JP2011086378A - Aqueous paste for forming electrode of electrical storage device - Google Patents

Aqueous paste for forming electrode of electrical storage device Download PDF

Info

Publication number
JP2011086378A
JP2011086378A JP2008029626A JP2008029626A JP2011086378A JP 2011086378 A JP2011086378 A JP 2011086378A JP 2008029626 A JP2008029626 A JP 2008029626A JP 2008029626 A JP2008029626 A JP 2008029626A JP 2011086378 A JP2011086378 A JP 2011086378A
Authority
JP
Japan
Prior art keywords
aqueous
paste
electrode
conductive
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029626A
Other languages
Japanese (ja)
Inventor
Ryoji Yamada
亮治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008029626A priority Critical patent/JP2011086378A/en
Priority to PCT/JP2009/051382 priority patent/WO2009098986A1/en
Publication of JP2011086378A publication Critical patent/JP2011086378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous paste for forming an electrical storage device electrode in which an electrode active material, a conductive assistant and a binder are dispersed finely and homogeneously and which has a high processability, little environmental load, and little risk to impair human health, and to provide an electrical storage device electrode formed of the aqueous paste. <P>SOLUTION: The aqueous paste for forming an electrical storage device electrode is a conductive carbonaceous material containing an electrode active material, a conductive assistant and a binder, and the conductive assistant has a hydrophilic property. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蓄電素子電極形成用水性ペースト、及びその水性ペーストから形成される蓄電素子電極を有する蓄電素子に関する。   The present invention relates to an aqueous paste for forming an electricity storage element electrode and an electricity storage element having an electricity storage element electrode formed from the aqueous paste.

蓄電素子はモバイル機器用エネルギ源、車載用蓄放電システム・エネルギ源、電力貯蔵システム用等としてさまざまな機構・形態の素子が広く利用されている。これら素子には、高出力、高エネルギ密度、低温下、高温下等のさまざまな環境にあっても安心して使用できる信頼性、不測の事態にも安全である等の特性が求められる。従来その特性を改善するための検討は、機能を担う主たる材料の改良にあった。しかしながら、それらの材料の持つ特性を如何なく発揮できる素子構造、特に電極コンポジット構造を実現するための製造方法の検討も極めて重要である。   As energy storage elements, elements having various mechanisms and forms are widely used as energy sources for mobile devices, in-vehicle storage / discharge systems / energy sources, power storage systems, and the like. These elements are required to have characteristics such as high output, high energy density, reliability that can be used with confidence even in various environments such as low temperature and high temperature, and safety even in unexpected situations. Conventionally, the study for improving the characteristics has been on the improvement of the main material responsible for the function. However, it is extremely important to study a manufacturing method for realizing an element structure that can exhibit the characteristics of these materials as much as possible, particularly an electrode composite structure.

蓄電素子の電極は、少なくとも主たる機能を担う電極活物質、導電助剤、結着剤等のコンポジットから成っている。コンポジット形成においては、粉体粒子である電極活物質と導電助剤とを可能な限り微細に、かつ、均質に分散させて配置し、結着剤に担持して保持する技術が、各構成材料の持てる特性を最大限に引き出すために重要となる。コンポジット形成は、各電極構成材料を媒体中に分散させたペーストを調製し、これを集電体に塗布、乾燥させることにより、行われている。ペースト調製のための媒体は、従来有機溶媒が使用されてきた。少ないポリマーで電極構成材料を担持して保持するためには、ポリマー溶液を用いるのが好ましいと考えられていた(特許文献1参照)。   The electrode of the electricity storage element is composed of a composite of at least an electrode active material having a main function, a conductive additive, a binder, and the like. In the formation of composites, the technology for arranging and holding the electrode active material, which is powder particles, and the conductive auxiliary agent as finely and homogeneously as possible, and supporting them on the binder is as follows. It is important to maximize the characteristics that can have. Composite formation is performed by preparing a paste in which each electrode constituent material is dispersed in a medium, and applying and drying the paste on a current collector. Conventionally, an organic solvent has been used as a medium for preparing the paste. In order to support and hold the electrode constituent material with a small amount of polymer, it has been considered preferable to use a polymer solution (see Patent Document 1).

一方、媒体として水を用いる水性ペーストも従来から提案されており、材料面でも、設備面でも、設備稼働面でも、大きな環境負荷の低減とコスト削減が図れるものと期待された。しかしながら、通常導電助剤として使われる導電性炭素質材料は疎水性であり、水への分散は極めて困難なため、水性ペーストから電池特性良好な電極を製造することは出来なかった。しかも、非水系蓄電素子にあっては水の浸入は素子特性を大きく損ねてしまうことから、むしろ製造プロセスに水を持ち込まないよう配慮されてきた。   On the other hand, water-based pastes using water as a medium have been proposed in the past, and are expected to greatly reduce environmental burdens and costs in terms of materials, equipment, and equipment operation. However, since the conductive carbonaceous material usually used as a conductive auxiliary agent is hydrophobic and is very difficult to disperse in water, an electrode having good battery characteristics cannot be produced from an aqueous paste. In addition, in the case of non-aqueous power storage elements, since the intrusion of water greatly impairs the element characteristics, it has been considered not to bring water into the manufacturing process.

この問題点を解消するものとして、含フッ素ポリマー水性分散液の製造に用いられる乳化剤であるパーフルオロオクタン酸アンモニウム(以下、APFOと称する。)とカルボキシメチルセルロース(以下、CMCと称する。)共存下に、導電性炭素質材料を水中に微細化させて分散させることが提案されている(特許文献2参照)。この場合、電極形成用材料が均質に配置された水性ペーストが調製できる。かかる水性ペーストから製造された電極は良好な蓄電素子特性を発現できることから、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等において、水性ペーストから製造された電極が採用されるようになってきた。   In order to solve this problem, ammonium perfluorooctanoate (hereinafter referred to as APFO), which is an emulsifier used in the production of an aqueous fluoropolymer dispersion, and carboxymethyl cellulose (hereinafter referred to as CMC) coexist. It has been proposed that a conductive carbonaceous material is finely dispersed in water (see Patent Document 2). In this case, an aqueous paste in which the electrode forming material is uniformly arranged can be prepared. Since an electrode manufactured from such an aqueous paste can exhibit good electric storage element characteristics, an electrode manufactured from an aqueous paste has been adopted in lithium batteries, lithium ion batteries, electric double layer capacitors and the like.

しかし、APFOに代表されるPFOA類(本明細書においてPFOA類とは、APFOやパーフルオロオクタンスルホン酸アンモニウムを含め、これらに近似するパーフルオロアルカン酸とその塩およびパーフルオロアルカンスルホン酸とその塩等のフッ素系界面活性剤を総称している。)は、生体内残留・蓄積性の高いことがわかった。生体内に残ったPFOA類の人体に対する毒性・危険性はまだ不明な点が多いが、自然界に無い化合物であることから極力使用しないことが要請されている。このため含フッ素ポリマー水性分散液の製造ではPFOA類を使用して乳化重合した後、得られた含フッ素ポリマーの乳化液にラウリル硫酸ナトリウムやポリオキシエチレンアルキルエーテル等の炭化水素系界面活性剤を加え安定化した後、PFOA類を除去して、PFOA類含有量の著しく少ない含フッ素ポリマー水性分散液を得る技術が開発されている。   However, PFOAs typified by APFO (in this specification, PFOAs include APFO and ammonium perfluorooctane sulfonate, and perfluoroalkanoic acid and salts thereof and perfluoroalkanesulfonic acid and salts thereof which are similar to these. It was found that fluorinated surfactants such as, etc.) have high in vivo persistence and accumulation. Although there are still many unclear points about the toxicity and danger of PFOAs remaining in the living body to the human body, it is required not to use them as much as possible because they are compounds that do not exist in nature. For this reason, in the production of an aqueous dispersion of a fluoropolymer, after emulsion polymerization using PFOAs, a hydrocarbon-based surfactant such as sodium lauryl sulfate or polyoxyethylene alkyl ether is added to the resulting emulsion of the fluoropolymer. In addition, after stabilization, a technique has been developed in which PFOAs are removed to obtain a fluoropolymer aqueous dispersion having a significantly low PFOA content.

しかしながら、PFOA類の少ない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは、ペーストが異常に増粘する結果、均質な塗膜を集電体表面に塗布することができず、曲げや巻取り等の加工性に優れ、良好な蓄電素子特性を発現できる電極コンポジット層を形成することが出来ない問題があった。
かかる問題の解決方法として、疎水的な導電性炭素質材料の疎水性を弱めたり、親水性を付与する等の対策が導電性炭素質材料を水中に微細化して分散させるのに有効であると考えられた。
However, an aqueous paste using a fluorine-containing polymer aqueous dispersion containing a small amount of PFOA as a binder cannot be applied to the surface of the current collector as a result of abnormally thickening of the paste. There has been a problem that it is not possible to form an electrode composite layer that is excellent in workability such as winding and that can exhibit good characteristics of an electric storage element.
As a solution to this problem, measures such as weakening the hydrophobicity of the hydrophobic conductive carbonaceous material or imparting hydrophilicity are effective to make the conductive carbonaceous material finely dispersed in water. it was thought.

疎水性の極めて強いアセチレンブラックの表面をオゾン処理して表面親水化したアセチレンブラック等のカーボンブラック類(本明細書において、カーボンブラックとは通常黒色を呈する炭素質材料であり、カーボンブラック類とは、導電性炭素質材料の総称であり、アセチレンブラックやケッチェンブラック等が含まれる。)を用いることにより、分散性良好な水性ペーストが調製でき、良好な電池特性を発現できる電極を形成できたとしている(例えば、特許文献3を参照。)。しかしながら、かかる表面処理はカーボンブラック類の電子伝導性を低下させることから、電極活物質と表面酸化処理されたカーボンブラックが微細化されて均質に分散配置できた電極が造れたとしても、電池特性向上には至らなかった。   Carbon blacks such as acetylene black, etc., whose surface has been hydrophilized by treating the surface of acetylene black with extremely strong hydrophobicity (in this specification, carbon black is a carbonaceous material that normally exhibits black color, and what are carbon blacks? , Which is a general term for conductive carbonaceous materials, including acetylene black, ketjen black, etc.), an aqueous paste with good dispersibility could be prepared, and an electrode capable of exhibiting good battery characteristics could be formed. (For example, refer to Patent Document 3). However, since this surface treatment reduces the electronic conductivity of carbon blacks, even if an electrode active material and surface-oxidized carbon black are refined and evenly distributed electrodes can be produced, battery characteristics It did not improve.

特公平08−4007号公報Japanese Patent Publication No. 08-4007 特公平07−40485号公報Japanese Patent Publication No. 07-40485 特許第3555213号公報Japanese Patent No. 3555213

本発明は、前記従来技術の課題を克服し、電極活物質、導電助剤及び結着剤がそれぞれ微細化されて均質に分散され、高い加工性を有して、APFOに代表されるPFOA類の含有量の極めて少ないか又は含有しない蓄電素子電極形成用水性ペースト、及び該水性ペーストから形成された蓄電素子電極を提供することを目的とする。   The present invention overcomes the above-mentioned problems of the prior art, and the electrode active material, the conductive auxiliary agent and the binder are each finely divided and homogeneously dispersed, have high processability, and PFOAs represented by APFO. It is an object of the present invention to provide an aqueous paste for forming an electricity storage element electrode that contains very little or no content, and an electricity storage element electrode formed from the aqueous paste.

本発明者は、上記課題を達成すべく鋭意研究を進めたところ、導電助剤として極めて疎水性の強いアセチレンブラック等の導電性炭素質材料に代えて、親水性を有する導電性炭素質材料(以下、本発明において親水性を有する導電性炭素質材料とは、下記の親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを指す。)を用いることにより、APFO類や環境負荷の高い有機溶剤等を用いることなく、上記課題を解決できることを見出して本発明を完成するに至った。
すなわち、本発明は、以下の構成の蓄電素子電極形成用水性ペーストおよびそれから形成される蓄電素子を提供する。
The present inventor has conducted earnest research to achieve the above-mentioned problems. As a conductive assistant, instead of a conductive carbonaceous material such as acetylene black which is extremely hydrophobic, a conductive carbonaceous material having hydrophilicity ( Hereinafter, in the present invention, the conductive carbonaceous material having hydrophilicity refers to a conductive carbonaceous material determined to have hydrophilicity in the following hydrophilicity evaluation test.) The present invention has been completed by finding that the above problems can be solved without using organic solvents or the like having a high environmental load.
That is, this invention provides the aqueous | water-based paste for electrical storage element electrode formation of the following structures, and the electrical storage element formed from it.

