本発明には、炭素繊維(A)100質量部当り、ポリアミド(B)50〜250質量部、好ましくは60〜200質量部、さらに好ましくは70〜150質量部複合される。50質量部未満では、炭素繊維へのポリアミド樹脂の含浸が困難であり、また250質量部を超えると、炭素繊維による補強の効果が不十分となり、本発明の目的である構造部材としての要求を満たせず好ましくない。   In the present invention, 50 to 250 parts by mass of polyamide (B), preferably 60 to 200 parts by mass, and more preferably 70 to 150 parts by mass are combined per 100 parts by mass of carbon fiber (A). If the amount is less than 50 parts by mass, it is difficult to impregnate the carbon fiber with the polyamide resin. If the amount exceeds 250 parts by mass, the effect of reinforcement by the carbon fiber becomes insufficient, and the structural member that is the object of the present invention is required. It is not preferable because it is not satisfied.

本発明に使用されるポリアミド樹脂は、特に限定されないが、複合化して構造材として使用されるから、融点が100℃以上、曲げ弾性率が2GPa以上のポリアミド樹脂が好ましい。本発明の効果を発揮するには、単一モノマーから重合可能なポリアミド樹脂であるポリアミド6、ポリアミド11、ポリアミド12や、これらを70モル%以上、好ましくは80モル%以上含むポリアミド共重合体が用いられる。特に、単一モノマーからなるポリアミド6やポリアミド11、ポリアミド12は、層状珪酸塩の層間に入れやすく、ナノコンポジットを形成しやすいので好ましい。70モル%未満のポリアミド共重合体は、結晶化速度が遅いことや、融点が低下し耐熱性が低いことや剛性が低いことから好ましくない。本発明に使用される共重合成分は特に限定されない。共重合されるジアミン成分としては、パラキシリレンジアミン、メタキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどが例示される。また、共重合されるジカルボン酸成分としては、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸等が挙げられる。また6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸などのアミノ酸や、ε―カプロラクタム、ω―ラウロラクタムなどのラクタムなどが挙げられる。   The polyamide resin used in the present invention is not particularly limited, but is preferably a polyamide resin having a melting point of 100 ° C. or higher and a flexural modulus of 2 GPa or higher because it is combined and used as a structural material. In order to exert the effects of the present invention, there are polyamide 6, polyamide 11, polyamide 12 which are polyamide resins polymerizable from a single monomer, and a polyamide copolymer containing 70 mol% or more, preferably 80 mol% or more of these. Used. In particular, polyamide 6, polyamide 11 and polyamide 12 made of a single monomer are preferable because they can be easily put between layered silicate layers and can easily form a nanocomposite. Polyamide copolymers of less than 70 mol% are not preferred because of their slow crystallization rate, low melting point, low heat resistance and low rigidity. The copolymerization component used in the present invention is not particularly limited. Examples of diamine components to be copolymerized include paraxylylenediamine, metaxylylenediamine, phenylenediamine, toluenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodeca Examples include methylenediamine. Examples of the dicarboxylic acid component to be copolymerized include speric acid, azelaic acid, sebacic acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and 2-methylterephthalic acid. Further, amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and p-aminomethylbenzoic acid, and lactams such as ε-caprolactam and ω-laurolactam can be mentioned.

また、本発明の効果を発揮するポリアミド樹脂としては、前述の単一モノマーから重合可能なポリアミド樹脂以外に、ポリメタキシリレンアジパミドおよび/またはポリメタキシリレンアジパミド共重合体やテレフタルアミド共重合体など芳香族環を有するポリアミドが好ましい態様である。芳香族環を有するポリアミド樹脂が、期待する複合効果の顕著な理由は、未だ明確ではないが、溶融混練する際に、受けるせん断応力でポリアミド樹脂中の芳香族環が面は配向し、層状珪酸塩の薄層面と相互作用を示し、層状珪酸塩の薄層化を促進するためと考察される。本発明に使用される共重合成分は特に限定されない。共重合されるジアミン成分としては、パラキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどが例示される。また、共重合されるジカルボン酸成分としては、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸等が挙げられる。また6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸などのアミノ酸や、ε―カプロラクタム、ω―ラウロラクタムなどのラクタムなどが挙げられる。   In addition to the polyamide resin that can be polymerized from a single monomer, the polyamide resin that exhibits the effects of the present invention includes polymetaxylylene adipamide and / or polymetaxylylene adipamide copolymer and terephthalamide copolymer. A polyamide having an aromatic ring such as a polymer is a preferred embodiment. The reason why the polyamide resin having an aromatic ring is prominent in the expected composite effect is not yet clear, but the surface of the aromatic ring in the polyamide resin is oriented by the shear stress received during melt kneading, and the layered silicate It is considered to show the interaction with the thin layer surface of the salt and promote the thinning of the layered silicate. The copolymerization component used in the present invention is not particularly limited. Examples of diamine components to be copolymerized include paraxylylenediamine, phenylenediamine, toluenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, and dodecamethylenediamine. Is done. Examples of the dicarboxylic acid component to be copolymerized include speric acid, azelaic acid, sebacic acid, dodecanoic acid, isophthalic acid, naphthalenedicarboxylic acid, and 2-methylterephthalic acid. Further, amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and p-aminomethylbenzoic acid, and lactams such as ε-caprolactam and ω-laurolactam can be mentioned.

