WO2016076371A1 - Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery - Google Patents

Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery Download PDF

Info

Publication number
WO2016076371A1
WO2016076371A1 PCT/JP2015/081780 JP2015081780W WO2016076371A1 WO 2016076371 A1 WO2016076371 A1 WO 2016076371A1 JP 2015081780 W JP2015081780 W JP 2015081780W WO 2016076371 A1 WO2016076371 A1 WO 2016076371A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
storage device
monomer
group
fluorine
Prior art date
Application number
PCT/JP2015/081780
Other languages
French (fr)
Japanese (ja)
Inventor
丈裕 巨勢
美佳 杉本
鷲見 直子
瑞菜 豊田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016076371A1 publication Critical patent/WO2016076371A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a binder composition for an electricity storage device, an electrode mixture for an electricity storage device, an electrode for an electricity storage device, and a secondary battery.
  • An electricity storage device such as a secondary battery is usually composed of an electrode, a non-aqueous electrolyte, a separator and the like as main members.
  • An electrode for an electricity storage device is generally produced by applying an electrode mixture for an electricity storage device containing an electrode active material, a conductive material, a binder and a liquid medium to the surface of the current collector and drying it.
  • the binder for an electricity storage device is usually used as a binder composition in which a polymer serving as a binder is dissolved or dispersed in water or an organic solvent, and an electrode active material and a conductive material are dispersed in the binder composition. Prepared.
  • the adhesion between the electrode active materials and the adhesion between the electrode active material layer and the current collector are insufficient, an electricity storage device with a large initial capacity cannot be obtained, and the obtained electricity storage device was repeatedly charged and discharged. In this case, the capacity of the battery is reduced due to the electrode active material dropping off from the electrode. For this reason, the outstanding binding property is requested
  • the electrode active material is covered with the binder for the electricity storage device, it is required that the resistance of the electrode be kept low and good charge / discharge characteristics can be realized.
  • the electrode is required to have flexibility so that cracks do not occur on the electrode surface when an external force is applied to the electrode, such as an electrode winding process when manufacturing the battery.
  • Patent Document 1 includes a mixture of an aqueous dispersion of a fluorine-containing copolymer having a hydrophilic group in a side chain and having a specific molecular weight range, and an aqueous dispersion containing polytetrafluoroethylene (PTFE).
  • the binder has been shown to be excellent in pond characteristics, and the electrode mixture is prepared by uniformly stirring the mixture, the electrode active material, and the conductive additive.
  • Patent Document 2 was prepared by mixing an aqueous dispersion of an amorphous fluorine-containing copolymer such as a tetrafluoroethylene-propylene copolymer and an aqueous dispersion of polytetrafluoroethylene (PTFE). A binder is described.
  • an amorphous fluorine-containing copolymer such as a tetrafluoroethylene-propylene copolymer
  • PTFE polytetrafluoroethylene
  • Patent Document 1 The binder described in Examples (Table 1) of Patent Document 1 is an aqueous dispersion (A) of a fluorinated copolymer having units (a), (b), and (c) in the present invention. (B) and a polytetrafluoroethylene (PTFE) aqueous dispersion (G), and according to the knowledge of the present inventors, the electrode produced using the binder is sufficiently flexible. I can not say.
  • Patent Documents 1 and 2 describe that an aqueous dispersion of a fluorine-containing copolymer and an aqueous dispersion of PTFE are mixed to form a binder.
  • PTFE when PTFE is subjected to shearing, the viscosity is likely to increase. Therefore, it is difficult to obtain good coatability in an electrode mixture using such a binder. There are challenges.
  • the present invention provides a binder composition for an electricity storage device that has good flexibility and adhesion, can provide good coating properties in an electrode mixture for an electricity storage device, and can realize good charge / discharge characteristics in a secondary battery. It is an object to provide an electrode mixture for an electricity storage device, an electrode for an electricity storage device, and a secondary battery using the binder composition.
  • the gist of the present invention is the following [1] to [10].
  • a binder composition for an electricity storage device comprising a fluorine-containing copolymer (Z) at -20 ° C and a liquid medium.
  • Monomer (A) One or more compounds selected from the group consisting of tetrafluoroethylene and chlorotrifluoroethylene.
  • Monomer (B) One or more compounds selected from the group consisting of a compound represented by the following formula (I) and a compound represented by the following (II).
  • CH 2 ⁇ CH— (CH 2 ) n —O—R (I) CH 2 ⁇ CH— (CH 2 ) n —OCO—R (II) [Wherein n is 0 or 1, and R represents a saturated hydrocarbon group having 1 to 20 carbon atoms. When two or more kinds of compounds are used, a plurality of n and R may be the same or different.
  • Monomer (C) from the group consisting of a compound having an ethylenically unsaturated bond and a hydroxy group, a compound having an ethylenically unsaturated bond and an epoxy group, and a compound having an ethylenically unsaturated bond and a carboxy group A compound that is one or more selected.
  • the fluorine-containing copolymer (Z) is a tetrafluoroethylene / propylene copolymer, a tetrafluoroethylene / propylene / vinylidene fluoride copolymer, a vinylidene fluoride / hexafluoropropylene copolymer, or a vinylidene fluoride.
  • n is 0 or 1
  • m is an integer of 0 to 2
  • R 1 is a (m + 2) -valent saturated hydrocarbon group having 1 to 10 carbon atoms, or a carbon number having an etheric oxygen atom.
  • R 2 is a divalent saturated hydrocarbon group having 1 to 8 carbon atoms or a divalent saturated hydrocarbon having 2 to 8 carbon atoms having an etheric oxygen atom
  • R 3 represents a hydrocarbon group, and R 3 represents an alkylene group having 1 to 8 carbon atoms or an alkylene group having 2 to 8 carbon atoms having an etheric oxygen atom.
  • a plurality of m, n, R 1 , R 2 , and R 3 may be the same or different.
  • the fluorine-containing copolymer (Y) is further a macromonomer having a hydrophilic portion, and one or more units (d) based on the monomer (D) having a molecular weight of 300 or more
  • An electrode mixture for an electricity storage device comprising the binder composition for an electricity storage device according to any one of [1] to [10] above and a battery active material.
  • An electrode for an electricity storage device comprising a current collector and an electrode active material layer formed on the current collector using the electrode mixture for an electricity storage device according to [12] above.
  • a secondary battery comprising the electrode for an electricity storage device according to [13] or [14] and an electrolytic solution.
  • the binder composition for an electricity storage device of the present invention has good flexibility and adhesion, and provides good coating properties in an electrode mixture for an electricity storage device, and also realizes good charge / discharge characteristics in a secondary battery. it can. Moreover, the reactivity in an electrode is restrained lower, the thermal runaway in a secondary battery is less likely to occur, and higher safety is obtained.
  • the electrode mixture for an electricity storage device of the present invention has excellent adhesion between electrode active materials and adhesion between the electrode active material and the current collector, excellent flexibility, good coating properties, and secondary properties. Good charge / discharge characteristics in the battery can be obtained. Moreover, the reactivity in an electrode is restrained lower, the thermal runaway in a secondary battery is less likely to occur, and higher safety is obtained.
  • the electrode for an electricity storage device of the present invention has good adhesion between the electrode active materials and adhesion between the electrode active material and the current collector, and also has excellent flexibility and good charge / discharge characteristics in the secondary battery. Furthermore, since the reactivity in the electrode is suppressed to be lower, thermal runaway in the secondary battery is less likely to occur, and higher safety is obtained.
  • the “monomer” is a compound having a polymerizable carbon-carbon double bond (ethylenically unsaturated bond).
  • a “unit based on a monomer” is a structural unit composed of monomer molecules formed by polymerization of monomers, in which part of the monomer molecules have disappeared due to decomposition. Also good.
  • a monomer and a unit based on the monomer are represented using the same alphabet. For example, “unit (a)” represents “unit based on monomer (A)”.
  • the number average molecular weight of the fluorinated copolymer is a value obtained as a polystyrene-converted value measured by gel permeation chromatography (GPC) using a solvent soluble in the fluorinated copolymer.
  • examples of the electricity storage device include a lithium ion primary battery, a lithium ion secondary battery, a lithium polymer battery, an electric double layer capacitor, and a lithium ion capacitor.
  • a lithium ion primary battery As an electricity storage device, it is particularly preferable to use it for a lithium ion secondary battery because it can more effectively express adhesiveness, electrolytic solution resistance, charge / discharge characteristics, and the like.
  • the binder composition for an electricity storage device of the present invention includes a fluorinated copolymer (Y) and a fluorinated copolymer (Z).
  • a binder composition includes a fluorinated copolymer (Y) and a fluorinated copolymer (Z).
  • the fluorine-containing copolymer (Y) comprises a unit (a) based on the monomer (A), a unit (b) based on the monomer (B), and a unit (c) based on the monomer (C). contains.
  • the monomer (A) is one or more compounds selected from the group consisting of tetrafluoroethylene (TFE) and chlorotrifluoroethylene (CTFE). CTFE is preferred.
  • the monomer (B) is at least one compound selected from the group consisting of a compound represented by the following formula (I) and a compound represented by the following (II).
  • CH 2 ⁇ CH— (CH 2 ) n —O—R (I) CH 2 ⁇ CH— (CH 2 ) n —OCO—R (II)
  • n is 0 or 1
  • R represents a saturated hydrocarbon group having 1 to 20 carbon atoms. When two or more kinds of compounds are used, a plurality of n and R may be the same or different.
  • the saturated hydrocarbon group as R may contain a linear, branched or ring structure. R does not have a fluorine atom.
  • the saturated hydrocarbon group as R has 1 to 20 carbon atoms, preferably 2 to 15 and more preferably 2 to 10 from the viewpoint of obtaining good adhesion.
  • the monomer (B) include vinyl ethers such as ethyl vinyl ether (EVE), propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether (CHVE); ethyl allyl ether, propyl allyl ether, butyl allyl ether, And allyl ethers such as cyclohexyl allyl ether; vinyl esters such as butanoic acid vinyl ester and octanoic acid vinyl ester; and allyl esters such as butanoic acid allyl ester and octanoic acid allyl ester; Preferred are vinyl ethers or allyl ethers, and vinyl ethers such as ethyl vinyl ether (EVE), propyl
  • the monomer (C) is selected from the group consisting of a compound having an ethylenically unsaturated bond and a hydroxy group, a compound having an ethylenically unsaturated bond and an epoxy group, and a compound having an ethylenically unsaturated bond and a carboxy group. It is a compound that is one or more selected.
  • the monomer (C) has at least one of a hydroxy group, an epoxy group, or a carboxy group, and may have two or more of these. Units based on the monomer (C) contribute to the improvement of adhesion.
  • Examples of the compound having an ethylenically unsaturated bond and a hydroxy group include a vinyl ether having a hydroxy group, a vinyl ester having a hydroxy group, an allyl ether having a hydroxy group, and One or more compounds selected from the group consisting of allyl esters having a hydroxy group are preferred.
  • the compound represented by the following formula (III) or (IV) is mentioned.
  • Examples of the compound having an ethylenically unsaturated bond and an epoxy group include a vinyl ether having an epoxy group, a vinyl ester having an epoxy group, an allyl ether having an epoxy group, and One or more compounds selected from the group consisting of allyl esters having an epoxy group are preferred.
  • the compound represented by the following formula (V) or (VI) is mentioned.
  • n is 0 or 1.
  • m is an integer of 0-2.
  • m is 2
  • two R 2 existing in one molecule may be the same as or different from each other.
  • a plurality of m, n, R 1 , R 2 , and R 3 may be the same or different.
  • R 1 represents an (m + 2) -valent saturated hydrocarbon group having 1 to 10 carbon atoms, or an (m + 2) -valent saturated hydrocarbon having 2 to 10 carbon atoms and having an etheric oxygen atom. Represents a group.
  • the saturated hydrocarbon group may contain a linear, branched or ring structure.
  • Hydrocarbon group (however, the number of etheric oxygen atoms contained when the saturated hydrocarbon group has 2 carbon atoms is 1 and the etheric oxygen atom contained when the saturated hydrocarbon group has 3 carbon atoms) Is 1 or 2.).
  • Specific examples include an alkylene group, a cycloalkylene group, and an alkylene group containing a cycloalkylene group.
  • the alkylene group may be linear or branched.
  • a cycloalkylene group having 5 to 8 carbon atoms is preferable, and a cyclohexylene group is particularly preferable.
  • Examples of the alkylene group including a cycloalkylene group include —CH 2 —C 6 H 10 —CH 2 —.
  • R 2 represents a divalent saturated hydrocarbon group having 1 to 8 carbon atoms or a divalent saturated hydrocarbon group having 2 to 8 carbon atoms having an etheric oxygen atom.
  • the saturated hydrocarbon group may contain a linear, branched or ring structure.
  • R 2 include the same as the divalent saturated hydrocarbon group for R 1 .
  • R 1 is a linear alkylene group having 1 or 2 carbon atoms, or an alkylene group having 2 to 6 carbon atoms having 1 to 3 etheric oxygen atoms (however, the number of etheric oxygen atoms is 3 or less).
  • R 2 R 3 is preferably an alkylene group having 1 to 4 carbon atoms.
  • R 3 represents an alkylene group having 1 to 8 carbon atoms or an alkylene group having 2 to 8 carbon atoms having an etheric oxygen atom. It may be linear or branched. R 3 is preferably an alkylene group having 1 to 4 carbon atoms.
  • the monomer (Ci) examples include 2-hydroxyethyl vinyl ether (HEVE), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether (HBVE), 4-hydroxy-2-methylbutyl vinyl ether, Hydroxyalkyl vinyl ethers such as 5-hydroxypentyl vinyl ether and 6-hydroxyhexyl vinyl ether; monovinyl ethers of alicyclic diols such as cyclohexanedimethanol monovinyl ether (CHMVE); diethylene glycol monovinyl ether (DEV), triethylene glycol monovinyl ether, Polyethylene glycol monovinyl ethers such as tetraethylene glycol monovinyl ether Hydroxyalkyl allyl ethers such as hydroxyethyl allyl ether, hydroxybutyl allyl ether, 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl
  • the monomer (C-ii) examples include allyl glycidyl ether, glycidyl vinyl ether, allyl-3,4-epoxybutyl ether, allyl-5,6-epoxyhexyl ether, and the like.
  • Examples of the compound having an ethylenically unsaturated bond and a carboxy group include 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, and 3-hexenoic acid.
  • the monomer (C) preferably contains at least one compound selected from the group consisting of the monomer (Ci) and the monomer (C-ii).
  • the total amount of the monomer (Ci) and the monomer (C-ii) is preferably 50% by mass or more, more preferably 70% by mass or more based on the total amount of the monomer (C). It may be 100% by mass.
  • the monomer (C) preferably contains one or more compounds selected from the group consisting of compounds represented by formulas (III) to (VI).
  • the fluorine-containing copolymer (Y) is at least one kind of macromonomer having a hydrophilic part, and optionally has a unit (d) based on the monomer (D) having a molecular weight of 300 or more. Also good.
  • the unit (d) contributes to the improvement of the dispersion stability of the fluorinated copolymer (Y) in the aqueous dispersion medium. It also contributes to improved adhesion and charge / discharge characteristics.
  • the “macromonomer” means a low molecular weight polymer or oligomer having an ethylenically unsaturated bond in the molecule.
  • the molecular weight or average molecular weight of the macromonomer is preferably 300 to 10,000, and more preferably 400 to 5000.
  • the molecular weight of the macromonomer means a formula weight obtained based on the chemical formula.
  • it is represented by an average molecular weight that is an average value of molecular weights (formula weights).
  • “Hydrophilic part” means a part having a hydrophilic group, a part having a hydrophilic bond, or a part composed of a combination thereof. Those corresponding to any of the monomers (A) to (C) are not included in the monomer (D).
  • the macromonomer preferably has an ethylenically unsaturated bond in the molecule and a polyether chain or a polyester chain.
  • the group having an ethylenically unsaturated bond include vinyl group, vinyl ether group, vinyl ester group, allyl group, allyl ether group, allyl ester group, acryloyl group, and methacryloyl group.
  • a vinyl group or a vinyl ether group is preferable because the synthesis of the fluorine-containing copolymer is easy.
  • hydrophilic group examples include an ionic (anionic or cationic) hydrophilic group, a nonionic hydrophilic group, an amphoteric hydrophilic group, and a combination thereof.
  • the anionic hydrophilic group -SO 3 - NH + 4, -SO 3 - Na + and the like.
  • cationic hydrophilic group examples include —NH 3 + CH 3 COO — .
  • nonionic hydrophilic groups include — (CH 2 CH 2 O) p H (p is 1 to 50).
  • amphoteric hydrophilic group examples include —N + (CH 3 ) 2 CH 2 COO — and the like.
  • a portion having a nonionic or amphoteric hydrophilic group and a portion having another hydrophilic group are combined, or a portion having a hydrophilic group and a hydrophilic bond It is preferable to combine with the site
  • Examples of the preferred structure of the macromonomer having a hydrophilic site as the monomer (D) include the following (1) to (7).
  • (2) CH 2 CHCH 2 O (CH 2 ) d [O (CH 2 ) e ] f OR 2 (d is an integer of 1 to 10, e is an integer of 1 to 4, f is an integer of 2 to 20, R 2 is a hydrogen atom or a lower alkyl group).
  • the lower alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms.
  • the monomer (D) one having a vinyl ether type structure in the molecule is preferable because of excellent copolymerizability with the fluoroolefin.
  • the polyether chain portion is composed of oxyethylene units or oxyethylene units and oxypropylene units because of excellent hydrophilicity.
  • various properties such as stability are improved.
  • the solvent resistance with respect to electrolyte solution will worsen.
  • the number of oxyalkylene units in one molecule is preferably 2 or more and 100 or less, and more preferably 2 or more and 75 or less.
  • Such a macromonomer having a hydrophilic moiety can be produced by a method such as polymerizing formaldehyde or diol with a vinyl ether or allyl ether having a hydroxyl group, or ring-opening polymerization of a compound having an alkylene oxide or a lactone ring.
  • the macromonomer which has a hydrophilic part which is a monomer (D) is also available as a commercial item, for example, the following product is mentioned.
  • Ramtel PD-104 polyoxyalkylene alkenyl ether ammonium sulfate
  • Ramtel PD-420 polyoxyalkylene alkenyl ether
  • Aqualon KH-10 polyoxyethylene-1- (allyloxy) manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Methyl) alkyl ether ammonium sulfate Aqualon HS-10 (polyoxyethylene nonylpropenyl phenyl ether ammonium sulfate), Aqualon RN-20 (polyoxyethylene nonylpropenyl phenyl ether); Antox MS-60 (2-sodium manufactured by Nippon Emulsifier Co., Ltd.) Sulfoethyl methacrylate), Antox SAD (alkyl allyl succinate sulfonate Na salt), Antox MS-2N (2-sodium sulfoethyl methacrylate), Antto Scan LMA-10 (alkoxy polyethylene glycol methacrylate), Ann Krytox EMH-20 (alkoxy polyethylene glycol maleate); manufactured by Sanyo Chemical Industries, Ltd. of ELEMINOL JS-20, a ELEMINOL RS-3000 and the like.
  • p is 1 to 50
  • the group having an ethylenically unsaturated bond is preferably a vinyl ether group.
  • the fluorine-containing copolymer (Y) does not correspond to any of the monomers (A) to (D) in addition to the units (a) to (c) or the units (a) to (d), and These may have units (other units (e)) based on other monomers (E) that can be copolymerized therewith.
  • monomers (E) include olefins such as ethylene and propylene, vinyl compounds such as aromatic vinyl compounds such as styrene and vinyltoluene, acryloyl compounds such as butyl acrylate, and ethyl methacrylate. And methacryloyl compounds. In particular, olefins are preferred.
  • the total of the units (a) to (c) is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, more preferably 90 to 100 mol%, based on all units constituting the fluorine-containing copolymer (Y). Is more preferable.
  • the fluorinated copolymer (Y) contains the unit (d)
  • the total of the units (a) to (d) is 70 to 100 with respect to all the units constituting the fluorinated copolymer (Y).
  • the mol% is preferable, 80 to 100 mol% is more preferable, and 90 to 100 mol% is more preferable.
  • the content of the unit (a) is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, based on the total of all units.
  • the total content thereof is the “content of the unit (a)”.
  • the content of the unit (b) is preferably 1 to 70 mol%, more preferably 5 to 60 mol%, still more preferably 10 to 50 mol%, based on the total of all units.
  • the unit (b) contains two or more types of units, the total content thereof is “content of unit (b)”. The same applies to other units.
  • the content of the unit (c) is preferably from 0.1 to 40 mol%, more preferably from 1 to 20 mol%, based on the total of all units. It is excellent in the chemical stability of an aqueous dispersion as it is more than the lower limit of the said range. Good adhesiveness is easy to be obtained if it is below the upper limit.
  • the content of the unit (d) is preferably 0.1 to 25 mol% based on the total of all units, More preferred is ⁇ 20 mol%.
  • it is at least the lower limit of the above range good dispersion stability in the aqueous dispersion medium is easily obtained, and when it is at most the upper limit, good adhesion is easily obtained.
  • the number average molecular weight of the fluorinated copolymer (Y) is preferably from 20,000 to 1,000,000, more preferably from 20,000 to 800,000, and even more preferably from 20,000 to 700,000. When it is at least the lower limit of the above range, good adhesion is easily obtained, and when it is at most the upper limit, good dispersion stability is easily obtained.
  • the fluorine-containing copolymer (Y) can be produced by copolymerizing the monomers (A), (B), (C), and arbitrary monomers (D) and (E).
  • a polymerization method it can carry out using a well-known method suitably, and an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, a block polymerization method etc. are mentioned.
  • the emulsion polymerization method is preferred in that a fluorine-containing copolymer (Y) having a high molecular weight (for example, a number average molecular weight of 20,000 or more) is easily obtained.
  • a step of polymerizing (emulsion polymerization) monomer components including monomers (A) to (C) in the presence of an aqueous medium and a radical polymerization initiator, more preferably an emulsifier hereinafter referred to as emulsion polymerization.
  • the latex of the fluorine-containing copolymer (Y) is obtained through the emulsion polymerization step.
  • the emulsion polymerization method a known method can be appropriately used in the production of the fluorinated copolymer (Y).
  • the latex obtained in the emulsion polymerization step can be used as it is as the binder composition of the present invention.
  • the fluorine-containing copolymer (Y) may be synthesized by a polymerization method other than the emulsion polymerization method.
  • the fluorine-containing copolymer can be produced by using a solvent that dissolves the monomer to be polymerized, instead of the aqueous medium and the emulsifier in the emulsion polymerization step.
  • the solvent used in the solution polymerization method include methyl ethyl ketone and xylene.
  • the fluorine-containing copolymer (Z) is a unit (s) based on a monomer (S) selected from the group consisting of TFE, hexafluoropropylene (also referred to as HFP), and vinylidene fluoride (also referred to as VdF). It is a copolymer containing 1 or more types of these.
  • the fluorine-containing copolymer (Z) contributes to the flexibility of the binder for an electricity storage device.
  • a unit based on TFE may be referred to as a TFE unit. The same applies to other monomers.
  • the fluorine-containing copolymer (Z) may be a copolymer composed of only two or three of TFE units, HFP units, and VdF units, and is selected from the group consisting of TFE, HFP, and VdF.
  • the copolymer which consists of the unit based on the 1 or more types of monomer (S) and the unit based on 1 or more types of the other monomer copolymerizable with this monomer (S) may be sufficient.
  • the fluorine-containing copolymer (Z) is preferably an amorphous polymer.
  • a unit (t) based on the following monomer (T) is preferable.
  • the monomer (T) is ethylene (also referred to as E), propylene (also referred to as P), perfluoro (alkyl vinyl ether) (also referred to as PAVE), 1,2-difluoroethylene (also referred to as DiFE), 1 1,2,2-trifluoroethylene (also referred to as TrFE), 3,3,3-trifluoro-1-propene (also referred to as TFP), 1,3,3,3-tetrafluoropropene, 2,3, One or more compounds selected from the group consisting of 3,3-tetrafluoropropene and vinyl fluoride (also referred to as VF).