[1]電極活物質、導電助剤及び結着剤を含有し、前記導電助剤が下記に示した親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを特徴とする蓄電素子電極形成用水性ペースト。
親水性評価試験:
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを容器に正確に秤量し、その質量をWとし、次に、500mlの分液ロートに300gのイオン交換水と該導電性炭素質材料粉体とを入れ、さらに30gのイオン交換水を加えて容器壁面に付着した導電助剤粉体を流し込み、次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をWとする。分液ロートに投入した導電性炭素質材料粉体の投入質量Wと水と混和した質量Wが、(W/W)×100≧5の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。
[1] A conductive carbonaceous material that contains an electrode active material, a conductive assistant, and a binder, and that is determined to have hydrophilicity in a hydrophilicity evaluation test shown below. An aqueous paste for forming a storage element electrode.
Hydrophilic evaluation test:
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed in a container, and its mass is set to W 1. Next, 300 g of ion-exchanged water and the conductive material are placed in a 500 ml separatory funnel. The carbonaceous material powder was added, and 30 g of ion-exchanged water was added to pour the conductive assistant powder adhered to the wall surface of the container, and then the separatory funnel was shaken for 1 minute and allowed to stand for 30 minutes. . Next, the cock of the separatory funnel is opened, and 300 g of the conductive carbonaceous material powder mixed with ion-exchanged water and water is extracted from the bottom, and the conductive carbonaceous material powder is filtered and separated from the extracted liquid. , Dried at 120 ° C. for 24 hours and weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separatory funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 5, the conductive carbonaceous material Is determined to have hydrophilicity.

[2]前記親水性を有する導電性炭素質材料がホウ素変性の導電性炭素質材料である[1]に記載の蓄電素子電極形成用水性ペースト。
[3]前記結着剤がポリマーの水性分散液である[1]または[2]に記載の蓄電素子電極形成用水性ペースト。
[4]前記結着剤が含フッ素ポリマーの水性分散液である[1]または[2]に記載の蓄電素子電極形成用水性ペースト。
[5]前記含フッ素ポリマーの水性分散液が、結晶性含フッ素ポリマーの水性分散液と非晶性含フッ素ポリマーの水性分散液を混合して調製したものである[4]に記載の蓄電素子電極形成用水性ペースト。
[6]上記[1]〜[5]のいずれかに記載の蓄電素子電極形成用水性ペーストから形成された蓄電素子電極を有することを特徴とする蓄電素子。
[2] The aqueous paste for forming a storage element electrode according to [1], wherein the hydrophilic conductive carbonaceous material is a boron-modified conductive carbonaceous material.
[3] The aqueous paste for forming a storage element electrode according to [1] or [2], wherein the binder is an aqueous dispersion of a polymer.
[4] The aqueous paste for forming a storage element electrode according to [1] or [2], wherein the binder is an aqueous dispersion of a fluorine-containing polymer.
[5] The electricity storage device according to [4], wherein the aqueous dispersion of the fluoropolymer is prepared by mixing an aqueous dispersion of the crystalline fluoropolymer and an aqueous dispersion of the amorphous fluoropolymer. Aqueous paste for electrode formation.
[6] A power storage element comprising a power storage element electrode formed from the aqueous paste for forming a power storage element electrode according to any one of [1] to [5].

本発明の蓄電素子電極形成用水性ペーストは、導電助剤を、微細化して均質に水性ペースト中に分散することができる。本発明の蓄電素子電極形成用水性ペーストからは、基板上に塗工された後もかかる微細化された複数の成分が均質に分散された状態を保持したまま電極コンポジット層を形成できる。得られた蓄電素子電極は、基板との密着性に優れ、耐溶剤性、耐熱性に優れ、高い加工性を有し、それぞれ微細化された電極活物質、導電助剤、結着剤を均質に配置するよう作用してスムースな界面電荷移動反応とイオン伝導、電子伝導を担うように機能し、良好な蓄電素子特性を発現する効果も有する。しかも、本発明の蓄電素子電極形成用水性ペーストは、生体内残留や蓄積性を有し、環境面で懸念される、APFO類を使用する必要が無い。   In the aqueous paste for forming a storage element electrode of the present invention, the conductive additive can be finely dispersed and uniformly dispersed in the aqueous paste. From the aqueous paste for forming a storage element electrode of the present invention, an electrode composite layer can be formed while maintaining a state in which a plurality of such finely divided components are uniformly dispersed even after being coated on a substrate. The obtained electricity storage device electrode has excellent adhesion to the substrate, excellent solvent resistance and heat resistance, high workability, and homogeneous electrode active material, conductive additive and binder, respectively. It functions so that it can be arranged in a smooth manner to carry out a smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and has an effect of exhibiting good electric storage element characteristics. In addition, the aqueous paste for forming a storage element electrode of the present invention does not require the use of APFOs, which have in-vivo residue and accumulation properties, and are environmentally concerned.

本発明における導電助剤は、親水性評価試験で親水性を有すると判定される導電性炭素質材料である。
親水性評価試験を、下記に示す。
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを容器に正確に秤量し、その質量をWとし、次に、500mlの分液ロートに300gのイオン交換水と該導電性炭素質材料粉体とを入れ、さらに30gのイオン交換水を加えて容器壁面に付着した導電助剤粉体を流し込み、次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をWとする。分液ロートに投入した導電性炭素質材料粉体の投入質量Wと水と混和した質量Wが、(W/W)×100≧5の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。
The conductive auxiliary agent in the present invention is a conductive carbonaceous material determined to have hydrophilicity in a hydrophilicity evaluation test.
The hydrophilicity evaluation test is shown below.
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed in a container, and its mass is set to W 1. Next, 300 g of ion-exchanged water and the conductive material are placed in a 500 ml separatory funnel. The carbonaceous material powder was added, and 30 g of ion-exchanged water was added to pour the conductive assistant powder adhered to the wall surface of the container, and then the separatory funnel was shaken for 1 minute and allowed to stand for 30 minutes. . Next, the cock of the separatory funnel is opened, and 300 g of the conductive carbonaceous material powder mixed with ion-exchanged water and water is extracted from the bottom, and the conductive carbonaceous material powder is filtered and separated from the extracted liquid. , Dried at 120 ° C. for 24 hours and weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separatory funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 5, the conductive carbonaceous material Is determined to have hydrophilicity.

本親水性評価試験で、導電性炭素質材料が親水性を有するか否かは明確に評価できる。通常、親水性を有し、水と混和するものは、震とうして1分未満の時間で水中に沈むが、親水性を有しないものは1日間連続して振とうしても水中に沈まない。本評価方法で親水性ありと判定された導電性炭素質材料からは、いずれも微細化されて均質に分散された良好な蓄電素子電極形成用水性ペーストが調製できた。
(W/W)×100の値は、好ましくは、10以上であり、さらに好ましくは、15以上であり、最も好ましくは、20以上である。
In this hydrophilicity evaluation test, it can be clearly evaluated whether or not the conductive carbonaceous material has hydrophilicity. Normally, those that are hydrophilic and miscible with water will sink in water in less than a minute after shaking, while those that are not hydrophilic will sink in water even if shaken continuously for one day. Absent. From the conductive carbonaceous material determined to be hydrophilic by this evaluation method, a good aqueous paste for forming a storage element electrode, which was miniaturized and uniformly dispersed, could be prepared.
The value of (W 2 / W 1 ) × 100 is preferably 10 or more, more preferably 15 or more, and most preferably 20 or more.

親水性を有する導電性炭素質材料の好適な具体例としては、ホウ素変性の導電性炭素質材料が挙げられる。ホウ素変性の導電性炭素質材料としては、蓄電素子としての高い特性を発現し、その特性を長期に亘って維持できることから、ホウ素変性アセチレンブラックが特に好ましい。
かかるホウ素変性の導電性炭素質材料の合成方法は公知(特許第3667144号)であり、本発明では好ましく採用できる。例えば、粉砕したカーボンブラック類と粉砕した炭化ホウ素を混合した後、2500℃程で加熱することにより、ホウ素変性カーボンブラック類を製造できる。カーボンブラック類としては、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック等が用いられる。また、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー等のその他の炭素質材料にもホウ素変性が可能であり、使用できる。
Preferable specific examples of the conductive carbonaceous material having hydrophilicity include boron-modified conductive carbonaceous material. As the boron-modified conductive carbonaceous material, boron-modified acetylene black is particularly preferable because it exhibits high characteristics as a power storage element and can maintain the characteristics over a long period of time.
A method for synthesizing such a boron-modified conductive carbonaceous material is known (Japanese Patent No. 3667144) and can be preferably used in the present invention. For example, boron-modified carbon blacks can be produced by mixing pulverized carbon blacks and pulverized boron carbide and then heating at about 2500 ° C. As carbon blacks, acetylene black, thermal black, furnace black, channel black, lamp black and the like are used. Also, other carbonaceous materials such as graphites such as natural graphite and artificial graphite, ketjen black, needle coke and carbon fiber can be modified with boron and used.

さらに、アセチレンガスと気化したホウ酸トリメチルの混合ガスを2000℃程に加熱した円筒炉に噴霧して加熱分解させて合成される、ホウ素がほぼ原子オーダーで固溶された、ホウ素変性のアセチレンブラックも使用できる。このホウ素変性アセチレンブラックでは、アセチレンガスとホウ酸トリメチルの混合量を調整することによりホウ素含有量を種々制御することもできる。   Furthermore, boron-modified acetylene black, which is synthesized by spraying a gas mixture of acetylene gas and vaporized trimethyl borate to a cylindrical furnace heated to about 2000 ° C. and thermally decomposing, boron is dissolved in almost atomic order. Can also be used. In this boron-modified acetylene black, the boron content can be variously controlled by adjusting the mixing amount of acetylene gas and trimethyl borate.

本発明に用いられるホウ素変性の導電性炭素質材料のホウ素含有量は、平均して0.05〜10質量%であるのが好ましい。0.05質量%より少ないと、本発明の親水性評価試験では親水性を有しないと判定され、 親水性が十分でなく、水への分散も困難となる。一方、10質量%を越えてホウ素を含有すると、電子伝導性を損ねてしまうことから好ましくない。より好ましくは0.1〜5質量%であり、さらに好ましくは0.15〜3質量%であり、最も好ましくは0.3〜2質量%である。この範囲にあると、水への分散性が高く、均質な分散状態を安定して保持することができ、ホウ素を含有しない導電性炭素質材料より高い導電性を発現できる。   The boron content of the boron-modified conductive carbonaceous material used in the present invention is preferably 0.05 to 10% by mass on average. If it is less than 0.05% by mass, the hydrophilicity evaluation test of the present invention determines that the hydrophilicity is not obtained, and the hydrophilicity is not sufficient and the dispersion in water becomes difficult. On the other hand, if boron is contained in excess of 10% by mass, the electron conductivity is impaired, which is not preferable. More preferably, it is 0.1-5 mass%, More preferably, it is 0.15-3 mass%, Most preferably, it is 0.3-2 mass%. Within this range, the dispersibility in water is high, a homogeneous dispersion state can be stably maintained, and higher conductivity can be exhibited than a conductive carbonaceous material not containing boron.

ホウ素変性のアセチレンブラック等が親水性となるメカニズムはまだ良くわかっていないが、ホウ素固溶によりアセチレンブラックの不対電子が増加して電子伝導性を高め、かつ高まった極性が水との親和性を発現して水にぬれるようになったものと解釈される。一方、表面酸化処理やスルホン化処理等のような親水性官能基を表面に形成させて親水性を発現しているのではないため、吸湿性はアセチレンブラックそのものの特性を維持して低いままで、塗膜が乾燥し難くなる等の悪影響はない。   The mechanism by which boron-modified acetylene black, etc. becomes hydrophilic is not yet well understood. However, the unpaired electrons of acetylene black increase due to solid solution of boron to increase electron conductivity, and the increased polarity is compatible with water. It is interpreted that it became soaked in water. On the other hand, it does not express hydrophilicity by forming hydrophilic functional groups such as surface oxidation treatment or sulfonation treatment on the surface, so the hygroscopicity remains low while maintaining the characteristics of acetylene black itself. There are no adverse effects such as difficulty in drying the coating film.

親水性を有する導電性炭素質材料の他の具体例としては、例えば、表面にアルコールや界面活性剤等を吸着させてから水性分散媒中に展開したカーボンブラック(米国特許5571311号明細書)、表面にノニオン性、アニオン性、カチオン性等の親水基をグラフト重合したカーボンブラック(特開平5−230410号公報、特開平6−128517号公報、特開平6−166954号公報)、硫酸、三硫化イオウ、スルホン化ピリジン塩等のスルホン化剤で処理して、表面にスルホン基を導入したカーボンブラック(特開平10−120958号公報、特開2002−324557号公報)、オゾン処理やプラズマ処理等の気相法或いは硝酸、過酸化水素水、過塩素酸ソーダ等で処理する液相法により酸化処理したカーボンブラック(特開平10−110112号公報、特開2004−253379号公報)、水素や水素化リチウムアルミニウム等の還元剤で処理したカーボンブラック(特開2002−129065号公報、特開2004−339428号公報)などが挙げられる。本発明にはこれらいずれの方法で親水性を付与された導電性炭素質材料も使用可能である。
親水性を有する導電性炭素質材料の平均粒径は、通常3〜1000nmが好ましく、5〜200nmがより好ましい。
Other specific examples of the conductive carbonaceous material having hydrophilicity include, for example, carbon black (US Pat. No. 5,571,311) developed in an aqueous dispersion medium after adsorbing alcohol, surfactant or the like on the surface. Carbon black grafted with nonionic, anionic or cationic hydrophilic groups on the surface (Japanese Patent Laid-Open Nos. 5-230410, 6-128517, 6-166554), sulfuric acid, trisulfide Carbon black (JP-A-10-120958, JP-A-2002-324557) having a sulfone group introduced into the surface by treatment with a sulfonating agent such as sulfur or a sulfonated pyridine salt, ozone treatment or plasma treatment Carbon black (oxidized by vapor phase method or liquid phase method using nitric acid, hydrogen peroxide, sodium perchlorate, etc. ( (Kaihei 10-110112, JP 2004-253379), carbon black treated with a reducing agent such as hydrogen or lithium aluminum hydride (JP 2002-129065, JP 2004-339428), and the like. Can be mentioned. In the present invention, a conductive carbonaceous material imparted with hydrophilicity by any of these methods can be used.
The average particle size of the conductive carbonaceous material having hydrophilicity is usually preferably from 3 to 1000 nm, more preferably from 5 to 200 nm.

