JP2011103478A - 半導体装置および電力変換装置 - Google Patents

半導体装置および電力変換装置 Download PDF

Info

Publication number
JP2011103478A
JP2011103478A JP2010287438A JP2010287438A JP2011103478A JP 2011103478 A JP2011103478 A JP 2011103478A JP 2010287438 A JP2010287438 A JP 2010287438A JP 2010287438 A JP2010287438 A JP 2010287438A JP 2011103478 A JP2011103478 A JP 2011103478A
Authority
JP
Japan
Prior art keywords
field
field plate
semiconductor device
limiting ring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010287438A
Other languages
English (en)
Inventor
Yasuhiko Kono
恭彦 河野
Mutsuhiro Mori
睦宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010287438A priority Critical patent/JP2011103478A/ja
Publication of JP2011103478A publication Critical patent/JP2011103478A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】電圧印加によるフィールドプレートの劣化を防止し、信頼性の高い半導体装置を提供する。
【解決手段】半導体装置は、電流を通電するアクティブ領域に隣接して形成したターミネーション領域に、フィールドリミッティングリング114と、フィールドプレート111,115とを形成し、前記フィールドプレートが抵抗体であって、前記フィールドプレートの抵抗率が、5×10-3Ωcm以上であって、前記フィールドプレートが多結晶シリコンであり、前記フィールドプレートとフィールドリミッティングリングとの間に絶縁物層を形成して、フィールドリミッティングリングとフィールドプレートとを絶縁した。
【選択図】図1