  • PAVE include perfluoro (methyl vinyl ether) (also referred to as PMVE), perfluoro (propyl vinyl ether) (also referred to as PPVE), and the like.
  • the fluorine-containing copolymer (Z) may have units (u) based on other monomers (U) copolymerizable with the monomer (S) other than the units (t).
  • the unit (u) is preferably 20 mol% or less, more preferably 5 mol% or less, and most preferably zero.
  • the fluorinated copolymer (Z) preferably does not contain the unit (c) based on the monomer (C). Moreover, it is preferable that the unit (b) based on the monomer (B) is not included.
  • 100 mol% of the units constituting the fluorinated copolymer (Z) is composed of units (s) and units (t). However, it is permissible to contain units other than those as long as they do not affect the characteristics, such as impurities. Specific examples of the fluorine-containing copolymer (Z) comprising the unit (s) and the unit (t) are given below.
  • TFE / P copolymer meaning a copolymer comprising a structural unit based on TFE and a structural unit based on P.
  • TFE / P / VdF copolymer VdF / HFP copolymer
  • TFE / VdF / HFP copolymer VdF / 2,3,3,3-tetrafluoropropene copolymer
  • TFE / VdF / 2,3,3,3-tetrafluoropropene copolymer TFE / PAVE copolymer Polymer
  • TFE / P / PAVE copolymer TFE / P / VdF / PAVE copolymer
  • VdF / HFP / PAVE copolymer TFE / VdF / HFP / PAVE copolymer
  • TFE / PMVE copolymer TFE / PMVE / PPVE copolymer
  • VdF / PAVE copolymer E / HFP copolymer
  • TFE / P / E copolymer TFE / P / P /
  • Examples of the fluorine-containing copolymer (Z) of the present invention include TFE / P copolymer, TFE / P / VdF copolymer, VdF / HFP copolymer, TFE / VdF / HFP copolymer, TFE / P / A TFP copolymer, a TFE / PPVE copolymer, a TFE / PMVE copolymer, a TFE / PMVE / PPVE copolymer, and the like are preferable, and a TFE / P copolymer or TFE / P / VdF is particularly preferable.
  • the composition of the fluorine-containing copolymer (Z) composed of the unit (s) and the unit (t) is excellent in adhesion to the current collector, and good alkali resistance and voltage resistance can be easily obtained.
  • the following ranges are preferred.
  • TFE / P copolymer TFE / P (meaning the molar ratio of units based on TFE / units based on P. The unit is mol% and the total is 100 mol%, and so on). 30 to 80/70 to 20, preferably 40 to 70/60 to 30, and most preferably 60 to 50/40 to 50.
  • TFE / P / VdF 30 to 60/60 to 20 / 0.05 to 40
  • VdF / HFP 1/99 to 95/5
  • TFE / VdF / HFP 20 to 40/1 to 40/20 to 40
  • TFE / VdF / 2,3,3,3-tetrafluoropropene copolymer TFE / VdF / 2,3,3,3-tetrafluoropropene copolymer
  • TFE / VdF / 2,3,3,3-tetrafluoropropene 1 to 30/30 to 95/5 to 60
  • the fluorine content of the fluorine-containing copolymer (Z) is preferably 50% by mass or more, and more preferably 53% by mass or more.
  • the upper limit is preferably 74% by mass, and more preferably 70% by mass. If the fluorine content of the fluorine-containing copolymer (Z) is too low, the alkali resistance and voltage resistance are likely to be insufficient. If it is too high, flexibility tends to be insufficient.
  • the fluorine content of the fluorine-containing copolymer (Z) is obtained by analyzing the fluorine content, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing copolymer.
  • the number average molecular weight of the fluoropolymer (Z) is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, still more preferably 20,000 to 300,000, and further preferably 50,000 to 300,000.
  • the number average molecular weight of the fluoropolymer (Z) is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, still more preferably 20,000 to 300,000, and further preferably 50,000 to 300,000.
  • the fluorine-containing copolymer (Z) can be produced by copolymerizing the monomer (S) and arbitrary monomers (T) and (U).
  • Examples of the polymerization method include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method.
  • An emulsion polymerization method in which a monomer is polymerized in the presence of an aqueous medium and an emulsifier is preferable because the number average molecular weight and copolymer composition of the fluorinated copolymer can be easily adjusted and the productivity is excellent.
  • emulsion polymerization step in the presence of an aqueous medium, an emulsifier and a radical polymerization initiator, a monomer component containing the monomer (S) is polymerized (emulsion polymerization) (emulsion polymerization step), and then the fluorine-containing copolymer is obtained. A polymer latex is obtained.
  • a pH adjuster may be added in the emulsion polymerization step.
  • emulsifier As the emulsifier, a known emulsifier used in the emulsion polymerization method can be appropriately used. From the viewpoint of excellent mechanical and chemical stability of the latex, an ionic emulsifier is preferable, and an anionic emulsifier is more preferable. As the anionic emulsifier, those known in the emulsion polymerization method can be used.
  • hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dialkyl ester sulfonate succinate, sodium alkyl diphenyl ether disulfonate; ammonium perfluorooctanoate, And fluorine-containing alkyl carboxylates such as ammonium perfluorohexanoate; compounds represented by the following formula (VII) (hereinafter referred to as compound (VII)); and the like.
  • hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dialkyl ester sulfonate succinate, sodium alkyl diphenyl ether disul
  • X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms
  • A represents a hydrogen atom, an alkali metal atom, or NH 4
  • p represents an integer of 1 to 10
  • X is preferably a fluorine atom or a trifluoromethyl group.
  • Na or NH 4 is preferable.
  • p is preferably 1 to 5.
  • q is preferably 1 to 2.
  • the binder composition for an electricity storage device of the present invention includes a fluorinated copolymer (Y), a fluorinated copolymer (Z), and a liquid medium.
  • the binder composition is preferably a latex in which the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) are dispersed in a liquid medium.
  • Latex is a dispersion of the fluorinated copolymer (Y) and the fluorinated copolymer (Z), but a part of the fluorinated copolymer (Y) and / or the fluorinated copolymer (Z) is liquid. It may be dissolved in the medium.
  • the liquid medium examples include an aqueous medium and an organic solvent.
  • the aqueous medium is water alone or a mixture of water and a water-soluble organic solvent. It is preferable to use ion-exchanged water.
  • the water-soluble organic solvent a known compound that can be dissolved in water at an arbitrary ratio can be appropriately used.
  • alcohols are preferable, and examples thereof include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol. Of these, tert-butanol, propylene glycol, dipropylene glycol or dipropylene glycol monomethyl ether is preferred.
  • organic solvent examples include dichlorodifluoromethane, trichlorofluoromethane, chlorodifluoromethane, dichloropentafluoropropane (HCFC-225), CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CF 2 CH 2 CF 2 H ( HFC-365m fc), perfluorohexane, perfluorooctane, perfluoro (2-butyltetrahydrofuran), perfluoro (tributylamine), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 OCF 2 CF 2 H, CF 3 CH 2 OCH 2 CF 3 , CF 3 CF 2 OCF 2 CF 2 OCF 2 CF 3 and the like are preferable.
  • an aqueous solvent used also in the emulsion polymerization method used for producing the fluorinated copolymer (Y) and the fluorinated copolymer (Z).
  • the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) contained in the binder composition for an electricity storage device have different glass transition temperatures.
  • the glass transition temperature of the fluorinated copolymer (Y) is preferably 10 ° C. or more higher than the glass transition temperature of the fluorinated copolymer (Z).
  • the difference in the glass transition temperature is more preferably 20 ° C. or more, and the difference is preferably larger in the range of 150 ° C. or less.
  • the difference in glass transition temperature between the fluorinated copolymer (Y) and the fluorinated copolymer (Z) is not less than the lower limit of the above range, a sufficient effect of improving flexibility can be easily obtained, and not more than the upper limit. When it exists, it is easy to obtain good coatability.
  • the glass transition temperature of the fluorinated copolymer (Y) is preferably 10 to 150 ° C, more preferably 10 to 80 ° C, and further preferably 30 to 60 ° C.
  • the glass transition temperature of the fluorinated copolymer (Y) can be adjusted by the type and composition of the monomer constituting the copolymer. For example, as a method for increasing the glass transition temperature, a method using a monomer having a rigid structure in the side chain is preferable. As a method of reducing, a method using a monomer having a long-chain hydrocarbon group in the side chain is preferable.
  • the glass transition temperature of the fluorinated copolymer (Y) is at least the lower limit of the above range, good coatability is easily obtained. Good adhesiveness is easy to be obtained if it is below the upper limit.
  • the glass transition temperature of the fluorinated copolymer (Z) is ⁇ 60 to 20 ° C., preferably ⁇ 40 to 10 ° C., more preferably ⁇ 20 to 0 ° C.
  • the glass transition temperature of the fluorinated copolymer (Z) can be adjusted by the type and composition of the monomer constituting the copolymer. For example, as a method for increasing the glass transition temperature, there is a method for increasing the proportion of tetrafluoroethylene, and as a method for decreasing it, there is a method for increasing the proportion of vinylidene fluoride or perfluoro (alkyl vinyl ether).
  • the glass transition temperature of the fluorinated copolymer (Z) is at least the lower limit of the above range, good coatability is easily obtained, and when it is at most the upper limit, good flexibility is easily obtained.
  • the content ratio of the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) contained in the binder composition for an electricity storage device is not particularly limited, and the proportion of the fluorine-containing copolymer (Y) increases.
  • the mass ratio represented by fluorine-containing copolymer (Y) / fluorine-containing copolymer (Z) is preferably from 1/99 to 99/1, more preferably from 10/90 to 90/10.
  • 90-70 / 30 is more preferable, and 30 / 70-60 / 40 is particularly preferable from the viewpoint of the balance between adhesion and flexibility.
  • the total content (solid content concentration) of the fluorinated copolymer (Y) and the fluorinated copolymer (Z) in the binder composition is more preferably 5 to 70% by mass with respect to the total amount of the binder composition. 10 to 60% by mass is more preferable, and 15 to 55% by mass is particularly preferable.
  • the electrode mixture is prepared using the binder composition as being above the lower limit of the above range, a good viscosity of the electrode mixture is easily obtained, and a thick coating is performed on the current collector. Can do.
  • it is below the upper limit of the above range when preparing an electrode mixture by dispersing an electrode active material or the like in the binder composition, it is easy to obtain good dispersion stability, and good coating properties of the electrode mixture Is easy to obtain.
  • the content of the liquid medium in the binder composition is more preferably 30 to 95% by mass, still more preferably 40 to 90% by mass, and particularly preferably 45 to 85% by mass with respect to the total amount of the binder composition.
  • the electrode mixture is prepared by using the binder composition as being below the upper limit of the above range, a good viscosity of the electrode mixture is easily obtained, and a thick coating is performed on the current collector. Can do.
  • the electrode mixture is prepared by dispersing an electrode active material or the like in the binder composition as being above the lower limit of the above range, good dispersion stability is easily obtained, and good coating properties of the electrode mixture. Is easy to obtain.
  • the binder composition may contain other components other than the fluorine-containing copolymer (Y), the fluorine-containing copolymer (Z), and the liquid medium.
  • other components include emulsifiers and initiators used during the production of the fluorinated copolymer (Y) or the fluorinated copolymer (Z).
  • the total content of the fluorine-containing copolymer (Y), the fluorine-containing copolymer (Z), and other components other than the liquid medium is preferably 10% by mass or less based on the total amount of the binder composition. % Or less is more preferable.
  • the binder composition of the present invention shows excellent flexibility when the fluorine-containing copolymer (Z) is used alone as a binder component, as shown in the examples described later, and the fluorine-containing copolymer ( Y) is less flexible than that.
  • the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) are mixed, there is a synergistic effect that the adhesiveness is remarkably improved as compared with the case where each of them is used alone.
  • the electrode mixture for an electricity storage device of the present invention (sometimes simply referred to as an electrode mixture) contains an electrode active material in addition to the binder composition of the present invention.
  • a conductive material may be contained as necessary, and other components other than these may be contained.
  • the electrode active material used by this invention is not specifically limited, A well-known thing can be used suitably.
  • the positive electrode active material metal oxides such as MnO 2 , V 2 O 5 , V 6 O 13 ; metal sulfides such as TiS 2 , MoS 2 , FeS; LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.
  • Examples include lithium composite metal oxides containing transition metals such as Co, Ni, Mn, Fe, and Ti; compounds in which a part of transition metal elements in these compounds is substituted with other metal elements; and the like. Further, a conductive polymer material such as polyacetylene or poly-p-phenylene can be used. Moreover, what coat
  • the negative electrode active material examples include carbides of high molecular compounds such as coke, graphite, mesophase pitch spherules, phenol resin, and polyparaphenylene; and carbonaceous materials such as vapor-phase-generated carbon fibers and carbon fibers.
  • metals such as Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium are also included.
  • a silicon oxide represented by a general formula SiOx (x is preferably 0.5 to 1.5) represented by silicon monoxide can be given.
  • the electrode active material a material in which a conductive material is attached to the surface by a mechanical modification method or the like can be used. In the case of an electrode mixture for a lithium ion secondary battery, any electrode active material may be used as long as it can reversibly insert and release lithium ions by applying a potential in the electrolyte. be able to.
  • the electrode mixture used for the production of the positive electrode preferably contains a conductive material.
  • a conductive material By including a conductive material, the electrical contact between the electrode active materials can be improved, the electrical resistance in the active material layer can be lowered, and the discharge rate characteristics of the non-aqueous secondary battery can be improved.
  • the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and carbon nanotube.
  • the electrode mixture contains a conductive material, the effect of reducing electrical resistance is increased by adding a small amount of the conductive material, which is preferable.
  • known components in the electrode mixture can be used.
  • water-soluble polymers such as carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, and polymethacrylic acid.
  • the total proportion of the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) in the electrode mixture of the present invention is 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material. Is preferable, 0.5 to 10 parts by mass is more preferable, and 1 to 8 parts by mass is particularly preferable.
  • the ratio of the electrically conductive material in an electrode mixture is more than 0 mass part with respect to 100 mass parts of an electrode active material, and 20 mass parts or less are preferable. 1 to 10 parts by mass is more preferable, and 3 to 8 parts by mass is particularly preferable.
  • the solid content concentration in the electrode mixture is preferably 30 to 95% by mass, more preferably 40 to 85% by mass, and particularly preferably 45 to 80% by mass with respect to 100% by mass of the electrode mixture.
  • the electrode for an electricity storage device of the present invention has a current collector and an electrode active material layer containing the binder for an energy storage device of the present invention and an electrode active material on the current collector.
  • the current collector is not particularly limited as long as it is made of a conductive material, and generally includes metal foils such as aluminum, nickel, stainless steel, and copper, metal nets, and metal porous bodies. Aluminum is preferably used as the positive electrode current collector, and copper is preferably used as the negative electrode current collector.
  • the thickness of the current collector is preferably 1 to 100 ⁇ m.
  • the electrode mixture of the present invention is applied to at least one side, preferably both sides of a current collector, and the liquid medium in the electrode mixture is removed by drying, and an electrode active material layer Is obtained. If necessary, the electrode active material layer after drying may be pressed to have a desired thickness.
  • Various application methods can be used as a method of applying the electrode mixture to the current collector. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the coating temperature is not particularly limited, but usually a temperature around room temperature is preferable.
  • Drying can be performed using various drying methods, for example, drying by warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams, or the like.
  • the drying temperature is not particularly limited, but is usually preferably room temperature to 200 ° C. in a heating vacuum dryer or the like.
  • a pressing method a mold press, a roll press or the like can be used.
  • the electrode adhesion that is, the peel strength between the electrode active material layer and the current collector is preferably high.
  • the manufactured electrode was cut into a strip of 2 cm wide ⁇ 10 cm long, fixed with the electrode mixture coating surface facing upward, cellophane tape was applied to the electrode mixture coating surface, and the tape was 10 mm / min.
  • the strength (N) when peeled in the 90-degree direction at a speed of 5 was measured 5 times, and the average value was taken as the peel strength. It shows that it is excellent in the adhesiveness (binding property) by a binder, so that this value is large. That is, it shows that the adhesion between the electrode active materials bound by the binder and the adhesion between the electrode active materials and the current collector are excellent.
  • the peel strength is preferably 3N or more, more preferably 5N or more, and particularly preferably 10N or more. Although there is no upper limit in particular, it is 100N, for example.
  • a lithium ion secondary battery as an electricity storage device includes the electrode for an electricity storage device of the present invention as at least one of a positive electrode and a negative electrode and an electrolyte. Furthermore, it is preferable to provide a separator.
  • the electrolytic solution includes an electrolyte and a solvent. Solvents include aprotic organic solvents, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), alkyl ethyl carbonate (MEC), and other alkyl carbonates.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • MEC alkyl ethyl carbonate
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane and dimethyl sulfoxide.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, or methyl ethyl carbonate is preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more.
  • the electrolyte include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 5 , CF 3 SO 3 Li, and (CF 3 SO 2 ) 2 NLi.
  • composition of fluorine-containing copolymer The content of units based on each monomer (composition of the copolymer) relative to the total of all units of the fluorinated copolymer is measured by 19 F-NMR analysis, infrared absorption spectrum analysis, fluorine content analysis, etc. did.
  • a latex of a fluorine-containing copolymer was dried in an oven at 140 ° C. for 1 hour and then dried in a vacuum dryer (internal pressure of 10 Torr or less, 50 ° C.) for 24 hours.
  • Evaluation of the charge / discharge characteristics of the secondary battery was performed by the following method.
  • [Evaluation of positive electrode] (1) Manufacture of secondary batteries (positive electrode) The positive electrode manufactured in each example was cut into a circular shape with a diameter of 18 mm, and a lithium metal foil having the same area and a polyethylene separator were laminated in a 2016 type coin cell in the order of the lithium metal foil, the separator, and the positive electrode. Produced.
  • a coin-type non-aqueous electrolyte secondary battery was manufactured by adding a non-aqueous electrolyte and sealing it.
  • Discharge capacity ratio (%) (3C discharge capacity / 0.2C discharge capacity) ⁇ 100
  • the obtained secondary battery in a charged state was decomposed in an argon atmosphere to obtain a charged positive electrode.
  • the obtained positive electrode was washed three times with dimethyl carbonate (2 mL), vacuum-dried (internal pressure of 10 Torr or less, 100 ° C., 3 hours), punched out to a diameter of 5 mm, placed in a SUS sealed container, 2 ⁇ L of water electrolyte was added and sealed to obtain an evaluation sample.
  • Each of the obtained evaluation samples was measured with a differential scanning calorimeter (DSC-6000 manufactured by SII Nano Technology) at a temperature range of 50 to 350 ° C. and a heating rate of 5 ° C./min.
  • the positive electrode reactivity was evaluated by “exothermic peak temperature” and “exothermic amount at the exothermic peak temperature”.
  • the “exothermic peak temperature” is the temperature showing the highest calorific value in the measured temperature range, and the calorific value at that temperature (a value obtained by correcting the calorific value at 60 ° C. to 0) is “the calorific value at the exothermic peak temperature”. ( ⁇ W) ”.
  • the main raw materials used in the production examples are as follows. ⁇ Monomer (A)> (A1): Chlorotrifluoroethylene (CTFE) ⁇ Monomer (B)> (B1): 2-ethylhexyl vinyl ether (B2): ethyl vinyl ether (EVE) (B3): cyclohexyl vinyl ether (CHVE) ⁇ Monomer (C)> (C1): cyclohexanedimethanol monovinyl ether (CHMVE), CH 2 ⁇ CHOCH 2 —cycloC 6 H 10 —CH 2 OH. “CycloC 6 H 10 ” represents “1,4-cyclohexylene” (hereinafter the same).
  • C2 4-hydroxybutyl vinyl ether (HBVE)
  • C3 10-Undecenoic acid
  • D1 CH 2 ⁇ CHOCH 2 —cycloC 6 H 10 —CH 2 O (C 2 H 4 O) 15 H, average molecular weight 570, manufactured by Nippon Emulsifier Co., Ltd.
  • Nonionic emulsifier (1) DKS NL-100 (product name), manufactured by Daiichi Kogyo Seiyaku Co., Ltd., compound name: polyoxyethylene lauryl ether.
  • Anionic emulsifier (2) sodium lauryl sulfate.
  • Initiator (1) ammonium persulfate (APS)
  • Initiator (2) tert-butyl peroxypivalate
  • ⁇ Production Example 2 Production of fluorinated copolymer (Y2)>
  • the fluorine-containing copolymer was synthesized by a solution polymerization method without using the monomer (D).
  • a fluorinated copolymer (Y2) latex was produced in the same manner as in the production examples described in paragraphs [0078] to [0079] of Patent Document 1. That is, 10.3 g of monomer (B2), 16.7 g of monomer (C1), 15.4 g of monomer (C2), 10% as other monomer (E1) in a pressure-resistant polymerization tank having an internal volume of 250 mL.
  • UDA undecenoic acid
  • MEK methyl ethyl ketone
  • initiator (2) 0.6 g
  • Kyoward 500SH is an acid adsorbent (hydrotalcite composed of a double salt of magnesium and aluminum) manufactured by Kyowa Chemical Industry Co., Ltd.
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • ferrous sulfate heptahydrate ferrous sulfate heptahydrate
  • the anchor blade was rotated at 300 rpm, and sodium hydroxymethanesulfinate dihydrate (hereinafter referred to as Rongalite) adjusted to pH 10.0 with sodium hydroxide was added to the reactor to initiate the polymerization reaction.
  • the internal pressure of the reactor was cooled to 10 ° C. to obtain a latex of a fluorinated copolymer (Z1).
  • the polymerization time was 8 hours.
  • the content of the fluorinated copolymer (Z1) in the latex was 34% by mass.
  • the fluorine content of the fluorine-containing copolymer (Z1) was 57% by mass.
  • PTFE polytetrafluoroethylene
  • a polytetrafluoroethylene (PTFE) latex was produced in the same manner as in the production examples described in paragraphs [0084] to [0085] of Patent Document 1. That is, 736 g of paraffin wax, 59 L of ultrapure water, and 15 g of ammonium perfluorooctanoate (APFO) as an emulsifier were charged in a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, tetrafluoroethylene (TFE) was introduced to an internal pressure of 1.9 MPa while stirring.
  • APFO ammonium perfluorooctanoate
  • aqueous dispersion 0.2 kg of a nonionic surfactant mainly composed of polyoxyethylene (average polymerization degree 9) lauryl ether was added and dissolved, and 0.3 kg of an anion exchange resin (Diaion WA—manufactured by Mitsubishi Chemical) was dissolved. 30) was dispersed and stirred for 24 hours, followed by filtration to remove the anion exchange resin. To the filtrate, 0.04 kg of 28% by mass aqueous ammonia was added, concentrated at 80 ° C. for 10 hours by a phase separation method, the supernatant was removed, 15 g of ammonium perfluorohexanoate (APFH) was newly added, and PTFE was added.
  • APFH ammonium perfluorohexanoate
  • Example 1 Preparation of positive electrode mixture 1 and production of positive electrode 1>
  • a positive electrode mixture was prepared using the fluorine-containing copolymer (Y1) latex obtained in Production Example 1 and the fluorine-containing copolymer (Z1) latex obtained in Production Example 3 as a binder composition. That is, 100 parts by mass of LiNi 0.5 Mn 0.2 Co 0.3 O 2 having an average particle diameter of 10 ⁇ m as a positive electrode active material and 7 parts by mass of acetylene black as a conductive material are mixed, and the concentration is 1 mass as a viscosity modifier.
  • the fluorine-containing copolymer (Y1) so that the copolymer (Z1) 50/50, that is, the fluorine-containing copolymer (Y1) is 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • a latex is added, and a fluorine-containing copolymer (Z1) latex is added so that the fluorine-containing copolymer (Z1) is 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the obtained positive electrode mixture 1 was applied to a 15 ⁇ m-thick aluminum foil (current collector) so that the thickness after drying with a doctor blade was 60 ⁇ m, and a 120 ° C. vacuum dryer (10 Torr or less, 3 Time) and dried to obtain positive electrode 1.