本発明に使用されるポリアミド樹脂の分子量は特に限定されないが、25℃において測定した98質量%硫酸の0.05g/l濃度における相対粘度が1.8〜2.8の範囲にある。やや低分子量のものが、炭素繊維への含浸性から好ましい。相対粘度が1.8未満では樹脂が脆く、本発明の効果を発揮しにくい。また2.8を超えると、溶融粘度が高くなり、炭素繊維への含浸性が低下するので好ましくない。より好ましい相対粘度は、1.9〜2.6である。) The molecular weight of the polyamide resin used in the present invention is not particularly limited, but the relative viscosity at a concentration of 0.05 g / l of 98% by mass sulfuric acid measured at 25 ° C. is in the range of 1.8 to 2.8. Slightly low molecular weight is preferable from the viewpoint of impregnation into carbon fiber. If the relative viscosity is less than 1.8, the resin is brittle and the effects of the present invention are hardly exhibited. On the other hand, if it exceeds 2.8, the melt viscosity becomes high and the impregnation property to the carbon fiber is lowered, which is not preferable. A more preferable relative viscosity is 1.9 to 2.6. )

また、本発明には、炭素繊維100質量部やポリアミド樹脂50〜250質量部当りに、層状珪酸塩が0.1から12質量部を、好ましくは、0.3〜6質量部、含有することが必要である。層状珪酸塩が0.1質量部未満では、母相の弾性率アップが小さく、曲げ強度や圧縮強度が改善されないので好ましくない。また、12質量部を超えると、母相の伸度が著しく低下し、母相の強伸度が低下し、複合材の曲げ強度や圧縮強度の改善効果を発揮することができないので好ましくない。層状珪酸塩が本発明に有効な理由は、アスペクト比が高いことと、表面積が広く、補強効果が高いこと、さらに層状構造が剥離することにより、飛躍的にこの効果が増大するためと推察される。 In the present invention, the layered silicate contains 0.1 to 12 parts by mass, preferably 0.3 to 6 parts by mass, per 100 parts by mass of carbon fiber or 50 to 250 parts by mass of polyamide resin. is required. If the layered silicate is less than 0.1 parts by mass, the increase in the elastic modulus of the matrix phase is small, and the bending strength and compressive strength are not improved, which is not preferable. On the other hand, if the amount exceeds 12 parts by mass, the elongation of the matrix phase is remarkably lowered, the elongation of the matrix phase is lowered, and the effect of improving the bending strength and compressive strength of the composite material cannot be exhibited. The reason why the layered silicate is effective in the present invention is presumably because this effect is drastically increased by the high aspect ratio, the large surface area, the high reinforcing effect, and the layered structure peeling off. The