Description

本発明は、インバータなどの電力変換装置に使われる半導体装置にかかり、特にフィールドプレートを備えた半導体装置に関する。
現在、IGBTが電力制御に広く使われている。IGBTは、制御が簡単、大電力を扱える、数Hzから数kHzの幅広い周波数で使える、などの特徴を持つので、家庭用エアコンや電子レンジなどの小電力から、工場の空調やエレベータのモーター制御などの大電力まで幅広く使われている。
前記大電力用途ではIGBTに300V〜1200Vの高い電圧が印加される。この電圧に耐えるためにIGBTチップの周辺部分には電界を緩和するためのターミネーション領域が設けられている。従来技術のIGBTのターミネーションの構造に、フィールドリミッティングリングとフィールドプレートを組合せた構成がある。この詳細は、コロナ社刊のパワーデバイス・パワーICハンドブックp59に記載がある。
図2にフィールドリミッティングリングとフィールドプレートとを組合せた従来技術のターミネーションの断面構造例を示す。図2の左側は電流の通電領域であるアクティブ領域であり、右側がターミネーション領域である。図2で符号101は高濃度のp導電型のコレクタ層、102は高濃度のn導電型のバッファ層、103は低濃度のn導電型のドリフト層、104はp導電型のベース層、105は高濃度のp導電型のコンタクト層、106は高濃度のn導電型のエミッタ層、107はp導電型のウェル層、108はゲート酸化膜、109は多結晶シリコンゲート、110は層間絶縁膜、111はフィールドプレート、112は表面保護膜、113はフィールド酸化膜、114はフィールドリミッティングリング層、115はフィールドプレート、116はガードリング、117は高濃度のn導電型のチャネルストッパー層、118はコレクタ電極、119はエミッタ電極を示す。
図2の構造の働きを簡単に説明する。エミッタ電極119の電位を0電位(アース電位)とし、多結晶シリコンゲート109の電位をエミッタ電極119の電位と同じかもしくはエミッタ電極109の電位より低く、例えば−15Vとし、コレクタ電極118に正の電圧を加えると、ベース層104及びウェル層107とドリフト層103との間に形成されているpn接合から空乏層が拡がる。
空乏層がフィールドリミッティングリング114に到達すると、フィールドリミッティングリング114とアルミのフィールドプレート201との働きによりチップ外周部(図2の右側)に空乏層がさらに引き延ばされて電界の集中を緩和し、降伏を阻止する。また、空乏層が延び過ぎてチップ端部に接地して電流が流れることを防止するために、アルミのガードリング202が設けられており、チャネルストッパー層117を介してコレクタ電極118の電位をガードリング202に伝え、空乏層の延びを抑制する。
しかしながら、上記従来技術では以下の問題点がある。図2の構造の等価回路を図3に示す。図3で、符号301はウェル層107とドリフト層103との接合の静電容量Cpn1、302はウェル層107とフィールドリミッティングリング114との間のドリフト層の抵抗Rd1、303はフィールドリミッティングリング114と多結晶シリコンのフィールドプレート201との接触抵抗Rcnt、304はフィールドプレート201の抵抗Rfp、305はフィールドプレート201とドリフト層103との間に形成される静電容量Cfp、306はフィールドリミッティングリング114とドリフト層103の間の静電容量Cpn2、307はドリフト層103の抵抗Rd2である。
ターミネーション領域に急激に高い電圧が加わると空乏層が急速に拡がる。電圧が増加すると初めにCpn1が充電される。この時、図3中のノードAからコレクタまでは同電位であり、電圧はCpn1に加わっている。次に、空乏層がフィールドリミッティングリング114に到達すると、Cpn2とCfpとの充電が始まり、フィールドリミッティングリング114から空乏層が拡がり始める。この時、ノードBはコレクタ電位になっている。Cpn2とCfpには容量を充電するための電流がそれぞれ流れる。Cfpの充電電流はフィールドプレート201の内部を流れフィールドリミッティング層114に流れ込む。
フィールドプレート201がアルミやタングステンなどの金属電極で形成されていると、抵抗率が小さいためにRfpはほぼ0と見なせる。また、フィールドリミッティングリング114は、空乏層を広げるために高濃度のp型不純物で形成されており、フィールドリミッティング層114とフィールドプレートの接触抵抗は十分に小さいため、Rcntもほぼ0と見なせる。Cpn2は空乏層の広がりとともに小さくなるので、電圧が増加し空乏層が拡大すると、Cfpに比べて十分に小さくなる。
このために、Cfpには空乏層の広がりに伴い大きな電流が流れ、短時間であるが1×105A/cm2もの高い電流密度になる場合がある。このような大きな電流密度の電流が生じると、電子の運動エネルギーでアルミの原子が電子の流れの方向に移動を起こすエレクトロマイグレーション現象が発生し、アルミ中に隙間ができたり、アルミが断線したりする問題が生じる。また、マイグレーションが起こるとフィールドプレート201とフィールド酸化膜113、またはフィールドプレート201と表面保護膜112の間の剥離も引き起こし、耐圧を低下させる問題がある。
本発明の目的は、上述の問題点を解決するものであって、電圧印加によるフィールドプレートの劣化を防止し、信頼性の高い半導体装置を提供することである。
