JP5789933B2 - Compression molding method for fiber reinforced thermoplastic resin sheet - Google Patents

Compression molding method for fiber reinforced thermoplastic resin sheet Download PDF

Info

Publication number
JP5789933B2
JP5789933B2 JP2010195269A JP2010195269A JP5789933B2 JP 5789933 B2 JP5789933 B2 JP 5789933B2 JP 2010195269 A JP2010195269 A JP 2010195269A JP 2010195269 A JP2010195269 A JP 2010195269A JP 5789933 B2 JP5789933 B2 JP 5789933B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
axis
mold
fiber
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010195269A
Other languages
Japanese (ja)
Other versions
JP2012051225A (en
JP2012051225A5 (en
Inventor
葭原 法
法 葭原
辻井 彰司
彰司 辻井
名合 聡
聡 名合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45905153&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5789933(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2010195269A priority Critical patent/JP5789933B2/en
Publication of JP2012051225A publication Critical patent/JP2012051225A/en
Publication of JP2012051225A5 publication Critical patent/JP2012051225A5/ja
Application granted granted Critical
Publication of JP5789933B2 publication Critical patent/JP5789933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ランダム強化タイプ繊維強化熱可塑性樹脂から切削した複合材料を、特定の条件を満たすように金型に配置して圧縮成形することにより、機械的性質の異方性の小さい成形品を得る方法に関する。   In the present invention, a composite material cut from a random reinforced type fiber reinforced thermoplastic resin is placed in a mold so as to satisfy a specific condition and compression-molded, thereby forming a molded product having low mechanical property anisotropy. On how to get.

繊維強化熱可塑性樹脂を圧縮成形した成形品は、近年、構造材用として開発された(例えば、特許文献1参照)。繊維強化熱可塑性樹脂は、高い強度や剛性を有することから板状や梁状構造材として使用される。繊維強化熱可塑性樹脂は、繊維の軸方向の引っ張りに対して、非常に高い強度や剛性を示すが、圧縮変形や繊維軸に直交する方向の引っ張り変形に対しては、繊維の補強効果が活かされないので強度や剛性が低い。従って、成形品の機械的性質の異方性が極めて大きく、実用に当っては、構造材としての信頼性の改善が課題であった。 In recent years, a molded product obtained by compression-molding a fiber reinforced thermoplastic resin has been developed for structural materials (see, for example, Non- Patent Document 1). The fiber reinforced thermoplastic resin is used as a plate-like or beam-like structural material because it has high strength and rigidity. Fiber reinforced thermoplastic resin exhibits very high strength and rigidity against the tensile force in the axial direction of the fiber, but the reinforcing effect of the fiber is effective for compressive deformation and tensile deformation in the direction perpendicular to the fiber axis. Because it is not, strength and rigidity are low. Therefore, the anisotropy of the mechanical properties of the molded product is extremely large, and improvement of reliability as a structural material has been a problem in practical use.

この課題の解決には、繊維と樹脂の流れ制御や繊維の軸方向の配向制御が必要であるが、繊維の配向の制御は、プリプレグの製造法のみならず、プリプレグを成形する際の樹脂の流動方向により変化するので、非常に困難であった。   In order to solve this problem, it is necessary to control the flow of fibers and resin and to control the orientation of the fibers in the axial direction. However, the control of the orientation of the fibers is not limited to the method for producing the prepreg, Since it changed according to the flow direction, it was very difficult.

このような状況において、特許文献1のように、強化繊維として、異方性の小さい不織布状の強化繊維を使用し、強化繊維に切り込みを入れて金型内で流動することや、特許文献2のように、ランダムに配置したチョップドストランドマットに樹脂を含浸してプリプレグシートを作製することや、特許文献3のように、流動する不連続繊維強化層と殆ど流動しない連続繊維強化層を組み合わせることや、特許文献4のように、長繊維を長さ方向に配向して、含浸して得られたテープを短冊状に切断し、ランダムに配置して、異方性の小さいシート状予備成形体を作製する方法が提案された。そして、圧縮成形用に、異方性が小さいプリプレグやシート状予備成形体が得られるようになった。   In such a situation, as disclosed in Patent Document 1, a non-woven fabric-like reinforcing fiber having a small anisotropy is used as a reinforcing fiber, and the reinforcing fiber is cut and fluidized in a mold. As described above, a prepreg sheet is prepared by impregnating a randomly chopped strand mat with a resin, or a continuous fiber reinforced layer that hardly flows and a discontinuous fiber reinforced layer that flows as in Patent Document 3 are combined. Or, as in Patent Document 4, the tape obtained by orienting the long fibers in the length direction and then impregnated is cut into strips, arranged randomly, and a sheet-shaped preform having a small anisotropy. A method of making the slab was proposed. And for compression molding, a prepreg or a sheet-shaped preform with low anisotropy can be obtained.

しかし、得られたプリプレグシートやシート状予備成形体から、再度溶融流動して得られた一般的な成形品の機械的性質は、まだ大きな異方性があり、変形方向によっては、強度や剛性は極めて低く、信頼性の高い成形品を得ることができなかった。   However, the mechanical properties of general molded products obtained by re-melting and flowing from the obtained prepreg sheet or sheet-shaped preform are still highly anisotropic, and depending on the direction of deformation, strength and rigidity Was extremely low, and a highly reliable molded product could not be obtained.

繊維強化熱可塑性複合材料は、単位重量当りの強度や剛性が高いことから、自動車軽量化のために使用したい市場の根強い希望があり、実使用する最終成形品において、機械的性質の異方性の小さい構造材やそれが得られる成形方法の強い開発要請があった。   Since fiber reinforced thermoplastic composites have high strength and rigidity per unit weight, there is a strong desire in the market to be used to reduce the weight of automobiles. There was a strong demand for development of small structural materials and molding methods to obtain them.

また、上述したように、従来技術により、強化材のマットやクロスから作製されたプリプレグから、ランダム配向や直交配向した等方性に近い予備成形品が得られるようになった。しかし、複雑な形状を有する実用成形品を得る成形において、強化材マットや強化材クロスに樹脂を含浸したプリプレグは、繊維がからみあっており、繊維の配向は殆ど変化しないが、流動性は低く、特に強化繊維の流動は困難であった。この場合は、樹脂分のみ流れ、強化繊維が流動の先端まで流れず、成形品中の強化繊維の分布が偏った成形品となる問題があり、不均一な配合比となり、繊維補強効果が極度に低下し、その部分の強度が低いという問題があった。   Further, as described above, according to the conventional technique, a pre-molded product having a near-isotropic property with random orientation or orthogonal orientation can be obtained from a prepreg produced from a mat or cloth of reinforcing material. However, in molding to obtain a practical molded product having a complicated shape, the prepreg impregnated with resin in the reinforcing material mat or the reinforcing material cloth is entangled with fibers, the orientation of the fibers hardly changes, but the fluidity is low, In particular, the flow of the reinforcing fibers was difficult. In this case, there is a problem that only the resin component flows, the reinforcing fibers do not flow to the tip of the flow, and the distribution of the reinforcing fibers in the molded product is uneven, resulting in a non-uniform blending ratio and extremely high fiber reinforcing effect. There was a problem that the strength of the portion was low.

また、複雑な形状を有する実用成形品を得るために、ランダム配置したプリプレグや予備成形シートを圧縮成形した場合、金型内のある方向への材料の流動により、樹脂中の細長い強化繊維や強化繊維を含む短冊状のプリプレグが流動して、強化繊維が配向して、機械的性質の異方性が発現し、変形方向により、強度が極めて低いという問題があった。特に、流動の末端部では、弱点が発生し易かった。三次元構造を持つ成形品では流動方向が複雑であり、弱点となる箇所や弱い変形方向が不明で、材料物性に対して信頼性が低いという問題があった。   In addition, in order to obtain a practical molded product having a complicated shape, when prepregs and preformed sheets that are randomly arranged are compression molded, the flow of the material in a certain direction in the mold causes the long reinforcing fibers and reinforcement in the resin. There is a problem that the strip-shaped prepreg containing the fibers flows, the reinforcing fibers are oriented, the anisotropy of the mechanical properties is expressed, and the strength is extremely low depending on the deformation direction. In particular, weak points were likely to occur at the flow end. The molded product having a three-dimensional structure has a problem that the flow direction is complicated, the weak point and the weak deformation direction are unclear, and the material properties are low in reliability.