本発明でいう層状珪酸塩は、板状の結晶構造を有するもので、狭義には、その板状結晶間の結合力が弱く容易に剥離しやすいものである。本発明で使用される層状珪酸塩としては、天然のスメクタイトであるモンモリロナイトやハイデライト、ヘクトライト、サポナイトや、合成スメクタイトである水熱合成品のヘクトライト、サポナイトや、天然の雲母や合成雲母、フッ素雲母などが挙げられる。これらの層状珪酸塩は、ポリアミド樹脂と親和性をよくなるように有機処理されたものが好ましい。本発明におけるポリアミド樹脂中への分散性改善に対する有機処理の効果は、クロロホルムなどの極性溶媒や、ベンゼンなどの芳香族系の有機溶媒中の分散性や膨潤性がよくなることで示される。本発明の効果は、厚さに対する長さで表されるアスペクト比が高いと補強効果が大きくなり好ましいが、天然スメクタイトであるモンモリロナイトはアスペクト比が高いものが得られやすく好ましい。 The layered silicate as used in the present invention has a plate-like crystal structure, and in a narrow sense, the bonding force between the plate-like crystals is weak and easily peeled off. As the layered silicate used in the present invention, natural smectite montmorillonite, hydelite, hectorite, saponite, hydrothermal synthetic product hectorite, saponite, natural mica and synthetic mica, Examples include fluorine mica. These layered silicates are preferably organically treated so as to improve the affinity with the polyamide resin. The effect of the organic treatment for improving the dispersibility in the polyamide resin in the present invention is shown by improved dispersibility and swellability in a polar solvent such as chloroform and an aromatic organic solvent such as benzene. The effect of the present invention is preferably high when the aspect ratio expressed by the length with respect to the thickness is high because the reinforcing effect is large. However, montmorillonite, which is a natural smectite, is preferable because it has a high aspect ratio.

本発明においては、層状珪酸塩はポリアミド樹脂中に、層状珪酸塩の積層方向の厚さの数平均が0.5〜10nmに、好ましくは、0.7〜8nmとなるように分散していることが好ましい態様である。層状珪酸塩の厚さは、0.5〜1.5nm程度であり、ポリアミド樹脂中で単層から数層の厚さに剥離または層間インターカレーションしていることが好ましい態様である。ポリアミド樹脂とは、層剥離や層間挿入法によりナノコンポジット化される。層間挿入法は、スメクタイトの有機化処理後強い混練により層剥離と分散を行う方法によるポリマー挿入法や、モノマー挿入後重合により、剥離と分散を行う方法により、層状珪酸塩は分散される。この他、ゾルーゲル法によるIn−Situフィラー形成法やIn−Situ重合法などがある。本発明には層間挿入法は特に限定されないが、ポリマー挿入法やモノマー挿入法が好ましい。特に、ポリアミド6、ポリアミド11.ポリアミド12は、単一モノマーで重合されるのでモノマー挿入法によりナノコンポジイト化ができるので好ましい。 In the present invention, the layered silicate is dispersed in the polyamide resin so that the number average thickness in the laminating direction of the layered silicate is 0.5 to 10 nm, preferably 0.7 to 8 nm. Is a preferred embodiment. The thickness of the layered silicate is about 0.5 to 1.5 nm, and it is a preferable aspect that the layer is peeled or intercalated from a single layer to several layers in a polyamide resin. The polyamide resin is nanocomposited by delamination or interlayer insertion. In the intercalation method, the layered silicate is dispersed by a polymer insertion method in which layer separation and dispersion are performed by strong kneading after smectite organic treatment or a method in which separation and dispersion are performed by polymerization after monomer insertion. In addition, there are an In-Situ filler formation method and an In-Situ polymerization method by a sol-gel method. The interlayer insertion method is not particularly limited in the present invention, but a polymer insertion method and a monomer insertion method are preferable. In particular, polyamide 6 and polyamide 11. Polyamide 12 is preferable because it is polymerized with a single monomer and can be nanocomposited by a monomer insertion method.

層間挿入によりナノコンポジット化した珪酸塩はポリアミド樹脂との接触面積が大変大きく、少量の珪酸塩で高い補強効果を発揮できる。少量の珪酸塩で補強されることから比重の増加は小さいから、本発明の目的のひとつである比強度の増大効果が大変大きい。 Silicates made into nanocomposites by intercalation have a very large contact area with the polyamide resin, and can exert a high reinforcing effect with a small amount of silicate. Since the increase in specific gravity is small because it is reinforced with a small amount of silicate, the effect of increasing specific strength, which is one of the objects of the present invention, is very large.

なお、本願発明においては、曲げ強度は400MPa以上、比曲げ強度は270MPa以上、層間せん断強度は60MPa以上であることが好ましい。 In the present invention, the bending strength is preferably 400 MPa or more, the specific bending strength is 270 MPa or more, and the interlaminar shear strength is preferably 60 MPa or more.