本発明の半導体装置は、電流を通電するアクティブ領域と、アクティブ領域に隣接して形成され、電界を緩和するターミネーション領域とを備え、前記ターミネーション領域には、フィールドリミッティングリングと、該フィールドリミッティングリングに接触形成され、電界を緩和するフィールドプレートとが形成され、前記フィールドプレートが抵抗体であって、前記フィールドプレートの抵抗率が、5×10-3Ωcm以上である。
本発明の半導体装置は、前記フィールドプレートが多結晶シリコンであり、前記フィールドプレートとフィールドリミッティングリングとの間に絶縁物層を形成して、フィールドリミッティングリングとフィールドプレートとを絶縁した。
本発明の半導体装置は、一対の主表面を有する一方導電型の半導体基体と、前記半導体基体の一方の主表面に隣接して形成され、電流を通電するアクティブ領域と、前記半導体基体の一方の主表面に隣接し、前記アクティブ領域を包囲して前記半導体基体内に形成された他方導電型のフィールドリミッティング層とを備え、前記フィールドリミッティング層に接触し、前記半導体基体の一方の主表面上で前記フィールドリミッティング層に接触形成され、前記半導体基体上に絶縁膜を介して延在する抵抗体からなるフィールドプレートとを有する。
以上説明したように本発明によれば、ターミネーション領域への急激な電圧印加時にフィールドプレートに流れる電流を低減して、エレクトロマイグレーション現象や、フィールドプレートとフィールド酸化膜,フィールドプレートと表面保護膜の剥離を防止でき、素子の寿命を向上出来る。また、素子に印加される電圧の増加率を抑えることにより、素子から発生するノイズを低減でき、電力変換装置の小型化,低コスト化が達成できる。
実施例1の断面図である。 従来技術のターミネーション領域の断面図である。 従来技術のターミネーション領域の等価回路である。 本実施例2の平面図である。 図4のA−Bの断面図である。 図4のC−Dの断面図である。 実施例3の断面図である。 実施例4の平面図である。 実施例4の回路図である。
以下、本発明の実施例を図面に基づいて詳細に説明する。なお、各実施例を説明する図において、同一の機能を有するものには同一の符号で示す。以下、本発明の実施例をIGBTを例に説明するが、半導体装置はIGBTに限定されるものではなく、フィールドリミッティングリングとフィールドプレートを備えたMOSFETやその他の半導体装置にも同様に適用できる。
(実施例1)
図1に本実施例を示す。図1の符号111と115とは多結晶シリコンのフィールドプレート、116は多結晶シリコンのガードリングを示す。
本実施例では、フィールドプレートに多結晶シリコンを用いる。この多結晶シリコンは、化学的堆積法によってシリコン基板表面に堆積された膜であり、膜の堆積時に不純物を混入して膜の電気抵抗率を500×10-6Ωcm〜1Ωcmというアルミニウムやタングステンやクロムなどの金属電極の10倍以上の大きさにできる。また、混入する不純物濃度を調整し抵抗率を高くすると、フィールドプレートの抵抗Rfpが大きくなる。フィールドプレートの抵抗Rfpが大きくなると、フィールドプレートに電流が流れ難くなるので、急激な高電圧の印加時にフィールドプレートに流れる突入電流を抑制する。
エレクトロマイグレーション現象は、フィールドプレートを流れる電流の密度が1×105A/cm2になると発生する。電流密度を、この値の約1/10より小さくするとエレクトロマイグレーションが発生しないことが既にわかっている。従って、フィールドプレートの抵抗Rfpを金属電極の10倍とし、突入電流密度を前記のように1/10に抑制すれば、エレクトロマイグレーション現象が防止できる。そこで、本実施例ではフィールドプレートの多結晶シリコンの抵抗率を5×10-3Ωcm以上にした。また、本実施例ではフィールドプレートの抵抗率を金属電極と同じにして、厚みを金属電極の1/10以下にしてもよい。
さらに、本実施例では、空乏層の拡大時のフィールドプレートとドリフト層との間に形成される静電容量Cfpの充電電流を抑制するので、空乏層が広がる速度が低下する。空乏層が広がる速度が低下するとIGBT両主端子に印加される電圧の増加が遅くなり、電圧変化が原因で発生するノイズが低減する。
(実施例2)
図4に本実施例の平面構造を示す。また図5と図6に図4中の断面A−B及び断面C−Dをそれぞれ示す。図4乃至図6において、図1から図3と同一の構成要素には同じ符号を付けてある。図4で、符号401はアルミコンタクト電極、402はコンタクトを示す。
本実施例は、多結晶シリコンのフィールドプレート115とフィールドリミッティング層114との接続を、アルミコンタクト電極401のコンタクト402の部分だけに制限した。本実施例の構成は、多結晶シリコンのフィールドプレート115とフィールドリミッティングリング114との接続面積が少ないため、フィールドプレートとシリコンとの接触点との距離が長くでき、図3に示す抵抗Rfpを大きくできる。
また、本実施例の構成は接触点の面積が小さいので、図3に示すRcntも大きくでき、さらに抵抗を増大できる。このように本実施例によれば、平面レイアウトを変更してRfpとRcntとを大きくでき、エレクトロマイグレーション現象を防止する。また、本実施例の構成によれば、平面レイアウトの変更だけでRfpとRcntを増やせるので、不純物濃度を調整したり電極の厚みを変更するなどの製造プロセスの変更無しで、エレクトロマイグレーションを防止できる。本実施例でも実施例1と同様に、IGBT両主端子の印加電圧の増加速度を抑え、ノイズを低減する。