本発明に用いられる結着剤としては、結晶性樹脂や非晶性樹脂、ゴム、エラストマー等のポリマーが水に分散された水性分散液であるのが好ましい。ポリマーとしてはフッ素を含有しないポリマーもフッ素を含有するポリマーも好ましく使用できる。フッ素を含有しない結着剤用ポリマーとしては天然ゴム類、スチレンブタジエン共重合体、アクリル変性スチレンブタジエン共重合体、酢酸ビニル共重合体、ニトリルブチルゴム、水素化ニトリルブチルゴム、アクリルゴム、エピクロルヒドリン、ポリウレタン等の合成ゴム・エラストマー類、アクリル樹脂、メタクリル樹脂、ビニル樹脂、ポリオレフィン、ポリカーボネート、ナイロン、ポリイミド等の合成樹脂類等を例示でき、いずれも本発明に好ましく使用できる。   The binder used in the present invention is preferably an aqueous dispersion in which a polymer such as a crystalline resin, an amorphous resin, rubber, or elastomer is dispersed in water. As the polymer, a polymer containing no fluorine or a polymer containing fluorine can be preferably used. Fluorine-free binder polymers include natural rubbers, styrene butadiene copolymers, acrylic modified styrene butadiene copolymers, vinyl acetate copolymers, nitrile butyl rubber, hydrogenated nitrile butyl rubber, acrylic rubber, epichlorohydrin, polyurethane, etc. Synthetic rubbers and elastomers, acrylic resins, methacrylic resins, vinyl resins, polyolefins, polycarbonates, nylons, polyimides, and other synthetic resins can be exemplified, and any of them can be preferably used in the present invention.

本発明における結着剤としては、含フッ素ポリマーの水性分散液がより好ましい。含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、一般式(1):CF=C(OR2−n(式中、Rは炭素数1〜8のパーフルオロアルキル基または分子内に1個以上のエーテル結合を含むパーフルオロアルキルオキシアルキル基であり、nは1又は2であり、いずれの炭素鎖も直鎖状、分岐状或いは環状構造を有しても良い)で表されるパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレンから選ばれる少なくとも1種又は2種以上の組み合わせの含フッ素モノマーの重合体又は共重合体が挙げられる。 As the binder in the present invention, an aqueous dispersion of a fluorine-containing polymer is more preferable. As the fluoropolymer, tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, general formula (1): CF 2 ═C (OR f ) n F 2-n (wherein R f has 1 to 8 carbon atoms) A perfluoroalkyl group or a perfluoroalkyloxyalkyl group containing one or more ether bonds in the molecule, n is 1 or 2, and any carbon chain has a linear, branched or cyclic structure. Or a fluoropolymer or copolymer of at least one or a combination of two or more selected from perfluoro (alkyl or alkyloxyalkyl vinyl ethers) represented by chlorotrifluoroethylene. .

また、含フッ素モノマー以外に、一般式(2):CH=CHOR(式中、Rは炭素数1〜8のアルキル基又はエーテル結合を1個以上含むアルキルオキシアルキル基であり、いずれの炭素鎖も直鎖状、分岐状或いは環状構造を有しても良い。)で表されるアルキル又はアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン等の共重合性モノマーの1種または2種以上を共重合させても良い。
共重合性モノマーとしては他にも1−ブロモ−1,1,2,2−テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が例示でき、いずれも好適に用いられる。
In addition to the fluorine-containing monomer, general formula (2): CH 2 = CHOR (wherein R is an alkyloxyalkyl group having 1 to 8 carbon atoms or an ether bond, and any carbon The chain may also have a linear, branched or cyclic structure.) Copolymerized with one or more copolymerizable monomers such as alkyl or alkyloxyalkyl vinyl ethers, ethylene, propylene, etc. You may let them.
Other copolymerizable monomers include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid, itaconic acid, etc. Can be illustrated, and both are preferably used.

本発明の水性ペーストの結着剤に含フッ素ポリマーを用いる場合、均質に分散された電極活物質と導電助剤を長期に安定して担持し、かつ集電体とかかる電極コンポジット層の密着性をさらに高める目的から、結晶性含フッ素ポリマーと非晶性含フッ素ポリマーを混合して用いることも好ましい。
結晶性含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等が挙げられる。これらのモノマー中から選ばれた1種を重合して得られる結晶性ホモポリマーか、前記モノマーの少なくとも2種を重合して得られる結晶性コポリマーが好適に用いることができる。
When a fluorine-containing polymer is used as the binder of the aqueous paste of the present invention, the electrode active material and the conductive additive dispersed uniformly are stably supported for a long time, and the adhesion between the current collector and the electrode composite layer In order to further improve the above, it is also preferable to use a mixture of a crystalline fluorine-containing polymer and an amorphous fluorine-containing polymer.
Examples of the crystalline fluorine-containing polymer include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the general formula (1), chlorotrifluoroethylene, and the like. A crystalline homopolymer obtained by polymerizing one selected from these monomers or a crystalline copolymer obtained by polymerizing at least two of the monomers can be suitably used.

非晶性含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等の第1の群のモノマーと、一般式(2)のアルキル又はアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン等の第2の群のモノマーのうち、第1の群のモノマーから選ばれた少なくとも2種を重合して得られる非晶性コポリマー、あるいは第1の群のモノマーから選ばれた少なくとも1種と第2の群のモノマーから選ばれた少なくとも1種を共重合して得られる非晶性コポリマーなどを好適に用いることができる。   As the amorphous fluorine-containing polymer, tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the general formula (1), chlorotrifluoroethylene, etc. It is obtained by polymerizing a monomer and at least two selected from the monomers of the first group among the monomers of the second group such as alkyl or alkyloxyalkyl vinyl ethers of general formula (2), ethylene, propylene, etc. Preferably, an amorphous copolymer or an amorphous copolymer obtained by copolymerizing at least one selected from the first group of monomers and at least one selected from the second group of monomers is used. Can do.

結晶性含フッ素ポリマーと非晶性含フッ素ポリマーは、上記モノマーと共に共重合可能なその他の共重合性モノマーを共重合したものであってもよい。その他の共重合可能なモノマーとしては、1−ブロモ−1,1,2,2−テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が例示でき、いずれも好適に用いることができる。
結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの混合割合(質量比)は、0.1:9.9〜9.9:0.1の範囲が好ましく、0.2:9.8〜9.8:0.2の範囲がより好ましく、0.3:9.7〜9.7:0.3の範囲がさらに好ましい。結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの比率がこの範囲にあると、蓄電素子電極は基板との密着性に優れ、耐溶剤性、耐熱性に優れる。
The crystalline fluorine-containing polymer and the amorphous fluorine-containing polymer may be those obtained by copolymerizing other copolymerizable monomers copolymerizable with the above monomers. Other copolymerizable monomers include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid, itaconic acid Etc., and any of them can be suitably used.
The mixing ratio (mass ratio) of the crystalline fluoropolymer and the amorphous fluoropolymer is preferably in the range of 0.1: 9.9 to 9.9: 0.1, and 0.2: 9.8 to 9 The range of .8: 0.2 is more preferable, and the range of 0.3: 9.7 to 9.7: 0.3 is more preferable. When the ratio of the crystalline fluorine-containing polymer to the amorphous fluorine-containing polymer is within this range, the electricity storage device electrode is excellent in adhesion to the substrate and excellent in solvent resistance and heat resistance.

含フッ素ポリマーの水性分散液の製造は通常乳化重合により成される。この乳化重合における乳化剤としては、連鎖移動定数の小さいPFOA類や含フッ素エーテルカルボン酸化合物類等のフッ素系乳化剤が使用される。乳化重合後これらフッ素系乳化剤を取り除き、炭化水素系乳化剤で分散安定化する。フッ素系乳化剤の除去は公知の方法で行うことができる。アニオン界面活性剤から成るフッ素系乳化はアニオン交換樹脂に吸着させて除去することができる。またED法(Electro−decantation法)や相分離法(ふっ素樹脂ハンドブック(里川孝臣編集、日刊工業新聞社1990年発行)に記載されている。)を用いた濃縮を行うことによってもフッ素系乳化剤を除去することができる。本発明の蓄電素子電極形成用水性ペーストにはかかる方法でフッ素系乳化剤を除去或いは低減された含フッ素ポリマーの水性分散液を好適に用いることができる。
結着剤として、ポリマーの水性分散液を用いる場合、ポリマーの水性分散液のポリマー濃度は、通常10〜80質量%が好ましく、20〜70質量%がより好ましい。
Production of an aqueous dispersion of a fluorine-containing polymer is usually carried out by emulsion polymerization. As the emulsifier in this emulsion polymerization, fluorinated emulsifiers such as PFOA and fluorine-containing ether carboxylic acid compounds having a small chain transfer constant are used. After the emulsion polymerization, these fluorine-based emulsifiers are removed, and the dispersion is stabilized with a hydrocarbon-based emulsifier. The removal of the fluorine-based emulsifier can be performed by a known method. The fluorine-based emulsification composed of an anionic surfactant can be removed by adsorbing to an anion exchange resin. The fluorine-based emulsifier can also be obtained by concentration using an ED method (Electro-decantation method) or a phase separation method (described in fluororesin handbook (edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990)). Can be removed. For the aqueous paste for forming a storage element electrode of the present invention, an aqueous dispersion of a fluorine-containing polymer from which a fluorine-based emulsifier has been removed or reduced by such a method can be suitably used.
When an aqueous polymer dispersion is used as the binder, the polymer concentration of the aqueous polymer dispersion is usually preferably 10 to 80% by mass, and more preferably 20 to 70% by mass.

本発明に用いられる電極活物質としては、種々の蓄電素子類の電極活物質が挙げられる。例えば、リチウム電池類の正極活物質としては、一般的には金属酸化物類、金属硫化物類、導電性有機化合物類等が用いられる。特にリチウム金属複合酸化物やリチウム金属フォスフォオリビン類等の金属酸化物類は、安定した電池特性を長期に亘って発現できることから好ましく用いられる。これらの金属酸化物類は、Liと他の1種の金属の複合酸化物として使用されることもあるが、Liと他の複数の金属からなる複合酸化物としても用いられる。例えばリチウムニッケル複合酸化物類であると、LiNiOをそのままリチウムイオン電池の正極とすることはほとんど無く、リチウムやニッケルの一部をCo、Mn、Al、B、Cr、Cu、F、Fe、Ga、Mg、Mo、Nb、O、Sn、Ti、V、Zn、Zr、その他等の中から選ばれる1種あるいは複数の元素で置き換えられた材料が好ましく用いられる。 Examples of the electrode active material used in the present invention include electrode active materials of various power storage elements. For example, metal oxides, metal sulfides, conductive organic compounds and the like are generally used as the positive electrode active material for lithium batteries. In particular, metal oxides such as lithium metal composite oxides and lithium metal phosphoolivines are preferably used because stable battery characteristics can be expressed over a long period of time. These metal oxides are sometimes used as a composite oxide of Li and another metal, but are also used as a composite oxide composed of Li and other metals. For example, in the case of lithium nickel composite oxides, LiNiO 2 is hardly used as a positive electrode of a lithium ion battery as it is, and a part of lithium or nickel is Co, Mn, Al, B, Cr, Cu, F, Fe, A material substituted with one or more elements selected from Ga, Mg, Mo, Nb, O, Sn, Ti, V, Zn, Zr, etc. is preferably used.