特開2010−18724号公報JP 2010-18724 A 特開2007―262360号公報JP 2007-262360 A 特開2005−324340号公報JP 2005-324340 A 特開平9−155862号公報JP-A-9-155862

工業材料、37(1)、53〜57(1989)Industrial materials, 37 (1), 53-57 (1989)

本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、ランダム強化タイプ繊維強化熱可塑性樹脂から切削した複合材料を金型で圧縮成形する方法において、機械的性質の異方性が少なく、使用した複合材料の機械的性質が変形方向や場所によらず維持される方法を提供することにある。   The present invention was devised in view of the above-described problems of the prior art, and its purpose is to provide mechanical properties in a method of compression molding a composite material cut from a random reinforced fiber reinforced thermoplastic resin with a mold. It is an object of the present invention to provide a method in which the mechanical properties of a used composite material are maintained regardless of the direction of deformation and the location.

本発明者らは、かかる目的を達成するために使用した複合材料の機械的性質の異方性が生じにくい圧縮成形方法について鋭意検討した結果、特定の条件を満たす複合材料の金型内での配置方法により機械的性質の異方性が少ない信頼性のある圧縮成形品が得られることを見出し、本発明の完成に至った。   As a result of intensive studies on a compression molding method in which anisotropy of mechanical properties of a composite material used to achieve such an object is difficult to occur, the present inventors have found that a composite material satisfying specific conditions within a mold. The present inventors have found that a reliable compression-molded product with little mechanical property anisotropy can be obtained by the arrangement method, and completed the present invention.

すなわち、本発明は、以下の(1)〜()の構成を有するものである。
(1)シート上の任意のx軸方向とこれに直交するy軸方向にそれぞれ切削した試験片の曲げ弾性率の比が4/5〜5/4であるランダム強化タイプ繊維強化熱可塑性樹脂シートから切削した複合材料を金型の凹部に少なくとも一層配置して圧縮成形する方法において、金型の凹部の水平面への投影図において、最も長い軸をx軸とし、この中点と直交する軸をy軸とし、この金型の凹部のx軸とy軸の長さをそれぞれa,bとしたとき、a/bが2.0以上であり、複合材料のx軸方向の長さm,y軸方向の長さnが下記式(i)および(ii)を満足することを特徴とする方法:
0.8≦m/a<1.0 (i)
0.8≦n/b<1.0 (ii)
)ランダム強化タイプ繊維強化熱可塑性樹脂シートが、無撚で長さ10〜50mmの強化繊維50〜85質量%、および熱可塑性樹脂50〜15質量%からなり、一軸方向に配向した強化繊維に熱可塑性樹脂を含浸して得られたプリプレグテープを10〜50mmにカットし、その短冊をランダムに配置した後、予備加熱成形し、強化繊維を実質的に無方向に分散したものであることを特徴とする(1)に記載の方法。
)プリプレグテープが、1000〜30000本を集束した強化繊維からなり、短冊が、10〜50mmの長さと同じかまたはこれより小さい幅を有することを特徴とする()に記載の方法。
That is, the present invention has the following configurations (1) to ( 3 ).
(1) Random reinforcement type fiber reinforced thermoplastic resin sheet in which the ratio of the flexural modulus of the test piece cut in the arbitrary x-axis direction on the sheet and the y-axis direction orthogonal thereto is 4/5 to 5/4 In the method of compressing and molding at least one layer of the composite material cut from the mold in the recess of the mold, the longest axis is the x axis in the projection view of the recess of the mold on the horizontal plane, and the axis orthogonal to this midpoint is Assuming that the y-axis and the x-axis and y-axis lengths of the recess of the mold are a and b, respectively, a / b is 2.0 or more, and the length m, y of the composite material in the x-axis direction A method characterized in that the axial length n satisfies the following formulas (i) and (ii):
0.8 ≦ m / a <1.0 (i)
0.8 ≦ n / b <1.0 (ii)
( 2 ) Random reinforcing fiber reinforced thermoplastic resin sheet is composed of 50 to 85% by mass of non-twisted reinforcing fiber having a length of 10 to 50 mm and 50 to 15% by mass of thermoplastic resin, and is reinforced in a uniaxial direction. The prepreg tape obtained by impregnating with a thermoplastic resin is cut to 10 to 50 mm, the strips are randomly arranged, and then pre-heat-molded to disperse the reinforcing fibers in a substantially non-directional direction. (1 ) characterized by these.
(3) the prepreg tape is made of reinforcing fibers and focusing the present 1,000 to 30,000, strip The method according to (2) to have a length and equal to or smaller width than this of 10 to 50 mm.

本発明の方法は、機械的性質の異方性の少ないランダム強化タイプ繊維強化熱可塑性樹脂シートから切削した複合材料を予備成形体として使用し、この予備成形体を特定の条件で金型の凹部に配置して圧縮成形しているので、得られた成形品は、強化繊維と樹脂の分離を殆ど起こさずに強化繊維のランダム配合性を保持することができ、結果として変形方向や場所によらず、高い強度や剛性を達成することができる。従って、本発明の方法によれば、機械的性質の信頼性が高い成形品を確実に得ることができ、設計品質強度や剛性を高く設定したり、薄肉化などの製品設計を自由に行うことができる。   The method of the present invention uses a composite material cut from a random reinforced type fiber reinforced thermoplastic resin sheet having a low mechanical property anisotropy as a preform, and this preform is formed into a concave portion of a mold under specific conditions. Therefore, the obtained molded product can retain the random compounding properties of the reinforcing fibers without causing almost any separation between the reinforcing fibers and the resin. Therefore, high strength and rigidity can be achieved. Therefore, according to the method of the present invention, it is possible to reliably obtain a molded product having high mechanical property reliability, and to freely set design quality strength and rigidity, or to freely design a product such as thinning. Can do.

金型の凹部の水平面への投影図が正方形の場合のx軸、y軸を示す。The x-axis and y-axis are shown when the projection of the concave portion of the mold onto the horizontal plane is square. 金型の凹部の水平面への投影図が長方形の場合のx軸、y軸を示す。The x-axis and y-axis in the case where the projection onto the horizontal surface of the concave portion of the mold is rectangular are shown. 金型の凹部の水平面への投影図が楕円形の場合のx軸、y軸を示す。The x-axis and y-axis in the case where the projection of the concave portion of the mold onto the horizontal plane is elliptical are shown. 箱型成形品からダインシュタット試験片のMD方向試験片とTD方向試験片の切削位置を示す。The cutting position of the MD direction test piece and TD direction test piece of a Dinstadt test piece from a box-shaped molded product is shown.

以下、本発明の方法について詳述する。
本発明の方法では、ランダム強化タイプ繊維強化熱可塑性樹脂シートから切削した複合材料を予備成形体として使用する。このランダム強化タイプ繊維強化熱可塑性シートは、シート上の任意のx軸方向とこれに直交するy軸方向に切削した試験片の曲げ弾性率の比が4/5〜5/4、好ましくは85/100〜100/85である。この場合の試験片切削の軸方向はシート面上の任意の方向でよい。曲げ弾性率の比が上記範囲から逸脱した繊維強化熱可塑性樹脂シートを予備成形体として圧縮成形すると、予備成形体の曲げ弾性率が低い方向に流れにくく、曲げ弾性率が高い方向に流れやすくなる。強化繊維は流れ方向に配向しやすいから、このような曲げ弾性率の異方性の高い予備成形体に基づく成形品は、弾性率の差が予備成形体のそれより拡大し、異方性が大きくなる。繊維強化熱可塑性樹脂シートの厚さは特に限定されないが、流動性の方向依存性を小さくするためには1〜10mm、好ましくは2〜7mm、特に2〜5mmが好ましい。
Hereinafter, the method of the present invention will be described in detail.
In the method of the present invention, a composite material cut from a random reinforced type fiber reinforced thermoplastic resin sheet is used as a preform. In this random reinforcing type fiber reinforced thermoplastic sheet, the ratio of the flexural modulus of the test piece cut in the arbitrary x-axis direction on the sheet and the y-axis direction orthogonal thereto is 4/5 to 5/4, preferably 85. / 100 to 100/85. In this case, the axial direction of the test piece cutting may be an arbitrary direction on the sheet surface. When a fiber reinforced thermoplastic resin sheet whose bending elastic modulus ratio deviates from the above range is compression-molded as a preform, the preform does not easily flow in a low bending elastic modulus and tends to flow in a high bending elastic modulus. . Since the reinforcing fibers are easy to orient in the flow direction, such a molded product based on a preform with a high bending modulus of elasticity has a larger difference in elasticity than that of the preform and has an anisotropy. growing. The thickness of the fiber reinforced thermoplastic resin sheet is not particularly limited, but is preferably 1 to 10 mm, preferably 2 to 7 mm, particularly 2 to 5 mm in order to reduce the direction dependency of fluidity.