  • the coatability and adhesion (peel strength) were evaluated by the above methods.
  • the charge / discharge characteristics charge / discharge cycle characteristics, discharge rate characteristics were evaluated by the methods (1) to (3) above.
  • Example 2 Production of positive electrode mixture 2 and positive electrode 2> A positive electrode mixture 2 and a positive electrode 2 were produced in the same manner as in Example 1 except that the fluorinated copolymer (Y2) was used instead of the fluorinated copolymer (Y1), and evaluation was performed in the same manner.
  • Example 3 Production of positive electrode mixture 3 and positive electrode 3>
  • Example 1 Production of positive electrode mixture 4 and positive electrode 4> Example 1 except that the fluorinated copolymer (Y) was not added and only the fluorinated copolymer (Z1) was added to 3.0 parts by mass with respect to 100 parts by mass of the positive electrode active material. Similarly, the positive electrode mixture 4 and the positive electrode 4 were produced and evaluated in the same manner.
  • Examples 1 to 3 in which the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) were mixed were used in the application of the electrode mixture for the electricity storage device.
  • the workability was good, the electrode was excellent in flexibility and adhesion, and the charge / discharge characteristics in the secondary battery were also good.
  • Example 2 using a mixture of the fluorine-containing copolymer (Y2) and the fluorine-containing copolymer (Z1) is a comparison using each of them alone. Adhesion was improved as compared with Examples 1 and 2, and charge / discharge characteristics equal to or higher than that were obtained.
  • Example 2 the flexibility of Example 2 is improved as compared with Comparative Example 2 in which the fluorine-containing copolymer (Y1) is used alone, and is almost equivalent to Comparative Example 1 in which the fluorine-containing copolymer (Z1) is used alone. there were. Moreover, the coating property did not deteriorate by mixing the fluorinated copolymer (Y) and the fluorinated copolymer (Z). Moreover, when Example 1 and Example 2 are compared, the direction of Example 1 using the fluorine-containing copolymer (Y1) containing a structural unit (d) is still more adhesive and charge / discharge characteristics than Example 2. It turns out that it is excellent in.
  • the positive electrode generates less heat than Comparative Example 1 using Z1) alone, and the reactivity of the positive electrode is kept lower, thermal runaway is less likely to occur, and a safer secondary battery is obtained. I understand.
  • An electrode using the electrode mixture for an electricity storage device containing the binder composition for an electricity storage device of the present invention is an electricity storage device such as a lithium primary battery, a lithium ion secondary battery, a lithium polymer battery, an electric double layer capacitor, or a lithium ion capacitor. In particular, it can be widely used as an electrode of a lithium ion secondary battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 Provided is a binder composition for a power storage device, the composition having excellent flexibility and adhesive properties, enabling excellent coating properties to be obtained in an electrode mixture for a power storage device, and enabling excellent charge and discharge properties to be achieved in a secondary battery. A binder composition for a power storage device, the composition comprising: a liquid medium; a fluorine-containing copolymer (Y) comprising a unit (a) derived from chlorotrifluoroethylene, a unit (b) derived from an alkyl vinyl ether group, a unit (c) derived from vinyl ether comprising a hydroxy group or an expoxy group; and a fluorine-containing copolymer (Z) comprising a unit (s) derived from tetrafluoroethylene, and a unit (t) derived from propylene, and having a glass transition temperature of -60-20°C.

Description

蓄電デバイス用バインダー組成物、蓄電デバイス用電極合剤、蓄電デバイス用電極、及び二次電池Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
 本発明は、蓄電デバイス用バインダー組成物、蓄電デバイス用電極合剤、蓄電デバイス用電極、及び二次電池に関する。 The present invention relates to a binder composition for an electricity storage device, an electrode mixture for an electricity storage device, an electrode for an electricity storage device, and a secondary battery.
 二次電池等の蓄電デバイスは、通常、電極、非水電解液、セパレーター等を主要な部材として構成される。蓄電デバイス用電極は一般に、電極活物質、導電材、バインダー及び液状媒体を含有する蓄電デバイス用電極合剤を集電体表面に塗布し、乾燥させることで製造される。
 蓄電デバイス用バインダーは、通常、バインダーとなるポリマーを水や有機溶媒に溶解又は分散させたバインダー組成物として用いられ、該バインダー組成物に電極活物質、導電材を分散させて、電極合剤が調製される。
An electricity storage device such as a secondary battery is usually composed of an electrode, a non-aqueous electrolyte, a separator and the like as main members. An electrode for an electricity storage device is generally produced by applying an electrode mixture for an electricity storage device containing an electrode active material, a conductive material, a binder and a liquid medium to the surface of the current collector and drying it.
The binder for an electricity storage device is usually used as a binder composition in which a polymer serving as a binder is dissolved or dispersed in water or an organic solvent, and an electrode active material and a conductive material are dispersed in the binder composition. Prepared.
 電極活物質間の密着性や電極活物質層と集電体との密着性が不充分であると、初期容量の大きな蓄電デバイスが得られず、また得られた蓄電デバイスに充放電を繰り返した際に電極から電極活物質が脱落する等して電池の容量が低下する。このため、電極合剤に用いる蓄電デバイス用バインダーには優れた結着性が要求される。
 それとともに、電極活物質が蓄電デバイス用バインダーで覆われても、電極の抵抗を低く抑えて、良好な充放電特性を実現できることが要求される。
 また、電池を製造する際の電極の巻き取り工程など、電極に外力が加わった時に電極表面に割れが発生しないように、電極には柔軟性も要求される。
If the adhesion between the electrode active materials and the adhesion between the electrode active material layer and the current collector are insufficient, an electricity storage device with a large initial capacity cannot be obtained, and the obtained electricity storage device was repeatedly charged and discharged. In this case, the capacity of the battery is reduced due to the electrode active material dropping off from the electrode. For this reason, the outstanding binding property is requested | required of the binder for electrical storage devices used for an electrode mixture.
At the same time, even when the electrode active material is covered with the binder for the electricity storage device, it is required that the resistance of the electrode be kept low and good charge / discharge characteristics can be realized.
In addition, the electrode is required to have flexibility so that cracks do not occur on the electrode surface when an external force is applied to the electrode, such as an electrode winding process when manufacturing the battery.
 特許文献1には、側鎖に親水性基を有し、特定の分子量の範囲にある含フッ素共重合体の水性分散液と、ポリテトラフルオロエチレン(PTFE)を含む水性分散液の混合物からなる結着剤が、池特性に優れることが示されており、該混合物と電極活物質及び導電助剤を均一に撹拌して電極合剤を調製している。 Patent Document 1 includes a mixture of an aqueous dispersion of a fluorine-containing copolymer having a hydrophilic group in a side chain and having a specific molecular weight range, and an aqueous dispersion containing polytetrafluoroethylene (PTFE). The binder has been shown to be excellent in pond characteristics, and the electrode mixture is prepared by uniformly stirring the mixture, the electrode active material, and the conductive additive.
 また、特許文献2には、テトラフルオロエチレン-プロピレン共重合体等の非晶性の含フッ素共重合体の水性分散液と、ポリテトラフルオロエチレン(PTFE)水性分散液を混合して調製された結着剤が記載されている。 Patent Document 2 was prepared by mixing an aqueous dispersion of an amorphous fluorine-containing copolymer such as a tetrafluoroethylene-propylene copolymer and an aqueous dispersion of polytetrafluoroethylene (PTFE). A binder is described.
国際公開第2010/134465号International Publication No. 2010/134465 特開2009-146871号公報JP 2009-146871 A
 特許文献1の実施例(表1)に記載されている結着剤は、本発明における単位(a)、(b)、(c)を有する含フッ素共重合体の水性分散液(A)又は(B)と、ポリテトラフルオロエチレン(PTFE)水性分散液(G)の混合物であり、本発明者等の知見によれば、該結着剤を用いて製造した電極は柔軟性が十分とは言えない。
 また、特許文献1、2には、含フッ素共重合体の水分散液と、PTFEの水分散液とを混合して結着剤とすることが記載されている。しかし、本発明者等の知見によれば、PTFEがせん断を受けると粘度が上昇しやすいため、かかる結着剤を用いた電極合剤にあっては、良好な塗工性が得られ難いという課題がある。
The binder described in Examples (Table 1) of Patent Document 1 is an aqueous dispersion (A) of a fluorinated copolymer having units (a), (b), and (c) in the present invention. (B) and a polytetrafluoroethylene (PTFE) aqueous dispersion (G), and according to the knowledge of the present inventors, the electrode produced using the binder is sufficiently flexible. I can not say.
Patent Documents 1 and 2 describe that an aqueous dispersion of a fluorine-containing copolymer and an aqueous dispersion of PTFE are mixed to form a binder. However, according to the knowledge of the present inventors, when PTFE is subjected to shearing, the viscosity is likely to increase. Therefore, it is difficult to obtain good coatability in an electrode mixture using such a binder. There are challenges.
 本発明は、良好な柔軟性及び密着性を有し、蓄電デバイス用電極合剤における良好な塗工性が得られるとともに、二次電池における良好な充放電特性を実現できる、蓄電デバイス用バインダー組成物、該バインダー組成物を用いた蓄電デバイス用電極合剤、蓄電デバイス用電極、及び二次電池を提供することを目的とする。 The present invention provides a binder composition for an electricity storage device that has good flexibility and adhesion, can provide good coating properties in an electrode mixture for an electricity storage device, and can realize good charge / discharge characteristics in a secondary battery. It is an object to provide an electrode mixture for an electricity storage device, an electrode for an electricity storage device, and a secondary battery using the binder composition.
 本発明の要旨は以下の[1]~[10]にある。
 [1]下記単量体(A)に基づく単位(a)、下記単量体(B)に基づく単位(b)、下記単量体(C)に基づく単位(c)を含有する含フッ素共重合体(Y)、テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフッ化ビニリデンからなる群より選ばれる単量体(S)に基づく単位(s)の1種以上を有し、ガラス転移温度が-60~20℃である含フッ素共重合体(Z)、及び液状媒体を含有する蓄電デバイス用バインダー組成物。
 単量体(A):テトラフルオロエチレン、及びクロロトリフルオロエチレンからなる群より選ばれる1種以上の化合物。
 単量体(B):下式(I)で表わされる化合物、及び下記(II)で表わされる化合物からなる群より選ばれる1種以上の化合物。
 CH=CH-(CH-O-R・・・(I)
 CH=CH-(CH-OCO-R・・・(II)
 [式中、nは0又は1であり、Rは炭素数1~20の飽和炭化水素基を表す。2種以上の化合物を用いる場合は、複数のn及びRは同一であっても異なっていてもよい。]
 単量体(C):エチレン性不飽和結合とヒドロキシ基とを有する化合物、エチレン性不飽和結合とエポキシ基とを有する化合物、及びエチレン性不飽和結合とカルボキシ基とを有する化合物からなる群より選ばれる1種以上である化合物。
The gist of the present invention is the following [1] to [10].
[1] A fluorine-containing copolymer containing a unit (a) based on the following monomer (A), a unit (b) based on the following monomer (B), and a unit (c) based on the following monomer (C) Having one or more units (s) based on a monomer (S) selected from the group consisting of a polymer (Y), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride, and having a glass transition temperature of −60 A binder composition for an electricity storage device, comprising a fluorine-containing copolymer (Z) at -20 ° C and a liquid medium.
Monomer (A): One or more compounds selected from the group consisting of tetrafluoroethylene and chlorotrifluoroethylene.
Monomer (B): One or more compounds selected from the group consisting of a compound represented by the following formula (I) and a compound represented by the following (II).
CH 2 ═CH— (CH 2 ) n —O—R (I)
CH 2 ═CH— (CH 2 ) n —OCO—R (II)
[Wherein n is 0 or 1, and R represents a saturated hydrocarbon group having 1 to 20 carbon atoms. When two or more kinds of compounds are used, a plurality of n and R may be the same or different. ]
Monomer (C): from the group consisting of a compound having an ethylenically unsaturated bond and a hydroxy group, a compound having an ethylenically unsaturated bond and an epoxy group, and a compound having an ethylenically unsaturated bond and a carboxy group A compound that is one or more selected.
 [2]前記含フッ素共重合体(Y)のガラス転移温度が、前記含フッ素共重合体(Z)のガラス転移温度よりも10℃以上高い、上記[1]に記載の蓄電デバイス用バインダー組成物。
 [3]前記含フッ素重合体(Y)と前記含フッ素重合体(Z)が5~70質量%含有され、液状媒体が30~95質量%含有される、上記[1]又は[2]に記載の蓄電デバイス用バインダー組成物。
 [4]含フッ素重合体(Y)の含有量/含フッ素重合体(Z)の含有量の質量比が、1/99~99/1である、上記[1]~[3]のいずれかに記載の蓄電デバイス用バインダー組成物。
 [5]含フッ素重合体(Y)が、10~150℃のガラス転移温度を有する、上記[1]~[4]のいずれかに記載の蓄電デバイス用バインダー組成物。
 [6]含フッ素共重合体(Z)が、さらに、下記単量体(T)に基づく単位(t)を含有する、上記[1]~[3]のいずれかに記載の蓄電デバイス用バインダー組成物。
 単量体(T):エチレン、プロピレン、ペルフルオロ(アルキルビニルエーテル)、1,2-ジフルオロエチレン、1,1,2-トリフルオロエチレン、3,3,3-トリフルオロ-1-プロペン、1,3,3,3-テトラフルオロプロペン、2,3,3,3-テトラフルオロプロペン、及びフッ化ビニルからなる群より選ばれる1種以上の化合物。
[2] The binder composition for an electricity storage device according to [1], wherein the glass transition temperature of the fluorine-containing copolymer (Y) is 10 ° C. or more higher than the glass transition temperature of the fluorine-containing copolymer (Z). object.
[3] In the above [1] or [2], the fluoropolymer (Y) and the fluoropolymer (Z) are contained in an amount of 5 to 70% by mass and the liquid medium is contained in an amount of 30 to 95% by mass. The binder composition for electrical storage devices as described.
[4] Any one of [1] to [3] above, wherein the mass ratio of the content of the fluoropolymer (Y) / the content of the fluoropolymer (Z) is from 1/99 to 99/1. 2. The binder composition for an electricity storage device according to 1.
[5] The binder composition for an electricity storage device according to any one of the above [1] to [4], wherein the fluoropolymer (Y) has a glass transition temperature of 10 to 150 ° C.
[6] The binder for an electricity storage device according to any one of the above [1] to [3], wherein the fluorine-containing copolymer (Z) further contains a unit (t) based on the following monomer (T): Composition.
Monomer (T): ethylene, propylene, perfluoro (alkyl vinyl ether), 1,2-difluoroethylene, 1,1,2-trifluoroethylene, 3,3,3-trifluoro-1-propene, 1,3 , 3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, and one or more compounds selected from the group consisting of vinyl fluoride.
 [7]前記含フッ素共重合体(Z)が、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/プロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン/3,3,3-トリフルオロ-1-プロペン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、フッ化ビニリデン/ペルフルオロ(アルキルビニルエーテル)共重合体、エチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/プロピレン/1,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/プロピレン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/プロピレン/1,1,2-トリフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニル共重合体、及びテトラフルオロエチレン/プロピレン/1,2-ジフルオロエチレン共重合体からなる群から選ばれる1種以上である、上記[6]に記載の蓄電デバイス用バインダー組成物。 [7] The fluorine-containing copolymer (Z) is a tetrafluoroethylene / propylene copolymer, a tetrafluoroethylene / propylene / vinylidene fluoride copolymer, a vinylidene fluoride / hexafluoropropylene copolymer, or a vinylidene fluoride. / 2,3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / vinylidene fluoride / 2,3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / vinylidene fluoride / hexafluoropropylene Copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / propylene / 3,3,3-trifluoro-1-propene copolymer, tetrafluoroethylene / propylene / vinylidene fluoride / 3 , 3,3-trifluoro-1 Propene copolymer, vinylidene fluoride / hexafluoropropylene / 3,3,3-trifluoro-1-propene copolymer, tetrafluoroethylene / vinylidene fluoride / hexafluoropropylene / 3,3,3-trifluoro- 1-propene copolymer, vinylidene fluoride / perfluoro (alkyl vinyl ether) copolymer, ethylene / hexafluoropropylene copolymer, tetrafluoroethylene / propylene / 1,3,3,3-tetrafluoropropene copolymer, Tetrafluoroethylene / propylene / 2,3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / propylene / 1,1,2-trifluoroethylene copolymer, tetrafluoroethylene / propylene / vinyl fluoride copolymer Polymer and tetrafluoroethylene / Propylene / 1,2-selected from the group consisting of difluoroethylene copolymer is one or more, for an electricity storage device binder composition according to [6].
 [8]前記単量体(C)が、下式(III)~(VI)で表される化合物からなる群より選ばれる1種以上の化合物を含む、上記[1]~[7]のいずれかに記載の蓄電デバイス用バインダー組成物。 [8] Any of the above [1] to [7], wherein the monomer (C) includes one or more compounds selected from the group consisting of compounds represented by the following formulas (III) to (VI): A binder composition for an electricity storage device according to claim 1.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 [式中、nは0又は1であり、mは0~2の整数であり、Rは炭素数1~10の(m+2)価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~10の(m+2)価の飽和炭化水素基を表し、Rは炭素数1~8の2価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~8の2価の飽和炭化水素基を表し、Rは炭素数1~8のアルキレン基、又はエーテル性酸素原子を有する炭素数2~8のアルキレン基を表す。2種以上の化合物を用いる場合は、複数のm、n、R、R、及びRは同一であっても異なっていてもよい。] [Wherein n is 0 or 1, m is an integer of 0 to 2, R 1 is a (m + 2) -valent saturated hydrocarbon group having 1 to 10 carbon atoms, or a carbon number having an etheric oxygen atom. Represents a (m + 2) -valent saturated hydrocarbon group having 2 to 10 carbon atoms, and R 2 is a divalent saturated hydrocarbon group having 1 to 8 carbon atoms or a divalent saturated hydrocarbon having 2 to 8 carbon atoms having an etheric oxygen atom R 3 represents a hydrocarbon group, and R 3 represents an alkylene group having 1 to 8 carbon atoms or an alkylene group having 2 to 8 carbon atoms having an etheric oxygen atom. When two or more types of compounds are used, a plurality of m, n, R 1 , R 2 , and R 3 may be the same or different. ]
 [9]前記含フッ素共重合体(Y)が、さらに、親水性部位を有するマクロモノマーであり、かつ、分子量が300以上である単量体(D)に基づく単位(d)の1種以上を含有する、上記[1]~[8]のいずれかに記載の蓄電デバイス用バインダー組成物。
 [10]前記液状媒体が水性媒体である、上記[1]~[9]のいずれかに記載の蓄電デバイス用バインダー組成物。
 [11]上記[1]~[10]のいずれかに記載の蓄電デバイス用バインダー組成物の製造方法であり、単量体(A)、(B)、及び(C)を含む単量体成分を前記液状媒体中で乳化重合させて得られるラテックスと、前記単量体(S)を含む単量体成分を前記液状媒体中で乳化重合させて得られるラテックスとを混合する、製造方法。
 [12]上記[1]~[10]のいずれかに記載の蓄電デバイス用バインダー組成物と電池活物質とを含有する蓄電デバイス用電極合剤。
 [13]集電体と、該集電体上に、上記[12]に記載の蓄電デバイス用電極合剤を用いて形成された電極活物質層を有する、蓄電デバイス用電極。
 [14]前記電極活物質層と前記集電体との剥離強度が、3N以上である、上記[13]に記載の蓄電デバイス用電極。
 [15]上記[13]又は[14]に記載の蓄電デバイス用電極及び電解液を備える二次電池。
[9] The fluorine-containing copolymer (Y) is further a macromonomer having a hydrophilic portion, and one or more units (d) based on the monomer (D) having a molecular weight of 300 or more The binder composition for an electricity storage device according to any one of the above [1] to [8], comprising:
[10] The binder composition for an electricity storage device according to any one of the above [1] to [9], wherein the liquid medium is an aqueous medium.
[11] A method for producing a binder composition for an electricity storage device according to any one of [1] to [10] above, wherein the monomer component comprises monomers (A), (B), and (C) A method of mixing a latex obtained by emulsion polymerization in a liquid medium and a latex obtained by emulsion polymerization of a monomer component containing the monomer (S) in the liquid medium.
[12] An electrode mixture for an electricity storage device comprising the binder composition for an electricity storage device according to any one of [1] to [10] above and a battery active material.
[13] An electrode for an electricity storage device comprising a current collector and an electrode active material layer formed on the current collector using the electrode mixture for an electricity storage device according to [12] above.
[14] The electrode for an electricity storage device according to [13], wherein a peel strength between the electrode active material layer and the current collector is 3N or more.
[15] A secondary battery comprising the electrode for an electricity storage device according to [13] or [14] and an electrolytic solution.
 本発明の蓄電デバイス用バインダー組成物は、良好な柔軟性及び密着性を有し、蓄電デバイス用電極合剤における良好な塗工性が得られるとともに、二次電池における良好な充放電特性を実現できる。また、電極における反応性がより低く抑えられ、二次電池における熱暴走がより生じ難く、より高い安全性が得られる。
 本発明の蓄電デバイス用電極合剤は、電極活物質間の密着性及び電極活物質と集電体との密着性に優れ、柔軟性にも優れ、塗工性が良好であるとともに、二次電池における良好な充放電特性が得られる。また、電極における反応性がより低く抑えられ、二次電池における熱暴走がより生じ難く、より高い安全性が得られる。
 本発明の蓄電デバイス用電極は、電極活物質間の密着性及び電極活物質と集電体との密着性が良好であるとともに、柔軟性にも優れ、二次電池における良好な充放電特性が得られ、さらに、電極における反応性がより低く抑えられることにより、二次電池における熱暴走がより生じ難く、より高い安全性が得られる。
The binder composition for an electricity storage device of the present invention has good flexibility and adhesion, and provides good coating properties in an electrode mixture for an electricity storage device, and also realizes good charge / discharge characteristics in a secondary battery. it can. Moreover, the reactivity in an electrode is restrained lower, the thermal runaway in a secondary battery is less likely to occur, and higher safety is obtained.
The electrode mixture for an electricity storage device of the present invention has excellent adhesion between electrode active materials and adhesion between the electrode active material and the current collector, excellent flexibility, good coating properties, and secondary properties. Good charge / discharge characteristics in the battery can be obtained. Moreover, the reactivity in an electrode is restrained lower, the thermal runaway in a secondary battery is less likely to occur, and higher safety is obtained.
The electrode for an electricity storage device of the present invention has good adhesion between the electrode active materials and adhesion between the electrode active material and the current collector, and also has excellent flexibility and good charge / discharge characteristics in the secondary battery. Furthermore, since the reactivity in the electrode is suppressed to be lower, thermal runaway in the secondary battery is less likely to occur, and higher safety is obtained.
 本発明において、「単量体」とは、重合性炭素-炭素二重結合(エチレン性不飽和結合)を有する化合物である。
 「単量体に基づく単位」とは、単量体が重合することによって形成された、単量体分子から構成される構成単位であり、単量体分子の一部が分解によって消失していてもよい。
 本発明において、特に断りの無い限り、単量体と該単量体に基づく単位を同じアルファベットを用いて表す。例えば「単位(a)」は「単量体(A)に基づく単位」であることを表す。
 含フッ素共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、含フッ素共重合体に可溶な溶媒を用いて測定し、ポリスチレン換算値として得られる値である。
In the present invention, the “monomer” is a compound having a polymerizable carbon-carbon double bond (ethylenically unsaturated bond).
A “unit based on a monomer” is a structural unit composed of monomer molecules formed by polymerization of monomers, in which part of the monomer molecules have disappeared due to decomposition. Also good.
In the present invention, unless otherwise specified, a monomer and a unit based on the monomer are represented using the same alphabet. For example, “unit (a)” represents “unit based on monomer (A)”.
The number average molecular weight of the fluorinated copolymer is a value obtained as a polystyrene-converted value measured by gel permeation chromatography (GPC) using a solvent soluble in the fluorinated copolymer.