リチウム電池類の負極活物質としては、黒鉛系炭素、非黒鉛系炭素あるいは金属系等の材料があり、いずれの材料も本発明に好ましく適用できる。例えば炭素質材料としては、天然黒鉛、人造黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ炭化物、石油系ピッチ炭化物、ニードルコークス、ピッチコークス。フェノール樹脂やセルロース等の炭化物及びこれら炭化物の部分黒鉛化物、ファーネスブラック、アセチレンブラック、炭素繊維等が例示でき、本発明に好適に用いられる。スズ系、シリコン系、チタン系、金属窒化物、リチウム、リチウム合金等の金属系も例示でき、本発明に好適に用いられる。
電気二重層キャパシタ用電極活物質としては活性炭が用いられ、本発明に好適に用いられる。負荷特性や静電容量を高める目的からホウ酸処理を施す提案等もあり、本発明はこれら改質された活性炭にも好適に用いられる。
ニッケル水素電池用活物質としては、正極にニッケル水酸化物やコバルト酸化物を複合化させたニッケル水酸化物を、負極にニッケル系やチタン系水素吸蔵合金を用いており、本発明にも好適に用いられる。
電極活物質の平均粒径は、通常0.05〜500μmが好ましく、0.1〜100μmがより好ましい。
Examples of the negative electrode active material for lithium batteries include graphite-based carbon, non-graphite-based carbon, and metal-based materials, and any material can be preferably applied to the present invention. Examples of carbonaceous materials include natural graphite, artificial graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, and pitch coke. Carbides such as phenol resin and cellulose, partially graphitized products of these carbides, furnace black, acetylene black, carbon fibers and the like can be exemplified and used suitably in the present invention. Metal systems such as tin-based, silicon-based, titanium-based, metal nitride, lithium, and lithium alloy can also be exemplified and used suitably in the present invention.
Activated carbon is used as the electrode active material for the electric double layer capacitor and is preferably used in the present invention. There are proposals to perform boric acid treatment for the purpose of enhancing load characteristics and capacitance, and the present invention is also suitably used for these modified activated carbons.
As active materials for nickel metal hydride batteries, nickel hydroxide or nickel oxide composites of nickel hydroxide and cobalt oxide are used for the positive electrode, and nickel-based or titanium-based hydrogen storage alloys are used for the negative electrode. Used for.
The average particle diameter of the electrode active material is usually preferably 0.05 to 500 μm, more preferably 0.1 to 100 μm.

本発明の水性ペーストは、電極活物質の含有量に制限はないが、一般的には水性ペースト全体量に対して、5〜65質量%の範囲で調製される。5質量%より少なくても形成された電極自体に特性上の不具合は無いが、生産性が低く非効率であることから好ましくない。
導電助剤や結着剤の含有量は、電極活物質の種類やその特性に応じて決定されるものであるが、導電助剤の含有量は、通常は電極活物の質量に対して0.01〜15質量%が好ましく、より好ましくは0.1〜12質量%であり、結着剤の含有量は、通常は電極活物の質量に対して0.01〜15質量%が好ましく、より好ましくは0.1〜12質量%である。
蓄電素子の特性を担う主たる材料は電極活物質である。したがって蓄電容量に寄与しない電極活物質以外の材料は求められる機能を発現できる最小量の添加が好ましい。
The content of the electrode active material is not limited in the aqueous paste of the present invention, but is generally prepared in the range of 5 to 65% by mass with respect to the total amount of the aqueous paste. Even if the amount is less than 5% by mass, the formed electrode itself has no problem in characteristics, but it is not preferable because of low productivity and inefficiency.
The content of the conductive assistant and the binder is determined according to the type of electrode active material and its characteristics, but the content of the conductive assistant is usually 0 with respect to the mass of the electrode active material. 0.01 to 15% by mass is preferable, more preferably 0.1 to 12% by mass, and the content of the binder is usually preferably 0.01 to 15% by mass with respect to the mass of the electrode active material, More preferably, it is 0.1-12 mass%.
The main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function.

本発明の水性ペーストにおいて、親水性を有する導電性炭素質材料を水に分散させるために分散剤又は分散安定剤を用いることが好ましい。分散剤或いは分散安定剤としては、フッ素を含有した分散剤以外の汎用の一般的な界面活性剤や水溶性高分子化合物等が挙げられる。これにより、前述のフッ素を含有する分散剤を用いなくとも、親水性を有する導電性炭素質材料を水中に微細化して均質に分散させることができる。この分散状態は電極活物質や結着剤等の共存下でも変ることがない。分散剤としては、結着剤である水性分散液に含有される分散剤であってもよい。また、その他にも界面活性剤類を本発明の蓄電素子電極形成用水性ペーストに添加して使用することもできる。また、水溶性高分子としては、水性スラリーからの塗工加工性を高める目的で選択される水溶性高分子であってもよい。   In the aqueous paste of the present invention, it is preferable to use a dispersant or a dispersion stabilizer in order to disperse the hydrophilic conductive carbonaceous material in water. Examples of the dispersant or the dispersion stabilizer include general-purpose general surfactants and water-soluble polymer compounds other than the fluorine-containing dispersant. Thereby, even if it does not use the dispersing agent containing the above-mentioned fluorine, the conductive carbonaceous material which has hydrophilicity can be refined | miniaturized in water, and can be uniformly disperse | distributed. This dispersed state does not change even in the presence of an electrode active material or a binder. The dispersant may be a dispersant contained in an aqueous dispersion that is a binder. In addition, surfactants can also be used by adding to the aqueous paste for forming a storage element electrode of the present invention. Further, the water-soluble polymer may be a water-soluble polymer selected for the purpose of improving the coating processability from the aqueous slurry.

界面活性剤としては、カルボン酸塩型、スルホン酸塩型、硫酸塩型、リン酸塩型等のアニオン界面活性剤類、四級アンモニウム塩型、イミダゾリニウム塩型、ピロジニウム塩型等のカチオン界面活性剤類、ベタイン型、アミノカルボン酸塩型、イミダゾリン誘導体型、アルキルアミンオキサイド型等の両性界面活性剤類、エーテル型、エーテルエステル型、エステル型、含窒素型、エチレンオキサイドとプロピレンオキサイドのブロックコポリマー等のノニオン界面活性剤類等が挙げられる。これらのうち、環境ホルモン対応等から、アニオン系かノニオン系から選択されるのが好ましい。
界面活性剤の含有量は、水性ペーストの全体量に対して総合して0.01〜10質量%が好ましい。
水溶性高分子化合物としては、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類、オリゴ糖、デキストリン、水溶性食物繊維等の糖類、クラウンエーテル類、ポリアクリル酸類、ポリエチレンオキサイド、ポリビニルアルコール等が挙げられる。中でもカルボキシメチルセルロースは分散安定剤としても良好に機能することから本発明に好適に使用できる。
水溶性高分子化合物の含有量は、水性ペーストの全体量に対して0.01〜10質量%が好ましい。
Surfactants include carboxylate-type, sulfonate-type, sulfate-type, phosphate-type and other anionic surfactants, quaternary ammonium salt-type, imidazolinium-salt-type, pyridinium-salt-type cations, etc. Surfactants, betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type and other amphoteric surfactants, ether type, ether ester type, ester type, nitrogen-containing type, ethylene oxide and propylene oxide Nonionic surfactants such as block copolymers are exemplified. Among these, it is preferable to select anionic or nonionic from the standpoint of environmental hormones.
The total content of the surfactant is preferably 0.01 to 10% by mass with respect to the total amount of the aqueous paste.
Water-soluble polymer compounds include celluloses such as methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, oligosaccharides, dextrins, sugars such as water-soluble dietary fibers, crown ethers, polyacrylic acids, polyethylene oxide And polyvinyl alcohol. Among them, carboxymethyl cellulose can be suitably used in the present invention because it functions well as a dispersion stabilizer.
The content of the water-soluble polymer compound is preferably 0.01 to 10% by mass with respect to the total amount of the aqueous paste.

本発明の水性ペーストにおいて、電極コンポジットと集電体間の密着性を高める目的から、水性媒体として、水の他に、水より沸点の高い水溶性化合物を添加することができる。例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラメチレンスルホン、N−メチルピロリドン、エチレングリコール類、プロピレングリコール類、グリセリン等の有機溶媒を例示できる。有機溶媒の含有割合は、通常、水と有機溶媒の合計量に対して0〜50質量%が好ましい。
本発明の水性ペーストにおいて、水性媒体の含有割合は、30〜90質量%が好ましい。
本発明の水性ペーストは、電極活物質、導電助剤としての親水性を有する導電性炭素質材料、結着剤及び水性媒体を、さらに、必要に応じて上記他の成分を混合することにより、製造することができる。なお、結着剤としてポリマーの水性分散液を用いる場合、このポリマーの水性分散液に水性媒体が含まれているので、別の水性媒体を加えなくてもよいし、水性媒体を追加してもよい。
In the aqueous paste of the present invention, for the purpose of improving the adhesion between the electrode composite and the current collector, a water-soluble compound having a boiling point higher than that of water can be added as an aqueous medium in addition to water. Examples thereof include organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetramethylene sulfone, N-methylpyrrolidone, ethylene glycols, propylene glycols and glycerin. The content ratio of the organic solvent is usually preferably 0 to 50% by mass with respect to the total amount of water and the organic solvent.
In the aqueous paste of the present invention, the content ratio of the aqueous medium is preferably 30 to 90% by mass.
The aqueous paste of the present invention is a mixture of an electrode active material, a conductive carbonaceous material having hydrophilicity as a conductive additive, a binder and an aqueous medium, and further mixing the above-mentioned other components as necessary. Can be manufactured. When an aqueous polymer dispersion is used as the binder, an aqueous medium is contained in the aqueous polymer dispersion. Therefore, it is not necessary to add another aqueous medium or add an aqueous medium. Good.

本発明の水性ペーストから蓄電素子電極を形成する方法としては、例えば、基板に本発明の水性ペーストを塗布し、乾燥し、熱処理する方法が挙げられる。基板としては、リチウムイオン電池の正極にアルミニウム箔、負極に銅箔、キャパシタ電極にはアルミニウム箔、ニッケル水素電池電極にはニッケル箔やニッケルメッシュ等が用いられる。本発明の水性ペーストからはこれらいずれの基板にも良好な電極コンポジット層を形成できる。その他の基板上にも良好な塗膜を形成できる。
本発明の蓄電素子としては、リチウムイオン電池、リチウムポリマー電池、リチウム一次電池といったリチウム電池類やニッケル水素電池等の一次、二次電池類、電気二重層キャパシター等のキャパシタ類があげられる。これら蓄電素子の電極コンポジット層形成に本発明の水性ペーストは好適に用いられる。
Examples of a method for forming a storage element electrode from the aqueous paste of the present invention include a method of applying the aqueous paste of the present invention to a substrate, drying, and heat-treating. As the substrate, an aluminum foil is used for the positive electrode of the lithium ion battery, a copper foil is used for the negative electrode, an aluminum foil is used for the capacitor electrode, and a nickel foil or a nickel mesh is used for the nickel metal hydride battery electrode. A good electrode composite layer can be formed on any of these substrates from the aqueous paste of the present invention. A good coating film can be formed on other substrates.
Examples of the electricity storage device of the present invention include primary batteries such as lithium batteries such as lithium ion batteries, lithium polymer batteries, and lithium primary batteries, nickel hydride batteries, secondary batteries, and capacitors such as electric double layer capacitors. The aqueous paste of the present invention is suitably used for forming an electrode composite layer of these electricity storage elements.

本発明の水性ペーストを塗布して形成されたコンポジット電極は、上述のとおり電極活物質、導電助剤、結着剤、その他のコンポジット構成成分をミクロに均質に配置した構造を実現できることから、スムースな電荷移動反応を発現できる。こうした特長を持つ本発明の電極を用いた蓄電素子は、大きな充放電容量と高いエネルギ密度を持ち、優れたサイクル特性、高負荷特性、低温特性、高温特性、安全性を実現できる。特にパワーの取れるエネルギ密度及び高負荷特性と、信頼性の高い安全性を両立できることから、中・大型素子においても高出力、高エネルギ密度、高い信頼性と安全性を実現できる。   Since the composite electrode formed by applying the aqueous paste of the present invention can realize a structure in which the electrode active material, the conductive additive, the binder, and other composite components are uniformly arranged microscopically as described above. Can develop a positive charge transfer reaction. A power storage device using the electrode of the present invention having such features has a large charge / discharge capacity and high energy density, and can realize excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. In particular, it is possible to achieve both high energy density and high load characteristics with high power and highly reliable safety, so that high output, high energy density, high reliability and safety can be realized even in medium and large-sized devices.

以下に実施例によって本発明を更に具体的に説明するが、本発明はこれらによって制限されるものではない。
[親水性の評価試験方法]
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを容器に正確に秤量し、その質量をWとし、次に、500mlの分液ロートに300gのイオン交換水と該導電性炭素質材料粉体とを入れ、さらに30gのイオン交換水を加えて容器壁面に付着した導電助剤粉体を流し込み、次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をWとした。分液ロートに投入した導電性炭素質材料粉体の投入質量Wと水と混和した質量Wが、(W/W)×100≧5の関係を満たす時、導電性炭素質材料は親水性を有すると判定した。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[Hydrophilicity evaluation test method]
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed in a container, and its mass is set to W 1. Next, 300 g of ion-exchanged water and the conductive material are placed in a 500 ml separatory funnel. The carbonaceous material powder was added, and 30 g of ion-exchanged water was added to pour the conductive assistant powder adhered to the wall surface of the container, and then the separatory funnel was shaken for 1 minute and allowed to stand for 30 minutes. . Next, the cock of the separatory funnel is opened, and 300 g of the conductive carbonaceous material powder mixed with ion-exchanged water and water is extracted from the bottom, and the conductive carbonaceous material powder is filtered and separated from the extracted liquid. The sample was dried at 120 ° C. for 24 hours and weighed, and the mass was defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separatory funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 5, the conductive carbonaceous material Was determined to have hydrophilicity.