(実施例3)
図7に本実施例の断面構造を示す。また、図8は図7の等価回路を示す。図7と図8において、図1から図6と同一の構成要素には同じ符号を付けてある。図8の符号801は多結晶シリコンのフィールドプレート115とフィールドリミッティングリング114との間に形成される静電容量Ccntである。
本実施例では、多結晶シリコンのフィールドプレート115とフィールドリミッティングリング114との間に、ゲート酸化膜108によって静電容量Ccntを形成した。Cfpと直列にCcntを挿入すると、(数1)式に示すようにドリフト層103から多結晶シリコンのフィールドプレート115を経由してフィールドリミッティングリング114に至るパスの全静電容量Callが小さくなる。
Call=Cfp×Ccnt/(Cfp+Ccnt) …(数1)
フィールドプレート115に流れる電流Ifpは(数2)式で表現できる。
Ifp=dQ/dt
=d(Ca11V)/dt
=CalldV/dt+Vd(Call)/dt …(数2)
(数2)式中、Vはドリフト層103とフィールドリミッティング層114の電位差である。ここで、全静電容量Callは酸化膜の容量であって、変化しないので(数2)式のVd(Call)/dtの項は0となるので、(数2)式は(数3)式になる。
Ifp=CalldV/dt …(数3)
(数1)式に示したようにCcntをCfpに直列に挿入して全静電容量Ca11を低減すると、(数3)式に示すようにIfpを低減できる。
このように本実施例は、多結晶シリコンのフィールドプレート115とフィールドリミッティングリング114の間に絶縁膜で容量Ccntを形成して、Ifpを低減し、エレクトロマイグレーション現象を防止する。
また、Cfpそのものを低減して全静電容量Callを低減しても良い。ここで、Cfpは(数4)式のよう表現できる。
Cfp=εSiO×A/d …(数4)
(数4)中、εSiOは酸化膜の誘電率、Aは多結晶シリコンのフィールドプレート115とドリフト層103が対向する面積、dはフィールド酸化膜113の厚みをそれぞれ示す。(数4)式から、酸化膜の誘電率を低減することと、フィールド酸化膜113とドリフト層103の対向する面積を低減することと、フィールド酸化膜113の厚さを低減することとの何れか1つ以上を行うことで
Cfpを低減できる。
本実施例では、多結晶シリコンのフィールドプレート115とフィールドリミッティングリング114との間にゲート酸化膜108を配置し、静電容量Ccntを形成する構成を説明したが、Ccntを構成する酸化膜は、ゲート酸化膜108だけでなく、フィールド酸化膜113でも良い。フィールド酸化膜113は、ゲート酸化膜108より厚いために容量が小さく、Callをより小さくできる。しかし、あまり静電容量Ccntを小さくすると、フィールドリミッティングリング層114と多結晶シリコンのフィールドプレート115との間の電位差が大きくなり、期待するフィールドプレート効果が得られないため、望ましくはCcntを構成する酸化膜はフィールド酸化膜113と同じかそれより薄いものがよい。
本実施例でも実施例1と同様に、IGBT両主端子の印加電圧の増加速度を抑え、ノイズを低減する。
(実施例4)
本実施例は、実施例1〜3のIGBTを電力変換装置であるインバータ装置に適用した。本実施例のインバータ装置は図示しないが、交流電源を入力して直流に変換するコンバータ部と、コンバータ部が出力する直流を平滑する平滑コンデンサと、直流を3相交流に変換するインバータ部と、コンバータ部とインバータ部とを制御する制御部とを備えている。インバータ部は、制御部の出力信号を受けて、ゲート信号をパルス幅変調(PWM)し、IGBTの出力を制御している。
図9に本実施例のインバータ部のIGBTモジュール部の等価回路図を示す。図9において符号901〜906は本発明のIGBT、907〜912はIGBTのゲート端子、913〜914は直流入力端子、915〜917は交流出力端子を示す。
本実施例のインバータ装置は、実施例1〜3のIGBTを適用したので発生するノイズが小さい。このため、従来のインバータ装置に必須であった、ノイズフィルターや、インバータからのノイズの漏れを防止するための隔壁や容器を使用条件に応じて不要にできるので、インバータ装置を小型で低コストにできる。
本実施例のインバータ装置は、直流電源を利用できる場合には上記コンバータ部を省いた構成にすればよい。本実施例のインバータ装置は、素子の寿命が長く、ノイズの発生が少ないので、電車や自動車など高い電圧条件下で10年程度の長期間に渡って使用される用途にも好適である。
本実施例ではインバータ装置について説明したが、コンバータ装置や、チョッパーなどの半導体電力変換装置にも同様に本発明のIGBTを適用できる。
101…コレタタ層、102…バッファ層、103…ドリフト層、104…ベース層、105…コンタクト層、106…エミッタ層、107…ウェル層、108…ゲート酸化膜、109…多結晶シリコンゲート、110…層間絶縁膜、111…フィールドプレート、112…表面保護膜、113…フィールド酸化膜、114…フィールドリミッティングリング、115…フィールドプレート、116…ガードリング、117…チャネルストッパー層、118…コレクタ電極、119…エミッタ電極、201…フィールドプレート、202…ガードリング、401…アルミコンタクト電極、402…コンタクト、901〜906…IGBT、907〜912…ゲート端子、913〜914…入力端子、915〜917…出力端子。