本発明の方法に使用される圧縮成形用金型の凹部の水平面の投影図は、金型の開閉軸を鉛直にとった場合の水平面への投影図を意味する。この凹部の水平面への投影図において、最も長い軸をx軸とし、この中点と直交する軸をy軸とする。そして、この金型の凹部のx軸の長さをaとし、y軸の長さをbとする。例えば、金型の凹部の水平面への投影図が正方形、長方形または楕円形の場合、それぞれのx軸の長さa、y軸の長さbは図1〜3に示すようにとられる。本発明では、このとき金型に配置する複合材料のx軸方向の長さm、y軸方向の長さnが、下記式(i)および(ii)を満足するように複合材料を金型の凹部に配置して圧縮成形する。配置される複合材料は、必ずしも一層とは限らず、2層以上からなってもよい。この場合は、各層のオーバーラップ部を除いた水平投影長さをmやnとして表す。
0.8≦m/a<1.0 (i)
0.8≦n/b<1.0 (ii)
The projection of the horizontal surface of the concave portion of the compression mold used in the method of the present invention means a projection onto the horizontal plane when the opening / closing axis of the mold is taken vertically. In the projection of the recesses on the horizontal plane, the longest axis is the x axis, and the axis orthogonal to the midpoint is the y axis. The length of the x-axis of the concave portion of the mold is a, and the length of the y-axis is b. For example, when the projection of the concave portion of the mold onto the horizontal plane is a square, rectangle, or ellipse, the length a of the x-axis and the length b of the y-axis are as shown in FIGS. In the present invention, the composite material is placed in the mold so that the length m in the x-axis direction and the length n in the y-axis direction of the composite material placed in the mold satisfy the following formulas (i) and (ii): It is placed in the recess of and compression molded. The composite material to be arranged is not necessarily a single layer, and may be composed of two or more layers. In this case, the horizontal projection length excluding the overlapping portion of each layer is expressed as m or n.
0.8 ≦ m / a <1.0 (i)
0.8 ≦ n / b <1.0 (ii)

m/aまたはn/bが0.8未満の場合、流動末端で他の方向から樹脂が流れ込み、強化繊維がこの方向に対して横方向に配向し、この方向に荷重や衝撃を受けた場合に弱くなり、局部的に破損しやすい。m/aまたはn/bが1.0以上の場合、金型閉鎖時に成形材料を噛むので好ましくない。m/a,n/bの下限値は0.85以上が好ましく、上限値は0.98未満が好ましい。   When m / a or n / b is less than 0.8, the resin flows in from the other direction at the flow end, and the reinforcing fibers are oriented transversely to this direction and subjected to a load or impact in this direction. Weakened and easily damaged locally. When m / a or n / b is 1.0 or more, it is not preferable because the molding material is bitten when the mold is closed. The lower limit of m / a and n / b is preferably 0.85 or more, and the upper limit is preferably less than 0.98.

圧縮成形品の形状が長尺物でなく、円形や正方形に近い場合、本発明の方法では、金型に配置する複合材料のx軸方向の長さm、y軸方向の長さnが上記式(i)および(ii)の代わりに下記式(iii)を満足するように複合材料を金型の凹部に配置して圧縮成形してもよい。
0.7≦(m×n)/(a×b)<1.0 (iii)
(m×n)/(a×b)が0.7未満の場合または1.0以上の場合、上記と同様の理由から好ましくない。(m×n)/(a×b)の下限値は0.75以上が好ましく、上限値は0.95未満が好ましい。
When the shape of the compression-molded product is not a long object and is close to a circle or a square, in the method of the present invention, the length m in the x-axis direction and the length n in the y-axis direction of the composite material arranged in the mold are as described above. Instead of the formulas (i) and (ii), the composite material may be placed in the concave portion of the mold so as to satisfy the following formula (iii) and compression-molded.
0.7 ≦ (m × n) / (a × b) <1.0 (iii)
When (m × n) / (a × b) is less than 0.7 or 1.0 or more, it is not preferable for the same reason as described above. The lower limit of (m × n) / (a × b) is preferably 0.75 or more, and the upper limit is preferably less than 0.95.

一般的なシートモールディングコンパウンドやバルクモールディングコンパウンドやスタンパブルシートの圧縮成形の場合、通常、成形材料を金型の凹部の中央部に高く積み重ねて、型締めと共に、上型と成形材料が接し、成形材料にかかる圧力により、中央部の成形材料を金型内に流動し、充填することで成形品を得ている。これらの成形材料を成形する場合、金型内に成形材料を広げて配置すると、型締めにより材料の流動が開始してから充填圧がかかるまでの時間が短いので、充填が不均一になりやすい。一方、本発明では、使用する複合材料が短冊状のプリプレグ単位で流動するので、流動開始から充填圧がかかるまでの時間が短くても充填が均一になりやすい。   In the case of compression molding of general sheet molding compounds, bulk molding compounds and stampable sheets, the molding material is usually stacked at the center of the concave part of the mold, and the mold is clamped and the upper mold and the molding material are in contact with each other. A molded product is obtained by flowing and filling the molding material in the central portion into the mold by the pressure applied to the material. When molding these molding materials, if the molding material is spread and placed in the mold, the time from when the material starts to flow due to mold clamping until the filling pressure is applied is short, so the filling tends to be uneven. . On the other hand, in the present invention, since the composite material to be used flows in a strip-shaped prepreg unit, even if the time from the start of flow until the filling pressure is applied is short, the filling tends to be uniform.

本発明の方法では、ランダム強化タイプ繊維強化熱可塑性樹脂シート以外に、他の繊維強化樹脂シートからの複合材料を追加配置して圧縮成形することができる。かかる繊維強化樹脂シートとしては、ランダムシート状プリプレグ、マット状プリプレグ、クロス状プリプレグが挙げられる。これらの追加配置される繊維強化樹脂シートの金型への配置方法は特に限定されない。本発明の方法に使用されるランダム強化タイプ繊維強化熱可塑性樹脂シートは、金型内で先行して均一に流動・充填するため、他の材料の配置によってその機械的性質の影響を受けにくいからである。 In the method of the present invention, in addition to the random reinforced type fiber reinforced thermoplastic resin sheet, composite materials from other fiber reinforced resin sheets can be additionally arranged and compression molded. Examples of such fiber reinforced resin sheets include random sheet prepregs, mat prepregs, and cloth prepregs. Arrangement method to mold fiber-reinforced resin sheet is these additional arrangement is not particularly limited. Since the random reinforced type fiber reinforced thermoplastic resin sheet used in the method of the present invention is uniformly flowed and filled in advance in the mold, it is not easily affected by the mechanical properties due to the arrangement of other materials. It is.

本発明で使用されるランダム強化タイプ繊維強化熱可塑性樹脂シートは、圧縮成形時には金型の凹部に少なくとも1層、好ましくは2層以上で配置する。配置される熱可塑性樹脂シートの総厚みに対して、ランダム強化タイプ繊維強化熱可塑性樹脂シートの厚みの割合は、0.1〜1.0、好ましくは0.2〜1.0、特に0.25〜0.9である。この比が、0.1未満では、成形品のランダム強化タイプ熱可塑性樹脂シートによる異方性低減効果が小さく、荷重方向で強度が低い場所ができる場合がある。特に、側面の高い成形品を成形する場合は、この比が高い方が好ましく、特に0.35〜1.0が好ましい。ランダム強化タイプ熱可塑性樹脂シートと組み合わせて、金型の凹部に配置される樹脂シートの構成や形状は、不織布を使用したプリプレグシート、強化繊維マットを使用したプリプレグシート、プリプレグテープを同方向に配列した一軸配向シート、プリプレグテープの直交織物や多軸織物などを適宜使用することができる。これらのシートと組み合わせることにより、様々な変形方向に対する要求性能を満たすことができる。   The random reinforcing type fiber reinforced thermoplastic resin sheet used in the present invention is arranged in at least one layer, preferably two or more layers, in the concave portion of the mold during compression molding. The ratio of the thickness of the random reinforcing type fiber reinforced thermoplastic resin sheet to the total thickness of the thermoplastic resin sheet to be arranged is 0.1 to 1.0, preferably 0.2 to 1.0, and particularly preferably 0.00. 25-0.9. If this ratio is less than 0.1, the effect of reducing anisotropy by the randomly reinforced thermoplastic resin sheet of the molded product is small, and there may be a place where the strength is low in the load direction. In particular, when molding a molded product having a high side surface, a higher ratio is preferable, and 0.35 to 1.0 is particularly preferable. The composition and shape of the resin sheet placed in the recess of the mold in combination with the random reinforced thermoplastic resin sheet is arranged in the same direction as the prepreg sheet using nonwoven fabric, the prepreg sheet using reinforced fiber mat, and the prepreg tape An uniaxially oriented sheet, an orthogonal woven fabric of prepreg tape, a multiaxial woven fabric, or the like can be used as appropriate. By combining with these sheets, the required performance for various deformation directions can be satisfied.