(1)ホウ素変性アセチレンブラック(A)の合成
750〜800℃に制御したチューブ炉に、アセチレンガスを200リットル/時間、ホウ酸トリメチルを6ミリリットル/時間の供給速度で噴霧し、ホウ素含有のアセチレンブラックを得た。このホウ素含有のアセチレンブラックをアルゴン雰囲気下2800℃にて処理してホウ素を固溶させたアセチレンブラック(A)を得た。このアセチレンブラック(A)はホウ素含有量0.13質量%、炭素含有量95.0質量%であり、本発明の親水性評価試験の結果は(W/W)×100の値が10であって親水性を有すると判定された。
(1) Synthesis of boron-modified acetylene black (A) A tube furnace controlled at 750 to 800 ° C. was sprayed with acetylene gas at a supply rate of 200 liters / hour and trimethyl borate at 6 milliliters / hour, and boron-containing acetylene. Got black. This boron-containing acetylene black was treated at 2800 ° C. in an argon atmosphere to obtain acetylene black (A) in which boron was dissolved. This acetylene black (A) has a boron content of 0.13 mass% and a carbon content of 95.0 mass%, and the result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100 value of 10 And was determined to have hydrophilicity.

(2)ホウ素変性アセチレンブラック(B)の合成
ホウ酸トリメチル供給速度を12ミリリットル/時間としたことを除き、(A)の場合と同様にしてホウ素を固溶させたアセチレンブラック(B)を得た。このアセチレンブラック(B)はホウ素含有量0.37質量%、炭素含有量95.1質量%であり、本発明の親水性評価試験の結果は(W/W)×100の値が30であって親水性を有すると判定された。
(3)ホウ素変性アセチレンブラック(C)の合成
ホウ酸トリメチル供給速度を36ミリリットル/時間としたことを除き、(A)の場合と同様にしてホウ素を固溶させたアセチレンブラック(C)を得た。このアセチレンブラック(C)はホウ素含有量1.21質量%、炭素含有量94.3質量%であり、本発明の親水性評価試験の結果は(W/W)×100の値が75であって親水性を有すると判定された。
その他に市販の電池用途向けアセチレンブラックとケッチェンブラックを入手した。これらのホウ素含有量は検出限界未満で、ほぼ0質量%と判断した。また本発明の親水性評価試験の結果は(W/W)×100の値がどちらも0であって全く親水性を有しないと判定された。
(2) Synthesis of boron-modified acetylene black (B) Acetylene black (B) in which boron is solid-solved is obtained in the same manner as in (A) except that the trimethyl borate supply rate is 12 ml / hour. It was. This acetylene black (B) has a boron content of 0.37% by mass and a carbon content of 95.1% by mass, and the result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100 value of 30. And was determined to have hydrophilicity.
(3) Synthesis of boron-modified acetylene black (C) Except that the trimethyl borate supply rate was set to 36 ml / hour, acetylene black (C) in which boron was dissolved in the same manner as in (A) was obtained. It was. This acetylene black (C) has a boron content of 1.21% by mass and a carbon content of 94.3% by mass, and the result of the hydrophilicity evaluation test of the present invention is that the value of (W 2 / W 1 ) × 100 is 75. And was determined to have hydrophilicity.
In addition, commercially available acetylene black and ketjen black for battery use were obtained. These boron contents were less than the detection limit and were judged to be almost 0% by mass. In addition, as a result of the hydrophilicity evaluation test of the present invention, both of the values of (W 2 / W 1 ) × 100 were 0, and it was determined that the hydrophilic property was not hydrophilic at all.

(4)フッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(D)の製造
100Lの耐圧重合槽にパラフィンワックス736g、超純水59L、APFO15gを仕込んだ。70℃に昇温後、窒素パージしてから脱気し、撹拌しながらテトラフルオロエチレンを内圧1.9MPaまで導入した。これに0.5質量%コハク酸パーオキシド水溶液の1Lを圧入して重合開始した。重合はテトラフルオロエチレンを供給しながら重合圧力1.9MPaに保持して45分間行った後、90℃まで昇温して2.5質量%のAPFO水溶液1Lを加え、95分間継続した。得られた乳濁液から凝集物やパラフィン等を除去し、ポリテトラフルオロエチレン(以下、PTFEと称する。)含有量26.0質量%、APFO含有量0.12質量%の結着剤用結晶性含フッ素ポリマー水性分散液(D)25.1kgを得た。(D)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。
(4) Production of Crystalline Fluoropolymer Aqueous Dispersion (D) Containing Fluorosurfactant 7100 g of paraffin wax, 59 L of ultrapure water, and 15 g of APFO were charged into a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, tetrafluoroethylene was introduced to an internal pressure of 1.9 MPa while stirring. 1 L of 0.5% by mass aqueous succinic acid peroxide solution was injected into this to initiate polymerization. The polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying tetrafluoroethylene, and then the temperature was raised to 90 ° C. and 1 L of a 2.5 mass% APFO aqueous solution was added and continued for 95 minutes. Aggregates, paraffin, and the like are removed from the obtained emulsion to produce a binder crystal having a polytetrafluoroethylene (hereinafter referred to as PTFE) content of 26.0% by mass and an APFO content of 0.12% by mass. 25.1 kg of an aqueous fluoropolymer dispersion (D) was obtained. As a result of thermal analysis, the polymer taken out from a part of (D), purified and dried was a crystalline polymer having a melting point of 327 ° C.

(5)微量のフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(E)の製造
(D)の水性分散液に0.2kgのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、0.3kgのアニオン交換樹脂(三菱化学製ダイアイオンWA−30)を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28%アンモニア水0.04kgを加え、相分離法により80℃にて10時間濃縮し、上澄み液を除去した後0.1kgの前記ノニオン界面活性剤を新たに加えて、PTFE含有量59.7質量%、APFO含有量0.01質量%の結着剤用結晶性含フッ素ポリマー水性分散液(E)10.5kgを得た。(E)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。
(5) Production of crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of a fluorosurfactant 0.2 kg of polyoxyethylene (average polymerization degree 9) lauryl ether was added to the aqueous dispersion of (D). Nonionic surfactant as a main component was added and dissolved, 0.3 kg of anion exchange resin (Mitsubishi Chemical Diaion WA-30) was dispersed, stirred for 24 hours, and filtered to remove the anion exchange resin. Add 0.04 kg of 28% ammonia water to the filtrate, concentrate at 80 ° C. for 10 hours by phase separation method, remove the supernatant, add 0.1 kg of the above nonionic surfactant, and add PTFE content. 10.5 kg of a crystalline fluoropolymer aqueous dispersion (E) for a binder having 59.7% by mass and an APFO content of 0.01% by mass was obtained. As a result of thermal analysis, the polymer taken out from a part of (E), purified and dried was a crystalline polymer having a melting point of 327 ° C.

(6)微量のフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(F)の製造
APFOの15gに代えてCOCFCFOCFCOONH(以下、EEAと称する。)の33gを用い、水性分散液(D)の場合と同様にしてPTFE含有量24.3質量%である水性分散液を製造した。この水性分散液から、0.3kgのアニオン交換樹脂に替えて0.5kgのアニオン交換樹脂を、新たに添加するノニオン界面活性剤に代えてラウリル硫酸ナトリウムから成るアニオン界面活性剤を用い、水性分散液(E)の場合と同様にしてフッ素系乳化剤の除去と濃縮を行い、PTFE含有量57.8質量%、EEA含質量0.005質量%である結着剤用結晶性含フッ素ポリマー水性分散液(F)10.9kgを得た。(F)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。
(6) Production of crystalline fluoropolymer aqueous dispersion (F) containing a trace amount of a fluorosurfactant C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 (hereinafter referred to as EEA) instead of 15 g of APFO .) Was used in the same manner as in the case of the aqueous dispersion (D) to prepare an aqueous dispersion having a PTFE content of 24.3 mass%. From this aqueous dispersion, 0.5 kg of anion exchange resin is used instead of 0.3 kg of anion exchange resin, and an anionic surfactant made of sodium lauryl sulfate is used instead of the newly added nonionic surfactant. In the same manner as in the case of liquid (E), the fluoroemulsifier is removed and concentrated to obtain an aqueous dispersion of a crystalline fluoropolymer for a binder having a PTFE content of 57.8% by mass and an EEA content of 0.005% by mass. 10.9 kg of liquid (F) was obtained. As a result of thermal analysis, the polymer taken out from a part of (F), purified and dried was a crystalline polymer having a melting point of 327 ° C.

(7)微量のフッ素系界面活性剤を含有した非晶性含フッ素ポリマー水性分散液(G)の製造
3Lの耐圧重合槽にイオン交換水1.5L、リン酸水素二ナトリウム12水和物40g、水酸化ナトリウム0.5g、第3級ブタノール198g、APFO7g、過硫酸アンモニウム2.5gを仕込んで溶解させた。続いて0.4gのエチレンジアミン四酢酸二ナトリウム塩・2水和物と0.3gの硫酸第一鉄7水和物を溶解させた水溶液200gを投入後、撹拌しながらモル比85/15のテトラフルオロエチレン/プロピレン混合ガスを投入して内圧2.5MPaとし、2.5質量%のロンガリット水溶液を添加して重合開始した。重合はモル比56/44のテトラフルオロエチレン/プロピレン混合ガス800gを追加供給しながら重合圧2.5MPaに保持して5.5時間行った。得られた乳濁液から凝集物等を除去し、テトラフルオロエチレンとプロピレンのコポリマー含有量30.8質量%、APFO0.3質量%である水性分散液を製造した。この水性分散液に20gのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、35gの前記アニオン交換樹脂を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28%アンモニア水5gを加え、相分離法により80℃にて10時間濃縮し、上澄み液を除去した後10gの前記アニオン界面活性剤を新たに加えて、コポリマー含有量60.3質量%、APFO含有量0.01質量%である結着剤用非晶性含フッ素ポリマー水性分散液(G)1150gを得た。水性分散液(G)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率56.3/43.7で結晶融点を持たない非晶性コポリマーであった。
(7) Production of Amorphous Fluoropolymer Aqueous Dispersion (G) Containing a Small Amount of Fluorosurfactant 1.5 L of ion-exchanged water and 40 g of disodium hydrogen phosphate 12 hydrate in a 3 L pressure-resistant polymerization tank Sodium hydroxide 0.5 g, tertiary butanol 198 g, APFO 7 g, and ammonium persulfate 2.5 g were charged and dissolved. Subsequently, 200 g of an aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved was added, and the mixture was stirred and tetrahydrate with a molar ratio of 85/15. A fluoroethylene / propylene mixed gas was charged to an internal pressure of 2.5 MPa, and 2.5% by mass of a Rongalite aqueous solution was added to initiate polymerization. The polymerization was carried out for 5.5 hours while maintaining a polymerization pressure of 2.5 MPa while additionally supplying 800 g of a tetrafluoroethylene / propylene mixed gas having a molar ratio of 56/44. Aggregates and the like were removed from the obtained emulsion to produce an aqueous dispersion having a tetrafluoroethylene / propylene copolymer content of 30.8% by mass and APFO of 0.3% by mass. To this aqueous dispersion, a nonionic surfactant mainly composed of 20 g of polyoxyethylene (average degree of polymerization 9) lauryl ether was added and dissolved. 35 g of the anion exchange resin was dispersed and stirred for 24 hours, followed by filtration. The anion exchange resin was removed. To the filtrate was added 5 g of 28% aqueous ammonia, and the mixture was concentrated at 80 ° C. for 10 hours by a phase separation method. After removing the supernatant, 10 g of the anionic surfactant was newly added to obtain a copolymer content of 60.3 mass. %, 1150 g of an amorphous fluorine-containing polymer aqueous dispersion (G) for a binder having an APFO content of 0.01% by mass. The polymer taken out of a part of the aqueous dispersion (G), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 56.3 / 43.7 and no crystal melting point.

(8)微量のフッ素系界面活性剤を含有した非晶性含フッ素ポリマー水性分散液(H)の製造
APFOの7gに代えてEEAの8gを用い水性分散液(G)の製造と同様にして、コポリマー含有量61.9質量%、EEA含有量0.01質量%である結着剤用非晶性含フッ素ポリマー水性分散液(G)1050gを得た。水性分散液(H)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率55.8/44.2で結晶融点を持たない非晶性コポリマーであった。
(8) Production of Amorphous Fluoropolymer Aqueous Dispersion (H) Containing a Trace Amount of Fluorosurfactant 8G of EEA was used instead of 7 g of APFO in the same manner as in the production of aqueous dispersion (G). 1050 g of an amorphous fluoropolymer aqueous dispersion (G) for a binder having a copolymer content of 61.9% by mass and an EEA content of 0.01% by mass was obtained. The polymer taken out from a part of the aqueous dispersion (H), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 55.8 / 44.2 and no crystal melting point.