本発明の樹脂組成物には、上記の必須成分の他に物性改良・成形性改良、耐久性改良を目的として、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などが配合できる。
本発明の複合材料の製造法は特に限定されない。例えば、ポリアミド樹脂の融点以上に温度調節されたスクリュータイプ押出機のホッパーにポリアミド樹脂および/またはポリアミド樹脂共重合体と予め有機化処理された層状珪酸塩などを所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。または、有機化モンモリロナイトをポリアミド樹脂のモノマー中にスラリー状として分散後、重合して得られたモノマー挿入法によるナノコンポジット樹脂を押し出し機のホッパーに投入して、溶融して含浸用押し出し機の上流に供給する。一方、ロービング状の炭素繊維を拡張開繊し、含浸用押出機の下流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、炭素繊維ロービングに樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の炭素繊維とポリアミド樹脂からなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料を10mm以上にカットすることや、テープ状複合材料をカットせずに織物状に織って成形用に提供される。また、樹脂の融点以上に温度調節されたスクリュータイプ押出機の上流ホッパーにポリアミド樹脂と層状珪酸塩などを所定割合に予備混合して供給する。下流の出口ダイにロービング状炭素繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の炭素繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを10mm以上にカットするか、織物状に織って成形用に提供される方法などが上げられる。
In addition to the above essential components, the resin composition of the present invention may contain a lubricant, an antioxidant, a flame retardant, a light resistance agent, a weather resistance agent, and the like for the purpose of improving physical properties, moldability, and durability.
The method for producing the composite material of the present invention is not particularly limited. For example, a polyamide resin and / or a polyamide resin copolymer and a layered silicate that has been organically treated in advance are premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the polyamide resin. . The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. Alternatively, after dispersing the organic montmorillonite in a polyamide resin monomer in the form of a slurry, the nanocomposite resin obtained by the monomer insertion method obtained by polymerization is placed in the hopper of the extruder and melted upstream of the extruder for impregnation. To supply. On the other hand, roving-like carbon fibers are expanded and supplied downstream of the impregnation extruder. Carbon fiber roving is impregnated and defoamed with resin pressure in an extruder for impregnation equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of the tape-like carbon fiber and the polyamide resin discharged from the downstream opening is cooled and wound up. Furthermore, the tape-like composite material is cut into 10 mm or more, or the tape-like composite material is woven into a woven shape without being cut and provided for molding. In addition, a polyamide resin and a layered silicate are premixed at a predetermined ratio and supplied to an upstream hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. A roving-like carbon fiber is supplied to the downstream exit die, and a fiber-coating speed and a resin discharge amount are adjusted to obtain a strand-like carbon fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. A method of cutting the strand into 10 mm or more, or weaving it into a woven shape and providing it for molding can be raised.

本発明の複合材は、赤外線加熱や高周波加熱して、樹脂を加熱溶融して、圧縮成形機の好ましくは、ポリアミド樹脂の結晶化温度より高い150〜280℃金型に供給して、賦形冷却後脱型して構造材の部品が成形される。   The composite material of the present invention is heated by infrared heating or high-frequency heating, and the resin is heated and melted, and is preferably supplied to a mold at 150 to 280 ° C. higher than the crystallization temperature of the polyamide resin, and shaped. After cooling, the mold is removed to form a structural material part.