本発明の方法で使用されるランダム強化タイプの繊維強化熱可塑性樹脂シートとしては、強化繊維による機械的性質の向上がランダムな方向で行われている熱可塑性樹脂シートである限り特に限定されないが、例えば、強化繊維の不織布や連続繊維をマット状にしたもの、チョップド強化繊維のマット状のものに熱可塑性樹脂を含浸したもの、熱可塑性樹脂のフイルムを積層加熱溶融したもの、強化繊維のロービングに熱可塑性樹脂を被覆したものをシート状に成形したもの、強化繊維のロービングに熱可塑性樹脂を被覆したものを7.5mm〜100mm程度の長さにカットして、得られたペレットを平板金型にランダムに敷き詰めて加熱溶融成形したもの、または、強化繊維のロービングを開繊し、熱可塑性樹脂を含浸して得られたテープ状プリプレグを直接または適当な長さにカットして得られた短冊で平板金型にランダムに敷き詰めて加熱溶融成形したものが挙げられる。本発明では、無撚で長さ10〜50mm、好ましくは20〜40mmの強化繊維が使用されることが好ましい。撚りがあると、強化繊維の強度が低下し、繊維が絡み合い流動性が低下する場合がある。また、長さが10mm未満では、構造材として必要な衝撃強度が低下し、長さが50mmを超えると、流動性が低下し、長さと幅の比が高くなり、異方性が高くなる場合がある。強化繊維は、連続繊維をカットした後、含浸することでもできるが、含浸されたプリプレグテープを10〜50mmにカットする方が、毛玉の発生やカット屑が飛散しにくいので好ましい。   The random reinforcing type fiber reinforced thermoplastic resin sheet used in the method of the present invention is not particularly limited as long as it is a thermoplastic resin sheet in which mechanical properties are improved in a random direction by reinforcing fibers, For example, a non-woven fabric of reinforcing fibers or a continuous fiber mat, a chopped reinforcing fiber mat impregnated with a thermoplastic resin, a thermoplastic resin film laminated and melted, or a reinforcing fiber roving A sheet coated with a thermoplastic resin, a roving of reinforcing fibers coated with a thermoplastic resin, cut to a length of about 7.5 mm to 100 mm, and the resulting pellet is a flat plate mold Randomly spread and heated and melt-molded, or a reinforcing fiber roving opened and impregnated with a thermoplastic resin. A flat die with the resulting strip by cutting Jo prepreg directly or suitable length include those heat melting molding spread randomly. In the present invention, it is preferable to use reinforcing fibers that are untwisted and have a length of 10 to 50 mm, preferably 20 to 40 mm. If there is a twist, the strength of the reinforcing fiber is lowered, and the fibers are entangled and fluidity may be lowered. Also, when the length is less than 10 mm, the impact strength required as a structural material is reduced, and when the length exceeds 50 mm, the fluidity is reduced, the ratio of length to width is increased, and the anisotropy is increased. There is. The reinforcing fiber can be impregnated after cutting the continuous fiber, but it is preferable to cut the impregnated prepreg tape to 10 to 50 mm because generation of pills and cut dust are less likely to be scattered.

ランダム強化タイプ繊維強化熱可塑性樹脂シートは、強化繊維50〜85質量%、熱可塑性樹脂15〜50質量%からなり、一軸方向に配向した強化繊維に熱可塑性樹脂を含浸して得られたプリプレグテープを10〜50mmにカットし、その短冊をランダムに配置した後、予備加熱成形し、強化繊維が実質的に無方向に分散されたものであることが好ましい。予め強化繊維が開繊され、樹脂が含浸されていると、強化繊維と樹脂の接着強度が高く、ボイドなどの欠陥点が殆どないので、補強効率が高く、本発明の効果を発揮しやすい。強化繊維が50質量%未満では、複合材料の強度や弾性率のレベルは低く、構造材用途に使用するには不適当であり、85質量%を超えると、シートを成形するときに流動性が低く、欠肉や表面外観が生じうる。また、プリプレグテープが10mm未満の長さでは、強度、特に衝撃強度が要求に未達となる用途もあり、50mmを超えると、圧縮成形するとき、金型内の流動性が低く、欠肉が発生しやすい。プリプレグテープから得られた繊維強化熱可塑性樹脂シートが、成形性が高く、曲げ強度が高く、均一である理由は、ロービングの繊維束がプリプレグテープ内に整列して残存するため、単繊維の場合より繊維の絡み合いがなく、高い流動性と圧縮変形や曲げ変形に対して繊維が座屈しにくく補強性が有効に発揮されるためであると考えられる。   Random reinforcing type fiber reinforced thermoplastic resin sheet is composed of 50 to 85% by mass of reinforcing fiber and 15 to 50% by mass of thermoplastic resin, and is obtained by impregnating a reinforced uniaxially oriented reinforcing fiber with a thermoplastic resin. Is cut into 10 to 50 mm, and the strips are randomly arranged, and then pre-heat-molded, and the reinforcing fibers are preferably dispersed substantially non-directionally. If the reinforcing fiber is opened in advance and impregnated with resin, the reinforcing fiber and the resin have high adhesive strength, and there are almost no defects such as voids. Therefore, the reinforcing efficiency is high and the effects of the present invention are easily exhibited. If the reinforcing fiber is less than 50% by mass, the level of the strength and elastic modulus of the composite material is low and unsuitable for use in structural materials. If it exceeds 85% by mass, the fluidity is reduced when a sheet is formed. Low, and can result in lacking or surface appearance. In addition, when the length of the prepreg tape is less than 10 mm, there is an application in which the strength, particularly the impact strength, does not meet the requirement. When the length exceeds 50 mm, the fluidity in the mold is low when the compression molding is performed, and there is a lack of thickness. Likely to happen. The reason why the fiber reinforced thermoplastic resin sheet obtained from the prepreg tape has high moldability, high bending strength, and uniformity is that the roving fiber bundle remains aligned in the prepreg tape, so it is a single fiber. This is considered to be because there is no entanglement of the fibers, and the fibers are less likely to buckle against high fluidity, compression deformation and bending deformation, and the reinforcement is effectively exhibited.

上述のプリプレグテープは、1000〜30000本、好ましくは5000〜25000本を集束した強化繊維からなり、その短冊が、10〜50mmの長さと同じかまたはこれより小さい幅を有することが好ましい。1000本未満では、繊維束としての効果が不十分であり、30000本を超えると、幅方向の含浸ムラが発生しやすい。また、短冊の幅が、短冊の長さを超えると、強化繊維が流動方向に対して逆配向しやすく、流れ方向の荷重変形に対して弱点が発現する場合がある。   The prepreg tape described above is composed of reinforcing fibers in which 1000 to 30000, preferably 5000 to 25000, are bundled, and the strip preferably has a width equal to or smaller than the length of 10 to 50 mm. If it is less than 1000, the effect as a fiber bundle is insufficient, and if it exceeds 30000, impregnation unevenness in the width direction tends to occur. Moreover, when the width of the strip exceeds the length of the strip, the reinforcing fibers are likely to be reversely oriented with respect to the flow direction, and a weak point may be developed against load deformation in the flow direction.

金型の凹部の水平面への投影図におけるa/bの比が2.0以上、好ましくは2.5以上であるような長尺成形品を得る場合、使用される複合材料が上記式(i)および(ii)を満足するように金型の凹部に配置されると、本発明の効果を発揮する。a/bが2.0未満の円形または正方形の長尺成形品を得る場合、直交する軸方向の流動長さの差が小さいので、機械的性質の異方性の少ない成形品が比較的容易に得られるが、a/b≧2.0の長尺成形品の場合、機械的性質の異方性が顕著に現れる。構造材として多い長尺成形品の場合、一般に成形時に流動距離が長くなり、流れに伴い、強化繊維が配向しやすく、成形品が不均一となる。従って、長尺成形品の場合、流れに対して横方向の強度に、強化繊維の補強作用が殆どなく欠陥を発生しやすい。本発明の方法は、このような長尺成形品の圧縮成形品においても機械的性質の異方性が少ないものが得られ、成形品としての信頼性が極めて高い。   When obtaining a long molded product in which the ratio of a / b in the projection view of the concave portion of the mold on the horizontal plane is 2.0 or more, preferably 2.5 or more, the composite material used is the above formula (i ) And (ii), the effect of the present invention will be exhibited if it is disposed in the concave portion of the mold. When obtaining a round or square long molded product having an a / b of less than 2.0, the difference in flow length in the orthogonal axial direction is small, so that a molded product with little mechanical property anisotropy is relatively easy. However, in the case of a long molded product with a / b ≧ 2.0, the anisotropy of mechanical properties appears remarkably. In the case of a long molded product that is often used as a structural material, the flow distance is generally increased during molding, and with the flow, the reinforcing fibers are easily oriented and the molded product becomes non-uniform. Accordingly, in the case of a long molded product, the strength in the transverse direction with respect to the flow hardly has the reinforcing action of the reinforcing fibers, and defects are likely to occur. According to the method of the present invention, such a long-shaped compression-molded product can be obtained which has little mechanical property anisotropy, and has extremely high reliability as a molded product.