Claims (4)

  1. 半導体基板の主表面に電流を通電するアクティブ領域と、該アクティブ領域に隣接して形成され、電界を緩和するターミネーション領域とを備えた半導体装置において、
    前記ターミネーション領域に設けられたフィールドリミッティングリングと、
    前記アクティブ領域に設けられたフィールドプレートと、
    該アクティブ領域のフィールドプレートとは分離して、前記ターミネーション領域に形成された電界を緩和するフィールドプレートと、
    該フィールドプレートと前記フィールドリミッティングリングとの間に形成されたフィールド酸化膜とを備え、
    前記ターミネーション領域のフィールドプレートは多結晶シリコンで形成されたことを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置において、
    前記アクティブ領域に設けられたフィールドプレートは、前記アクティブ領域の電極と電気的に接続していることを特徴とする半導体装置。
  3. 請求項1に記載の半導体装置において、
    前記ターミネーション領域のフィールドプレートの抵抗率が、5×10−3Ωcm以上であることを特徴とする半導体装置。
  4. 一対の直流端子と、交流出力の相数と同数の交流端子と、一対の直流端子間に接続され、それぞれスイッチング素子と逆極性のダイオードの並列回路を2個直列接続した構成からなり、並列回路の相互接続点が異なる交流端子に接続された交流出力の相数と同数のインバータ単位とを具備する電力変換装置において、
    前記スイッチング素子が請求項1乃至3に記載の半導体装置であることを特徴とする電力変換装置。
JP2010287438A 2010-12-24 2010-12-24 半導体装置および電力変換装置 Pending JP2011103478A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287438A JP2011103478A (ja) 2010-12-24 2010-12-24 半導体装置および電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287438A JP2011103478A (ja) 2010-12-24 2010-12-24 半導体装置および電力変換装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001358654A Division JP4684505B2 (ja) 2001-11-26 2001-11-26 半導体装置および電力変換装置

Publications (1)

Publication Number Publication Date
JP2011103478A true JP2011103478A (ja) 2011-05-26

Family

ID=44193660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287438A Pending JP2011103478A (ja) 2010-12-24 2010-12-24 半導体装置および電力変換装置

Country Status (1)

Country Link
JP (1) JP2011103478A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125468A (ja) * 1988-06-16 1990-05-14 Hyundai Electron Ind Co Ltd 高電圧用半導体素子およびその製造方法
JPH06283727A (ja) * 1993-03-26 1994-10-07 Fuji Electric Co Ltd 電力用半導体素子
JP2001135819A (ja) * 1999-08-23 2001-05-18 Fuji Electric Co Ltd 超接合半導体素子
JP2001153012A (ja) * 1999-11-25 2001-06-05 Hitachi Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125468A (ja) * 1988-06-16 1990-05-14 Hyundai Electron Ind Co Ltd 高電圧用半導体素子およびその製造方法
JPH06283727A (ja) * 1993-03-26 1994-10-07 Fuji Electric Co Ltd 電力用半導体素子
JP2001135819A (ja) * 1999-08-23 2001-05-18 Fuji Electric Co Ltd 超接合半導体素子
JP2001153012A (ja) * 1999-11-25 2001-06-05 Hitachi Ltd 半導体装置

Similar Documents

Publication Publication Date Title
JP4644730B2 (ja) 半導体装置及びそれを用いた電力変換装置
CN103022095B (zh) 具有横向元件的半导体器件
US7638839B2 (en) Power semiconductor device and power conversion device using the same
JP5477681B2 (ja) 半導体装置
US9768160B2 (en) Semiconductor device, electronic circuit and method for switching high voltages
JP4684505B2 (ja) 半導体装置および電力変換装置
US8017996B2 (en) Semiconductor device, and energy transmission device using the same
US20120119318A1 (en) Semiconductor device with lateral element
JP2016162855A (ja) 半導体装置およびそれを用いた電力変換装置
JP5135666B2 (ja) 電力変換装置
JP6925250B2 (ja) 半導体装置およびその製造方法
JP3524395B2 (ja) 半導体スイッチング素子
WO2016002057A1 (ja) 半導体装置、パワーモジュール、電力変換装置、3相モータシステム、自動車、並びに鉄道車両
JP3284120B2 (ja) 静電誘導トランジスタ
EP1793423A2 (en) Power semiconductor device and power conversion device using the same
JP3771135B2 (ja) 半導体開閉器
US8546889B2 (en) Semiconductor device and driving circuit
Vladimirova et al. Single die multiple 600 V power diodes with deep trench terminations and isolation
JP2003347549A (ja) 半導体装置およびそれを用いた電力変換装置
CN105720095A (zh) 半导体器件
JP2011103478A (ja) 半導体装置および電力変換装置
JP3686285B2 (ja) ショットキーダイオードおよびそれを用いた電力変換装置
JP2007243212A (ja) 半導体装置およびそれを用いた電力変換装置
WO2023112570A1 (ja) 半導体装置および電力変換装置
US20230261040A1 (en) Semiconductor device including substrate layer with floating base region and gate driver circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604