本発明の複合材から得られた成形部品は、自動車のフレーム、バンパーフェースバーサポート材、シャシーシェル、座席フレーム、サスペンジョン支持部、サンルーフフレーム、バンパービーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。   Molded parts obtained from the composite material of the present invention include automobile frames, bumper face bar support materials, chassis shells, seat frames, suspension support parts, sunroof frames, bumper beams, two-wheeled vehicle frames, farm equipment frames, OA. Used for parts that require high strength and rigidity, such as equipment frames and machine parts.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1〜10)
ポリアミド樹脂、層状珪酸塩を表1に示した質量部に配合し、または表1に示したように、予めポリアミド樹脂重合用モノマーを層状珪酸塩にインターカレーションして得られたナノコンポジット化ポリアミド樹脂を、シリンダー温度が250℃に温度調節されたスクリュー式押し出し機のホッパーに投入した。また表1にし示した炭素繊維のロービングを100質量部になる速度で拡張開繊して押出機のダイヘッドに供給した。幅10mm・高さ0.2mmのダイから含浸被覆されたテープ状プリプレグを水槽に浸漬して固化した後、枷に巻き取った。
テープ状プリプレグを100mmにカットして15枚重ねて、IRヒータにより、240℃に予熱した後、温度200℃に温度調節された12X150X3mmの金型にセットして、5分間30MPa圧縮保持した。金型を圧縮成形機から取り出した。30分放冷後、金型を開き、曲げ試験用テストピース成形品を得た。なお、曲げ特性、層間せん断強度、比曲げ強度は以下の方法で測定評価した。
(1)曲げ特性
得られた成形品を、デシケータ中で23℃にて48時間保管後、ISO178に準拠した3点曲げ試験機(オリエンテック社製テンシロン4L型)を使用して、スパン長120mm、クロスヘッド速度1mm/minによる曲げ強度、曲げ弾性率を測定した。
(2)層間せん断強度
得られた成形品をカットした15×20×3mmの試験片を使用してISO14130に準じて、曲げ試験機(オリエンテック社製テンシロン4L型)を、スパン長10mm・クロスヘッド速度1mm/minとして層間せん断強度を測定した。
(3)比曲げ強度
本発明の目的のひとつである軽量性は、圧縮成形して得られた成形品を、アルキメデス原理の水中置換法により比重を測定し、曲げ強度の比強度により評価した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
(Examples 1 to 10)
Nanocomposite polyamide obtained by blending polyamide resin and layered silicate in parts by mass shown in Table 1, or intercalating polyamide resin polymerization monomer into layered silicate as shown in Table 1 The resin was put into a hopper of a screw type extruder whose temperature was adjusted to 250 ° C. Further, the carbon fiber roving shown in Table 1 was expanded and opened at a speed of 100 parts by mass and supplied to the die head of the extruder. A tape-shaped prepreg impregnated and coated from a die having a width of 10 mm and a height of 0.2 mm was immersed in a water bath and solidified, and then wound on a basket.
The tape-shaped prepreg was cut into 100 mm, and 15 sheets were stacked, preheated to 240 ° C. with an IR heater, set in a 12 × 150 × 3 mm mold adjusted to a temperature of 200 ° C., and compressed and held at 30 MPa for 5 minutes. The mold was removed from the compression molding machine. After standing to cool for 30 minutes, the mold was opened to obtain a test piece molded product for bending test. The bending characteristics, interlayer shear strength, and specific bending strength were measured and evaluated by the following methods.
(1) Bending characteristics The obtained molded product was stored in a desiccator at 23 ° C for 48 hours, and then a span length of 120 mm using a three-point bending tester (Orientec Tensilon 4L type) compliant with ISO178. The bending strength and bending elastic modulus at a crosshead speed of 1 mm / min were measured.
(2) Interlaminar shear strength Using a 15x20x3mm test piece obtained by cutting the obtained molded product, in accordance with ISO14130, a bending tester (Tensilon 4L type manufactured by Orientec Co., Ltd.) is used with a span length of 10mm Interlaminar shear strength was measured at a head speed of 1 mm / min.
(3) Specific bending strength Lightness, which is one of the objects of the present invention, was evaluated by measuring the specific gravity of a molded product obtained by compression molding by the underwater substitution method of Archimedes principle, and the specific strength of bending strength.

(比較例1〜5)
ポリアミド樹脂やフィラーの種類や配合比を表2に示したように変更した以外は、実施例と全く同様にプリプレグを作製した後、テストピースを成形した。得られた試験片について,実施例と全く同様に曲げ強度と層間せん断強度を測定した。得られた試験データを表2に合わせて示した。
(Comparative Examples 1-5)
A test piece was molded after preparing a prepreg in exactly the same manner as in the example except that the types and blending ratios of the polyamide resin and filler were changed as shown in Table 2. About the obtained test piece, the bending strength and the interlaminar shear strength were measured in exactly the same manner as in the example. The obtained test data is shown in Table 2 together.