(9)フッ素系界面活性剤を含有しない非晶性含フッ素ポリマー水性分散液(I)の製造
3Lの耐圧重合槽にイオン交換水1.0L、炭酸カリウム2.2g、過硫酸アンモニウム0.7g、ポリオキシエチレンアルキルエーテル31g、ラウリル硫酸ナトリウム1g、エチルビニルエーテル161g、シクロヘキシルビニルエーテル178g、4−ヒドロキシブチルビニルエーテル141gを仕込み、冷却と窒素ガス加圧を繰り返して脱気した後、クロロトリフルオロエチレン482gを仕込んで、30℃にて12時間重合反応を行った。得られた乳濁液から凝集物を除去したらポリマー含有量50.1質量%である結着剤用非晶性含フッ素ポリマー水性分散液(I)1250gを得た。水性分散液(I)の一部から取り出し、精製、乾燥したポリマーは、結晶融点を持たない非晶性コポリマーであった。
(9) Production of Amorphous Fluoropolymer Aqueous Dispersion (I) Containing No Fluorosurfactant 1.0 L of ion exchange water, 2.2 g of potassium carbonate, 0.7 g of ammonium persulfate in a 3 L pressure-resistant polymerization tank, Charge 31 g of polyoxyethylene alkyl ether, 1 g of sodium lauryl sulfate, 161 g of ethyl vinyl ether, 178 g of cyclohexyl vinyl ether, 141 g of 4-hydroxybutyl vinyl ether, degas by repeated cooling and nitrogen gas pressurization, and then add 482 g of chlorotrifluoroethylene. Then, the polymerization reaction was carried out at 30 ° C. for 12 hours. When aggregates were removed from the obtained emulsion, 1250 g of an amorphous fluoropolymer aqueous dispersion (I) for a binder having a polymer content of 50.1% by mass was obtained. The polymer taken out from a part of the aqueous dispersion (I), purified and dried was an amorphous copolymer having no crystalline melting point.

(10)フッ素系界面活性剤を含有しない非晶性の炭化水素系ポリマー水性分散液(J)の製造
3Lの耐圧反応槽にイオン交換水1000g、ドデシルベンゼンスルホン酸ナトリウム2.5g、過硫酸カリウム5g、重亜硫酸ナトリウム2.5g、スチレン235g、ブタジエン195g、メタクリル酸メチル50g、イタコン酸20gを仕込み、冷却と窒素ガス加圧を繰り返して脱気した後、45℃にて6時間重合反応を行った。得られた乳濁液から凝集物を除去したらポリマー含有量35.5質量%である結着剤用アクリル変性スチレンブタジエンゴム水性分散液(J)1300gを得た。水性分散液(J)の一部から取り出し、精製、乾燥したポリマーは、結晶融点を持たない非晶性コポリマーであった。
(10) Production of Amorphous Hydrocarbon Polymer Aqueous Dispersion (J) Containing No Fluorosurfactant 1000 g of ion-exchanged water, 2.5 g of sodium dodecylbenzenesulfonate, potassium persulfate in a 3 L pressure resistant reactor 5 g, Sodium bisulfite 2.5 g, Styrene 235 g, Butadiene 195 g, Methyl methacrylate 50 g, Itaconic acid 20 g were charged, degassed repeatedly by cooling and nitrogen gas pressurization, and then polymerized at 45 ° C. for 6 hours. It was. When aggregates were removed from the obtained emulsion, 1300 g of an acrylic-modified styrene-butadiene rubber aqueous dispersion (J) for a binder having a polymer content of 35.5% by mass was obtained. The polymer taken out from a part of the aqueous dispersion (J), purified and dried was an amorphous copolymer having no crystalline melting point.

(11)リチウムイオン電池用正極活物質(K)[リチウム(ニッケル・マンガン・コバルト)複合酸化物]の合成
炭酸ニッケルを大気中700℃にて15時間焼成して調製した酸化ニッケル3.3モル、炭酸マンガンを大気中700℃にて15時間焼成して調製した二酸化マンガン3.3モル、結晶性の低いオキシ水酸化コバルト3.3モル、炭酸リチウム5.1モルを純水に分散させ、直径0.1mmのジルコニアビーズで2時間ビーズミル処理した後、噴霧乾燥して乾燥粉を得た。これを大気中850℃にて15時間焼成し、平均粒径3.6μmであるリチウム(ニッケル・マンガン・コバルト)複合酸化物を得た。
(11) Synthesis of positive electrode active material for lithium ion battery (K) [lithium (nickel / manganese / cobalt) composite oxide] 3.3 mol of nickel oxide prepared by baking nickel carbonate at 700 ° C. for 15 hours in the air Then, 3.3 mol of manganese dioxide prepared by baking manganese carbonate at 700 ° C. for 15 hours in the air, 3.3 mol of cobalt oxyhydroxide having low crystallinity, and 5.1 mol of lithium carbonate were dispersed in pure water, The beads were milled with zirconia beads having a diameter of 0.1 mm for 2 hours and then spray-dried to obtain a dry powder. This was calcined in the atmosphere at 850 ° C. for 15 hours to obtain a lithium (nickel / manganese / cobalt) composite oxide having an average particle size of 3.6 μm.

(12)リチウムイオン電池正極活物質(L)[リチウム鉄フォスフェート]の合成
313.1gの85%リン酸を純水1000gで希釈した。このリン酸水溶液を撹拌しながら100.3gの炭酸リチウムを加えて溶解させ、リン酸リチウムの水溶液を得た。この水溶液に鉄1当量あたりの分子量が92.4であるオキシ水酸化鉄を加え、さらに純水400gを追加してリチウム鉄フォスフェート用原料の水性ペーストを得た。このペーストを直径0.5mmのジルコニアビーズを用いて1時間ビーズミル処理した後、平均分子量8500のデキストリン51.4gを115gの純水に溶かした水溶液を加えて溶解させてから噴霧乾燥し、乾燥粉を得た。この乾燥粉を、水素5%含有窒素ガス0.8リットル/分の流速で供給しながら5℃/分の昇温速度で600℃まで加熱し、600℃にて5時間保持した後、−5℃/分の降温速度設定で冷却して、平均粒径が4.2μmであるリチウム鉄フォスフェートを得た。
(12) Synthesis of Lithium Ion Battery Positive Electrode Active Material (L) [Lithium Iron Phosphate] 313.1 g of 85% phosphoric acid was diluted with 1000 g of pure water. While stirring this aqueous phosphoric acid solution, 100.3 g of lithium carbonate was added and dissolved to obtain an aqueous solution of lithium phosphate. To this aqueous solution, iron oxyhydroxide having a molecular weight of 92.4 per equivalent of iron was added, and 400 g of pure water was further added to obtain an aqueous paste as a raw material for lithium iron phosphate. This paste was subjected to bead mill treatment for 1 hour using zirconia beads having a diameter of 0.5 mm, and then an aqueous solution prepared by dissolving 51.4 g of dextrin having an average molecular weight of 8500 in 115 g of pure water was dissolved and spray-dried to obtain a dry powder. Got. The dried powder was heated to 600 ° C. at a temperature rising rate of 5 ° C./min while supplying 5% hydrogen gas containing nitrogen gas at a flow rate of 0.8 liter / min, held at 600 ° C. for 5 hours, and then −5 Cooling was performed at a temperature lowering rate setting of ° C./min to obtain lithium iron phosphate having an average particle diameter of 4.2 μm.

(13)リチウムイオン電池負極活物質(M)[不均化シリコン]の合成
平均粒径0.38μmの一酸化ケイ素240gを630gの純水加えて撹拌し、得られたペーストから噴霧乾燥して乾燥粉を調製した。この乾燥粉をアルゴンガス1リットル/分の流速で供給しながら5℃/分の昇温速度で1200℃まで加熱し、1200℃にて5時間保持した後、−5℃/分の降温速度設定で冷却して、平均粒径が4.2μmである不均化シリコンを得た。
その他、リチウムイオン二次電池用正極活物質であるリチウムコバルト複合酸化物、リチウムイオン二次電池用負極活物質である天然黒鉛、ニッケル水素二次電池用正極活物質である水酸化ニッケル、電気二重層キャパシタ用電極活物質である活性炭は市販品を用いた。
(13) Synthesis of Lithium Ion Battery Negative Electrode Active Material (M) [Disproportionated Silicon] 240 g of silicon monoxide having an average particle size of 0.38 μm was added to 630 g of pure water, stirred, and spray-dried from the obtained paste. A dry powder was prepared. While supplying this dry powder at a flow rate of 1 liter / min of argon gas, it was heated to 1200 ° C. at a rate of temperature increase of 5 ° C./min, held at 1200 ° C. for 5 hours, and then set to a temperature decrease rate of −5 ° C./min. To obtain disproportionated silicon having an average particle diameter of 4.2 μm.
In addition, lithium cobalt composite oxide as a positive electrode active material for a lithium ion secondary battery, natural graphite as a negative electrode active material for a lithium ion secondary battery, nickel hydroxide as a positive electrode active material for a nickel hydrogen secondary battery, A commercial product was used as the activated carbon as the electrode active material for the multilayer capacitor.

(例1)(比較例)
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(D)の7.1g(ポリマー成分は1.85gに相当)を加え、上記と同様にして1分間撹拌して分散さて電極形成用水性ペーストモデル(1)を得た。水性ペーストモデル(1)の電極形成用水性ペーストとしての適合性は分散液粘度を測定して調べた。その結果を表1に示した。
なお電極形成用水性ペーストとしての適合性は、導電助剤分散液に結着剤用ポリマー分散液を添加した時の粘度変化から判定できることが経験的に知られている。すなわち添加前後の粘度変化が±20%未満であれば、電極形成用水性ペーストに適合する導電助剤と結着剤及び分散安定剤の組み合わせであると判定される。
表1より水性ペーストモデル(1)は電極形成用の水性ペーストに適合するといえるが、PFOA規制をクリアーできないAPFOを比較的高濃度に含有することから、使用不可である。
(Example 1) (Comparative example)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. To this was added 7.1 g of a crystalline fluoropolymer aqueous dispersion (D) containing a fluorosurfactant (the polymer component corresponds to 1.85 g), and the mixture was stirred and dispersed for 1 minute in the same manner as described above. An aqueous paste model (1) for electrode formation was obtained. The suitability of the aqueous paste model (1) as an aqueous paste for electrode formation was examined by measuring the dispersion viscosity. The results are shown in Table 1.
It is empirically known that the suitability as an electrode-forming aqueous paste can be determined from a change in viscosity when a binder polymer dispersion is added to a conductive additive dispersion. That is, if the viscosity change before and after the addition is less than ± 20%, it is determined that the combination of the conductive aid, the binder, and the dispersion stabilizer that are compatible with the aqueous paste for electrode formation.
From Table 1, it can be said that the aqueous paste model (1) is compatible with the aqueous paste for electrode formation, but it cannot be used because it contains APFO that cannot satisfy the PFOA regulations at a relatively high concentration.

(例2)(比較例)
結晶性含フッ素ポリマー水性分散液(D)に替えてフッ素系界面活性剤を微量含有する結晶性含フッ素ポリマー水性分散液(E)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(2)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないと判定された。
(Example 2) (Comparative example)
Instead of the crystalline fluoropolymer aqueous dispersion (D), 3.1 g of the crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of a fluorosurfactant (the polymer component corresponds to 1.85 g) is used. Except that, an aqueous paste model for electrode formation (2) was prepared in the same manner as in Example 1, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste containing a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorine-containing polymer aqueous dispersion containing only a small amount of a fluorosurfactant is an aqueous solution for electrode formation. It was determined not to fit the paste.

(例3)(比較例)
結晶性含フッ素ポリマー水性分散液(E)に代えてフッ素系界面活性剤を微量含有する非晶性含フッ素ポリマー水性分散液(G)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(3)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量有する非晶性含フッ素ポリマー水性分散液(G)を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。
(Example 3) (Comparative example)
In place of the crystalline fluoropolymer aqueous dispersion (E), 3.1 g of the amorphous fluoropolymer aqueous dispersion (G) containing a trace amount of a fluorosurfactant (corresponding to 1.85 g of the polymer component) Except that it was used, an electrode forming aqueous paste model (3) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using an amorphous fluoropolymer aqueous dispersion (G) having a trace amount of a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorosurfactant as an electrode is used as an electrode. It was found to be incompatible with the aqueous pastes for use.

(例4)(比較例)
非晶性含フッ素ポリマー水性分散液(G)に代えてフッ素系界面活性剤を含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(4)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。
(Example 4) (Comparative example)
In place of the amorphous fluoropolymer aqueous dispersion (G), 3.7 g of the amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (the polymer component corresponds to 1.85 g) Except that it was used, an electrode forming aqueous paste model (4) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.

(例5)(比較例)
非晶性含フッ素ポリマー水性分散液(I)に代えてフッ素系界面活性剤は含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(5)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。
(Example 5) (Comparative example)
Instead of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of an amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (corresponding to 1.85 g of the polymer component) ) Was used in the same manner as in Example 1 to prepare an aqueous paste model for electrode formation (5), and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.

(例6)(比較例)
市販アセチレンブラックに替えて市販のケッチェンブラックの2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(6)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のケッチェンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さないポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。
(Example 6) (Comparative example)
An aqueous paste model for electrode formation (6) was prepared in the same manner as in Example 2 except that 2.3 g of commercially available ketjen black was used instead of commercially available acetylene black, and suitability as an aqueous paste for electrode formation was prepared. I investigated. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose ketjen black having no hydrophilicity and a polymer aqueous dispersion containing only a small amount of a fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.