 本発明において、蓄電デバイスとしては、リチウムイオン一次電池、リチウムイオン二次電池、リチウムポリマー電池、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。蓄電デバイスとしては、特にリチウムイオン二次電池に用いることが、密着性、耐電解液性、充放電特性等をより効果的に発現でき好ましい。 In the present invention, examples of the electricity storage device include a lithium ion primary battery, a lithium ion secondary battery, a lithium polymer battery, an electric double layer capacitor, and a lithium ion capacitor. As an electricity storage device, it is particularly preferable to use it for a lithium ion secondary battery because it can more effectively express adhesiveness, electrolytic solution resistance, charge / discharge characteristics, and the like.
<蓄電デバイス用バインダー組成物>
 本発明の蓄電デバイス用バインダー組成物(以下、単にバインダー組成物ということがある。)は、含フッ素共重合体(Y)と含フッ素共重合体(Z)とを含む。
<含フッ素共重合体(Y)>
 含フッ素共重合体(Y)は、単量体(A)に基づく単位(a)、単量体(B)に基づく単位(b)、及び単量体(C)に基づく単位(c)を含有する。さらに、単量体(D)に基づく単位(d)、単量体(E)に基づく単位(e)、又は単位(d)と単位(e)の両方を含有してもよい。
[単量体(A)]
 単量体(A)は、テトラフルオロエチレン(TFE)、及びクロロトリフルオロエチレン(CTFE)からなる群より選ばれる1種以上の化合物である。好ましくはCTFEである。
<Binder composition for electricity storage device>
The binder composition for an electricity storage device of the present invention (hereinafter sometimes simply referred to as a binder composition) includes a fluorinated copolymer (Y) and a fluorinated copolymer (Z).
<Fluorine-containing copolymer (Y)>
The fluorine-containing copolymer (Y) comprises a unit (a) based on the monomer (A), a unit (b) based on the monomer (B), and a unit (c) based on the monomer (C). contains. Furthermore, the unit (d) based on the monomer (D), the unit (e) based on the monomer (E), or both the unit (d) and the unit (e) may be contained.
[Monomer (A)]
The monomer (A) is one or more compounds selected from the group consisting of tetrafluoroethylene (TFE) and chlorotrifluoroethylene (CTFE). CTFE is preferred.
[単量体(B)]
 単量体(B)は、下式(I)で表わされる化合物、及び下記(II)で表わされる化合物からなる群より選ばれる1種以上の化合物である。
 CH=CH-(CH-O-R・・・(I)
 CH=CH-(CH-OCO-R・・・(II)
 式(I)、(II)において、nは0又は1であり、Rは炭素数1~20の飽和炭化水素基を表す。2種以上の化合物を用いる場合は、複数のn及びRは同一であっても異なっていてもよい。
 Rとしての飽和炭化水素基は、直鎖状、分岐状又は環構造を含んでもよい。Rはフッ素原子を有しない。
[Monomer (B)]
The monomer (B) is at least one compound selected from the group consisting of a compound represented by the following formula (I) and a compound represented by the following (II).
CH 2 ═CH— (CH 2 ) n —O—R (I)
CH 2 ═CH— (CH 2 ) n —OCO—R (II)
In the formulas (I) and (II), n is 0 or 1, and R represents a saturated hydrocarbon group having 1 to 20 carbon atoms. When two or more kinds of compounds are used, a plurality of n and R may be the same or different.
The saturated hydrocarbon group as R may contain a linear, branched or ring structure. R does not have a fluorine atom.
 Rとしての飽和炭化水素基の炭素数は1~20であり、良好な密着性が得られやすい点で2~15が好ましく、2~10がより好ましい。
 単量体(B)の具体例として、エチルビニルエーテル(EVE)、プロピルビニルエーテル、ブチルビニルエーテル、2‐エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル(CHVE)等のビニルエーテル類;エチルアリルエーテル、プロピルアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル等のアリルエーテル類;ブタン酸ビニルエステル、オクタン酸ビニルエステルなどのビニルエステル類;ブタン酸アリルエステル、オクタン酸アリルエステル等のアリルエステル類;などが挙げられる。好ましくは、ビニルエーテル類またはアリルエーテル類であり、エチルビニルエーテル(EVE)、プロピルビニルエーテル、ブチルビニルエーテル、2‐エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル(CHVE)等のビニルエーテル類が特に好ましい。
The saturated hydrocarbon group as R has 1 to 20 carbon atoms, preferably 2 to 15 and more preferably 2 to 10 from the viewpoint of obtaining good adhesion.
Specific examples of the monomer (B) include vinyl ethers such as ethyl vinyl ether (EVE), propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether (CHVE); ethyl allyl ether, propyl allyl ether, butyl allyl ether, And allyl ethers such as cyclohexyl allyl ether; vinyl esters such as butanoic acid vinyl ester and octanoic acid vinyl ester; and allyl esters such as butanoic acid allyl ester and octanoic acid allyl ester; Preferred are vinyl ethers or allyl ethers, and vinyl ethers such as ethyl vinyl ether (EVE), propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, and cyclohexyl vinyl ether (CHVE) are particularly preferred.
[単量体(C)]
 単量体(C)は、エチレン性不飽和結合とヒドロキシ基とを有する化合物、エチレン性不飽和結合とエポキシ基を有する化合物、及びエチレン性不飽和結合とカルボキシ基とを有する化合物からなる群より選ばれる1種以上である化合物である。単量体(C)は、少なくともヒドロキシ基、エポキシ基又はカルボキシ基のいずれかを有しており、これらのうちの2以上を有していてもよい。単量体(C)に基づく単位は密着性の向上に寄与する。
 エチレン性不飽和結合とヒドロキシ基を有する化合物(以下、単量体(C-i)ともいう。)としては、ヒドロキシ基を有するビニルエーテル、ヒドロキシ基を有するビニルエステル、ヒドロキシ基を有するアリルエーテル、及びヒドロキシ基を有するアリルエステルからなる群より選ばれる1種以上の化合物が好ましい。例えば、下式(III)又は(IV)で表される化合物が挙げられる。
 エチレン性不飽和結合とエポキシ基を有する化合物(以下、単量体(C-ii)ともいう。)としては、エポキシ基を有するビニルエーテル、エポキシ基を有するビニルエステル、エポキシ基を有するアリルエーテル、及びエポキシ基を有するアリルエステルからなる群より選ばれる1種以上の化合物が好ましい。例えば、下式(V)又は(VI)で表される化合物が挙げられる。
[Monomer (C)]
The monomer (C) is selected from the group consisting of a compound having an ethylenically unsaturated bond and a hydroxy group, a compound having an ethylenically unsaturated bond and an epoxy group, and a compound having an ethylenically unsaturated bond and a carboxy group. It is a compound that is one or more selected. The monomer (C) has at least one of a hydroxy group, an epoxy group, or a carboxy group, and may have two or more of these. Units based on the monomer (C) contribute to the improvement of adhesion.
Examples of the compound having an ethylenically unsaturated bond and a hydroxy group (hereinafter also referred to as a monomer (Ci)) include a vinyl ether having a hydroxy group, a vinyl ester having a hydroxy group, an allyl ether having a hydroxy group, and One or more compounds selected from the group consisting of allyl esters having a hydroxy group are preferred. For example, the compound represented by the following formula (III) or (IV) is mentioned.
Examples of the compound having an ethylenically unsaturated bond and an epoxy group (hereinafter also referred to as a monomer (C-ii)) include a vinyl ether having an epoxy group, a vinyl ester having an epoxy group, an allyl ether having an epoxy group, and One or more compounds selected from the group consisting of allyl esters having an epoxy group are preferred. For example, the compound represented by the following formula (V) or (VI) is mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(III)~式(VI)において、nは0又は1である。式(III)、(IV)において、mは0~2の整数である。mが2のとき、1分子中に2個存在するRは、互いに同じであってもよく異なってもよい。2種以上の化合物を用いる場合は、複数のm、n、R、R、及びRは同一であっても異なっていてもよい。 In the formulas (III) to (VI), n is 0 or 1. In the formulas (III) and (IV), m is an integer of 0-2. When m is 2, two R 2 existing in one molecule may be the same as or different from each other. When two or more types of compounds are used, a plurality of m, n, R 1 , R 2 , and R 3 may be the same or different.
 式(III)、(IV)において、Rは炭素数1~10の(m+2)価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~10の(m+2)価の飽和炭化水素基を表す。該飽和炭化水素基は直鎖状、分岐状又は環構造を含んでもよい。
 2価(m=0)のRとしての飽和炭化水素基は、例えば、炭素数1又は2の直鎖のアルキレン基、又はエーテル性酸素原子1~3個を有する炭素数2~6の飽和炭化水素基(ただし、飽和炭化水素基の炭素数が2の場合に含まれるエーテル性酸素原子の数は1個であり、飽和炭化水素基の炭素数が3の場合に含まれるエーテル性酸素原子の数は1個又は2個である。)が挙げられる。
 具体的には、アルキレン基、シクロアルキレン基、シクロアルキレン基を含むアルキレン基等が挙げられる。アルキレン基は直鎖でも分岐でもよい。シクロアルキレン基としては、炭素数5~8のシクロアルキレン基が好ましく、シクロヘキシレン基が特に好ましい。シクロアルキレン基を含むアルキレン基としては、例えば、-CH-C10-CH-等が挙げられる。
 3価(m=1)又は4価(m=2)のRとしての飽和炭化水素基は、前記2価の飽和炭化水素基からm個の水素原子を除いた基が挙げられる。
In the formulas (III) and (IV), R 1 represents an (m + 2) -valent saturated hydrocarbon group having 1 to 10 carbon atoms, or an (m + 2) -valent saturated hydrocarbon having 2 to 10 carbon atoms and having an etheric oxygen atom. Represents a group. The saturated hydrocarbon group may contain a linear, branched or ring structure.
The saturated hydrocarbon group as divalent (m = 0) R 1 is, for example, a linear alkylene group having 1 or 2 carbon atoms, or a saturated hydrocarbon group having 1 to 3 ether oxygen atoms and 2 to 6 carbon atoms. Hydrocarbon group (however, the number of etheric oxygen atoms contained when the saturated hydrocarbon group has 2 carbon atoms is 1 and the etheric oxygen atom contained when the saturated hydrocarbon group has 3 carbon atoms) Is 1 or 2.).
Specific examples include an alkylene group, a cycloalkylene group, and an alkylene group containing a cycloalkylene group. The alkylene group may be linear or branched. As the cycloalkylene group, a cycloalkylene group having 5 to 8 carbon atoms is preferable, and a cyclohexylene group is particularly preferable. Examples of the alkylene group including a cycloalkylene group include —CH 2 —C 6 H 10 —CH 2 —.
Examples of the trivalent (m = 1) or tetravalent (m = 2) saturated hydrocarbon group as R 1 include groups in which m hydrogen atoms have been removed from the divalent saturated hydrocarbon group.
 式(III)、(IV)において、Rは炭素数1~8の2価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~8の2価の飽和炭化水素基を表す。該飽和炭化水素基は直鎖状、分岐状又は環構造を含んでもよい。Rとしては、Rにおける2価の飽和炭化水素基と同様のものが挙げられる。
 特に式(III)において、Rが炭素数1又は2の直鎖のアルキレン基、又はエーテル性酸素原子1~3個を有する炭素数2~6のアルキレン基(ただしエーテル性酸素原子の数は3個以下である。)であることが好ましい。
 特に式(IV)において、Rが炭素数1~4のアルキレン基であることが好ましい。
In the formulas (III) and (IV), R 2 represents a divalent saturated hydrocarbon group having 1 to 8 carbon atoms or a divalent saturated hydrocarbon group having 2 to 8 carbon atoms having an etheric oxygen atom. The saturated hydrocarbon group may contain a linear, branched or ring structure. Examples of R 2 include the same as the divalent saturated hydrocarbon group for R 1 .
In particular, in the formula (III), R 1 is a linear alkylene group having 1 or 2 carbon atoms, or an alkylene group having 2 to 6 carbon atoms having 1 to 3 etheric oxygen atoms (however, the number of etheric oxygen atoms is 3 or less).
In particular, in formula (IV), R 2 R 3 is preferably an alkylene group having 1 to 4 carbon atoms.
 式(V)、(VI)において、Rは炭素数1~8のアルキレン基、又はエーテル性酸素原子を有する炭素数2~8のアルキレン基を表す。直鎖状でもよく、分岐状でもよい。Rとしては炭素数1~4のアルキレン基が好ましい。 In the formulas (V) and (VI), R 3 represents an alkylene group having 1 to 8 carbon atoms or an alkylene group having 2 to 8 carbon atoms having an etheric oxygen atom. It may be linear or branched. R 3 is preferably an alkylene group having 1 to 4 carbon atoms.
 単量体(C-i)の具体例としては、
 2-ヒドロキシエチルビニルエーテル(HEVE)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル(HBVE)、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル等のヒドロキシアルキルビニルエーテル類;シクロヘキサンジメタノールモノビニルエーテル(CHMVE)等の脂環族ジオールのモノビニルエーテル類;ジエチレングリコールモノビニルエーテル(DEGV)、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル等のポリエチレングリコールモノビニルエーテル類;ヒドロキシエチルアリルエーテル、ヒドロキシブチルアリルエーテル、2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等のヒドロキシアルキルアリルエーテル類;ヒドロキシエチルビニルエステル、ヒドロキシブチルビニルエステル等のヒドロキシアルキルビニルエステル類;ヒドロキシエチルアリルエステル、ヒドロキシブチルアリルエステル等のヒドロキシアルキルアリルエステル類;ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸ヒドロキシアルキルエステル類;等が挙げられる。
 単量体(C-ii)の具体例としては、アリルグリシジルエーテル、グリシジルビニルエーテル、アリル-3,4-エポキシブチルエーテル、アリル-5,6-エポキヘキシルエーテル等が挙げられる。
Specific examples of the monomer (Ci) include
2-hydroxyethyl vinyl ether (HEVE), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether (HBVE), 4-hydroxy-2-methylbutyl vinyl ether, Hydroxyalkyl vinyl ethers such as 5-hydroxypentyl vinyl ether and 6-hydroxyhexyl vinyl ether; monovinyl ethers of alicyclic diols such as cyclohexanedimethanol monovinyl ether (CHMVE); diethylene glycol monovinyl ether (DEV), triethylene glycol monovinyl ether, Polyethylene glycol monovinyl ethers such as tetraethylene glycol monovinyl ether Hydroxyalkyl allyl ethers such as hydroxyethyl allyl ether, hydroxybutyl allyl ether, 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether and glycerol monoallyl ether; hydroxyalkyl vinyl such as hydroxyethyl vinyl ester and hydroxybutyl vinyl ester Esters; hydroxyalkyl allyl esters such as hydroxyethyl allyl ester and hydroxybutyl allyl ester; (meth) acrylic acid hydroxyalkyl esters such as hydroxyethyl (meth) acrylate; and the like.
Specific examples of the monomer (C-ii) include allyl glycidyl ether, glycidyl vinyl ether, allyl-3,4-epoxybutyl ether, allyl-5,6-epoxyhexyl ether, and the like.
 エチレン性不飽和結合とカルボキシ基を有する化合物(以下、単量体(C-iii)ともいう。)としては、例えば、3-ブテン酸、4-ペンテン酸、2-ヘキセン酸、3-ヘキセン酸、5-ヘキセン酸、2-ヘプテン酸、3-ヘプテン酸、6-ヘプテン酸、3-オクテン酸、7-オクテン酸、2-ノネン酸、3-ノネン酸、8-ノネン酸、9-デセン酸又は10-ウンデセン酸、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸などの不飽和カルボン酸類;ビニルオキシ吉草酸、3-ビニルオキシプロピオン酸、3-(2-ビニルオキシブトキシカルボニル)プロピオン酸、3-(2-ビニルオキシエトキシカルボニル)プロピオン酸などの飽和カルボン酸ビニルエーテル類;アリルオキシ吉草酸、3-アリルオキシプロピオン酸、3-(2-アリルオキシブトキシカルボニル)プロピオン酸、3-(2-アリルオキシエトキシカルボニル)プロピオン酸などの飽和カルボン酸アリルエーテル類;アジピン酸モノビニル、コハク酸モノビニル、フタル酸ビニル、ピロメリット酸ビニルなどの飽和多価カルボン酸モノビニルエステル類;イタコン酸、マレイン酸、フマル酸、マレイン酸無水物、イタコン酸無水物などの不飽和ジカルボン酸類又はその分子内酸無水物;イタコン酸モノエステル、マレイン酸モノエステル、フマル酸モノエステルなどの不飽和カルボン酸モノエステル類;などが例示される。
 上記単量体(C-iii)の例示のうち、他のフッ素系単量体との共重合性や、入手の容易性の点で、クロトン酸、イタコン酸、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、3-アリルオキシプロピオン酸、又は10-ウンデシレン(ウンデセン)酸が好ましい。
Examples of the compound having an ethylenically unsaturated bond and a carboxy group (hereinafter also referred to as a monomer (C-iii)) include 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, and 3-hexenoic acid. 5-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 6-heptenoic acid, 3-octenoic acid, 7-octenoic acid, 2-nonenoic acid, 3-nonenoic acid, 8-nonenoic acid, 9-decenoic acid Or 10-undecenoic acid, acrylic acid, methacrylic acid, vinyl acetic acid, crotonic acid, cinnamic acid and other unsaturated carboxylic acids; vinyloxyvaleric acid, 3-vinyloxypropionic acid, 3- (2-vinyloxybutoxycarbonyl) propionic acid , Saturated carboxylic acid vinyl ethers such as 3- (2-vinyloxyethoxycarbonyl) propionic acid; allyloxyvaleric acid, 3-allyloxypropio Saturated carboxylic acid allyl ethers such as acid, 3- (2-allyloxybutoxycarbonyl) propionic acid, 3- (2-allyloxyethoxycarbonyl) propionic acid; monovinyl adipate, monovinyl succinate, vinyl phthalate, pyromerit Saturated polycarboxylic acid monovinyl esters such as vinyl acid; unsaturated dicarboxylic acids such as itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride or intramolecular acid anhydrides thereof; itaconic acid monoesters; Examples thereof include unsaturated carboxylic acid monoesters such as maleic acid monoester and fumaric acid monoester.
Among the examples of the above monomer (C-iii), crotonic acid, itaconic acid, maleic acid, maleic acid monoester, in terms of copolymerizability with other fluorine-based monomers and availability Fumaric acid, fumaric acid monoester, 3-allyloxypropionic acid, or 10-undecylene (undecenic) acid is preferred.
 単量体(C)は、少なくとも単量体(C-i)及び単量体(C-ii)からなる群より選ばれる1種以上の化合物を含むことが好ましい。単量体(C)の全量に対して、単量体(C-i)と単量体(C-ii)の合計が50質量%以上であることが好ましく、70質量%以上がより好ましく、100質量%でもよい。 The monomer (C) preferably contains at least one compound selected from the group consisting of the monomer (Ci) and the monomer (C-ii). The total amount of the monomer (Ci) and the monomer (C-ii) is preferably 50% by mass or more, more preferably 70% by mass or more based on the total amount of the monomer (C). It may be 100% by mass.
 単量体(C)は、式(III)~式(VI)で表される化合物からなる群より選ばれる1種以上の化合物を含むことが好ましい。
 これらのうち、HEVE、HBVE、CHMVE、DEGV、アリルグリシジルエーテル、3-アリルオキシ-1,2-プロパンジオール、5-(2-プロペニルオキシ)-1-ペンタノール、6-(2-プロペニルオキシ)-1-ヘキサノール、2-(2-プロペニルオキシ)-1,4-ブタンジオール、4-(2-プロペニルオキシ)-1,2-ブタンジオール、2-[2-(3-ブテニル)エチル]オキシラン、2-[3-(2-ブテニル)プロピル]オキシラン、及び2-[4-(2-ブテニル)ブチル]オキシランからなる群より選ばれる少なくとも1種が好ましく、HBVE、CHMVE、アリルグリシジルエーテル、及び3-アリルオキシ-1,2-プロパンジオールからなる群より選ばれる少なくとも1種がより好ましく、HBVE又はCHMVEが最も好ましい。
The monomer (C) preferably contains one or more compounds selected from the group consisting of compounds represented by formulas (III) to (VI).
Of these, HEVE, HBVE, CHMVE, DEGV, allyl glycidyl ether, 3-allyloxy-1,2-propanediol, 5- (2-propenyloxy) -1-pentanol, 6- (2-propenyloxy)- 1-hexanol, 2- (2-propenyloxy) -1,4-butanediol, 4- (2-propenyloxy) -1,2-butanediol, 2- [2- (3-butenyl) ethyl] oxirane, At least one selected from the group consisting of 2- [3- (2-butenyl) propyl] oxirane and 2- [4- (2-butenyl) butyl] oxirane is preferred. HBVE, CHMVE, allyl glycidyl ether, and 3 More preferred is at least one selected from the group consisting of -allyloxy-1,2-propanediol, BVE or CHMVE is most preferable.
[単量体(D)]
 含フッ素共重合体(Y)は、親水性部位を有するマクロモノマーの1種以上であり、かつ、分子量が300以上である単量体(D)に基づく単位(d)を任意に有してもよい。単位(d)は含フッ素共重合体(Y)の水性分散媒への分散安定性の向上に寄与する。また、密着性の向上、充放電特性の向上にも寄与する。
 本発明において、「マクロモノマー」とは、分子内にエチレン性不飽和結合を有する低分子量のポリマー又はオリゴマーを意味する。マクロモノマーの分子量又は平均分子量は300~10,000が好ましく、400~5000がより好ましい。
 本明細書において、マクロモノマーの分子量とは、化学式に基づいて得られる式量を意味する。エーテル鎖長が異なる分子の混合物等、分子量が異なる分子の混合物である場合は、分子量(式量)の平均値である平均分子量で表す。
 「親水性部位」とは、親水性基を有する部位、親水性の結合を有する部位、又はこれらの組み合わせからなる部位を意味する。
 単量体(A)~(C)のいずれかに該当するものは、単量体(D)に含まれないものとする。
[Monomer (D)]
The fluorine-containing copolymer (Y) is at least one kind of macromonomer having a hydrophilic part, and optionally has a unit (d) based on the monomer (D) having a molecular weight of 300 or more. Also good. The unit (d) contributes to the improvement of the dispersion stability of the fluorinated copolymer (Y) in the aqueous dispersion medium. It also contributes to improved adhesion and charge / discharge characteristics.
In the present invention, the “macromonomer” means a low molecular weight polymer or oligomer having an ethylenically unsaturated bond in the molecule. The molecular weight or average molecular weight of the macromonomer is preferably 300 to 10,000, and more preferably 400 to 5000.
In this specification, the molecular weight of the macromonomer means a formula weight obtained based on the chemical formula. In the case of a mixture of molecules having different molecular weights, such as a mixture of molecules having different ether chain lengths, it is represented by an average molecular weight that is an average value of molecular weights (formula weights).
“Hydrophilic part” means a part having a hydrophilic group, a part having a hydrophilic bond, or a part composed of a combination thereof.
Those corresponding to any of the monomers (A) to (C) are not included in the monomer (D).
 マクロモノマーは、分子内にエチレン性不飽和結合を有するとともに、ポリエーテル鎖又はポリエステル鎖を有するものが好ましい。エチレン性不飽和結合を有する基としては、例えば、ビニル基、ビニルエーテル基、ビニルエステル基、アリル基、アリルエーテル基、アリルエステル基、アクリロイル基、メタクリロイル基等が挙げられる。含フッ素共重合体の合成が容易であることから、ビニル基又はビニルエーテル基が好ましい。 The macromonomer preferably has an ethylenically unsaturated bond in the molecule and a polyether chain or a polyester chain. Examples of the group having an ethylenically unsaturated bond include vinyl group, vinyl ether group, vinyl ester group, allyl group, allyl ether group, allyl ester group, acryloyl group, and methacryloyl group. A vinyl group or a vinyl ether group is preferable because the synthesis of the fluorine-containing copolymer is easy.