(実験に使用した原料と記号)
PA6-M4:PA6−モンモリロナイト系ナノコンポジット(東洋紡績製試作品 相対粘度2.6)、モンモリロナイト4%(クニミネ工業製)
PA6−M0.5:PA6−モンモリロナイト系ナノコンポジット(東洋紡績製試作品(相対粘度 2.5)、モンモリロナイト2%(クニミネ工業製))
T842:PA6(東洋紡績製、相対粘度2.2)
T600:PAMXD6(東洋紡績製、 相対粘度2.2)
T661:PA66 (東洋紡績製、相対粘度2.8)
KP−F:モンモリロナイト(クニミネ工業製、アスペクト比320)
SPN:合成スメクタイト(コープケミカル製、アスペクト比110)
MAE:有機処理雲母(コープケミカル社製、アスペクト比30)
炭素繊維:帝人社製東邦テナックス IMS40(単繊維径6.4μm、6000フィラメント)
(Raw materials and symbols used in the experiment)
PA6-M4: PA6-montmorillonite-based nanocomposite (prototype manufactured by Toyobo, relative viscosity 2.6), montmorillonite 4% (manufactured by Kunimine Industries)
PA6-M0.5: PA6-montmorillonite-based nanocomposite (Toyobo prototype (relative viscosity 2.5), montmorillonite 2% (Kunimine Industries))
T842: PA6 (manufactured by Toyobo, relative viscosity 2.2)
T600: PAMXD6 (manufactured by Toyobo, relative viscosity 2.2)
T661: PA66 (Toyobo, relative viscosity 2.8)
KP-F: Montmorillonite (Kunimine Industries, aspect ratio 320)
SPN: Synthetic smectite (Coop Chemical, aspect ratio 110)
MAE: Organically treated mica (Coop Chemical Co., Aspect Ratio 30)
Carbon fiber: Toho Tenax IMS40 manufactured by Teijin Ltd. (single fiber diameter 6.4 μm, 6000 filaments)

(測定方法)
(1)炭素繊維の重量平均繊維長
複合材料または複合成形品の微小片を、2枚のスライドグラス板間で溶融し、厚さ0.05mm程度のフイルム状とする。マイクロスコープ(キーエンス社製)を使用して、透過光により倍率100倍にて限定視野内に各繊維の重心(長さの中心)が存在する繊維の長さを、100本〜200本を測定して、0.1mm間隔のヒストグラムを作成する。クラスの中央値(Xi)と頻度(fi)から次式により求めた。
X=ΣfiXi/ΣfiXi
(2)層状珪酸塩の積層方向の厚さの数平均
複合成形品または複合材料をエポキシ樹脂で包埋して得た成形品の断面について、ミクロトームを使用して薄片を切り出し、透過型電子顕微鏡(日立ハイテクノロジー社)を使用し、真空下で約10万倍で視野を変えて10個観察して、厚さの数平均を測定した。
(3)相対粘度
JIS K6920−2に準じて、25℃の恒温水槽中で、ポリアミド樹脂の98%硫酸の0.1%溶液について、オストワルド粘度計を使用して、溶液の落下秒数と溶媒の落下秒数から求めた。
(Measuring method)
(1) A carbon fiber weight average fiber length composite material or a minute piece of a composite molded product is melted between two slide glass plates to form a film having a thickness of about 0.05 mm. Using a microscope (manufactured by KEYENCE), measure the length of the fibers where the center of gravity (the center of the length) of each fiber exists within a limited field of view at a magnification of 100 times with transmitted light, and measure 100 to 200 fibers. Then, a histogram at intervals of 0.1 mm is created. It calculated | required by the following Formula from the median (Xi) and frequency (fi) of the class.
X = ΣfiXi 2 / ΣfiXi
(2) Number average composite molded product of layered silicate thickness or molded product obtained by embedding a composite material with epoxy resin, cut out thin section using microtome, transmission electron microscope (Hitachi High-Technology Co., Ltd.) was used, and the number of thickness was averaged by observing 10 pieces under a vacuum at a magnification of about 100,000 times while changing the field of view.
(3) Relative Viscosity According to JIS K6920-2, using a Ostwald viscometer, the falling seconds of the solution and the solvent for a 0.1% solution of polyamide resin 98% sulfuric acid in a constant temperature water bath at 25 ° C. It was calculated from the number of seconds falling.