本発明の方法により得られた成形品は、圧縮成形時に加圧面でない側面において上下面と左右面それぞれの中心線の交点を挟む20mm範囲からなる中央部から水平方向および水平方向と直交する方向に切り出した試験片のダインシュタット衝撃強度比が2/3〜3/2、好ましくは3/4〜4/3である。圧縮成形時に加圧面は、前駆体の構成や配置により機械的性質の方向性の調整が可能であるが、加圧面でない側面は、材料の流動により、強化繊維が配向し、機械的強度の異方性が発現しやすい。しかし、本発明の方法のように特定のランダム強化タイプ繊維強化熱可塑性樹脂シートを使用して特定の配置で圧縮成形すると、加圧面でない側面においても、水平方向およびこれと直交する方向のダインシュタット衝撃強度比を2/3〜3/2、好ましくは3/4〜4/3にすることができる。ダインシュタット強度比が2/3未満では、鉛直方向に荷重を受けると耐衝撃性が弱く、また3/2を超えると水平方向に荷重を受けると破損しやすい。   The molded product obtained by the method of the present invention is formed in a horizontal direction and a direction perpendicular to the horizontal direction from a central portion of a 20 mm range sandwiching the intersection of the center lines of the upper and lower surfaces and the left and right surfaces on the side surface that is not the pressure surface during compression molding. The cut specimen has a Dynestadt impact strength ratio of 2/3 to 3/2, preferably 3/4 to 4/3. At the time of compression molding, the direction of the mechanical properties of the pressure surface can be adjusted by the composition and arrangement of the precursor, but on the side surface that is not the pressure surface, the reinforcing fibers are oriented by the flow of the material, and the mechanical strength differs. The directivity is easy to develop. However, when compression molding is performed in a specific arrangement using a specific random reinforcing type fiber reinforced thermoplastic resin sheet as in the method of the present invention, even in the side surface that is not the pressing surface, dynestadt in the horizontal direction and the direction orthogonal thereto The impact strength ratio can be 2/3 to 3/2, preferably 3/4 to 4/3. When the Dynestadt strength ratio is less than 2/3, the impact resistance is weak when a load is applied in the vertical direction, and when it exceeds 3/2, the load is easily damaged when the load is applied in the horizontal direction.

繊維強化熱可塑性シートに使用される強化繊維としては、使用される熱可塑性樹脂の加工温度で固体である高弾性率繊維が挙げられ、具体的には、ガラス繊維、炭素繊維、アラミド繊維、スチール繊維、ポリフェニレンスルフィド繊維、ケナフ、コットンなどが使用できる。これらの中では、弾性率が特に高いガラス繊維と炭素繊維、特に炭素繊維が好ましい。ガラス繊維としては、EガラスまたはSガラスが好ましく、特に単繊維径が3〜22μmのもの、さらに5〜20μmのものが特に好ましい。単繊維径が3μm未満では、含浸や脱泡が難しく、20μmを超えると、比表面積が小さくなり、複合化の効果が小さくなる。ガラス繊維は、界面接着性改良のために、シラン系カップリング剤またはチタン系カップリング剤で表面処理されていることが好ましい。また、ガラス繊維は、作業工程の取り扱い性から、120℃以下で軟化する収束剤により収束されていることが好ましい。収束フィラメント数は、特に制限されないが、好ましくは500〜20000フィラメント、より好ましくは1000〜5000フィラメントである。ロービングは10〜50ストランドからなり、各ストランドは100〜200フィラメントからなるものが好ましい。   Examples of the reinforcing fibers used in the fiber reinforced thermoplastic sheet include high elastic modulus fibers that are solid at the processing temperature of the thermoplastic resin used, and specifically, glass fibers, carbon fibers, aramid fibers, steels. Fiber, polyphenylene sulfide fiber, kenaf, cotton and the like can be used. Among these, glass fibers and carbon fibers, particularly carbon fibers, having a particularly high elastic modulus are preferable. As the glass fiber, E glass or S glass is preferable, and those having a single fiber diameter of 3 to 22 μm, more preferably 5 to 20 μm are particularly preferable. When the single fiber diameter is less than 3 μm, impregnation and defoaming are difficult, and when it exceeds 20 μm, the specific surface area becomes small and the effect of combining becomes small. The glass fiber is preferably surface-treated with a silane coupling agent or a titanium coupling agent in order to improve interfacial adhesion. Moreover, it is preferable that the glass fiber is converged by the sizing agent which softens at 120 degrees C or less from the handleability of a work process. The number of converging filaments is not particularly limited, but is preferably 500 to 20000 filaments, more preferably 1000 to 5000 filaments. The roving is composed of 10 to 50 strands, and each strand is preferably composed of 100 to 200 filaments.

炭素繊維としては、特に限定されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引っ張り強度20t/cm以上、引っ張り弾性率200GPa以上の炭素繊維が好ましい。炭素繊維の単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜20μmが好ましく、特に4〜15μmが好ましい。単繊維径が3μm未満では、含浸や脱泡が難しく、20μmを超えると、比表面積が小さくなり、複合化の効果が小さくなる。炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理を施されたものが好ましい。また、炭素繊維は、作業工程の取り扱い性から、120℃以下で軟化する収束剤により収束されていることが好ましい。収束フィラメント数は、特に制限されないが、好ましくは1000〜30000フィラメント、より好ましくは5000〜25000フィラメントである。 Although it does not specifically limit as carbon fiber, after processing fibers, such as a polyacrylonitrile fiber and a cellulose fiber, at 200-300 degreeC in the air, it baked at 1000-3000 degreeC or more in an inert gas, and is carbonized and manufactured. Carbon fibers having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. The single fiber diameter of the carbon fiber is not particularly limited, but is preferably 3 to 20 μm, and particularly preferably 4 to 15 μm, from the production line process of the composite. When the single fiber diameter is less than 3 μm, impregnation and defoaming are difficult, and when it exceeds 20 μm, the specific surface area becomes small and the effect of combining becomes small. The carbon fiber is preferably subjected to a treatment for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber is converged by a sizing agent that softens at 120 ° C. or less from the viewpoint of handling in the work process. The number of converging filaments is not particularly limited, but is preferably 1000 to 30000 filaments, more preferably 5000 to 25000 filaments.

繊維強化熱可塑性シートに使用される熱可塑性樹脂としては、ポリプロピレン、ポリアミド6、ポリアミド66、ポリアミドMXD6、ポリアミド12、ポリアミド11、ポリアミド6T共重合体、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリメチルペンテン、シンジオタクチックポリスチレンやこれらの共重合体やポリマーアロイ体などが挙げられる。これらの中では、ポリプロピレン、ポリアミド6、ポリアミドMXD6、ポリブチレンテレフタレートが、成形加工性と物性のバランスから好ましい。特に、ポリプロピレン、ポリアミド6、ポリアミドMXD6が好ましい。熱可塑性樹脂は、繊維との接着性を高めるために変性されているものが好ましい。例えば、極性基を有しないポリプロピレンやポリメチルペンテンやシンジオタクチックポリスチレンの場合、無水マレイン酸やイタコン酸のような不飽和酸やグリシジルメタクリレートのような不飽和エポキシによる変性されたものが好ましい。   The thermoplastic resin used for the fiber reinforced thermoplastic sheet is polypropylene, polyamide 6, polyamide 66, polyamide MXD6, polyamide 12, polyamide 11, polyamide 6T copolymer, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polymethyl. Examples include pentene, syndiotactic polystyrene, copolymers and polymer alloys thereof. Among these, polypropylene, polyamide 6, polyamide MXD6, and polybutylene terephthalate are preferable from the balance of moldability and physical properties. In particular, polypropylene, polyamide 6, and polyamide MXD6 are preferable. The thermoplastic resin is preferably modified so as to enhance the adhesion to the fiber. For example, in the case of polypropylene, polymethylpentene or syndiotactic polystyrene having no polar group, those modified with an unsaturated acid such as maleic anhydride or itaconic acid or an unsaturated epoxy such as glycidyl methacrylate are preferred.