 親水性基としては、イオン性(陰イオン性又は陽イオン性)の親水性基、ノニオン性の親水性基、両性の親水性基、及びこれらの組合せが挙げられる。
 陰イオン性の親水性基としては、-SO NH 、-SO Na等が挙げられる。
 陽イオン性の親水性基としては、-NH CHCOO等が挙げられる。
 ノニオン性の親水性基としては、-(CHCHO)H(pは1~50)等が挙げられる。
 両性の親水性基としては、-N(CHCHCOO等が挙げられる。
 バインダー組成物の分散安定性の点からは、ノニオン性又は両性の親水性基を有する部位と他の親水性基を有する部位とを組合せるか、又は親水性基を有する部位と親水性の結合を有する部位とを組合せるのが好ましい。
Examples of the hydrophilic group include an ionic (anionic or cationic) hydrophilic group, a nonionic hydrophilic group, an amphoteric hydrophilic group, and a combination thereof.
The anionic hydrophilic group, -SO 3 - NH + 4, -SO 3 - Na + and the like.
Examples of the cationic hydrophilic group include —NH 3 + CH 3 COO .
Examples of nonionic hydrophilic groups include — (CH 2 CH 2 O) p H (p is 1 to 50).
Examples of the amphoteric hydrophilic group include —N + (CH 3 ) 2 CH 2 COO — and the like.
From the viewpoint of dispersion stability of the binder composition, a portion having a nonionic or amphoteric hydrophilic group and a portion having another hydrophilic group are combined, or a portion having a hydrophilic group and a hydrophilic bond It is preferable to combine with the site | part which has.
 単量体(D)である親水性部位を有するマクロモノマーの好ましい構造としては、例えば、以下の(1)~(7)が挙げられる。
 (1)CH=CHO(CH[O(CHOR11(aは1~10の整数、bは1~4の整数、cは2~20の整数、R11は水素原子又は低級アルキル基である。);
 (2)CH=CHCHO(CH[O(CHOR(dは1~10の整数、eは1~4の整数、fは2~20の整数、Rは水素原子又は低級アルキル基である。);
 (3)CH=CHO(CH(OCHCH(OCHCH(CH))OR(gは1~10の整数、hは2~20の整数、kは0~20の整数、Rは水素原子又は低級アルキル基であり、オキシエチレン単位及びオキシプロピレン単位はブロック、ランダムのいずれの型で配列されていてもよい。);
 (4)CH=CHCHO(CHm1(OCHCHn1OCHCH(CH))OR((m1)は1~10の整数、(n1)は2~20の整数、pは0~20の整数、Rは水素原子又は低級アルキル基であり、オキシエチレン単位とオキシプロピレン単位はブロック、ランダムのいずれの型で配列されていてもよい。);
 (5)CH=CHO(CHO(CO(CHO)H(qは1~10の整数、rは1~10の整数、sは1~30の整数);等が挙げられる。
 上記(1)~(5)における低級アルキル基の炭素数は1~30が好ましく、1~20がより好ましい。
Examples of the preferred structure of the macromonomer having a hydrophilic site as the monomer (D) include the following (1) to (7).
(1) CH 2 ═CHO (CH 2 ) a [O (CH 2 ) b ] c OR 11 (a is an integer of 1 to 10, b is an integer of 1 to 4, c is an integer of 2 to 20, R 11 Is a hydrogen atom or a lower alkyl group);
(2) CH 2 = CHCH 2 O (CH 2 ) d [O (CH 2 ) e ] f OR 2 (d is an integer of 1 to 10, e is an integer of 1 to 4, f is an integer of 2 to 20, R 2 is a hydrogen atom or a lower alkyl group).
(3) CH 2 = CHO (CH 2 ) g (OCH 2 CH 2 ) h (OCH 2 CH (CH 3 )) k OR 3 (g is an integer of 1 to 10, h is an integer of 2 to 20, k is An integer of 0 to 20, R 3 is a hydrogen atom or a lower alkyl group, and the oxyethylene unit and the oxypropylene unit may be arranged in any of block or random type);
(4) CH 2 = CHCH 2 O (CH 2 ) m1 (OCH 2 CH 2 ) n1 OCH 2 CH (CH 3 )) p OR 4 ((m1) is an integer of 1 to 10, (n1) is 2 to 20 , P is an integer of 0 to 20, R 4 is a hydrogen atom or a lower alkyl group, and the oxyethylene unit and the oxypropylene unit may be arranged in either block or random form).
(5) CH 2 ═CHO (CH 2 ) q O (CO (CH 2 ) r O) s H (q is an integer of 1 to 10, r is an integer of 1 to 10, and s is an integer of 1 to 30); Etc.
In the above (1) to (5), the lower alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms.
 (6)分子内にエチレン性不飽和結合を有し、かつ、親水性基として-(CHCHO)H(pは1~50)を有し、これらが1,4-シクロヘキシレン基(以下、-cycloC10-と記載することもある。)を1個以上含む連結基を介して結合されているマクロモノマーが挙げられる。
 具体例として以下のものが挙げられる。(n2)はオキシエチレン基の付加モル数を表し、2~40の整数である。
 CH=CHOCH-cycloC10-CHO(CHCHO)n2H、
 CH=CHCHOCH-cycloC10-CHO(CHCHO)n2H、
 CH=CHO-cycloC10-C(CH-cycloC10-O(CHCHO)n2H、
 CH=CHCHO-cycloC10-C(CH-cycloC10-O(CHCHO)n2H、
 CH=CHO-cycloC10-CHO-(CHCHO)n2-H、
 CH=CHCHO-cycloC10-CHO-(CHCHO)n2-H。
(6) It has an ethylenically unsaturated bond in the molecule and has — (CH 2 CH 2 O) p H (p is 1 to 50) as a hydrophilic group, which are 1,4-cyclohexylene And a macromonomer bonded through a linking group containing one or more groups (hereinafter also referred to as -cycloC 6 H 10- ).
Specific examples include the following. (N2) represents the number of added moles of the oxyethylene group and is an integer of 2 to 40.
CH 2 = CHOCH 2 -cycloC 6 H 10 -CH 2 O (CH 2 CH 2 O) n2 H,
CH 2 = CHCH 2 OCH 2 -cycloC 6 H 10 -CH 2 O (CH 2 CH 2 O) n2 H,
CH 2 ═CHO—cycloC 6 H 10 —C (CH 3 ) 2 —cycloC 6 H 10 —O (CH 2 CH 2 O) n2 H,
CH 2 ═CHCH 2 O—cycloC 6 H 10 —C (CH 3 ) 2 —cycloC 6 H 10 —O (CH 2 CH 2 O) n2 H,
CH 2 = CHO-cycloC 6 H 10 —CH 2 O— (CH 2 CH 2 O) n2 —H,
CH 2 = CHCH 2 O-cycloC 6 H 10 -CH 2 O- (CH 2 CH 2 O) n2 -H.
 単量体(D)は、分子内にビニルエーテル型の構造を有するものが、フルオロオレフィンとの共重合性に優れているため好ましい。特に、ポリエーテル鎖部分が、オキシエチレン単位、又はオキシエチレン単位とオキシプロピレン単位、からなるものが親水性に優れているため好ましい。
 また、オキシエチレン単位を2個以上有すれば、安定性等の諸性質が良好になる。また、オキシアルキレン単位の数が多すぎると、電解液に対する耐溶剤性が悪くなる。1分子中のオキシアルキレン単位は、2個以上100個以下が好ましく、2個以上75個以下がより好ましい。
 このような親水性部位を有するマクロモノマーは、水酸基を有するビニルエーテル若しくはアリルエーテルに、ホルムアルデヒド若しくはジオールを重合させるか、又はアルキレンオキシド若しくはラクトン環を有する化合物を開環重合させる等の方法により製造できる。
As the monomer (D), one having a vinyl ether type structure in the molecule is preferable because of excellent copolymerizability with the fluoroolefin. In particular, it is preferable that the polyether chain portion is composed of oxyethylene units or oxyethylene units and oxypropylene units because of excellent hydrophilicity.
Moreover, if there are two or more oxyethylene units, various properties such as stability are improved. Moreover, when there are too many oxyalkylene units, the solvent resistance with respect to electrolyte solution will worsen. The number of oxyalkylene units in one molecule is preferably 2 or more and 100 or less, and more preferably 2 or more and 75 or less.
Such a macromonomer having a hydrophilic moiety can be produced by a method such as polymerizing formaldehyde or diol with a vinyl ether or allyl ether having a hydroxyl group, or ring-opening polymerization of a compound having an alkylene oxide or a lactone ring.
 (7)親水性のエチレン性不飽和単量体がラジカル重合した鎖を有し、ビニルオキシ基又はアリルオキシ基等のエチレン性不飽和結合を有するマクロモノマーが挙げられる。
 このような親水性部位を有するマクロモノマーは、山下らがPolym.Bull.,5.335(1981)に記載している方法等により製造できる。
(7) A macromonomer having a chain obtained by radical polymerization of a hydrophilic ethylenically unsaturated monomer and having an ethylenically unsaturated bond such as a vinyloxy group or an allyloxy group.
Macromonomers having such a hydrophilic moiety are described by Yamashita et al. In Polym. Bull. , 5.335 (1981).
 単量体(D)である親水性部位を有するマクロモノマーは、市販品としても入手可能であり、例えば、下記の製品が挙げられる。
 花王社製のラムテルPD-104(ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム)、ラムテルPD-420(ポリオキシアルキレンアルケニルエーテル);第一工業製薬社製のアクアロンKH-10(ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸アンモニウム)アクアロンHS-10(ポリオキシエチレンノニルプロペニルフェニルエーテル硫酸アンモニウム)、アクアロンRN-20(ポリオキシエチレンノニルプロペニルフェニルエーテル);日本乳化剤社製のアントックスMS-60(2-ソジウムスルホエチルメタクリレート)、アントックスSAD(アルキル・アリルサクシネートスルホン酸Na塩)、アントックスMS-2N(2-ソジウムスルホエチルメタクリレート)、アントックスLMA-10(アルコキシポリエチレングリコールメタクリレート)、アントックスEMH-20(アルコキシポリエチレングリコールマレイン酸エステル);三洋化成社製のエレミノールJS‐20、エレミノールRS‐3000等である。
The macromonomer which has a hydrophilic part which is a monomer (D) is also available as a commercial item, for example, the following product is mentioned.
Ramtel PD-104 (polyoxyalkylene alkenyl ether ammonium sulfate) manufactured by Kao Corporation, Ramtel PD-420 (polyoxyalkylene alkenyl ether); Aqualon KH-10 (polyoxyethylene-1- (allyloxy) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Methyl) alkyl ether ammonium sulfate) Aqualon HS-10 (polyoxyethylene nonylpropenyl phenyl ether ammonium sulfate), Aqualon RN-20 (polyoxyethylene nonylpropenyl phenyl ether); Antox MS-60 (2-sodium manufactured by Nippon Emulsifier Co., Ltd.) Sulfoethyl methacrylate), Antox SAD (alkyl allyl succinate sulfonate Na salt), Antox MS-2N (2-sodium sulfoethyl methacrylate), Antto Scan LMA-10 (alkoxy polyethylene glycol methacrylate), Ann Krytox EMH-20 (alkoxy polyethylene glycol maleate); manufactured by Sanyo Chemical Industries, Ltd. of ELEMINOL JS-20, a ELEMINOL RS-3000 and the like.
 特に単量体(D)として、フルオロオレフィンとの共重合性に優れる点で、上記(6)の、エチレン性不飽和結合と-(CHCHO)H(pは1~50)とが、1,4-シクロヘキシレン基を含む連結基を介して結合されているマクロモノマーが好ましい。該エチレン性不飽和結合を有する基としては、ビニルエーテル基が好ましい。 In particular, as the monomer (D), an ethylenically unsaturated bond and — (CH 2 CH 2 O) p H (p is 1 to 50) in the above (6) from the viewpoint of excellent copolymerizability with a fluoroolefin. Are preferably linked via a linking group containing a 1,4-cyclohexylene group. The group having an ethylenically unsaturated bond is preferably a vinyl ether group.
[その他の単量体]
 含フッ素共重合体(Y)は、単位(a)~(c)又は単位(a)~(d)のほかに、単量体(A)~(D)のいずれにも該当せず、かつ、これらと共重合可能な、その他の単量体(E)に基づく単位(その他の単位(e))を有してもよい。
 その他の単量体(E)の例としては、エチレン、プロピレンなどのオレフィン類、スチレン、ビニルトルエンなどの芳香族ビニル化合物類などのビニル系化合物、アクリル酸ブチルなどのアクリロイル化合物類、メタクリル酸エチルなどのメタクリロイル化合物類などが挙げられる。特に、オレフィン類が好ましい。
 含フッ素共重合体(Y)を構成する全単位に対して、単位(a)~(c)の合計が70~100モル%が好ましく、80~100モル%がより好ましく、90~100モル%がさらに好ましい。
 含フッ素共重合体(Y)が単位(d)を含有する場合は、含フッ素共重合体(Y)を構成する全単位に対して、単位(a)~(d)の合計が70~100モル%が好ましく、80~100モル%がより好ましく、90~100モル%がさらに好ましい。
[Other monomers]
The fluorine-containing copolymer (Y) does not correspond to any of the monomers (A) to (D) in addition to the units (a) to (c) or the units (a) to (d), and These may have units (other units (e)) based on other monomers (E) that can be copolymerized therewith.
Examples of other monomers (E) include olefins such as ethylene and propylene, vinyl compounds such as aromatic vinyl compounds such as styrene and vinyltoluene, acryloyl compounds such as butyl acrylate, and ethyl methacrylate. And methacryloyl compounds. In particular, olefins are preferred.
The total of the units (a) to (c) is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, more preferably 90 to 100 mol%, based on all units constituting the fluorine-containing copolymer (Y). Is more preferable.
When the fluorinated copolymer (Y) contains the unit (d), the total of the units (a) to (d) is 70 to 100 with respect to all the units constituting the fluorinated copolymer (Y). The mol% is preferable, 80 to 100 mol% is more preferable, and 90 to 100 mol% is more preferable.
[各単位の含有量]
 含フッ素共重合体(Y)において、単位(a)の含有量は、全単位の合計に対して、20~80モル%であることが好ましく、30~70モル%がより好ましい。上記範囲の下限値以上であると良好な分散安定性が得られやすい。上限値以下であると良好な密着性が得られやすい。単位(a)として2種の単位を含む場合、それらの合計の含有量が「単位(a)の含有量」である。
 単位(b)の含有量は、全単位の合計に対して、1~70モル%であることが好ましく、5~60モル%がより好ましく、10~50モル%が更に好ましい。上記範囲の下限値以上であると良好な密着性が得られやすい。上限値以下であると柔軟性が良好な塗膜が得られやすい。単位(b)として2種以上の単位を含む場合、それらの合計の含有量が「単位(b)の含有量」である。他の単位についても同様である。
 単位(c)の含有量は、全単位の合計に対して、0.1~40モル%であることが好ましく、1~20モル%がより好ましい。上記範囲の下限値以上であると水性分散液の化学的安定性に優れる。上限値以下であると良好な密着性が得られやすい。
 含フッ素共重合体(Y)が単位(d)を含有する場合、単位(d)の含有量は、全単位の合計に対して0.1~25モル%であることが好ましく、0.3~20モル%がより好ましい。上記範囲の下限値以上であると水性分散媒への良好な分散安定性が得られやすく、上限値以下であると良好な密着性が得られやすい。
[Content of each unit]
In the fluorinated copolymer (Y), the content of the unit (a) is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, based on the total of all units. When it is at least the lower limit of the above range, good dispersion stability is easily obtained. Good adhesiveness is easy to be obtained if it is below the upper limit. When two types of units are included as the unit (a), the total content thereof is the “content of the unit (a)”.
The content of the unit (b) is preferably 1 to 70 mol%, more preferably 5 to 60 mol%, still more preferably 10 to 50 mol%, based on the total of all units. When it is at least the lower limit of the above range, good adhesion is easily obtained. When it is at most the upper limit value, a coating film with good flexibility is easily obtained. When the unit (b) contains two or more types of units, the total content thereof is “content of unit (b)”. The same applies to other units.
The content of the unit (c) is preferably from 0.1 to 40 mol%, more preferably from 1 to 20 mol%, based on the total of all units. It is excellent in the chemical stability of an aqueous dispersion as it is more than the lower limit of the said range. Good adhesiveness is easy to be obtained if it is below the upper limit.
When the fluorinated copolymer (Y) contains the unit (d), the content of the unit (d) is preferably 0.1 to 25 mol% based on the total of all units, More preferred is ˜20 mol%. When it is at least the lower limit of the above range, good dispersion stability in the aqueous dispersion medium is easily obtained, and when it is at most the upper limit, good adhesion is easily obtained.
 含フッ素共重合体(Y)の数平均分子量は、2万~100万が好ましく、2万~80万がより好ましく、2万~70万がさらに好ましい。上記範囲の下限値以上であると良好な密着性が得られやすく、上限値以下であると良好な分散安定性が得られやすい。 The number average molecular weight of the fluorinated copolymer (Y) is preferably from 20,000 to 1,000,000, more preferably from 20,000 to 800,000, and even more preferably from 20,000 to 700,000. When it is at least the lower limit of the above range, good adhesion is easily obtained, and when it is at most the upper limit, good dispersion stability is easily obtained.
<含フッ素共重合体(Y)の製造方法>
 含フッ素共重合体(Y)は、単量体(A)、(B)、(C)、任意の単量体(D)及び(E)を共重合させることにより製造できる。重合法としては、公知の手法を適宜用いて行うことができ、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。
<Method for producing fluorinated copolymer (Y)>
The fluorine-containing copolymer (Y) can be produced by copolymerizing the monomers (A), (B), (C), and arbitrary monomers (D) and (E). As a polymerization method, it can carry out using a well-known method suitably, and an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, a block polymerization method etc. are mentioned.
 高分子量(例えば数平均分子量が2万以上)の含フッ素共重合体(Y)が得られやすい点では乳化重合法が好ましい。
 乳化重合法では、水性媒体、及びラジカル重合開始剤、さらに好ましくは乳化剤の存在下に、単量体(A)~(C)を含む単量体成分を重合(乳化重合)する工程(以下、乳化重合工程とも記す。)を経て含フッ素共重合体(Y)のラテックスを得る。乳化重合法は、含フッ素共重合体(Y)の、製造において公知の手法を適宜用いることができる。乳化重合工程で得られるラテックスは、そのまま、本発明のバインダー組成物として用いることができる。
The emulsion polymerization method is preferred in that a fluorine-containing copolymer (Y) having a high molecular weight (for example, a number average molecular weight of 20,000 or more) is easily obtained.
In the emulsion polymerization method, a step of polymerizing (emulsion polymerization) monomer components including monomers (A) to (C) in the presence of an aqueous medium and a radical polymerization initiator, more preferably an emulsifier (hereinafter referred to as emulsion polymerization). The latex of the fluorine-containing copolymer (Y) is obtained through the emulsion polymerization step. As the emulsion polymerization method, a known method can be appropriately used in the production of the fluorinated copolymer (Y). The latex obtained in the emulsion polymerization step can be used as it is as the binder composition of the present invention.
 乳化重合法以外の重合法により含フッ素共重合体(Y)を合成してもよい。例えば、溶液重合法の場合、乳化重合工程における水性媒体及び乳化剤の代わりに、重合する単量体を溶解する溶媒を用いることで、含フッ素共重合体を製造できる。溶液重合法に用いる溶媒としては、メチルエチルケトン、キシレン等が挙げられる。 The fluorine-containing copolymer (Y) may be synthesized by a polymerization method other than the emulsion polymerization method. For example, in the case of the solution polymerization method, the fluorine-containing copolymer can be produced by using a solvent that dissolves the monomer to be polymerized, instead of the aqueous medium and the emulsifier in the emulsion polymerization step. Examples of the solvent used in the solution polymerization method include methyl ethyl ketone and xylene.
<含フッ素共重合体(Z)>
 含フッ素共重合体(Z)は、TFE、ヘキサフルオロプロピレン(HFPともいう。)、及びフッ化ビニリデン(VdFともいう。)からなる群より選ばれる単量体(S)に基づく単位(s)の1種以上を含有する共重合体である。含フッ素共重合体(Z)は、蓄電デバイス用バインダーの柔軟性に寄与する。
 以下、TFEに基づく単位をTFE単位ということもある。他の単量体についても同様である。
 含フッ素共重合体(Z)は、TFE単位、HFP単位、及びVdF単位のうちの2種又は3種のみからなる共重合体であってもよく、TFE、HFP、及びVdFからなる群より選ばれる1種以上の単量体(S)に基づく単位と、該単量体(S)と共重合可能な他の単量体の1種以上に基づく単位とからなる共重合体でもよい。また、含フッ素共重合体(Z)は、非晶質の重合体であることが好ましい。
<Fluorine-containing copolymer (Z)>
The fluorine-containing copolymer (Z) is a unit (s) based on a monomer (S) selected from the group consisting of TFE, hexafluoropropylene (also referred to as HFP), and vinylidene fluoride (also referred to as VdF). It is a copolymer containing 1 or more types of these. The fluorine-containing copolymer (Z) contributes to the flexibility of the binder for an electricity storage device.
Hereinafter, a unit based on TFE may be referred to as a TFE unit. The same applies to other monomers.
The fluorine-containing copolymer (Z) may be a copolymer composed of only two or three of TFE units, HFP units, and VdF units, and is selected from the group consisting of TFE, HFP, and VdF. The copolymer which consists of the unit based on the 1 or more types of monomer (S) and the unit based on 1 or more types of the other monomer copolymerizable with this monomer (S) may be sufficient. The fluorine-containing copolymer (Z) is preferably an amorphous polymer.
 単量体(S)と共重合可能な他の単量体に基づく単位としては、下記単量体(T)に基づく単位(t)が好ましい。
 単量体(T)は、エチレン(Eともいう。)、プロピレン(Pともいう。)、ペルフルオロ(アルキルビニルエーテル)(PAVEともいう。)、1,2-ジフルオロエチレン(DiFEともいう。)、1,1,2-トリフルオロエチレン(TrFEともいう。)、3,3,3-トリフルオロ-1-プロペン(TFPともいう。)、1,3,3,3-テトラフルオロプロペン、2,3,3,3-テトラフルオロプロペン、及びフッ化ビニル(VFともいう。)からなる群より選ばれる1種以上の化合物である。
 PAVEとしては、例えば、ペルフルオロ(メチルビニルエーテル)(PMVEともいう。)、ペルフルオロ(プロピルビニルエーテル)(PPVEともいう。)などが挙げられる。
As a unit based on another monomer copolymerizable with the monomer (S), a unit (t) based on the following monomer (T) is preferable.
The monomer (T) is ethylene (also referred to as E), propylene (also referred to as P), perfluoro (alkyl vinyl ether) (also referred to as PAVE), 1,2-difluoroethylene (also referred to as DiFE), 1 1,2,2-trifluoroethylene (also referred to as TrFE), 3,3,3-trifluoro-1-propene (also referred to as TFP), 1,3,3,3-tetrafluoropropene, 2,3, One or more compounds selected from the group consisting of 3,3-tetrafluoropropene and vinyl fluoride (also referred to as VF).
Examples of PAVE include perfluoro (methyl vinyl ether) (also referred to as PMVE), perfluoro (propyl vinyl ether) (also referred to as PPVE), and the like.
 含フッ素共重合体(Z)は、単位(t)以外の、単量体(S)と共重合可能な他の単量体(U)に基づく単位(u)を有してもよい。含フッ素共重合体(Z)を構成する全単位のうち、単位(u)は20モル%以下であることが好ましく、5モル%以下がより好ましく、ゼロが最も好ましい。
 含フッ素共重合体(Z)は、前記単量体(C)に基づく単位(c)は含まないことが好ましい。また、前記単量体(B)に基づく単位(b)も含まないことが好ましい。
The fluorine-containing copolymer (Z) may have units (u) based on other monomers (U) copolymerizable with the monomer (S) other than the units (t). Of all the units constituting the fluorine-containing copolymer (Z), the unit (u) is preferably 20 mol% or less, more preferably 5 mol% or less, and most preferably zero.
The fluorinated copolymer (Z) preferably does not contain the unit (c) based on the monomer (C). Moreover, it is preferable that the unit (b) based on the monomer (B) is not included.