Figure 2011105836
Figure 2011105836

Figure 2011105836
Figure 2011105836

本発明により、曲げ強度や圧縮強度に優れたスタンピング成形品を得ることが可能となり、比重が比較的ちいさく、プリプレグ製造法や成形法も非常に容易であることからも、構造部材やハウジングの樹脂化が可能となり、軽量化や省エネルギーの面から産業界に大きく寄与することが期待される。 According to the present invention, it becomes possible to obtain a stamping molded product having excellent bending strength and compressive strength, and the specific gravity is relatively small, and the prepreg manufacturing method and molding method are very easy. It is expected to contribute greatly to the industry from the viewpoint of weight reduction and energy saving.

Claims (5)

重量平均繊維長10mm以上の炭素長繊維(A)100質量部に対して、ポリアミド樹脂50〜250質量部、層状珪酸塩を0.1〜12質量部を含有することを特徴とする炭素長繊維強化ポリアミド複合材料。   A carbon long fiber comprising 50 to 250 parts by mass of a polyamide resin and 0.1 to 12 parts by mass of a layered silicate with respect to 100 parts by mass of a carbon long fiber (A) having a weight average fiber length of 10 mm or more. Reinforced polyamide composite material. ポリアミド樹脂が、単一モノマーから重合可能なポリアミド樹脂から選ばれた少なくとも1種以上で有ることを特徴とする請求項1記載の炭素長繊維強化ポリアミド複合材料。 2. The carbon long fiber reinforced polyamide composite material according to claim 1, wherein the polyamide resin is at least one selected from polyamide resins polymerizable from a single monomer. ポリアミド樹脂が、メタキシリレンアジパミド、テレフタルアミド共重合体から選ばれた少なくとも1種以上であることを特徴とする請求項1記載の炭素長繊維強化ポリアミド複合材料。 2. The carbon long fiber reinforced polyamide composite material according to claim 1, wherein the polyamide resin is at least one selected from metaxylylene adipamide and terephthalamide copolymer. 層状珪酸塩、モンモリロナイトであることを特徴とする請求項1、請求項2、請求項3のいずれかに記載の炭素長繊維強化ポリアミド複合材料。 The carbon long fiber reinforced polyamide composite material according to any one of claims 1, 2, and 3, wherein the composite material is a layered silicate or montmorillonite. ポリアミド樹脂中に、層状珪酸塩の積層方向の厚さの数平均が0.5〜10nmに分散していることを特徴とすると請求項1、請求項2、請求項3、請求項4のいずれかに記載の炭素長繊維強化ポリアミド複合材料。 The polyamide resin is characterized in that the number average thickness in the laminating direction of the layered silicate is dispersed in a range of 0.5 to 10 nm, and any one of claims 1, 2, 3 and 4. The long carbon fiber reinforced polyamide composite material according to claim 1.
JP2009261593A 2009-11-17 2009-11-17 Carbon long fiber reinforced polyamide composite material Active JP5471338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261593A JP5471338B2 (en) 2009-11-17 2009-11-17 Carbon long fiber reinforced polyamide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261593A JP5471338B2 (en) 2009-11-17 2009-11-17 Carbon long fiber reinforced polyamide composite material

Publications (2)

Publication Number Publication Date
JP2011105836A true JP2011105836A (en) 2011-06-02
JP5471338B2 JP5471338B2 (en) 2014-04-16

Family

ID=44229678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261593A Active JP5471338B2 (en) 2009-11-17 2009-11-17 Carbon long fiber reinforced polyamide composite material

Country Status (1)