(例7)
市販アセチレンブラックに替えて、本発明の親水性評価試験の結果(W/W)×100の値が10であるホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(7)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 7)
Example except that 2.3 g of boron-modified acetylene black (A) having a value of (W 2 / W 1 ) × 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (7) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例8)
市販アセチレンブラックに替えて、本発明の親水性評価試験の結果(W/W)×100の値が30であるホウ素変性アセチレンブラック(B)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(8)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 8)
Example except that 2.3 g of boron-modified acetylene black (B) having a value of (W 2 / W 1 ) × 100 of 30 of the hydrophilicity evaluation test of the present invention of 30 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (8) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例9)
市販アセチレンブラックに替えて、本発明の親水性評価試験の結果(W/W)×100の値が75であるホウ素変性アセチレンブラック(C)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(9)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 9)
Example except that 2.3 g of boron-modified acetylene black (C) having a value of (W 2 / W 1 ) × 100 of 75 of the hydrophilicity evaluation test of the present invention was used in place of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (9) was prepared and examined for suitability as an electrode forming aqueous paste. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例10)
結晶性含フッ素ポリマー水性分散液(E)に替えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の1.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の1.5g(結晶性ポリマーと非晶性ポリマーの質量比率は5対5で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例8と同様にして電極形成用水性ペーストモデル(10)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 10)
Instead of the crystalline fluoropolymer aqueous dispersion (E), the fluorosurfactant is contained in a trace amount as in 1.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount of the fluorosurfactant. 1.5 g of the amorphous fluorine-containing polymer aqueous dispersion (H) containing only the content (the mass ratio of the crystalline polymer to the amorphous polymer is 5 to 5, corresponding to 1.85 g of both polymers) Except that, an aqueous paste model for electrode formation (10) was prepared in the same manner as in Example 8, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例11)
ホウ素変性アセチレンブラック(B)に替えてホウ素変性アセチレンブラック(C)の2.3gを、結晶性含フッ素ポリマー水性分散液(F)の1.6gと非晶性含フッ素ポリマー水性分散液(H)の1.5gに替えてこの水性分散液(F)の0.3gと水性分散液(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例10と同様にして電極形成用水性ペーストモデル(11)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 11)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C), 1.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion (H ) Of 1.5 g of the aqueous dispersion (F) and 2.7 g of the aqueous dispersion (H) (the mass ratio of the crystalline polymer to the amorphous polymer is 1: 9, The electrode forming aqueous paste model (11) was prepared in the same manner as in Example 10 except that the polymer used was equivalent to 1.85 g), and the compatibility as the electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例12)
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに替えてこの(F)の2.9gと(H)の0.3g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例11と同様にして電極形成用水性ペーストモデル(12)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さないポリマー含フッ素水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 12)
Instead of 0.3 g of the crystalline fluoropolymer aqueous dispersion (F) and 2.7 g of the amorphous fluoropolymer aqueous dispersion (H), 2.9 g of this (F) and 0. An aqueous paste model for electrode formation (as in Example 11) except that 3 g (the mass ratio of the crystalline polymer to the amorphous polymer is 9 to 1 and corresponds to 1.85 g in both polymers) is used. 12) was prepared and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a polymer-containing aqueous dispersion containing only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.

(例13)
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに替えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例12と同様にして電極形成用水性ペーストモデル(13)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 13)
In place of 0.3 g of the crystalline fluorine-containing polymer aqueous dispersion (F) and 2.7 g of the amorphous fluorine-containing polymer aqueous dispersion (H), the amorphous fluorine-containing does not contain any fluorosurfactant. An electrode-forming aqueous paste model (13) was prepared in the same manner as in Example 12 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component corresponds to 1.85 g) was used. The suitability as an aqueous paste was examined. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive aid, an aqueous paste for electrode formation can be used even with an aqueous paste containing a fluoropolymer aqueous dispersion containing no fluorosurfactant. It was found that it can be suitably used as.

(例14)
非晶性含フッ素ポリマー水性分散液(I)の3.7gに替えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例13と同様にして電極形成用水性ペーストモデル(14)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない炭化水素系ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。
(Example 14)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous paste model for electrode formation (14) was prepared in the same manner as in Example 13 and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste for forming an electrode can be used even with an aqueous paste using a hydrocarbon-based polymer aqueous dispersion containing no fluorosurfactant as a binder. It turned out that it can be used conveniently as a paste.

(例15)
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(E)の2.5gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(G)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)及び25gのイオン交換水に分散させたリチウムイオン電池用正極活物質(K)の60gを加えて上記と同様にして1分間撹拌し、電極形成用水性ペースト(15)を得た。
(Example 15)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. Similarly to 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) containing only a trace amount of the fluorosurfactant, an amorphous fluoropolymer aqueous dispersion containing only a trace amount of the fluorosurfactant (E) G) 0.6 g (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2 and corresponds to 1.85 g of both polymers) and the positive electrode active for lithium ion battery dispersed in 25 g of ion-exchanged water 60 g of the substance (K) was added and stirred for 1 minute in the same manner as above to obtain an aqueous paste for electrode formation (15).

続いてアルミシート上にペースト(15)を塗工して120℃にて2時間乾燥後、300℃にて10分間熱処理してロールプレス圧延し、電極コンポジット層膜厚を120μmに調製した。得られた電極板から幅2cm、長さ10cmの大きさに切り抜いた試験片を直径2mmの丸棒に沿って100回折り曲げ、電極コンポジット層の強度と電極活物質保持力を調べた。基板との密着性は、100マスの碁盤目状に浅く切り込みを入れ、粘着テープ(登録商標「セロテープ」)を軽く接着させてから引き剥がして残存する目数を計測して評価した。その結果を表2に示した。表2よりペースト(15)から形成されたリチウムイオン電池用正極板は電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これはフッ素系分散剤が少ないため、ペースト(15)では活物質、疎水性の高い導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。   Subsequently, the paste (15) was applied on the aluminum sheet, dried at 120 ° C. for 2 hours, then heat-treated at 300 ° C. for 10 minutes and roll-press-rolled to adjust the electrode composite layer thickness to 120 μm. A test piece cut out to a size of 2 cm in width and 10 cm in length from the obtained electrode plate was bent 100 times along a round bar having a diameter of 2 mm, and the strength of the electrode composite layer and the electrode active material holding power were examined. The adhesion to the substrate was evaluated by measuring the number of remaining eyes after making a shallow cut in a grid of 100 squares, lightly adhering an adhesive tape (registered trademark “Cellotape”), and then peeling it off. The results are shown in Table 2. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (15) had low electrode active material carrying ability and adhesion to the substrate, and was difficult to use in a battery. This was considered to be because the active material, the highly hydrophobic conductive assistant and the binder could not be uniformly dispersed and mixed in the paste (15) due to the small amount of the fluorine-based dispersant.

(例16)
結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに替えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(16)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(16)では、活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。
(Example 16)
In place of 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) and 0.6 g of the amorphous fluoropolymer aqueous dispersion (G), an amorphous fluorine-containing composition containing no fluorosurfactant An aqueous electrode-forming paste (16) was prepared in the same manner as in Example 15 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component was equivalent to 1.85 g) was used. An electrode plate was obtained. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. This was determined to be because the paste (16) containing only the hydrocarbon-based dispersant could not uniformly disperse and mix the active material, the conductive auxiliary agent, and the binder.

(例17)
非晶性含フッ素ポリマー水性分散液(I)の3.7gに替えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(I)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(17)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(17)では活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。
(Example 17)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (I) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous electrode forming paste (17) was prepared in the same manner as in Example 15 to obtain an electrode plate for a lithium ion battery. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. It was judged that this was because the paste (17) containing only the hydrocarbon-based dispersant could not uniformly disperse and mix the active material, conductive additive and binder.

(例18)
市販アセチレンブラックに替えてホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例15と同様にして電極形成用水性ペースト(18)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(18)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。
(Example 18)
An electrode-forming aqueous paste (18) was prepared in the same manner as in Example 15 except that 2.3 g of boron-modified acetylene black (A) was used instead of commercially available acetylene black to obtain an electrode plate for a lithium ion battery. It was. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (18) had good electrode active material carrying ability and adhesion to the substrate. This is because the use of boron-modified acetylene black, which has a hydrophilic property that is relatively easy to disperse in water, makes it possible to prepare an aqueous paste for electrode formation with good dispersion, with little use of a fluorosurfactant. It was determined that it was due to the accident.

(例19)
ホウ素変性アセチレンブラック(A)に替えてホウ素変性アセチレンブラック(B)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに替えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の2.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例18と同様にして電極形成用水性ペースト(19)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(19)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(19)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。
(Example 19)
Using 2.3 g of boron-modified acetylene black (B) instead of boron-modified acetylene black (A), 2.5 g of crystalline fluoropolymer aqueous dispersion (E) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of G), the fluorosurfactant contains only a trace amount as in 2.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount. Except for using 0.6 g of the aqueous fluoropolymer dispersion (H) (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2, corresponding to 1.85 g of both polymers). In the same manner as in No. 18, an electrode-forming aqueous paste (19) was prepared to obtain an electrode plate for a lithium ion battery. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (19) had good electrode active material carrying ability and adhesion to the substrate. This is because, in the paste (19), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersibility without using almost any fluorosurfactant. It was judged that the aqueous paste was prepared.

(例20)
ホウ素変性アセチレンブラック(B)に替えてホウ素変性アセチレンブラック(C)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに替えて、(F)の2.2gとフッ素系界面活性剤は全く含有しない非晶性含フッ素ポリマー水性分散液(I)の1.1g(結晶性ポリマーと非晶性ポリマーの比率は7対3で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例19と同様にして電極形成用水性ペースト(20)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(20)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(20)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。
(Example 20)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C) was used, and 2.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of H), 2.2 g of (F) and 1.1 g of the amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (crystalline polymer and amorphous) The electrode-forming aqueous paste (20) was prepared in the same manner as in Example 19 except that the ratio of the conductive polymer was 7 to 3, and the amount of both polymers was equivalent to 1.85 g. An electrode plate was obtained. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (20) had good electrode active material carrying power and adhesion to the substrate. This is because, in the paste (20), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersion even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.

(例21)
結晶性含フッ素ポリマー水性分散液(F)の2.2gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに替えて、(F)の2.9gとフッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の0.5g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(21)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(21)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(21)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。
(Example 21)
Instead of 2.2 g of the crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of the amorphous fluoropolymer aqueous dispersion (I), 2.9 g of (F) and the fluorosurfactant are 0.5 g of amorphous hydrocarbon polymer aqueous dispersion (J) not containing at all (mass ratio of crystalline polymer to amorphous polymer is 9 to 1, corresponding to 1.85 g of both polymers) A lithium ion battery electrode plate was obtained by preparing an aqueous electrode-forming paste (21) in the same manner as in Example 20 except that was used. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (21) had good electrode active material carrying ability and adhesion to the substrate. This is because, even in the paste (21), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersibility even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.

(例22)
結晶性含フッ素ポリマー水性分散液(F)の2.9gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに替えて、フッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(22)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(22)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(22)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤を全く使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。
(Example 22)
Instead of 2.9 g of crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of amorphous fluoropolymer aqueous dispersion (I), amorphous carbonization containing no fluorosurfactant An aqueous electrode-forming paste (22) was prepared in the same manner as in Example 20 except that 5.2 g (the polymer component was equivalent to 1.85 g) of the aqueous hydrogen-based polymer dispersion (J) was used. A battery electrode plate was obtained. From Table 2, the lithium ion battery positive electrode plate formed from the paste (22) had good electrode active material carrying power and adhesion to the substrate. This is because, even in the paste (22), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersion without using any fluorosurfactant. It was judged that the aqueous paste was prepared.

(例23)
リチウムイオン電池用正極活物質(K)に代えてリチウムイオン電池用正極活物質(L)を用いたことを除いて、例19と同様にして電極形成用ペースト(23)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例24)
リチウムイオン電池用正極活物質(K)に代えて市販のリチウムコバルト複合酸化物(平均粒径5.8μm)を用いたことを除いて、例19と同様にして電極形成用ペースト(24)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(Example 23)
An electrode forming paste (23) was prepared in the same manner as in Example 19 except that the positive electrode active material (L) for lithium ion batteries was used in place of the positive electrode active material (K) for lithium ion batteries. A battery electrode plate was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 24)
An electrode forming paste (24) was prepared in the same manner as in Example 19 except that a commercially available lithium cobalt composite oxide (average particle size 5.8 μm) was used instead of the positive electrode active material (K) for the lithium ion battery. It prepared and obtained the electrode plate for lithium ion batteries. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.