 含フッ素共重合体(Z)を構成する単位の100モル%が、単位(s)と単位(t)とからなることが好ましい。ただし、例えば、不純物等、特性に影響を与えない範囲であれば、それら以外の単位を含有することは許容される。
 単位(s)と単位(t)とからなる含フッ素共重合体(Z)の具体例を以下に挙げる。
 TFE/P共重合体(TFEに基づく構成単位とPに基づく構成単位とからなる共重合体を意味する。以下同様である。)、TFE/P/VdF共重合体、VdF/HFP共重合体、TFE/VdF/HFP共重合体、VdF/2,3,3,3-テトラフルオロプロペン共重合体、TFE/VdF/2,3,3,3-テトラフルオロプロペン共重合体、TFE/PAVE共重合体、TFE/P/PAVE共重合体、TFE/P/VdF/PAVE共重合体、VdF/HFP/PAVE重合体、TFE/VdF/HFP/PAVE共重合体、TFE/PMVE共重合体、TFE/PMVE/PPVE共重合体、VdF/PAVE共重合体、E/HFP共重合体、TFE/P/E共重合体、TFE/P/1,3,3,3-テトラフルオロプロペン共重合体、TFE/P/2,3,3,3-テトラフルオロプロペン共重合体、TFE/P/TrFE共重合体、TFE/P/VF共重合体、TFE/P/DiFE共重合体等が挙げられる。
 本発明の含フッ素共重合体(Z)としては、TFE/P共重合体、TFE/P/VdF共重合体、VdF/HFP共重合体、TFE/VdF/HFP共重合体、TFE/P/TFP共重合体、TFE/PPVE共重合体、TFE/PMVE共重合体、TFE/PMVE/PPVE共重合体等が好ましく、TFE/P共重合体又はTFE/P/VdFが特に好ましい。
It is preferable that 100 mol% of the units constituting the fluorinated copolymer (Z) is composed of units (s) and units (t). However, it is permissible to contain units other than those as long as they do not affect the characteristics, such as impurities.
Specific examples of the fluorine-containing copolymer (Z) comprising the unit (s) and the unit (t) are given below.
TFE / P copolymer (meaning a copolymer comprising a structural unit based on TFE and a structural unit based on P. The same shall apply hereinafter), TFE / P / VdF copolymer, VdF / HFP copolymer , TFE / VdF / HFP copolymer, VdF / 2,3,3,3-tetrafluoropropene copolymer, TFE / VdF / 2,3,3,3-tetrafluoropropene copolymer, TFE / PAVE copolymer Polymer, TFE / P / PAVE copolymer, TFE / P / VdF / PAVE copolymer, VdF / HFP / PAVE copolymer, TFE / VdF / HFP / PAVE copolymer, TFE / PMVE copolymer, TFE / PMVE / PPVE copolymer, VdF / PAVE copolymer, E / HFP copolymer, TFE / P / E copolymer, TFE / P / 1,3,3,3-tetrafluoropropene Polymer, TFE / P / 2,3,3,3-tetrafluoropropene copolymer, TFE / P / TrFE copolymer, TFE / P / VF copolymer, TFE / P / DiFE copolymer, etc. Can be mentioned.
Examples of the fluorine-containing copolymer (Z) of the present invention include TFE / P copolymer, TFE / P / VdF copolymer, VdF / HFP copolymer, TFE / VdF / HFP copolymer, TFE / P / A TFP copolymer, a TFE / PPVE copolymer, a TFE / PMVE copolymer, a TFE / PMVE / PPVE copolymer, and the like are preferable, and a TFE / P copolymer or TFE / P / VdF is particularly preferable.
 単位(s)と単位(t)とからなる含フッ素共重合体(Z)の組成は、集電体との密着性に優れるとともに、良好な耐アルカリ性及び耐電圧性が得られやすい点で、以下の範囲が好ましい。
 TFE/P共重合体において、TFE/P(TFEに基づく単位/Pに基づく単位のモル比を意味する。単位はモル%であり、合計で100モル%である。以下同様である。)は、30~80/70~20が好ましく、40~70/60~30がより好ましく、60~50/40~50が最も好ましい。
 TFE/P/VdF共重合体において、TFE/P/VdF=30~60/60~20/0.05~40、VdF/HFP共重合体において、VdF/HFP=1/99~95/5、TFE/VdF/HFP共重合体において、TFE/VdF/HFP=20~40/1~40/20~40、VdF/2,3,3,3-テトラフルオロプロペン共重合体において、VdF/2,3,3,3-テトラフルオロプロペン=30/70~95/5、
TFE/VdF/2,3,3,3-テトラフルオロプロペン共重合体において、TFE/VdF/2,3,3,3-テトラフルオロプロペン=1~30/30~95/5~60、
TFE/PAVE共重合体において、TFE/PAVE=40/60~70/30、TFE/P/TFP共重合体において、TFE/P/TFP=40~60/60~40/0.05~20、TFE/P/VdF/TFP共重合体において、TFE/P/VdF/TFP=30~60/60~20/0.05~40/0.05~20、VdF/HFP/TFP共重合体において、VdF/HFP/TFP=1~95/99~5/0.05~20、TFE/VdF/HFP/TFP共重合体において、TFE/VdF/HFP/TFP=30~60/0.05~40/60~20/0.05~20、TFE/PMVE/PPVE共重合体において、TFE/PMVE/PPVE=40~70/3~57/3~57、VdF/PAVE共重合体において、VdF/PAVE=3/97~95/5、
E/HFP共重合体において、E/HFP=40/60~60/40、TFE/P/1,3,3,3-テトラフルオロプロペン共重合体において、TFE/P/1,3,3,3-テトラフルオロプロペン=30~60/60~20/0.05~40、TFE/P/2,3,3,3-テトラフルオロプロペン共重合体において、TFE/P/2,3,3,3-テトラフルオロプロペン=30~60/60~20/0.05~40、TFE/P/TrFE共重合体において、TFE/P/TrFE=30~60/60~20/0.05~40、TFE/P/VF共重合体において、TFE/P/VF=30~60/60~20/0.05~40、TFE/P/DiFE共重合体において、TFE/P/DiFE=30~60/60~20/0.05~40が好ましい。
The composition of the fluorine-containing copolymer (Z) composed of the unit (s) and the unit (t) is excellent in adhesion to the current collector, and good alkali resistance and voltage resistance can be easily obtained. The following ranges are preferred.
In the TFE / P copolymer, TFE / P (meaning the molar ratio of units based on TFE / units based on P. The unit is mol% and the total is 100 mol%, and so on). 30 to 80/70 to 20, preferably 40 to 70/60 to 30, and most preferably 60 to 50/40 to 50.
In the TFE / P / VdF copolymer, TFE / P / VdF = 30 to 60/60 to 20 / 0.05 to 40, and in the VdF / HFP copolymer, VdF / HFP = 1/99 to 95/5, In TFE / VdF / HFP copolymer, TFE / VdF / HFP = 20 to 40/1 to 40/20 to 40, in VdF / 2,3,3,3-tetrafluoropropene copolymer, VdF / 2 3,3,3-tetrafluoropropene = 30/70 to 95/5,
In the TFE / VdF / 2,3,3,3-tetrafluoropropene copolymer, TFE / VdF / 2,3,3,3-tetrafluoropropene = 1 to 30/30 to 95/5 to 60,
In the TFE / PAVE copolymer, TFE / PAVE = 40/60 to 70/30, in the TFE / P / TFP copolymer, TFE / P / TFP = 40 to 60/60 to 40 / 0.05 to 20, In the TFE / P / VdF / TFP copolymer, TFE / P / VdF / TFP = 30 to 60/60 to 20 / 0.05 to 40 / 0.05 to 20, in the VdF / HFP / TFP copolymer, VdF / HFP / TFP = 1 to 95/99 to 5 / 0.05 to 20, and in the TFE / VdF / HFP / TFP copolymer, TFE / VdF / HFP / TFP = 30 to 60 / 0.05 to 40 / 60-20 / 0.05-20, TFE / PMVE / PPVE copolymer, TFE / PMVE / PPVE = 40-70 / 3-57 / 3-57, VdF / PAVE copolymer Stomach, VdF / PAVE = 3/97 ~ 95/5,
In the E / HFP copolymer, E / HFP = 40/60 to 60/40, and in the TFE / P / 1,3,3,3-tetrafluoropropene copolymer, TFE / P / 1,3,3, 3-tetrafluoropropene = 30 to 60/60 to 20 / 0.05 to 40, in TFE / P / 2,3,3,3-tetrafluoropropene copolymer, TFE / P / 2,3,3 3-tetrafluoropropene = 30 to 60/60 to 20 / 0.05 to 40, and in the TFE / P / TrFE copolymer, TFE / P / TrFE = 30 to 60/60 to 20 / 0.05 to 40, In TFE / P / VF copolymer, TFE / P / VF = 30-60 / 60-20 / 0.05-40, and in TFE / P / DiFE copolymer, TFE / P / DiFE = 30-60 / 60-20 / 0.0 To 40 is preferred.
 含フッ素共重合体(Z)のフッ素含有量は、50質量%以上であることが好ましく、53質量%以上であることがより好ましい。上限値は74質量%であることが好ましく、70質量%であることがより好ましい。
 含フッ素共重合体(Z)のフッ素含有量が低すぎると、耐アルカリ性や耐電圧性が不十分となりやすい。高すぎると柔軟性が不十分となりやすい。
 含フッ素共重合体(Z)のフッ素含有量は、フッ素含有量の分析により得られ、含フッ素共重合体を構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
 含フッ素重合体(Z)の数平均分子量は、1万~100万が好ましく、2万~50万がより好ましく、2万~30万が更に好ましく、5万~30万がさらに好ましい。上記範囲の下限値以上であると優れた密着性が得られやすく、上限値以下であると優れた柔軟性が得られやすい。
The fluorine content of the fluorine-containing copolymer (Z) is preferably 50% by mass or more, and more preferably 53% by mass or more. The upper limit is preferably 74% by mass, and more preferably 70% by mass.
If the fluorine content of the fluorine-containing copolymer (Z) is too low, the alkali resistance and voltage resistance are likely to be insufficient. If it is too high, flexibility tends to be insufficient.
The fluorine content of the fluorine-containing copolymer (Z) is obtained by analyzing the fluorine content, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing copolymer.
The number average molecular weight of the fluoropolymer (Z) is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, still more preferably 20,000 to 300,000, and further preferably 50,000 to 300,000. When it is at least the lower limit of the above range, excellent adhesion can be easily obtained, and when it is at most the upper limit, excellent flexibility is easily obtained.
<含フッ素共重合体(Z)の製造方法>
 含フッ素共重合体(Z)は、単量体(S)、任意の単量体(T)及び(U)を共重合することにより製造できる。
 重合法としては、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。含フッ素共重合体の数平均分子量や共重合体組成の調整が容易で、生産性に優れることから、水性媒体及び乳化剤の存在下で、単量体を重合する乳化重合法が好ましい。
 乳化重合法では、水性媒体、乳化剤及びラジカル重合開始剤の存在下に、単量体(S)を含む単量体成分を重合(乳化重合)する工程(乳化重合工程)を経て、含フッ素共重合体のラテックスを得る。乳化重合工程においては、pH調整剤を添加してもよい。
<Method for producing fluorine-containing copolymer (Z)>
The fluorine-containing copolymer (Z) can be produced by copolymerizing the monomer (S) and arbitrary monomers (T) and (U).
Examples of the polymerization method include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method. An emulsion polymerization method in which a monomer is polymerized in the presence of an aqueous medium and an emulsifier is preferable because the number average molecular weight and copolymer composition of the fluorinated copolymer can be easily adjusted and the productivity is excellent.
In the emulsion polymerization method, in the presence of an aqueous medium, an emulsifier and a radical polymerization initiator, a monomer component containing the monomer (S) is polymerized (emulsion polymerization) (emulsion polymerization step), and then the fluorine-containing copolymer is obtained. A polymer latex is obtained. In the emulsion polymerization step, a pH adjuster may be added.
[乳化剤]
 乳化剤は、乳化重合法において使用される公知の乳化剤を適宜用いることができる。ラテックスの機械的及び化学的安定性に優れる点から、イオン性乳化剤が好ましく、アニオン性乳化剤がより好ましい。
 アニオン性乳化剤としては、乳化重合法において公知のものが使用できる。具体例としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、コハク酸ジアルキルエステルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム等の炭化水素系乳化剤;ペルフルオロオクタン酸アンモニウム、ペルフルオロヘキサン酸アンモニウム等の含フッ素アルキルカルボン酸塩;下記式(VII)で表わされる化合物(以下、化合物(VII)と記す。);等が挙げられる。
[emulsifier]
As the emulsifier, a known emulsifier used in the emulsion polymerization method can be appropriately used. From the viewpoint of excellent mechanical and chemical stability of the latex, an ionic emulsifier is preferable, and an anionic emulsifier is more preferable.
As the anionic emulsifier, those known in the emulsion polymerization method can be used. Specific examples include hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dialkyl ester sulfonate succinate, sodium alkyl diphenyl ether disulfonate; ammonium perfluorooctanoate, And fluorine-containing alkyl carboxylates such as ammonium perfluorohexanoate; compounds represented by the following formula (VII) (hereinafter referred to as compound (VII)); and the like.
  F(CFO(CF(X)CFO)CF(X)COOA
   ・・・(VII)。
 式(VII)中、Xはフッ素原子又は炭素数1~3のペルフルオロアルキル基を表し、Aは、水素原子、アルカリ金属原子、又はNHを表し、pは1~10の整数を表し、qは0又は1~3の整数を表す。
 Xとしては、フッ素原子又はトリフルオロメチル基が好ましい。Aとしては、Na又はNHが好ましい。pは1~5が好ましい。qは1~2が好ましい。
F (CF 2 ) p O (CF (X) CF 2 O) q CF (X) COOA
... (VII).
In the formula (VII), X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms, A represents a hydrogen atom, an alkali metal atom, or NH 4 , p represents an integer of 1 to 10, q Represents 0 or an integer of 1 to 3.
X is preferably a fluorine atom or a trifluoromethyl group. As A, Na or NH 4 is preferable. p is preferably 1 to 5. q is preferably 1 to 2.
<蓄電デバイス用バインダー組成物>
 本発明の蓄電デバイス用バインダー組成物は、含フッ素共重合体(Y)と含フッ素共重合体(Z)と液状媒体を含む。
 該バインダー組成物は、含フッ素共重合体(Y)及び含フッ素共重合体(Z)が液状媒体に分散したラテックスであることが好ましい。ラテックスは含フッ素共重合体(Y)及び含フッ素共重合体(Z)の分散液であるが、含フッ素共重合体(Y)及び/又は含フッ素共重合体(Z)の一部が液状媒体に溶解していてもよい。
<Binder composition for electricity storage device>
The binder composition for an electricity storage device of the present invention includes a fluorinated copolymer (Y), a fluorinated copolymer (Z), and a liquid medium.
The binder composition is preferably a latex in which the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) are dispersed in a liquid medium. Latex is a dispersion of the fluorinated copolymer (Y) and the fluorinated copolymer (Z), but a part of the fluorinated copolymer (Y) and / or the fluorinated copolymer (Z) is liquid. It may be dissolved in the medium.
 液状媒体としては、水性媒体又は有機溶媒が挙げられる。水性媒体とは、水単独、又は水と水溶性有機溶剤との混合物である。水はイオン交換水を用いることが好ましい。
 水溶性有機溶剤としては、水と任意の割合で溶解できる公知の化合物を適宜用いることができる。水溶性有機溶剤としては、アルコール類が好ましく、tert-ブタノール、プロピレングリコール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール等が挙げられる。これらのうち、tert-ブタノール、プロピレングリコール、ジプロピレングリコール又はジプロピレングリコールモノメチルエーテルが好ましい。
 有機溶媒としては、ジクロロジフルオロメタン、トリクロロフルオロメタン、クロロジフルオロメタン、ジクロロペンタフルオロプロパン(HCFC-225)、CFCHCFH (HFC-245fa)、CFCFCHCFH(HFC-365m fc)、ペルフルオロヘキサン、ペルフルオロオクタン、ペルフルオロ(2-ブチルテトラヒドロフラン)、ペルフルオロ(トリブチルアミン)、CFCFCFCFCFCFH、CFCFOCFCFH、CFCHOCHCF、CFCFOCFCFOCFCF等が好適である。
 本発明の蓄電デバイス用バインダー組成物中に含まれる液状媒体としては、含フッ素共重合体(Y)及び含フッ素共重合体(Z)の製造に用いられる乳化重合法においても使用される水性溶媒が、共重合体の高分子量化が容易な点からも好ましい。
Examples of the liquid medium include an aqueous medium and an organic solvent. The aqueous medium is water alone or a mixture of water and a water-soluble organic solvent. It is preferable to use ion-exchanged water.
As the water-soluble organic solvent, a known compound that can be dissolved in water at an arbitrary ratio can be appropriately used. As the water-soluble organic solvent, alcohols are preferable, and examples thereof include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol. Of these, tert-butanol, propylene glycol, dipropylene glycol or dipropylene glycol monomethyl ether is preferred.
Examples of the organic solvent include dichlorodifluoromethane, trichlorofluoromethane, chlorodifluoromethane, dichloropentafluoropropane (HCFC-225), CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CF 2 CH 2 CF 2 H ( HFC-365m fc), perfluorohexane, perfluorooctane, perfluoro (2-butyltetrahydrofuran), perfluoro (tributylamine), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 OCF 2 CF 2 H, CF 3 CH 2 OCH 2 CF 3 , CF 3 CF 2 OCF 2 CF 2 OCF 2 CF 3 and the like are preferable.
As the liquid medium contained in the binder composition for an electricity storage device of the present invention, an aqueous solvent used also in the emulsion polymerization method used for producing the fluorinated copolymer (Y) and the fluorinated copolymer (Z). However, it is also preferable from the viewpoint that the high molecular weight of the copolymer is easy.
 蓄電デバイス用バインダー組成物中に含まれる含フッ素共重合体(Y)と含フッ素共重合体(Z)は、ガラス転移温度が互いに異なる。具体的には、含フッ素共重合体(Y)のガラス転移温度が、含フッ素共重合体(Z)のガラス転移温度よりも10℃以上高いことが好ましい。該ガラス転移温度の差は20℃以上がより好ましく、その差が150℃以下の範囲で大きい方が好ましい。
 含フッ素共重合体(Y)と含フッ素共重合体(Z)のガラス転移温度の差が、上記範囲の下限値以上であると柔軟性の向上効果が充分に得られやすく、上限値以下であると良好な塗工性が得られやすい。
The fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) contained in the binder composition for an electricity storage device have different glass transition temperatures. Specifically, the glass transition temperature of the fluorinated copolymer (Y) is preferably 10 ° C. or more higher than the glass transition temperature of the fluorinated copolymer (Z). The difference in the glass transition temperature is more preferably 20 ° C. or more, and the difference is preferably larger in the range of 150 ° C. or less.
If the difference in glass transition temperature between the fluorinated copolymer (Y) and the fluorinated copolymer (Z) is not less than the lower limit of the above range, a sufficient effect of improving flexibility can be easily obtained, and not more than the upper limit. When it exists, it is easy to obtain good coatability.
 含フッ素共重合体(Y)のガラス転移温度は、10~150℃が好ましく、10~80℃がより好ましく、30~60℃がさらに好ましい。含フッ素共重合体(Y)のガラス転移温度は、共重合体を構成する単量体の種類及び組成によって調整できる。例えば、ガラス転移温度を上昇させる方法としては、側鎖に剛直な構造を有する単量体を用いる方法が好ましい。低下させる方法としては、側鎖に長鎖の炭化水素基を有する単量体を用いる方法が好ましい。
 含フッ素共重合体(Y)のガラス転移温度が上記範囲の下限値以上であると、良好な塗工性が得られやすい。上限値以下であると良好な密着性が得られやすい。
The glass transition temperature of the fluorinated copolymer (Y) is preferably 10 to 150 ° C, more preferably 10 to 80 ° C, and further preferably 30 to 60 ° C. The glass transition temperature of the fluorinated copolymer (Y) can be adjusted by the type and composition of the monomer constituting the copolymer. For example, as a method for increasing the glass transition temperature, a method using a monomer having a rigid structure in the side chain is preferable. As a method of reducing, a method using a monomer having a long-chain hydrocarbon group in the side chain is preferable.
When the glass transition temperature of the fluorinated copolymer (Y) is at least the lower limit of the above range, good coatability is easily obtained. Good adhesiveness is easy to be obtained if it is below the upper limit.
 含フッ素共重合体(Z)のガラス転移温度は、-60~20℃であり、-40~10℃が好ましく、-20~0℃がより好ましい。
 含フッ素共重合体(Z)のガラス転移温度は、共重合体を構成する単量体の種類及び組成によって調整できる。例えば、ガラス転移温度を上昇させる方法としては、テトラフルオロエチレンの割合を増やす方法などがあり、低下させる方法としては、フッ化ビニリデンやペルフルオロ(アルキルビニルエーテル)の割合を増やす方法などが挙げられる。
 含フッ素共重合体(Z)のガラス転移温度が上記範囲の下限値以上であると、良好な塗工性が得られやすく、上限値以下であると良好な柔軟性が得られやすい。
The glass transition temperature of the fluorinated copolymer (Z) is −60 to 20 ° C., preferably −40 to 10 ° C., more preferably −20 to 0 ° C.
The glass transition temperature of the fluorinated copolymer (Z) can be adjusted by the type and composition of the monomer constituting the copolymer. For example, as a method for increasing the glass transition temperature, there is a method for increasing the proportion of tetrafluoroethylene, and as a method for decreasing it, there is a method for increasing the proportion of vinylidene fluoride or perfluoro (alkyl vinyl ether).
When the glass transition temperature of the fluorinated copolymer (Z) is at least the lower limit of the above range, good coatability is easily obtained, and when it is at most the upper limit, good flexibility is easily obtained.
 蓄電デバイス用バインダー組成物中に含まれる含フッ素共重合体(Y)と含フッ素共重合体(Z)の含有割合は、特に限定されず、含フッ素共重合体(Y)の割合が増すと密着性が向上し、含フッ素共重合体(Z)の割合が増すと柔軟性が向上する。
 例えば、含フッ素共重合体(Y)/含フッ素共重合体(Z)で表される質量比が、1/99~99/1が好ましく、10/90~90/10がより好ましく、10/90~70/30が更に好ましく、密着性と柔軟性のバランスの点で、30/70~60/40が特に好ましい。
The content ratio of the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) contained in the binder composition for an electricity storage device is not particularly limited, and the proportion of the fluorine-containing copolymer (Y) increases. When the adhesiveness is improved and the proportion of the fluorine-containing copolymer (Z) is increased, the flexibility is improved.
For example, the mass ratio represented by fluorine-containing copolymer (Y) / fluorine-containing copolymer (Z) is preferably from 1/99 to 99/1, more preferably from 10/90 to 90/10. 90-70 / 30 is more preferable, and 30 / 70-60 / 40 is particularly preferable from the viewpoint of the balance between adhesion and flexibility.
 バインダー組成物中の含フッ素共重合体(Y)と含フッ素共重合体(Z)の合計の含有量(固形分濃度)は、バインダー組成物の全量に対し、5~70質量%がより好ましく、10~60質量%がさらに好ましく、15~55質量%が特に好ましい。上記範囲の下限値以上であると、バインダー組成物を用いて電極合剤を調製したときに、電極合剤の良好な粘度が得られやすく、集電体上に厚みの高い塗工を行うことができる。上記範囲の上限値以下であると、バインダー組成物に電極活物質等を分散させて電極合剤を調製する際に、良好な分散安定性が得らやすく、電極合剤の良好な塗工性が得られやすい。 The total content (solid content concentration) of the fluorinated copolymer (Y) and the fluorinated copolymer (Z) in the binder composition is more preferably 5 to 70% by mass with respect to the total amount of the binder composition. 10 to 60% by mass is more preferable, and 15 to 55% by mass is particularly preferable. When the electrode mixture is prepared using the binder composition as being above the lower limit of the above range, a good viscosity of the electrode mixture is easily obtained, and a thick coating is performed on the current collector. Can do. When it is below the upper limit of the above range, when preparing an electrode mixture by dispersing an electrode active material or the like in the binder composition, it is easy to obtain good dispersion stability, and good coating properties of the electrode mixture Is easy to obtain.