Country Link
JP (1) JP5471338B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108815A1 (en) * 2012-01-17 2013-07-25 独立行政法人産業技術総合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
JP2013159675A (en) * 2012-02-03 2013-08-19 Toyobo Co Ltd Long carbon fiber reinforced polyamide resin prepreg and molding
JP2014173006A (en) * 2013-03-08 2014-09-22 Toyobo Co Ltd Carbon filament-reinforced polyamide composite material for compression molding
JP2014173005A (en) * 2013-03-08 2014-09-22 Toyobo Co Ltd Carbon filament-reinforced polyamide composite material for compression molding
JP2017077340A (en) * 2015-10-20 2017-04-27 ダイセルポリマー株式会社 Method for manufacturing molding
WO2022227750A1 (en) * 2021-04-30 2022-11-03 上海凯赛生物技术股份有限公司 Long-carbon-chain polyamide resin composition and continuous fiber reinforced long-carbon-chain polyamide composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718098A (en) * 1993-07-02 1995-01-20 Toyobo Co Ltd Sheet for use in thermoplastic composite
JPH10306211A (en) * 1997-05-08 1998-11-17 Agency Of Ind Science & Technol Polyamide resin composition
JPH11335554A (en) * 1998-05-27 1999-12-07 Toray Ind Inc Polyamide resin composition and production thereof
JP2002284985A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Fiber reinforced polyamide resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718098A (en) * 1993-07-02 1995-01-20 Toyobo Co Ltd Sheet for use in thermoplastic composite
JPH10306211A (en) * 1997-05-08 1998-11-17 Agency Of Ind Science & Technol Polyamide resin composition
JPH11335554A (en) * 1998-05-27 1999-12-07 Toray Ind Inc Polyamide resin composition and production thereof
JP2002284985A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Fiber reinforced polyamide resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108815A1 (en) * 2012-01-17 2013-07-25 独立行政法人産業技術総合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
CN104053711A (en) * 2012-01-17 2014-09-17 独立行政法人产业技术综合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
KR20140116403A (en) * 2012-01-17 2014-10-02 독립행정법인 산업기술종합연구소 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method thereof
JPWO2013108815A1 (en) * 2012-01-17 2015-05-11 独立行政法人産業技術総合研究所 Carbon fiber reinforced plastic material mixed with nanofiller and method for producing the same
EP2805990A4 (en) * 2012-01-17 2015-09-16 Nat Inst Of Advanced Ind Scien Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
US10017630B2 (en) 2012-01-17 2018-07-10 National Institute Of Advanced Industrial Science And Technology Carbon fiber-reinforced plastic material with nanofiller mixed therein, and manufacturing method thereof
KR102044549B1 (en) * 2012-01-17 2019-12-05 고쿠리츠겐큐가이하츠호진 산교기쥬츠소고겐큐쇼 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method thereof
JP2013159675A (en) * 2012-02-03 2013-08-19 Toyobo Co Ltd Long carbon fiber reinforced polyamide resin prepreg and molding
JP2014173006A (en) * 2013-03-08 2014-09-22 Toyobo Co Ltd Carbon filament-reinforced polyamide composite material for compression molding
JP2014173005A (en) * 2013-03-08 2014-09-22 Toyobo Co Ltd Carbon filament-reinforced polyamide composite material for compression molding
JP2017077340A (en) * 2015-10-20 2017-04-27 ダイセルポリマー株式会社 Method for manufacturing molding
WO2022227750A1 (en) * 2021-04-30 2022-11-03 上海凯赛生物技术股份有限公司 Long-carbon-chain polyamide resin composition and continuous fiber reinforced long-carbon-chain polyamide composite material

Also Published As

Publication number Publication date
JP5471338B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471338B2 (en) Carbon long fiber reinforced polyamide composite material
CN108602246B (en) Method for manufacturing three-dimensional structure
JP5987335B2 (en) Carbon long fiber reinforced polyamide resin prepreg and molded product
JP5878544B2 (en) Polyamide composite structure and method for producing the same
JP5509756B2 (en) Carbon long fiber reinforced polyamide composite material
JP5564839B2 (en) Stamping molded products
US20120238164A1 (en) Composite polyamide article
KR20110089441A (en) Pekk composite fibre, method for manufacturing same and uses thereof
Zhou et al. Functionalized aramid nanofibers prepared by polymerization induced self-assembly for simultaneously reinforcing and toughening of epoxy and carbon fiber/epoxy multiscale composite
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
JP5668310B2 (en) Hybrid carbon fiber reinforced thermoplastic resin composite material
JP6453575B2 (en) Fiber reinforced resin composition
JP6146063B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
Daud et al. Layered silicates nanocomposite matrix for improved fiber reinforced composites properties
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
KR102352358B1 (en) Acrylonitrile Butadiene Styrene Resin Composite for Long Fiber Reinforced Thermoplastic and Preparation Method Thereof
JP5402584B2 (en) Carbon long fiber reinforced polyamide composite material
JP6031884B2 (en) Long fiber reinforced polyamide resin molded product
KR20130118856A (en) Creep-resistant composite structures and processes for their preparation
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product
JP7388435B2 (en) Molded product manufacturing method
EP3597388B1 (en) Material, method for producing the material, partially welded material, composite material, and method of producing molded product
JP6146062B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
JP2013203944A (en) Prepreg and molded product thereof
JP2012207090A (en) Carbon filament-reinforced polyamide resin composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350