ポリプロピレンとしては、アイソタクチックポリプロピレンのホモタイプ、ブロックタイプ、シンジオタクチックポリプロピレンなどが使用される。結晶性の低いアタクチックポリプロピレンは、複合材の成形加工性に劣るので本発明には好ましくない。ポリプロピレンにポリエチレンやポリブテンなど他のポリオレフィンがブロック共重合されたブロックタイプポリプロピレンも本発明に使用可能である。特に、耐衝撃性が要求される構造材用複合材料に好ましい。本発明の複合材料においては、さらに未変性ポリプロピレンを配合することでも本発明の目的が達成される。特に、使用される無水マレイン酸変性ポリプロピレンのメルトフローレートが100g/10minを越える場合、より高分子量の未変性ポリプロピレンをブレンドすることにより、混合体のメルトフローレートを30〜120g/10minに、好ましくは40〜100g/10minに調節することが好ましい。変性体と未変性体の合計質量に対して、無水マレイン酸変性量は、0.01〜4質量%、好ましくは0.02〜3質量%であり、変性体と未変性体の質量比は、4:6〜0.5:9.5、好ましくは2:8〜0.7:9.3である。変性体と未変性体の質量比が4:6未満では、経済的効果が小さく、0.5:9.5を超えると、炭素繊維とポリプロピレンの界面に対して変性体が不足して欠陥点となることがある。   As the polypropylene, isotactic polypropylene homotype, block type, syndiotactic polypropylene or the like is used. Atactic polypropylene having low crystallinity is not preferable for the present invention because it is inferior in molding processability of the composite material. Block type polypropylene in which other polyolefin such as polyethylene and polybutene is block copolymerized with polypropylene can also be used in the present invention. In particular, it is preferable for composite materials for structural materials that require impact resistance. In the composite material of the present invention, the object of the present invention can be achieved by further blending unmodified polypropylene. In particular, when the melt flow rate of the maleic anhydride-modified polypropylene used exceeds 100 g / 10 min, the melt flow rate of the mixture is preferably 30 to 120 g / 10 min by blending higher molecular weight unmodified polypropylene. Is preferably adjusted to 40 to 100 g / 10 min. The maleic anhydride modification amount is 0.01 to 4% by mass, preferably 0.02 to 3% by mass, with respect to the total mass of the modified and unmodified product, and the mass ratio of the modified and unmodified product is 4: 6 to 0.5: 9.5, preferably 2: 8 to 0.7: 9.3. If the mass ratio of the modified product to the unmodified product is less than 4: 6, the economic effect is small. If the mass ratio exceeds 0.5: 9.5, the modified product is insufficient with respect to the interface between the carbon fiber and the polypropylene, resulting in defects. It may become.

繊維強化熱可塑性シートに使用される熱可塑性樹脂は、その融点より30℃高い温度における21.2N荷重下のメルトフローレートが、好ましくは30〜150g/10minであり、より好ましくは50〜140g/10minである。30g/10min未満では、繊維への含浸性が低く、空隙率が高くなる場合がある。また、150g/10minを超えると、複合材料の溶融加工時、樹脂と繊維が分離しやすい。   The thermoplastic resin used for the fiber reinforced thermoplastic sheet has a melt flow rate under a 21.2N load at a temperature 30 ° C. higher than its melting point, preferably 30 to 150 g / 10 min, more preferably 50 to 140 g / min. 10 min. If it is less than 30g / 10min, the impregnation property to a fiber may be low and the porosity may become high. On the other hand, if it exceeds 150 g / 10 min, the resin and the fiber are easily separated during the melt processing of the composite material.

本発明に使用される複合材料には、上記の成分の他に、物性改良・成形性改良、耐久性改良を目的として、結晶核剤・離型剤、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などを配合することができる。   In addition to the components described above, the composite material used in the present invention includes a crystal nucleating agent / mold releasing agent, a lubricant, an antioxidant, a flame retardant, light resistance, for the purpose of improving physical properties, moldability, and durability. Agents, weathering agents and the like can be blended.

本発明で使用するランダム強化タイプ繊維強化熱可塑性樹脂シートの製造法は、特に限定されない。例えば、樹脂の融点以上に温度調節されたスクリュータイプ押出機のホッパーに熱可塑性樹脂や変性熱可塑性樹脂を所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。一方、ロービング状のガラス繊維や炭素繊維を拡張開繊し、含浸用押出機の上流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、ロービング繊維に樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の強化繊維と熱可塑性樹脂からなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料を10〜50mmにカットする。また、樹脂の融点以上に温度調節されたスクリュータイプ押出機の上流ホッパーに熱可塑性樹脂や変性熱可塑性樹脂や強化繊維を供給する。下流の出口ダイにロービング状強化繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを10〜50mmにカットする。カットされたテープ状プリプレグを平板状の型内にランダムにばらまき供給する。型を熱可塑性樹脂の融点より20〜100℃高い温度に加熱した後、圧縮し、型を高温結晶化温度より10〜120℃低い温度まで冷却して、強化繊維がランダム配向したシート状プリプレグを得る。このシート状プリプレグを圧縮成形することで本発明の繊維強化熱可塑性樹脂シートが得られる。   The manufacturing method of the random reinforcement type fiber reinforced thermoplastic resin sheet used by this invention is not specifically limited. For example, a thermoplastic resin or a modified thermoplastic resin is premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. On the other hand, roving-like glass fiber or carbon fiber is expanded and supplied upstream of the impregnation extruder. The resin is impregnated and defoamed in the roving fiber by resin pressure in an extruder for impregnation equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of the tape-like reinforcing fiber and the thermoplastic resin discharged from the downstream opening is cooled and wound up. Furthermore, this tape-shaped composite material is cut into 10 to 50 mm. In addition, a thermoplastic resin, a modified thermoplastic resin, and a reinforcing fiber are supplied to the upstream hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. Roving reinforcing fibers are supplied to the downstream outlet die, and the fiber feed rate and resin discharge rate are adjusted to obtain a strand-like fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. Cut this strand to 10-50 mm. The cut tape-shaped prepreg is randomly distributed in a flat plate mold. After heating the mold to a temperature 20 to 100 ° C. higher than the melting point of the thermoplastic resin, the mold is cooled, the mold is cooled to a temperature 10 to 120 ° C. lower than the high temperature crystallization temperature, and a sheet-like prepreg in which reinforcing fibers are randomly oriented is obtained. obtain. The fiber-reinforced thermoplastic resin sheet of the present invention is obtained by compression molding this sheet-like prepreg.

本発明の方法で得られた圧縮成形品は、例えば、赤外線加熱や高周波加熱して樹脂を加熱溶融し、圧縮成形機の金型に供給して、賦形冷却後脱型して構造材の部品に成形される。本発明の圧縮成形品から得られた成形部品は、例えば、自動車のフレーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。   The compression molded product obtained by the method of the present invention is, for example, heated and melted by infrared heating or high-frequency heating, supplied to a mold of a compression molding machine, demolded after shaping cooling, Molded into parts. The molded parts obtained from the compression molded product of the present invention are used for parts that require high strength and rigidity, such as automobile frames, two-wheeled vehicle frames, agricultural equipment frames, OA equipment frames, and machine parts. .

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
6000本の炭素繊維からなるロービング(東邦テナックス社IMS40)を4kg/Hになる速度で拡張開繊して含浸台のダイヘッドに供給した。ポリアミド6樹脂(東洋紡績製T802、融点227℃、1.2kg荷重下のメルトフローレート42g/10min)を、270℃に温度調節されたスクリュー式押し出し機のホッパーに投入し、溶融樹脂をギアポンプにより2kg/H計量して、含浸台のダイヘッドに供給した。含浸台で加圧含浸、脱泡後、幅10mm・高さ0.2mmのダイから含浸被覆されたテープ状プリプレグを押し出し、空冷固化した後、枷に巻き取った(炭素繊維67質量%、ポリアミド6樹脂32質量%)。
Example 1
A roving made of 6000 carbon fibers (Toho Tenax Co., Ltd. IMS40) was expanded and opened at a rate of 4 kg / H and supplied to the die head of the impregnation table. Polyamide 6 resin (Toyobo T802, melting point 227 ° C., melt flow rate 42 g / 10 min under 1.2 kg load) is put into the hopper of a screw type extruder adjusted to 270 ° C., and the molten resin is fed by a gear pump. It weighed 2 kg / H and supplied to the die head of the impregnation table. After pressure impregnation and defoaming on an impregnation stand, the tape-like prepreg coated with impregnation was extruded from a die having a width of 10 mm and a height of 0.2 mm, air-cooled and solidified, and then wound on a basket (67% by mass of carbon fiber, polyamide) 6 resin 32 mass%).

得られたプリプレグテープを35mmにカットし、短冊状のプリプレグテープを300mm×300mm×3mmの平板状の型内にランダムにばらまき供給する。型を280℃に加熱した後、圧縮し、型を120℃まで冷却して、強化繊維がランダム配向したプリプレグシートを得た。   The obtained prepreg tape is cut into 35 mm, and the strip-shaped prepreg tape is randomly distributed and supplied into a plate-shaped mold of 300 mm × 300 mm × 3 mm. The mold was heated to 280 ° C. and then compressed, and the mold was cooled to 120 ° C. to obtain a prepreg sheet in which reinforcing fibers were randomly oriented.