 バインダー組成物中の液状媒体の含有量は、バインダー組成物の全量に対し、30~95質量%がより好ましく、40~90質量%がさらに好ましく、45~85質量%が特に好ましい。上記範囲の上限値以下であると、バインダー組成物を用いて電極合剤を調製したときに、電極合剤の良好な粘度が得られやすく、集電体上に厚みの高い塗工を行うことができる。上記範囲の下限値以上であると、バインダー組成物に電極活物質等を分散させて電極合剤を調製する際に、良好な分散安定性が得らやすく、電極合剤の良好な塗工性が得られやすい。 The content of the liquid medium in the binder composition is more preferably 30 to 95% by mass, still more preferably 40 to 90% by mass, and particularly preferably 45 to 85% by mass with respect to the total amount of the binder composition. When the electrode mixture is prepared by using the binder composition as being below the upper limit of the above range, a good viscosity of the electrode mixture is easily obtained, and a thick coating is performed on the current collector. Can do. When the electrode mixture is prepared by dispersing an electrode active material or the like in the binder composition as being above the lower limit of the above range, good dispersion stability is easily obtained, and good coating properties of the electrode mixture. Is easy to obtain.
 バインダー組成物は、含フッ素共重合体(Y)、含フッ素共重合体(Z)、及び液状媒体以外の他の成分を含有してもよい。他の成分としては、例えば、含フッ素共重合体(Y)又は含フッ素共重合体(Z)の製造時に使用した乳化剤、開始剤等が挙げられる。含フッ素共重合体(Y)、含フッ素共重合体(Z)、及び液状媒体以外の他の成分の合計の含有量は、バインダー組成物の全量に対し、10質量%以下が好ましく、1質量%以下がより好ましい。 The binder composition may contain other components other than the fluorine-containing copolymer (Y), the fluorine-containing copolymer (Z), and the liquid medium. Examples of other components include emulsifiers and initiators used during the production of the fluorinated copolymer (Y) or the fluorinated copolymer (Z). The total content of the fluorine-containing copolymer (Y), the fluorine-containing copolymer (Z), and other components other than the liquid medium is preferably 10% by mass or less based on the total amount of the binder composition. % Or less is more preferable.
 本発明のバインダー組成物は、後述の実施例に示されるように、バインダー成分として、含フッ素共重合体(Z)を単独で用いたときは優れた柔軟性を示し、含フッ素共重合体(Y)はそれに比べて柔軟性が劣る。しかし、両者を混合して用いることによって、柔軟性の低下を抑えつつ、充放電特定を損なうことなく、密着性を向上させることができる。特に、含フッ素共重合体(Y)と含フッ素共重合体(Z)を混合すると、それぞれを単独で用いた場合のいずれよりも、密着性が著しく向上する相乗効果を有する。 The binder composition of the present invention shows excellent flexibility when the fluorine-containing copolymer (Z) is used alone as a binder component, as shown in the examples described later, and the fluorine-containing copolymer ( Y) is less flexible than that. However, by using a mixture of both, it is possible to improve adhesion without impairing the charge / discharge specification while suppressing a decrease in flexibility. In particular, when the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) are mixed, there is a synergistic effect that the adhesiveness is remarkably improved as compared with the case where each of them is used alone.
<蓄電デバイス用電極合剤>
 本発明の蓄電デバイス用電極合剤(単に電極合剤ということもある。)は、本発明のバインダー組成物を含有するほか、電極活物質を含有する。必要に応じて導電材を含有してもよく、これら以外のその他の成分を含有してもよい。
 本発明で用いられる電極活物質は特に限定されず、公知のものを適宜使用できる。
 正極活物質としては、MnO、V、V13等の金属酸化物;TiS、MoS、FeS等の金属硫化物;LiCoO、LiNiO、LiMn等の、Co、Ni、Mn、Fe、Ti等の遷移金属を含むリチウム複合金属酸化物等;これらの化合物中の遷移金属元素の一部を他の金属元素で置換した化合物;等が例示される。さらに、ポリアセチレン、ポリ‐p‐フェニレン等の導電性高分子材料を用いることもできる。また、これらの表面の一部又は全面に、炭素材料や無機化合物を被覆させたものも用いることができる。
<Electrode mixture for electricity storage devices>
The electrode mixture for an electricity storage device of the present invention (sometimes simply referred to as an electrode mixture) contains an electrode active material in addition to the binder composition of the present invention. A conductive material may be contained as necessary, and other components other than these may be contained.
The electrode active material used by this invention is not specifically limited, A well-known thing can be used suitably.
As the positive electrode active material, metal oxides such as MnO 2 , V 2 O 5 , V 6 O 13 ; metal sulfides such as TiS 2 , MoS 2 , FeS; LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. Examples include lithium composite metal oxides containing transition metals such as Co, Ni, Mn, Fe, and Ti; compounds in which a part of transition metal elements in these compounds is substituted with other metal elements; and the like. Further, a conductive polymer material such as polyacetylene or poly-p-phenylene can be used. Moreover, what coat | covered the carbon material and the inorganic compound to some or all of these surfaces can also be used.
 負極活物質としては、例えば、コークス、グラファイト、メソフェーズピッチ小球体、フェノール樹脂、ポリパラフェニレン等の高分子化合物の炭化物;気相生成カーボンファイバー、炭素繊維等の炭素質材料;が挙げられる。また、リチウムと合金化可能なSi、Sn、Sb、Al、Zn及びW等の金属も挙げられる。例えば、一酸化シリコンに代表される、一般式SiOx(xは、0.5~1.5が好ましい。)で表されるシリコン酸化物が挙げられる。電極活物質は、機械的改質法などにより表面に導電材を付着させたものも使用できる。
 リチウムイオン二次電池用の電極合剤の場合、用いる電極活物質は、電解質中で電位をかけることにより、可逆的にリチウムイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。
Examples of the negative electrode active material include carbides of high molecular compounds such as coke, graphite, mesophase pitch spherules, phenol resin, and polyparaphenylene; and carbonaceous materials such as vapor-phase-generated carbon fibers and carbon fibers. In addition, metals such as Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium are also included. For example, a silicon oxide represented by a general formula SiOx (x is preferably 0.5 to 1.5) represented by silicon monoxide can be given. As the electrode active material, a material in which a conductive material is attached to the surface by a mechanical modification method or the like can be used.
In the case of an electrode mixture for a lithium ion secondary battery, any electrode active material may be used as long as it can reversibly insert and release lithium ions by applying a potential in the electrolyte. be able to.
 特に、正極の製造に使用する電極合剤には、導電材を含有させることが好ましい。導電材を含有させることにより、電極活物質同士の電気的接触が向上し、活物質層内の電気抵抗を下げることができ、非水系二次電池の放電レート特性を改善することができる。
 導電材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンが挙げられる。
 電極合剤が、導電材を含有すると、少量の導電材の添加で電気抵抗の低減効果が大きくなり好ましい。
In particular, the electrode mixture used for the production of the positive electrode preferably contains a conductive material. By including a conductive material, the electrical contact between the electrode active materials can be improved, the electrical resistance in the active material layer can be lowered, and the discharge rate characteristics of the non-aqueous secondary battery can be improved.
Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and carbon nanotube.
When the electrode mixture contains a conductive material, the effect of reducing electrical resistance is increased by adding a small amount of the conductive material, which is preferable.
 その他の成分としては、電極合剤において公知の成分を用いることができる。具体例としては、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸等の水溶性ポリマー等が挙げられる。
 本発明の電極合剤中の、含フッ素共重合体(Y)と含フッ素共重合体(Z)の合計の割合は、電極活物質の100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部がより好ましく、1~8質量部が特に好ましい。
 また、電極合剤が導電材を含有する場合には、電極合剤中の導電材の割合は、電極活物質の100質量部に対して、0質量部超であり、20質量部以下が好ましく、1~10質量部がより好ましく、3~8質量部が特に好ましい。
 電極合剤中の固形分濃度は、電極合剤の100質量%に対して、30~95質量%が好ましく、40~85質量%がより好ましく、45~80質量%が特に好ましい。
As other components, known components in the electrode mixture can be used. Specific examples include water-soluble polymers such as carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, and polymethacrylic acid.
The total proportion of the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) in the electrode mixture of the present invention is 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material. Is preferable, 0.5 to 10 parts by mass is more preferable, and 1 to 8 parts by mass is particularly preferable.
Moreover, when an electrode mixture contains a electrically conductive material, the ratio of the electrically conductive material in an electrode mixture is more than 0 mass part with respect to 100 mass parts of an electrode active material, and 20 mass parts or less are preferable. 1 to 10 parts by mass is more preferable, and 3 to 8 parts by mass is particularly preferable.
The solid content concentration in the electrode mixture is preferably 30 to 95% by mass, more preferably 40 to 85% by mass, and particularly preferably 45 to 80% by mass with respect to 100% by mass of the electrode mixture.
<蓄電デバイス用電極>
 本発明の蓄電デバイス用電極は、集電体と、該集電体上に、本発明の蓄電デバイス用バインダー及び電極活物質を含有する電極活物質層を有する。
 集電体としては、導電性材料からなるものであれば特に限定されないが、一般的には、アルミニウム、ニッケル、ステンレススチール、銅等の金属箔、金属網状物、金属多孔体等が挙げられる。正極集電体としては、アルミニウムが好適に、負極集電体としては銅が好適に用いられる。集電体の厚さは1~100μmであることが好ましい。
<Electrode for power storage device>
The electrode for an electricity storage device of the present invention has a current collector and an electrode active material layer containing the binder for an energy storage device of the present invention and an electrode active material on the current collector.
The current collector is not particularly limited as long as it is made of a conductive material, and generally includes metal foils such as aluminum, nickel, stainless steel, and copper, metal nets, and metal porous bodies. Aluminum is preferably used as the positive electrode current collector, and copper is preferably used as the negative electrode current collector. The thickness of the current collector is preferably 1 to 100 μm.
 蓄電デバイス用電極の製造方法としては、例えば、本発明の電極合剤を集電体の少なくとも片面、好ましくは両面に塗布し、乾燥により電極合剤中の液状媒体を除去し、電極活物質層を形成することにより得られる。必要に応じて、乾燥後の電極活物質層をプレスして、所望の厚みに成形してもよい。
 電極合剤を集電体に塗布する方法としては、種々の塗布方法が挙げられる。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、及びハケ塗り法等の方法が挙げられる。塗布温度は、特に制限ないが、通常は常温付近の温度が好ましい。乾燥は、種々の乾燥法を用いて行うことができ、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥法が挙げられる。乾燥温度は、特に制限ないが、加熱式真空乾燥機等では通常室温~200℃が好ましい。プレス方法としては金型プレスやロールプレス等を用いて行うことができる。
 電極の密着性すなわち電極活物質層と集電体との剥離強度は、高いことが好ましい。すなわち製造した電極を幅2cm×長さ10cmの短冊状に切り、電極合剤の塗膜面を上にして固定し、電極合剤の塗膜面にセロハンテープを貼り付け、テープを10mm/minの速度で90度方向に剥離したときの強度(N)を5回測定し、その平均値を剥離強度とした。この値が大きいほどバインダーによる密着性(結着性)に優れていることを示す。すなわち、バインダーにより結着されている電極活物質間の密着性及び電極活物質と集電体との密着性に優れていることを示す。当該剥離強度は、3N以上が好ましく、5N以上がより好ましく、10N以上が特に好ましい。上限値は特に無いが、例えば、100Nである。
As a method for producing an electrode for an electricity storage device, for example, the electrode mixture of the present invention is applied to at least one side, preferably both sides of a current collector, and the liquid medium in the electrode mixture is removed by drying, and an electrode active material layer Is obtained. If necessary, the electrode active material layer after drying may be pressed to have a desired thickness.
Various application methods can be used as a method of applying the electrode mixture to the current collector. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. The coating temperature is not particularly limited, but usually a temperature around room temperature is preferable. Drying can be performed using various drying methods, for example, drying by warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams, or the like. The drying temperature is not particularly limited, but is usually preferably room temperature to 200 ° C. in a heating vacuum dryer or the like. As a pressing method, a mold press, a roll press or the like can be used.
The electrode adhesion, that is, the peel strength between the electrode active material layer and the current collector is preferably high. That is, the manufactured electrode was cut into a strip of 2 cm wide × 10 cm long, fixed with the electrode mixture coating surface facing upward, cellophane tape was applied to the electrode mixture coating surface, and the tape was 10 mm / min. The strength (N) when peeled in the 90-degree direction at a speed of 5 was measured 5 times, and the average value was taken as the peel strength. It shows that it is excellent in the adhesiveness (binding property) by a binder, so that this value is large. That is, it shows that the adhesion between the electrode active materials bound by the binder and the adhesion between the electrode active materials and the current collector are excellent. The peel strength is preferably 3N or more, more preferably 5N or more, and particularly preferably 10N or more. Although there is no upper limit in particular, it is 100N, for example.
<リチウムイオン二次電池>
 蓄電デバイスとしてのリチウムイオン二次電池は、本発明の蓄電デバイス用電極を正極及び負極の少なくとも一方の電極として備えるとともに電解液を備える。さらにセパレーターを備えることが好ましい。
 電解液は電解質と溶媒を含む。溶媒としては、非プロトン性有機溶媒、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、又はメチルエチルカーボネートが好ましい。これらは、単独、又は2種以上を混合して用いることができる。
 電解質としては、LiClO、LiBF、LiPF、LiAsF、CFSOLi、(CFSONLi等のリチウム塩が挙げられる。
<Lithium ion secondary battery>
A lithium ion secondary battery as an electricity storage device includes the electrode for an electricity storage device of the present invention as at least one of a positive electrode and a negative electrode and an electrolyte. Furthermore, it is preferable to provide a separator.
The electrolytic solution includes an electrolyte and a solvent. Solvents include aprotic organic solvents, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), alkyl ethyl carbonate (MEC), and other alkyl carbonates. And esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; and sulfur-containing compounds such as sulfolane and dimethyl sulfoxide. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, or methyl ethyl carbonate is preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more.
Examples of the electrolyte include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 5 , CF 3 SO 3 Li, and (CF 3 SO 2 ) 2 NLi.
 以下に本発明を、実施例を挙げて説明するが、本発明は、これらの実施例に限定されない。実施例及び比較例中の試験及び評価は以下の方法で行った。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The test and evaluation in an Example and a comparative example were performed with the following method.
[含フッ素共重合体の組成の測定方法]
 含フッ素共重合体の全単位の合計に対する、各単量体に基づく単位の含有量(共重合体の組成)は、19F-NMR分析、赤外吸収スペクトル分析、フッ素含有量分析等により測定した。
 分析に用いる測定試料は、含フッ素共重合体のラテックスを、140℃のオーブンで1時間乾燥した後、真空乾燥機(内圧10Torr以下、50℃)で24時間乾燥させたものを用いた。
[Method for measuring composition of fluorine-containing copolymer]
The content of units based on each monomer (composition of the copolymer) relative to the total of all units of the fluorinated copolymer is measured by 19 F-NMR analysis, infrared absorption spectrum analysis, fluorine content analysis, etc. did.
As a measurement sample used for the analysis, a latex of a fluorine-containing copolymer was dried in an oven at 140 ° C. for 1 hour and then dried in a vacuum dryer (internal pressure of 10 Torr or less, 50 ° C.) for 24 hours.
[含フッ素共重合体の数平均分子量]
 含フッ素共重合体のラテックスを、テトラヒドロフランに溶解させ、東ソー社製のGPC(型式 HLC-8320)により測定した。
[Number average molecular weight of fluorine-containing copolymer]
The latex of the fluorinated copolymer was dissolved in tetrahydrofuran and measured by GPC (model HLC-8320) manufactured by Tosoh Corporation.
[蓄電デバイス用電極合剤の塗工性]
 各例において、集電体上に電極合剤をドクターブレードで塗布する方法を用いて製造した電極(大きさ150mm×250mm)から、直径18mmの円状のサンプルを50個切り出した。
 各サンプルの厚みを測定して平均値を求めた。そして50個のサンプルの厚みの、平均値からのずれを下記の基準により3段階(A~C、Aが最も良い。)で評価し、塗工性の指標とした。塗工性が良いほどサンプルの厚みは均一になる。
 A:平均値厚みの±10%の厚みに含まれるサンプル数が、全体の80%以上である。
 B:平均値厚みの±10%の厚みに含まれるサンプル数が、全体の60%以上80%未満である。
 C:平均値厚みの±10%の厚みに含まれるサンプル数が、全体の60%未満である。
[Coating properties of electrode mixture for electricity storage devices]
In each example, 50 circular samples having a diameter of 18 mm were cut out from an electrode (size: 150 mm × 250 mm) manufactured using a method of applying an electrode mixture onto a current collector with a doctor blade.
The thickness of each sample was measured and the average value was obtained. Then, the deviation of the thickness of the 50 samples from the average value was evaluated in three stages (A to C and A are the best) according to the following criteria, and used as an index of coating property. The better the coatability, the more uniform the sample thickness.
A: The number of samples included in the thickness of ± 10% of the average thickness is 80% or more of the whole.
B: The number of samples included in the thickness of ± 10% of the average thickness is 60% or more and less than 80% of the total thickness.
C: The number of samples included in the thickness of ± 10% of the average thickness is less than 60% of the whole.
[密着性(剥離強度)]
 前記した通りである。
[Adhesion (peel strength)]
As described above.
<充放電特性の評価方法>
 二次電池の充放電特性の評価は、以下の方法により行った。
[正極の評価]
 (1)二次電池の製造(正極)
 各例で製造した正極を直径18mmの円形に切りぬき、これと同面積のリチウム金属箔、及びポリエチレン製のセパレーターを、リチウム金属箔、セパレーター、正極の順に2016型コインセル内に積層して電池要素を作製した。これに非水電解液を添加し、これを密封することによりコイン型非水電解液二次電池を製造した。非水電解液としては、LiPFが1Mの濃度で溶媒(エチルメチルカーボネート:エチレンカーボネート=1:1(体積比)の混合溶媒)に溶解したものを使用した。
<Evaluation method of charge / discharge characteristics>
Evaluation of the charge / discharge characteristics of the secondary battery was performed by the following method.
[Evaluation of positive electrode]
(1) Manufacture of secondary batteries (positive electrode)
The positive electrode manufactured in each example was cut into a circular shape with a diameter of 18 mm, and a lithium metal foil having the same area and a polyethylene separator were laminated in a 2016 type coin cell in the order of the lithium metal foil, the separator, and the positive electrode. Produced. A coin-type non-aqueous electrolyte secondary battery was manufactured by adding a non-aqueous electrolyte and sealing it. As the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved in a solvent (a mixed solvent of ethyl methyl carbonate: ethylene carbonate = 1: 1 (volume ratio)) at a concentration of 1M was used.
 (2)正極の充放電サイクル特性評価
 上記(1)で製造したコイン型非水電解液二次電池について、25℃において、0.2Cに相当する定電流で4.3V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.2Cに相当する定電流で3Vまで放電するサイクルを行った。1サイクル目放電時の放電容量に対する、100サイクル目の放電容量の容量維持率(単位:%)を求め、電池の充放電特性の指標とした。容量維持率の値が高いほど優れる。
 なお、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.5Cとはその1/2の電流値を表す。
(2) Evaluation of charge / discharge cycle characteristics of positive electrode For the coin-type non-aqueous electrolyte secondary battery manufactured in (1) above, at 25 ° C., a constant current corresponding to 0.2 C is 4.3 V (the voltage is a voltage relative to lithium). The battery was charged until the current value reached 0.02C at the charging upper limit voltage, and thereafter, a cycle of discharging to 3V with a constant current corresponding to 0.2C was performed. The capacity retention rate (unit:%) of the discharge capacity at the 100th cycle relative to the discharge capacity at the time of the first cycle discharge was determined and used as an index of the charge / discharge characteristics of the battery. The higher the capacity retention rate, the better.
Note that 1 C represents a current value for discharging the reference capacity of the battery in one hour, and 0.5 C represents a half current value.
 (3)正極の放電レート特性評価
 上記(1)と同様に製造した、コイン型非水電解液二次電池を使用し、25℃において、0.2Cに相当する定電流で4.3V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行った。次いで、0.2Cに相当する定電流で3Vまで放電後、上記と同様に充電を行い、3Cに相当する定電流で3Vまで放電することにより、放電レート特性の評価を行った。0.2C放電後の放電容量を100%としたときの、3C放電後の放電容量の維持率を下式に基づいて算出し、初期の放電容量比とした。初期の放電容量比が高いと、電極内の抵抗が小さく優れていることを示す。
 放電容量比(%)=(3C放電容量/0.2C放電容量)×100
(3) Evaluation of discharge rate characteristics of positive electrode Using a coin-type non-aqueous electrolyte secondary battery manufactured in the same manner as in (1) above, at 25 ° C., a constant current corresponding to 0.2 C and a voltage of 4.3 V (voltage) Represents a voltage with respect to lithium), and the battery was charged until the current value reached 0.02 C at the upper limit of charge voltage. Next, after discharging to 3 V with a constant current corresponding to 0.2 C, charging was performed in the same manner as described above, and discharging was performed to 3 V with a constant current corresponding to 3 C, thereby evaluating discharge rate characteristics. When the discharge capacity after 0.2C discharge was taken as 100%, the maintenance ratio of the discharge capacity after 3C discharge was calculated based on the following formula to obtain the initial discharge capacity ratio. A high initial discharge capacity ratio indicates that the resistance in the electrode is small and excellent.
Discharge capacity ratio (%) = (3C discharge capacity / 0.2C discharge capacity) × 100
 (4)正極反応性の評価
 上記(1)と同様に製造した、コイン型非水電解液二次電池を使用し、以下の充放電サイクルを実施した。サイクル1~4は、0.5Cに相当する電流で4.2Vまで定電流充電を行い、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで定電圧充電を行った。その後、0.2Cに相当する電流で3.0Vまで定電流放電を行った。サイクル5は、0.5Cに相当する電流で4.3Vまで定電流充電を行い、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで定電圧充電を行った。その後、得られた充電状態の二次電池をアルゴン雰囲気下で分解し、充電状態の正極を得た。得られた正極を、ジメチルカーボネート(2mL)で3回洗浄し、真空乾燥(内圧10Torr以下、100℃、3時間)した後に直径5mmに打ち抜き、SUS製の密封容器に入れ、さらに各例の非水電解液を2μL入れて封止し、評価サンプルとした。得られた各評価サンプルについて、示差走査熱量計(エスアイアイナノテクノロジー社製DSC-6000)によって、温度範囲50~350℃、昇温速度5℃/分で測定を行った。
 正極反応性の評価は、「発熱ピーク温度」及び「発熱ピーク温度における発熱量」で行った。
 「発熱ピーク温度」は、前記測定温度範囲において、もっとも高い発熱量を示した温度とし、その温度における発熱量(60℃での発熱量を0と補正した値)を「発熱ピーク温度における発熱量(μW)」とした。発熱量は低いほど、発熱ピーク温度は高温にシフトするほど、正極の反応性が抑えられ、二次電池がより熱暴走しにくく、安全性がより高いことを示す。
(4) Evaluation of positive electrode reactivity The coin-type non-aqueous electrolyte secondary battery manufactured in the same manner as in (1) above was used, and the following charge / discharge cycle was performed. In cycles 1 to 4, constant current charging was performed up to 4.2 V with a current corresponding to 0.5 C, and further constant voltage charging was performed until the current value reached a current corresponding to 0.02 C at the charging lower limit voltage. Then, constant current discharge was performed to 3.0V with the electric current equivalent to 0.2C. In cycle 5, constant current charging was performed up to 4.3 V with a current corresponding to 0.5 C, and further constant voltage charging was performed until the current value reached a current corresponding to 0.02 C at the charging lower limit voltage. Thereafter, the obtained secondary battery in a charged state was decomposed in an argon atmosphere to obtain a charged positive electrode. The obtained positive electrode was washed three times with dimethyl carbonate (2 mL), vacuum-dried (internal pressure of 10 Torr or less, 100 ° C., 3 hours), punched out to a diameter of 5 mm, placed in a SUS sealed container, 2 μL of water electrolyte was added and sealed to obtain an evaluation sample. Each of the obtained evaluation samples was measured with a differential scanning calorimeter (DSC-6000 manufactured by SII Nano Technology) at a temperature range of 50 to 350 ° C. and a heating rate of 5 ° C./min.