(例25)
リチウムイオン電池用正極活物質(K)に代えて市販の活性炭(BET比表面積が2900m/g)を用いたことを除い
て、例19と同様にして電極形成用ペースト(25)を調製し、電気二重層キャパシタ用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例26)
結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに替えて、(F)の0.3gと(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を、リチウムイオン電池用正極活物質(K)の60gに変えてリチウムイオン電池用負極活物質(M)の30gと市販の天然黒鉛(平均粒径3.3μm)30gを用いたことを除き、例19と同様にして電極形成用ペースト(26)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(Example 25)
A paste for electrode formation (25) was prepared in the same manner as in Example 19 except that commercially available activated carbon (BET specific surface area was 2900 m 2 / g) was used instead of the positive electrode active material (K) for lithium ion batteries. An electrode plate for an electric double layer capacitor was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 26)
Instead of 2.6 g of the crystalline fluoropolymer aqueous dispersion (F) and 0.6 g of the amorphous fluoropolymer aqueous dispersion (H), 0.3 g of (F) and 2. of (H). 7 g (the mass ratio of the crystalline polymer and the amorphous polymer is 1: 9, corresponding to 1.85 g of both polymers) is changed to 60 g of the positive electrode active material (K) for the lithium ion battery, and the lithium ion battery The electrode forming paste (26) was prepared in the same manner as in Example 19 except that 30 g of the negative electrode active material (M) for use and 30 g of commercially available natural graphite (average particle size: 3.3 μm) were used. An electrode plate was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.

(例27)
ホウ素変性アセチレンブラック(B)の2.3gに代えて、オキシ水酸化コバルトの4.0gとホウ素変性アセチレンブラック(C)の0.5gを、リチウムイオン電池負極活物質(M)の30gと市販の天然黒鉛30gに代えて市販の水酸化ニッケル(平均粒径8.0μm)60gを用いたことを除き、例25と同様にして電極形成用ペースト(25)を調製し、ニッケル水素電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(Example 27)
Instead of 2.3 g of boron-modified acetylene black (B), 4.0 g of cobalt oxyhydroxide and 0.5 g of boron-modified acetylene black (C), 30 g of lithium ion battery negative electrode active material (M) and commercially available A paste for electrode formation (25) was prepared in the same manner as in Example 25 except that 60 g of commercially available nickel hydroxide (average particle size: 8.0 μm) was used instead of 30 g of natural graphite. I got a plate. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.

(例28)
例20の電極板を所定の大きさに打抜くと正極板が得られ、リチウム箔を所定の大きさに切り出すと負極板が得られる。こうして得られる正極板、負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレーターを介してステンレス製セルケースに収納し、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入するとリチウム二次電池のモデルセルとなる。このモデルセルを充放電試験機に取り付け、25℃において充電電量0.6mA/cmで電池電圧4.3Vになるまで充電した後、放電電量2.0mA/cm(1.25Cレートに相当)で2.0Vになるまで放電する充放電の繰り返しを行うと、このモデルセルは蓄電素子特性良好なリチウム二次電池であることがかわる。
(Example 28)
When the electrode plate of Example 20 is punched to a predetermined size, a positive electrode plate is obtained, and when the lithium foil is cut to a predetermined size, a negative electrode plate is obtained. A lead wire is attached to each of the positive electrode plate and the negative electrode plate thus obtained, accommodated in a stainless steel cell case via a polyolefin separator, and 1 mol / liter of lithium hexafluorophosphate is dissolved in a mixed solution of ethylene carbonate and diethylene carbonate. When the electrolyte solution is injected, it becomes a model cell of a lithium secondary battery. Attach the model cell charge and discharge tester, corresponds to the charge coulometry 0.6 mA / cm 2 was charged to a battery voltage 4.3V, the discharge coulometric 2.0mA / cm 2 (1.25C rate at 25 ° C. ), The model cell is a lithium secondary battery with good storage element characteristics.

Figure 2011086378
Figure 2011086378

Figure 2011086378
Figure 2011086378

Claims (6)

電極活物質、導電助剤及び結着剤を含有し、前記導電助剤が下記に示した親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを特徴とする蓄電素子電極形成用水性ペースト。
親水性評価試験:
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを容器に正確に秤量し、その質量をWとし、次に、500mlの分液ロートに300gのイオン交換水と該導電性炭素質材料粉体とを入れ、さらに30gのイオン交換水を加えて容器壁面に付着した導電助剤粉体を流し込み、次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をWとする。分液ロートに投入した導電性炭素質材料粉体の投入質量Wと水と混和した質量Wが、(W/W)×100≧5の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。
An electrical storage comprising an electrode active material, a conductive assistant and a binder, wherein the conductive assistant is a conductive carbonaceous material determined to have hydrophilicity in a hydrophilicity evaluation test shown below. An aqueous paste for device electrode formation.
Hydrophilic evaluation test:
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed in a container, and its mass is set to W 1. Next, 300 g of ion-exchanged water and the conductive material are placed in a 500 ml separatory funnel. The carbonaceous material powder was added, and 30 g of ion-exchanged water was added to pour the conductive assistant powder adhered to the wall surface of the container, and then the separatory funnel was shaken for 1 minute and allowed to stand for 30 minutes. . Next, the cock of the separatory funnel is opened, and 300 g of the conductive carbonaceous material powder mixed with ion-exchanged water and water is extracted from the bottom, and the conductive carbonaceous material powder is filtered and separated from the extracted liquid. , Dried at 120 ° C. for 24 hours and weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separatory funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 5, the conductive carbonaceous material Is determined to have hydrophilicity.
前記親水性を有する導電性炭素質材料がホウ素変性の導電性炭素質材料である請求項1に記載の蓄電素子電極形成用水性ペースト。   The aqueous paste for forming a storage element electrode according to claim 1, wherein the conductive carbonaceous material having hydrophilicity is a boron-modified conductive carbonaceous material. 前記結着剤がポリマーの水性分散液である請求項1又は2に記載の蓄電素子電極形成用水性ペースト。   The aqueous paste for forming a storage element electrode according to claim 1, wherein the binder is an aqueous dispersion of a polymer. 前記結着剤が含フッ素ポリマーの水性分散液である請求項1又は2に記載の蓄電素子電極形成用水性ペースト。   The aqueous paste for forming a storage element electrode according to claim 1, wherein the binder is an aqueous dispersion of a fluorine-containing polymer. 前記含フッ素ポリマーの水性分散液が結晶性含フッ素ポリマーの水性分散液と非晶性含フッ素ポリマーの水性分散液を混合して調製したものである請求項4に記載の蓄電素子電極形成用水性ペースト。   5. The aqueous electrode for forming a storage element electrode according to claim 4, wherein the aqueous dispersion of the fluoropolymer is prepared by mixing an aqueous dispersion of a crystalline fluoropolymer and an aqueous dispersion of an amorphous fluoropolymer. paste. 請求項1〜5のいずれかに記載の蓄電素子電極形成用水性ペーストから形成された蓄電素子電極を有することを特徴とする蓄電素子。   A power storage device comprising a power storage device electrode formed from the aqueous paste for forming a power storage device electrode according to claim 1.
JP2008029626A 2008-02-08 2008-02-08 Aqueous paste for forming electrode of electrical storage device Pending JP2011086378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008029626A JP2011086378A (en) 2008-02-08 2008-02-08 Aqueous paste for forming electrode of electrical storage device
PCT/JP2009/051382 WO2009098986A1 (en) 2008-02-08 2009-01-28 Aqueous paste for forming electrode of electrical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029626A JP2011086378A (en) 2008-02-08 2008-02-08 Aqueous paste for forming electrode of electrical storage device

Publications (1)

Publication Number Publication Date
JP2011086378A true JP2011086378A (en) 2011-04-28

Family

ID=40952063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029626A Pending JP2011086378A (en) 2008-02-08 2008-02-08 Aqueous paste for forming electrode of electrical storage device

Country Status (2)

Country Link
JP (1) JP2011086378A (en)
WO (1) WO2009098986A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061803A1 (en) * 2012-10-19 2014-04-24 旭硝子株式会社 Method for producing binder composition for electrical storage devices
JP2014209503A (en) * 2009-03-30 2014-11-06 Jsr株式会社 Composition for electrochemical device electrode binder
EP2624341A4 (en) * 2010-09-30 2015-10-07 Asahi Glass Co Ltd Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
WO2016076370A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
WO2016076371A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JP2017076551A (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Intermediate composition, slurry for negative electrode, and method for producing negative electrode
JP2017152337A (en) * 2016-02-26 2017-08-31 株式会社豊田中央研究所 Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery
CN111129499A (en) * 2019-12-30 2020-05-08 宣城研一新能源科技有限公司 Water-based conductive adhesive for lithium battery and preparation method thereof
CN112673500A (en) * 2019-12-24 2021-04-16 昭和电工株式会社 Nonaqueous secondary battery electrode, electrode paste, and nonaqueous secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436472B2 (en) * 2014-03-05 2018-12-12 日本ケミコン株式会社 Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using electrode material
KR102400346B1 (en) * 2014-03-05 2022-05-20 닛뽄 케미콘 가부시끼가이샤 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
JP2015176831A (en) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2018005971A (en) * 2014-11-13 2018-01-11 旭硝子株式会社 Method for manufacturing binder composition for power storage device
WO2021253302A1 (en) * 2020-06-17 2021-12-23 Guangdong Haozhi Technology Co. Limited Conductive composition for secondary battery
CN115023843A (en) * 2020-06-17 2022-09-06 广东省皓智科技有限公司 Method for stripping composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555213B2 (en) * 1995-02-09 2004-08-18 宇部興産株式会社 Non-aqueous secondary battery
JPH0922727A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Manufacture of lithium secondary battery of hybrid solid polymer electrolyte type
JP2002203551A (en) * 2000-12-28 2002-07-19 Gs-Melcotec Co Ltd Non-aqueous electrolyte battery
JP2002319404A (en) * 2001-04-23 2002-10-31 Ube Ind Ltd Secondary battery positive electrode conductive material and its manufacturing method
JP4456668B2 (en) * 2002-04-18 2010-04-28 日立マクセル株式会社 Nonaqueous secondary battery and its positive electrode
KR101310520B1 (en) * 2005-05-26 2013-09-23 니폰 제온 가부시키가이샤 Electrode material for electrochemical device and composite particle
JP3958781B2 (en) * 2005-07-04 2007-08-15 昭和電工株式会社 Negative electrode for lithium secondary battery, method for producing negative electrode composition, and lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209503A (en) * 2009-03-30 2014-11-06 Jsr株式会社 Composition for electrochemical device electrode binder
EP2624341A4 (en) * 2010-09-30 2015-10-07 Asahi Glass Co Ltd Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
WO2014061803A1 (en) * 2012-10-19 2014-04-24 旭硝子株式会社 Method for producing binder composition for electrical storage devices
JPWO2014061803A1 (en) * 2012-10-19 2016-09-05 旭硝子株式会社 Method for producing binder composition for electricity storage device
US9786917B2 (en) 2012-10-19 2017-10-10 Asahi Glass Company, Limited Method for producing binder composition for storage battery device
WO2016076370A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
WO2016076371A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JP2017076551A (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Intermediate composition, slurry for negative electrode, and method for producing negative electrode
JP2017152337A (en) * 2016-02-26 2017-08-31 株式会社豊田中央研究所 Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery
CN112673500A (en) * 2019-12-24 2021-04-16 昭和电工株式会社 Nonaqueous secondary battery electrode, electrode paste, and nonaqueous secondary battery
CN112673500B (en) * 2019-12-24 2021-11-05 昭和电工株式会社 Nonaqueous secondary battery electrode, electrode paste, and nonaqueous secondary battery
CN111129499A (en) * 2019-12-30 2020-05-08 宣城研一新能源科技有限公司 Water-based conductive adhesive for lithium battery and preparation method thereof

Also Published As

Publication number Publication date
WO2009098986A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP2011086378A (en) Aqueous paste for forming electrode of electrical storage device
JP5228524B2 (en) Aqueous paste for forming electricity storage element electrodes with low environmental impact
JP6210240B2 (en) Binder composition for electricity storage device
CN108028358B (en) Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoat-coated current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
JP5854092B2 (en) Electrodes for electrochemical devices
KR101998905B1 (en) Electrode-forming composition
WO2010008058A1 (en) Anode composite for nonaqueous electrolyte cell
JP2014103122A (en) Binder composition for electricity storage device electrode, slurry for electricity storage device electrode, electricity storage device electrode, and electricity storage device
CN108475785B (en) Binder composition, binder dispersion, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JP2011258333A (en) Method of manufacturing electrode composite for secondary battery, electrode for secondary battery and secondary battery
CN114008825A (en) Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
KR20150071452A (en) A method for manufacturing a slurry an anode of lithium ion secondary battery
JP2012094331A (en) Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
WO2010134465A1 (en) Fluorine-containing binder
JP2009295405A (en) Method for manufacturing aqueous paste for forming power storage element electrode
JP2013178926A (en) Positive electrode mixture for nonaqueous secondary battery
JP6365181B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
WO2020158885A1 (en) Electrode active material for non-aqueous secondary battery and method for producing same
JP6394027B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2016143552A (en) Composition for power storage device, slurry for power storage device electrode, and storage device electrode and power storage device
JP2016143553A (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
WO2020158887A1 (en) Method for manufacturing electrode active material for non-aqueous secondary cell
WO2022113859A1 (en) Paste for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
WO2024090324A1 (en) Binder for positive electrodes, electrode mixture, electrode and secondary battery
WO2022202920A1 (en) Binder for power storage device, binder-containing composition, electrode mixture for power storage device, electrode for power storage device, and secondary battery