得られたプリプレグシートの中央部からx軸方向に10mm×150mmの曲げ試験片を5本、y軸方向に10mm×150mmに曲げ試験片を5本切り出した。この絶乾状態の試験片をデシケーターに入れ、23℃に温度調節した試験室に48時間保管した。万能引張試験機(オリエンテック社製テンシロンU500)を使用し、JIS K7171に準拠して、スパン長120mm、クロスヘッドスピード2mm/分にて3点曲げ試験を行った。x軸方向とy軸方向サンプルの曲げ弾性率の平均値(E,E)は、それぞれ117GPaと121GPaであった。この比E/Eは、1.03であった。 Five bending test pieces of 10 mm × 150 mm in the x-axis direction and five bending test pieces of 10 mm × 150 mm in the y-axis direction were cut out from the center portion of the obtained prepreg sheet. This completely dried test piece was placed in a desiccator and stored in a test room whose temperature was controlled at 23 ° C. for 48 hours. Using a universal tensile testing machine (Tensilon U500 manufactured by Orientec Co., Ltd.), a three-point bending test was performed at a span length of 120 mm and a crosshead speed of 2 mm / min in accordance with JIS K7171. The average values (E x , E y ) of the flexural modulus of the x-axis direction sample and the y-axis direction sample were 117 GPa and 121 GPa, respectively. The ratio E y / E x was 1.03.

縦25cm、横10cm、高さ5cm、コーナー15Rの凹部を有する下型(水平投影図:x軸a=26.9cm、y軸b=10.7cm)と成形品全体の肉厚が2.0mmになるように組み合わされた上型を圧縮成形機(神藤金属工業所製、圧力50t)に設置した。   Lower mold (horizontal projection: x-axis a = 26.9 cm, y-axis b = 10.7 cm) having a recess of 25 cm in length, 10 cm in width, 5 cm in height and corner 15R, and the total thickness of the molded product is 2.0 mm The upper mold combined so as to become was placed in a compression molding machine (manufactured by Shinto Metal Industry, pressure 50t).

上記で得られたプリプレグテープから、m=24.2,n=9.6cmとなるように凹部と相似形に切り出した。これを遠赤外線ヒータで250℃に加熱した。加熱されたプリプレグテープを、予め、180℃に温度調節した圧縮成形機の金型にx軸、y軸方向を合わせて凹部上に置き、40MPaの圧力を3分間かけた後、金型を140℃まで冷却して成形品を脱型した。   The prepreg tape obtained above was cut into a shape similar to a recess so that m = 24.2 and n = 9.6 cm. This was heated to 250 ° C. with a far infrared heater. The heated prepreg tape is placed on a concave portion with the x-axis and y-axis directions aligned with a mold of a compression molding machine whose temperature is adjusted to 180 ° C. in advance, and a pressure of 40 MPa is applied for 3 minutes. The molded product was demolded by cooling to 0 ° C.

圧縮成形により得られた箱型成形品の立ち上がり側面10cm×5cmと5cm×5cmのそれぞれ中央部において、鉛直方向(MD方向)と鉛直方向と直交する方向(TD方向)に幅7mm、長さ18mmの試験片を切り出した(図4参照)。   7 mm wide and 18 mm long in the vertical direction (MD direction) and the direction perpendicular to the vertical direction (TD direction) at the center of each of the rising side surfaces 10 cm × 5 cm and 5 cm × 5 cm of the box-shaped molded product obtained by compression molding The test piece was cut out (see FIG. 4).

切り出した試験片を23℃に温度調節された試験室中のデシケーター中で48時間保管した後、試験規格DIN53453に準じ、ダインスタット試験機(英弘精機社製)を使用して、8mmの片持ち状態で衝撃試験を行った。長手方向の側面中央部のMD方向、TD方向に切削した試験片のダインシュタット衝撃強度(I,I)は、それぞれ93KJ/m,89KJ/mであり、その比I/Iは0.96であった。また、短手方向の側面中央部のMD方向、TD方向に切削した試験片のダインシュタット衝撃強度(It2,Im2)は、それぞれ97KJ/m,91KJ/mであり、その比It2/Im2は0.94であった。試験後ISO3451−4に準拠して、500℃にて焼却して、繊維含有率を測定した。長手方向側面と短手方向の側面の灰分は、それぞれ灰分1=65%、灰分2=66%であった。得られた試験データを表1に示す。 The cut specimen is stored for 48 hours in a desiccator in a test room whose temperature is adjusted to 23 ° C., and then is cantilevered to 8 mm using a Dynestat tester (manufactured by Eihiro Seiki Co., Ltd.) according to test standard DIN 53453. The impact test was performed in the state. Longitudinal MD direction of the side surface center portion dynes Stadt impact strength of the test piece was cut in the TD direction (I t, I m) are each 93KJ / m 2, 89KJ / m 2, the ratio I t / I m was 0.96. Further, MD direction of the side surface center portion in the short direction, dynes Stadt impact strength of the test piece was cut in the TD direction (I t2, I m @ 2) are each 97KJ / m 2, 91KJ / m 2, the ratio I t2 / Im2 was 0.94. In accordance with ISO3451-4 after a test, it incinerated at 500 degreeC and the fiber content rate was measured. The ash content on the side surface in the longitudinal direction and the side surface in the short side direction was ash content 1 = 65% and ash content 2 = 66%, respectively. The test data obtained is shown in Table 1.

実施例2〜12
熱可塑性樹脂の種類や配合比、テープ状プリプレグ形状、プリプレグシートから切り出した前駆体のサイズおよび圧縮成形条件を表1に示したように変更した以外は、実施例1と全く同様にプリプレグを作製した後、箱型成形品を成形した。成形品から得られた試験片について、実施例と全く同様に、ダインシュタット衝撃強度、灰分を測定した。得られた試験データを成形条件とともに表1に示す。
Examples 2-12
A prepreg was produced in the same manner as in Example 1 except that the types and blending ratios of the thermoplastic resin, the tape-shaped prepreg shape, the size of the precursor cut out from the prepreg sheet, and the compression molding conditions were changed as shown in Table 1. After that, a box-shaped molded product was formed. The test pieces obtained from the molded products were measured for Dynestadt impact strength and ash content in exactly the same manner as in the Examples. The obtained test data is shown in Table 1 together with the molding conditions.

比較例1〜4
熱可塑性樹脂の種類や配合比、テープ状プリプレグ形状、プリプレグシートから切り出した前駆体のサイズおよびスタンピング成形条件を表2に示したように変更した以外は、実施例1と全く同様にプリプレグを作製した後、箱型成形品を成形した。なお、比較例1は、テープ状プリプレグを35mmにカットして得た短冊の長さ方向を意図的に、x方向に配置してプリプレグシートを得た。そのプリプレグシートのy方向の曲げ弾性率は、x方向のそれの0.3倍であった。成形品から得られた試験片について、実施例と全く同様に、ダインシュタット衝撃強度、灰分を測定した。得られた試験データを成形条件とともに表2に示す。
Comparative Examples 1-4
A prepreg was prepared in exactly the same manner as in Example 1, except that the types and blending ratios of the thermoplastic resin, the tape-shaped prepreg shape, the size of the precursor cut out from the prepreg sheet, and the stamping molding conditions were changed as shown in Table 2. After that, a box-shaped molded product was formed. In Comparative Example 1, the length direction of the strip obtained by cutting the tape-shaped prepreg into 35 mm was intentionally arranged in the x direction to obtain a prepreg sheet. The bending elastic modulus in the y direction of the prepreg sheet was 0.3 times that in the x direction. The test pieces obtained from the molded products were measured for Dynestadt impact strength and ash content in exactly the same manner as in the Examples. The obtained test data is shown in Table 2 together with the molding conditions.

表中の記号は以下の原料の使用を意味する。
MAH:ポリプロピレンW101(住友化学製)98.5質量部に、ジクミルパーオキサイド(日本油脂社製パークミルD)0.5質量部、粉末化した無水マレイン酸(ナカライテスク社製)2質量部を予備混合して、190℃に温度調節された二軸押出機のホッパーに供給して、スクリュウ80回転/分にて溶融反応して得たストランドを水槽で冷却固化して得られた無水マレイン酸変性ポリプロピレン(MFR50g/min)、融点165℃
T802:ポリアミド樹脂PA6(東洋紡績製、250℃におけるMFR73g/10min,融点227℃)
EMC700:ポリブチレンテレフタレート(東洋紡績製、250℃におけるMFR60g/10min、融点225℃)
GF−R:ガラス繊維ロービング(日本電気硝子製、AR2500H−103、31ストランド)
CF−R:炭素繊維、東邦テナックス製、IMS40(単繊維径6.4μm、6000フィラメント)
The symbols in the table mean the use of the following raw materials.
MAH: Polypropylene W101 (manufactured by Sumitomo Chemical Co., Ltd.) 98.5 parts by mass, dicumyl peroxide (Nippon Yushi Co., Ltd. Park Mill D) 0.5 parts by mass, powdered maleic anhydride (manufactured by Nacalai Tesque) 2 parts by mass Maleic anhydride obtained by premixing, feeding to a hopper of a twin screw extruder whose temperature is adjusted to 190 ° C., and melting and reacting at 80 rpm of the screw and solidifying by cooling in a water bath Modified polypropylene (MFR 50 g / min), melting point 165 ° C.
T802: Polyamide resin PA6 (manufactured by Toyobo, MFR 73 g / 10 min at 250 ° C., melting point 227 ° C.)
EMC700: polybutylene terephthalate (Toyobo, MFR 60 g / 10 min at 250 ° C., melting point 225 ° C.)
GF-R: Glass fiber roving (Nippon Electric Glass, AR2500H-103, 31 strands)
CF-R: Carbon fiber, manufactured by Toho Tenax, IMS40 (single fiber diameter 6.4 μm, 6000 filament)

表1,2からわかるように、実施例1〜12の圧縮成形品は、ダインシュタット衝撃強度の数値に異方性がなく、強化繊維の含有率の数値にも異方性がなかった。これに対して、比較例1〜4の圧縮成形品は、実施例のものとは異なり、これらの異方性が著しかった。   As can be seen from Tables 1 and 2, the compression molded products of Examples 1 to 12 had no anisotropy in the numerical value of Dynestadt impact strength, and there was no anisotropy in the numerical value of the content of reinforcing fibers. On the other hand, the compression molded products of Comparative Examples 1 to 4 differed from those of Examples in that the anisotropy was remarkable.

本発明の方法によれば、高い強度や剛性が変形方向や場所によらず達成される、機械的性質の信頼性が高い圧縮成形品が提供される。また、本発明の方法は、成形品の弱点が解消できることから、設計品質強度や剛性を高く設定でき、薄肉化など製品設計の自由度が高い。従って、本発明の方法は、高い強度と剛性の必要な成形部品の製造に極めて有用である。   According to the method of the present invention, it is possible to provide a compression-molded article having high reliability of mechanical properties, in which high strength and rigidity are achieved regardless of the deformation direction and location. Moreover, since the weak point of a molded product can be eliminated, the method of the present invention can set high design quality strength and rigidity, and has a high degree of freedom in product design such as thinning. Therefore, the method of the present invention is extremely useful for producing molded parts that require high strength and rigidity.

Claims (3)

シート上の任意のx軸方向とこれに直交するy軸方向にそれぞれ切削した試験片の曲げ弾性率の比が4/5〜5/4であるランダム強化タイプ繊維強化熱可塑性樹脂シートから切削した複合材料を金型の凹部に少なくとも一層配置して圧縮成形する方法において、金型の凹部の水平面への投影図において、最も長い軸をx軸とし、この中点と直交する軸をy軸とし、この金型の凹部のx軸とy軸の長さをそれぞれa,bとしたとき、a/bが2.0以上であり、複合材料のx軸方向の長さm,y軸方向の長さnが下記式(i)および(ii)を満足することを特徴とする方法:
0.8≦m/a<1.0 (i)
0.8≦n/b<1.0 (ii)
Cutting was performed from a random reinforcing type fiber reinforced thermoplastic resin sheet having a bending elastic modulus ratio of 4/5 to 5/4 of a specimen cut in an arbitrary x-axis direction on the sheet and a y-axis direction orthogonal thereto. In the method of compression molding by arranging at least one layer of the composite material in the concave portion of the mold, the longest axis is the x-axis and the axis orthogonal to the midpoint is the y-axis in the projection of the concave portion of the mold onto the horizontal plane. When the x-axis and y-axis lengths of the recess of this mold are a and b, respectively, a / b is 2.0 or more, and the x-axis length m and y-axis direction of the composite material A method wherein the length n satisfies the following formulas (i) and (ii):
0.8 ≦ m / a <1.0 (i)
0.8 ≦ n / b <1.0 (ii)
ランダム強化タイプ繊維強化熱可塑性樹脂シートが、無撚で長さ10〜50mmの強化繊維50〜85質量%、および熱可塑性樹脂50〜15質量%からなり、一軸方向に配向した強化繊維に熱可塑性樹脂を含浸して得られたプリプレグテープを10〜50mmにカットし、その短冊をランダムに配置した後、予備加熱成形し、強化繊維を実質的に無方向に分散したものであることを特徴とする請求項1に記載の方法。 Random reinforcement type fiber reinforced thermoplastic resin sheet is composed of 50 to 85% by mass of reinforcing fiber having a length of 10 to 50 mm and 50 to 15% by mass of thermoplastic resin and 50 to 15% by mass of thermoplastic resin. The prepreg tape obtained by impregnating the resin is cut into 10 to 50 mm, the strips are randomly arranged, preheated, and the reinforcing fibers are dispersed substantially non-directionally. The method of claim 1 . プリプレグテープが、1000〜30000本を集束した強化繊維からなり、短冊が、10〜50mmの長さと同じかまたはこれより小さい幅を有することを特徴とする請求項に記載の方法。 The method according to claim 2 , wherein the prepreg tape is composed of reinforcing fibers in which 1000 to 30,000 fibers are bundled, and the strip has a width equal to or smaller than a length of 10 to 50 mm.
JP2010195269A 2010-09-01 2010-09-01 Compression molding method for fiber reinforced thermoplastic resin sheet Active JP5789933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195269A JP5789933B2 (en) 2010-09-01 2010-09-01 Compression molding method for fiber reinforced thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195269A JP5789933B2 (en) 2010-09-01 2010-09-01 Compression molding method for fiber reinforced thermoplastic resin sheet

Publications (3)

Publication Number Publication Date
JP2012051225A JP2012051225A (en) 2012-03-15
JP2012051225A5 JP2012051225A5 (en) 2013-09-05
JP5789933B2 true JP5789933B2 (en) 2015-10-07

Family

ID=45905153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195269A Active JP5789933B2 (en) 2010-09-01 2010-09-01 Compression molding method for fiber reinforced thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JP5789933B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603821B2 (en) * 2012-01-23 2020-03-31 The Boeing Company Narrow flake composite fiber material compression molding
JP6089545B2 (en) * 2012-09-28 2017-03-08 東洋紡株式会社 Water-stop door board, and sluice gate, lock gate and pipe with the same
US10961360B2 (en) 2014-01-10 2021-03-30 Komatsu Matere Co., Ltd. Fiber-reinforced resin material and molded fiber-reinforced resin body obtained using the same
WO2015178225A1 (en) * 2014-05-20 2015-11-26 富士フイルム株式会社 Print head inspection method, printing method, print head inspection device, and printer
JP5952510B2 (en) * 2014-06-20 2016-07-13 帝人株式会社 Method for producing molded body having opening

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507565B2 (en) * 1988-11-24 1996-06-12 東レ株式会社 Composite board of thermoplastic resin and reinforcing fiber
JP2885038B2 (en) * 1993-12-13 1999-04-19 東洋紡績株式会社 Fiber reinforced thermoplastic resin sheet and method for producing the same
JP3579150B2 (en) * 1994-11-14 2004-10-20 横浜ゴム株式会社 Vehicle tire pressure monitoring system
JP2877052B2 (en) * 1995-12-01 1999-03-31 東洋紡績株式会社 Fiber reinforced thermoplastic resin sheet
TWI414543B (en) * 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same

Also Published As

Publication number Publication date
JP2012051225A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5938299B2 (en) Fiber reinforced resin composition
US10006677B2 (en) Method for manufacturing shaped product with maintained isotrophy
TWI500664B (en) Reinforced fiber composites
JP5712464B2 (en) Carbon long fiber reinforced composite material
JP5564839B2 (en) Stamping molded products
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
TW201442862A (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
JP5749343B2 (en) Method for producing composite molded body having undercut portion
JP5812439B2 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP6453575B2 (en) Fiber reinforced resin composition
TW201545866A (en) Preform, sheet material, and integrated sheet material
JP5650559B2 (en) Method for producing composite molded body
JP6711876B2 (en) Fiber reinforced resin composition
JP2000141502A (en) Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product
JP2014173006A (en) Carbon filament-reinforced polyamide composite material for compression molding
JP2013049750A (en) Organic fiber random mat and fiber composite material using the same
JP6031884B2 (en) Long fiber reinforced polyamide resin molded product
JP7176236B2 (en) Thermoplastic prepreg sheet
JPH0330916A (en) Manufacture of fiber reinforced plastic molded product
JP2646028B2 (en) Molding materials and mixtures thereof
JP6972539B2 (en) Fiber-reinforced thermoplastic resin molded product and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150515

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5789933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350