The positive electrode reactivity was evaluated by “exothermic peak temperature” and “exothermic amount at the exothermic peak temperature”.
The “exothermic peak temperature” is the temperature showing the highest calorific value in the measured temperature range, and the calorific value at that temperature (a value obtained by correcting the calorific value at 60 ° C. to 0) is “the calorific value at the exothermic peak temperature”. (ΜW) ”. The lower the heat generation amount and the higher the heat generation peak temperature, the lower the reactivity of the positive electrode, indicating that the secondary battery is less prone to thermal runaway and has higher safety.
 製造例で用いた主な原料は以下の通りである。
 <単量体(A)>
 (A1):クロロトリフルオロエチレン(CTFE)
 <単量体(B)>
 (B1):2‐エチルヘキシルビニルエーテル
 (B2):エチルビニルエーテル(EVE)
 (B3):シクロヘキシルビニルエーテル(CHVE)
 <単量体(C)>
 (C1):シクロヘキサンジメタノールモノビニルエーテル(CHMVE)、CH=CHOCH-cycloC10-CHOH。「cycloC10」は「1,4-シクロヘキシレン」を表す(以下、同様)。
 (C2):4-ヒドロキシブチルビニルエーテル(HBVE)
 (C3):10-ウンデセン酸
 <単量体(D)>
 (D1):CH=CHOCH-cycloC10-CHO(CO)15H、平均分子量570、日本乳化剤社製。
 <乳化剤>
 ノニオン性乳化剤(1):DKS NL-100(製品名)、第一工業製薬社製、化合物名:ポリオキシエチレンラウリルエーテル。
 アニオン性乳化剤(2):ラウリル硫酸ナトリウム。
 <重合開始剤>
 開始剤(1):過硫酸アンモニウム(APS)
 開始剤(2):tert-ブチルペルオキシピバレート
The main raw materials used in the production examples are as follows.
<Monomer (A)>
(A1): Chlorotrifluoroethylene (CTFE)
<Monomer (B)>
(B1): 2-ethylhexyl vinyl ether (B2): ethyl vinyl ether (EVE)
(B3): cyclohexyl vinyl ether (CHVE)
<Monomer (C)>
(C1): cyclohexanedimethanol monovinyl ether (CHMVE), CH 2 ═CHOCH 2 —cycloC 6 H 10 —CH 2 OH. “CycloC 6 H 10 ” represents “1,4-cyclohexylene” (hereinafter the same).
(C2): 4-hydroxybutyl vinyl ether (HBVE)
(C3): 10-Undecenoic acid <Monomer (D)>
(D1): CH 2 ═CHOCH 2 —cycloC 6 H 10 —CH 2 O (C 2 H 4 O) 15 H, average molecular weight 570, manufactured by Nippon Emulsifier Co., Ltd.
<Emulsifier>
Nonionic emulsifier (1): DKS NL-100 (product name), manufactured by Daiichi Kogyo Seiyaku Co., Ltd., compound name: polyoxyethylene lauryl ether.
Anionic emulsifier (2): sodium lauryl sulfate.
<Polymerization initiator>
Initiator (1): ammonium persulfate (APS)
Initiator (2): tert-butyl peroxypivalate
<製造例1:含フッ素共重合体(Y1)の製造>
 内容積250mLのステンレス製撹拌機付きオートクレーブ中に、単量体(C1)2.8g、単量体(B1)19g、単量体(B3)34g、単量体(D1)1.7g、イオン交換水93g、開始剤(1)0.012g、ノニオン性乳化剤(1)5.2g、及びアニオン性乳化剤(2)0.1gを仕込み、氷で冷却した。次いで、窒素ガスを導入し、オートクレーブ内の圧力が約0.34MPa(3.5kg/cm)になるように加圧し脱気した、この加圧脱気を2回繰り返した後0.001MPa(10mmHg)まで脱気して溶存空気を除去した後、単量体(A1)47gを仕込み、50℃で24時間反応を行った。
 反応後、得られた水性分散液を200メッシュのナイロン布で濾過して、凝集物を取り除き、含フッ素共重合体(Y1)ラテックスを得た。ラテックス中の含フッ素共重合体(Y1)の含有量は52質量%であった。
 得られた含フッ素共重合体の組成(各単位の含有量)、数平均分子量の測定結果、及びラテックスの機械的安定性試験における沈殿物生成量を表1に示す(以下、同様)。
<Production Example 1: Production of fluorinated copolymer (Y1)>
In an autoclave with a stainless steel stirrer with an internal volume of 250 mL, 2.8 g of monomer (C1), 19 g of monomer (B1), 34 g of monomer (B3), 1.7 g of monomer (D1), ion 93 g of exchange water, 0.012 g of initiator (1), 5.2 g of nonionic emulsifier (1), and 0.1 g of anionic emulsifier (2) were charged and cooled with ice. Next, nitrogen gas was introduced and pressurized and degassed so that the pressure in the autoclave was about 0.34 MPa (3.5 kg / cm 2 ). After repeating this pressure degassing twice, 0.001 MPa ( After deaeration to 10 mmHg) to remove the dissolved air, 47 g of monomer (A1) was charged and reacted at 50 ° C. for 24 hours.
After the reaction, the obtained aqueous dispersion was filtered through a 200-mesh nylon cloth to remove aggregates, and a fluorinated copolymer (Y1) latex was obtained. The content of the fluorinated copolymer (Y1) in the latex was 52% by mass.
Table 1 shows the composition (content of each unit) of the obtained fluorine-containing copolymer, the measurement results of the number average molecular weight, and the amount of precipitate formed in the mechanical stability test of latex (the same applies hereinafter).
<製造例2:含フッ素共重合体(Y2)の製造>
 本例は、単量体(D)を用いず、溶液重合法で含フッ素共重合体を合成した例である。
 上記特許文献1の段落[0078]~[0079]に記載されている製造例と同様にして含フッ素共重合体(Y2)ラテックスを製造した。
 すなわち、内容積250mLの耐圧重合槽に単量体(B2)10.3g、単量体(C1)16.7g、単量体(C2)15.4g、その他の単量体(E1)として10-ウンデセン酸(以下UDAと称する。)4.9g、有機溶媒であるメチルエチルケトン(MEK)67g、開始剤(2)0.6g、及びキョーワード500SH2gを仕込み、冷却した。キョーワード500SHは協和化学工業社製の酸吸着剤(マグネシウムとアルミニウムの複塩からなるハイドロタルサイト)である。
 製造例1と同様にして脱気を行い溶存空気を除去した後、単量体(A1)52.2gを仕込み、50℃で24時間反応を行った。
 反応後、得られたこのポリマー溶液167gにトリエチルアミン1.85gを加えて中和し、イオン交換水145gを撹拌しながらゆっくり加えた。次いで、MEKを減圧留去し、含フッ素共重合体(Y2)ラテックスを得た。ラテックス中の含フッ素共重合体(Y2)の含有量は50質量%であった。
<Production Example 2: Production of fluorinated copolymer (Y2)>
In this example, the fluorine-containing copolymer was synthesized by a solution polymerization method without using the monomer (D).
A fluorinated copolymer (Y2) latex was produced in the same manner as in the production examples described in paragraphs [0078] to [0079] of Patent Document 1.
That is, 10.3 g of monomer (B2), 16.7 g of monomer (C1), 15.4 g of monomer (C2), 10% as other monomer (E1) in a pressure-resistant polymerization tank having an internal volume of 250 mL. -4.9 g of undecenoic acid (hereinafter referred to as UDA), 67 g of methyl ethyl ketone (MEK) as an organic solvent, 0.6 g of initiator (2), and 2 g of Kyoward 500SH were cooled. KYOWARD 500SH is an acid adsorbent (hydrotalcite composed of a double salt of magnesium and aluminum) manufactured by Kyowa Chemical Industry Co., Ltd.
After deaeration in the same manner as in Production Example 1 to remove dissolved air, 52.2 g of monomer (A1) was charged and reacted at 50 ° C. for 24 hours.
After the reaction, 1.85 g of triethylamine was added to 167 g of the polymer solution thus obtained to neutralize it, and 145 g of ion-exchanged water was slowly added with stirring. Subsequently, MEK was distilled off under reduced pressure to obtain a fluorinated copolymer (Y2) latex. The content of the fluorinated copolymer (Y2) in the latex was 50% by mass.
<製造例3:含フッ素共重合体(Z1)の製造>
 本例ではレドックス重合開始剤を用い、以下の手順で含フッ素共重合体(Z1)を製造した。単量体(S)としてTFE、単量体(T)としてPを用いた。
 すなわち、撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、1700gのイオン交換水、乳化剤として17.7gのラウリル硫酸ナトリウム、pH調整剤としてリン酸水素二ナトリウム12水和物の60g及び水酸化ナトリウムの0.9g、開始剤として過硫酸アンモニウムの8.4g(1時間半減期温度82℃)を加えた。さらに200gのイオン交換水に、レドックス触媒として0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物(以下、EDTAと記す。)及び0.3gの硫酸第一鉄7水和物を溶解させた水溶液を反応器に加えた。このときの反応器内の水性媒体のpHは9.2であった。
 ついで、25℃で、TFE/P=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaになるように圧入した。アンカー翼を300rpmで回転させ、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットと記す。)を反応器に加え、重合反応を開始させた。
 重合温度を40℃に維持して重合を進行させ、重合の進行に伴い反応器内の圧力が低下するので、反応器の内圧が2.49MPaに降下した時点で、TFE/P=56/44(モル比)の単量体混合ガスを自圧で圧入し、反応器の内圧を2.51MPaまで昇圧させた。この操作を繰り返し、反応器の内圧を2.49~2.51MPaに保持し、重合反応を続けた。TFE/Pの単量体混合ガスの圧入量の総量が900gとなった時点で、反応器の内圧を10℃まで冷却させ、含フッ素共重合体(Z1)のラテックスを得た。重合時間は8時間であった。ラテックス中における含フッ素共重合体(Z1)の含有量は34質量%であった。含フッ素共重合体(Z1)の共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 含フッ素共重合体(Z1)のフッ素含有量は57質量%であった。
<Production Example 3: Production of fluorinated copolymer (Z1)>
In this example, a redox polymerization initiator was used, and a fluorinated copolymer (Z1) was produced by the following procedure. TFE was used as the monomer (S), and P was used as the monomer (T).
That is, after degassing the inside of a stainless steel pressure-resistant reactor having an internal volume of 3200 mL equipped with an anchor blade for stirring, 1700 g of ion-exchange water, 17.7 g of sodium lauryl sulfate as an emulsifier, pH 60 g of disodium hydrogen phosphate 12 hydrate and 0.9 g of sodium hydroxide were added as regulators, and 8.4 g of ammonium persulfate as an initiator (1 hour half-life temperature 82 ° C.). Furthermore, 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate (hereinafter referred to as EDTA) and 0.3 g of ferrous sulfate heptahydrate were dissolved as a redox catalyst in 200 g of ion-exchanged water. The aqueous solution was added to the reactor. At this time, the pH of the aqueous medium in the reactor was 9.2.
Then, a monomer mixed gas of TFE / P = 88/12 (molar ratio) was injected at 25 ° C. so that the internal pressure of the reactor was 2.50 MPa. The anchor blade was rotated at 300 rpm, and sodium hydroxymethanesulfinate dihydrate (hereinafter referred to as Rongalite) adjusted to pH 10.0 with sodium hydroxide was added to the reactor to initiate the polymerization reaction.
The polymerization is continued while maintaining the polymerization temperature at 40 ° C., and the pressure in the reactor decreases with the progress of the polymerization. Therefore, when the internal pressure of the reactor drops to 2.49 MPa, TFE / P = 56/44 (Molar ratio) monomer mixed gas was injected under its own pressure, and the internal pressure of the reactor was increased to 2.51 MPa. This operation was repeated, and the internal pressure of the reactor was maintained at 2.49 to 2.51 MPa, and the polymerization reaction was continued. When the total amount of the TFE / P monomer mixed gas injected reached 900 g, the internal pressure of the reactor was cooled to 10 ° C. to obtain a latex of a fluorinated copolymer (Z1). The polymerization time was 8 hours. The content of the fluorinated copolymer (Z1) in the latex was 34% by mass. The copolymer composition of the fluorine-containing copolymer (Z1) was a repeating unit based on TFE / a repeating unit based on P = 56/44 (molar ratio).
The fluorine content of the fluorine-containing copolymer (Z1) was 57% by mass.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<参考製造例1:PTFE水性分散液の製造例>
 上記特許文献1の段落[0084]~[0085]に記載されている製造例と同様にしてポリテトラフルオロエチレン(PTFE)のラテックスを製造した。
 すなわち、100Lの耐圧重合槽にパラフィンワックス736g、超純水59L、乳化剤であるペルフルオロオクタン酸アンモニウム(APFO)15gを仕込んだ。70℃に昇温後、窒素パージしてから脱気し、撹拌しながらテトラフルオロエチレン(TFE)を内圧1.9MPaまで導入した。これに0.5質量%ジコハク酸ペルオキシド水溶液の1Lを圧入して重合開始した。重合はTFEを供給しながら重合圧力1.9MPaに保持して45分間行った後、90℃まで昇温して2.5質量%のAPFO水溶液1Lを加え、95分間継続した。得られた乳濁液から凝集物やパラフィン等を除去し、ポリテトラフルオロエチレン(PTFE)含有量26.0質量%、APFO含有量0.05質量%の水性分散液25.1kgを得た。
 この水性分散液に0.2kgのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、0.3kgのアニオン交換樹脂(三菱化学製ダイアイオンWA-30)を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28質量%アンモニア水0.04kgを加え、相分離法により80℃にて10時間濃縮し、上澄み液を除去した後15gのペルフルオロへキサン酸アンモニウム(APFH)を新たに加えて、PTFE含有量59.7質量%、APFH含有量0.15質量%、APFO含有量0.01質量%のPTFE水性分散液10.5kgを得た。PTFE含有量が50質量%となるように水を加えて、後述の参考例で使用した。
<Reference Production Example 1: Production Example of PTFE Aqueous Dispersion>
A polytetrafluoroethylene (PTFE) latex was produced in the same manner as in the production examples described in paragraphs [0084] to [0085] of Patent Document 1.
That is, 736 g of paraffin wax, 59 L of ultrapure water, and 15 g of ammonium perfluorooctanoate (APFO) as an emulsifier were charged in a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, tetrafluoroethylene (TFE) was introduced to an internal pressure of 1.9 MPa while stirring. 1 L of 0.5 mass% disuccinic acid peroxide aqueous solution was injected into this to initiate polymerization. The polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying TFE, and then the temperature was raised to 90 ° C., and 1 L of a 2.5 mass% APFO aqueous solution was added and continued for 95 minutes. Aggregates and paraffin were removed from the obtained emulsion to obtain 25.1 kg of an aqueous dispersion having a polytetrafluoroethylene (PTFE) content of 26.0% by mass and an APFO content of 0.05% by mass.
To this aqueous dispersion, 0.2 kg of a nonionic surfactant mainly composed of polyoxyethylene (average polymerization degree 9) lauryl ether was added and dissolved, and 0.3 kg of an anion exchange resin (Diaion WA—manufactured by Mitsubishi Chemical) was dissolved. 30) was dispersed and stirred for 24 hours, followed by filtration to remove the anion exchange resin. To the filtrate, 0.04 kg of 28% by mass aqueous ammonia was added, concentrated at 80 ° C. for 10 hours by a phase separation method, the supernatant was removed, 15 g of ammonium perfluorohexanoate (APFH) was newly added, and PTFE was added. 10.5 kg of an aqueous PTFE dispersion having a content of 59.7% by mass, an APFH content of 0.15% by mass, and an APFO content of 0.01% by mass was obtained. Water was added so that the PTFE content was 50% by mass and used in Reference Examples described later.
<実施例1:正極合剤1の調製及び正極1の製造>
 製造例1で得られた含フッ素共重合体(Y1)ラテックス及び、製造例3で得られた含フッ素共重合体(Z1)ラテックスをバインダー組成物として用いて、正極合剤を調製した。
 すなわち、正極活物質として平均粒子径10μmのLiNi0.5Mn0.2Co0.3の100質量部、導電材としてアセチレンブラックの7質量部を混合し、粘度調整剤とし濃度1質量%のカルボキシメチルセルロース水溶液の40質量部を加えて混練したのち、含フッ素共重合体(Y1)と含フッ素共重合体(Z1)の含有量比が、含フッ素共重合体(Y1)/含フッ素共重合体(Z1)=50/50となるよう、即ち正極活物質100質量部に対して含フッ素共重合体(Y1)が1.5質量部となるように、含フッ素共重合体(Y1)ラテックスを加えるとともに、正極活物質100質量部に対して含フッ素共重合体(Z1)が1.5質量部となるように、含フッ素共重合体(Z1)ラテックスを加えて正極合剤1を得た。
 得られた正極合剤1を、厚さ15μmのアルミニウム箔(集電体)に、ドクターブレードで乾燥後の厚さが60μmとなるように塗布し、120℃の真空乾燥機(10Torr以下、3時間)に入れて乾燥し正極1とした。
 上記の方法で塗工性、密着性(剥離強度)を評価した。上記(1)~(3)の方法で充放電特性(充放電サイクル特性、放電レート特性)を評価した。
 これらの結果は、他の実施例、比較例及び参考例とともに表2にまとめて示す。
<Example 1: Preparation of positive electrode mixture 1 and production of positive electrode 1>
A positive electrode mixture was prepared using the fluorine-containing copolymer (Y1) latex obtained in Production Example 1 and the fluorine-containing copolymer (Z1) latex obtained in Production Example 3 as a binder composition.
That is, 100 parts by mass of LiNi 0.5 Mn 0.2 Co 0.3 O 2 having an average particle diameter of 10 μm as a positive electrode active material and 7 parts by mass of acetylene black as a conductive material are mixed, and the concentration is 1 mass as a viscosity modifier. % Of carboxymethylcellulose aqueous solution was added and kneaded, and the content ratio of the fluorinated copolymer (Y1) to the fluorinated copolymer (Z1) was fluorinated copolymer (Y1) / fluorinated. The fluorine-containing copolymer (Y1) so that the copolymer (Z1) = 50/50, that is, the fluorine-containing copolymer (Y1) is 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material. ) A latex is added, and a fluorine-containing copolymer (Z1) latex is added so that the fluorine-containing copolymer (Z1) is 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material. Got.
The obtained positive electrode mixture 1 was applied to a 15 μm-thick aluminum foil (current collector) so that the thickness after drying with a doctor blade was 60 μm, and a 120 ° C. vacuum dryer (10 Torr or less, 3 Time) and dried to obtain positive electrode 1.
The coatability and adhesion (peel strength) were evaluated by the above methods. The charge / discharge characteristics (charge / discharge cycle characteristics, discharge rate characteristics) were evaluated by the methods (1) to (3) above.
These results are shown together in Table 2 together with other examples, comparative examples and reference examples.
<実施例2:正極合剤2及び正極2の製造>
 含フッ素共重合体(Y1)にかえて含フッ素共重合体(Y2)を用いた以外は、実施例1と同様にして、正極合剤2及び正極2を製造し、同様に評価した。
<Example 2: Production of positive electrode mixture 2 and positive electrode 2>
A positive electrode mixture 2 and a positive electrode 2 were produced in the same manner as in Example 1 except that the fluorinated copolymer (Y2) was used instead of the fluorinated copolymer (Y1), and evaluation was performed in the same manner.
<実施例3:正極合剤3及び正極3の製造>
 含フッ素共重合体(Y1)と含フッ素共重合体(Z1)の含有量比を、含フッ素共重合体(Y)/含フッ素共重合体(Z1)=約33/67とした。即ち正極活物質100質量部に対して含フッ素共重合体(Y1)が1.0質量部となるように、含フッ素共重合体(Y1)ラテックスを加えるとともに、正極活物質100質量部に対して含フッ素共重合体(Z1)が2.0質量部となるように、含フッ素共重合体(Z1)ラテックスを加えた以外は、実施例1と同様にして、正極合剤3及び正極3を製造し、同様に評価した。
<Example 3: Production of positive electrode mixture 3 and positive electrode 3>
The content ratio of the fluorine-containing copolymer (Y1) and the fluorine-containing copolymer (Z1) was set to be fluorine-containing copolymer (Y) / fluorine-containing copolymer (Z1) = about 33/67. That is, while adding the fluorine-containing copolymer (Y1) latex so that the fluorine-containing copolymer (Y1) becomes 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material, In the same manner as in Example 1, except that the fluorine-containing copolymer (Z1) latex was added so that the fluorine-containing copolymer (Z1) was 2.0 parts by mass, the positive electrode mixture 3 and the positive electrode 3 Were manufactured and evaluated in the same manner.
<比較例1:正極合剤4及び正極4の製造>
 含フッ素共重合体(Y)を添加せず、含フッ素共重合体(Z1)のみを正極活物質100質量部に対して3.0質量部となるように加えた以外は、実施例1と同様にして、正極合剤4及び正極4を製造し、同様に評価した。
<Comparative Example 1: Production of positive electrode mixture 4 and positive electrode 4>
Example 1 except that the fluorinated copolymer (Y) was not added and only the fluorinated copolymer (Z1) was added to 3.0 parts by mass with respect to 100 parts by mass of the positive electrode active material. Similarly, the positive electrode mixture 4 and the positive electrode 4 were produced and evaluated in the same manner.
<比較例2:正極合剤5及び正極5の製造>
 含フッ素共重合体(Z1)を添加せず、含フッ素共重合体(Y2)のみを正極活物質100質量部に対して3.0質量部となるように5.0質量部を加えた以外は、実施例1と同様にして、正極合剤5及び正極5を製造し、同様に評価した。
<Comparative Example 2: Production of positive electrode mixture 5 and positive electrode 5>
Except that the fluorine-containing copolymer (Z1) was not added, and only the fluorine-containing copolymer (Y2) was added in an amount of 3.0 parts by mass with respect to 100 parts by mass of the positive electrode active material. Produced the positive electrode mixture 5 and the positive electrode 5 in the same manner as in Example 1, and evaluated them in the same manner.
<参考例1>
 含フッ素共重合体(Z1)にかえて、参考製造例1で得たポリテトラフルオロエチレン(PTFE)のラテックス(PTFE含有量50%)を、正極活物質100質量部に対してPTFEが1.5質量部となるように加えた以外は、実施例2と同様にして、正極合剤及び正極を製造し、同様に評価した。
<Reference Example 1>
Instead of the fluorine-containing copolymer (Z1), the polytetrafluoroethylene (PTFE) latex (PTFE content 50%) obtained in Reference Production Example 1 was used in a PTFE ratio of 1. A positive electrode mixture and a positive electrode were produced and evaluated in the same manner as in Example 2 except that the amount was 5 parts by mass.
<参考例2>
 含フッ素共重合体(Y1)にかえて、参考製造例1で得たポリテトラフルオロエチレン(PTFE)のラテックス(PTFE含有量50%)を、正極活物質100質量部に対してPTFEが1.5質量部となるように加えた以外は、実施例1と同様にして、正極合剤及び正極を製造し、同様に評価した。
<Reference Example 2>
Instead of the fluorinated copolymer (Y1), the polytetrafluoroethylene (PTFE) latex obtained in Reference Production Example 1 (PTFE content 50%) was obtained by adding 1. A positive electrode mixture and a positive electrode were produced in the same manner as in Example 1 except that the amount was 5 parts by mass, and were similarly evaluated.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記(4)の方法で、実施例1、3及び比較例1について正極反応性を評価した。評価結果を表3に示す。 The positive electrode reactivity was evaluated for Examples 1 and 3 and Comparative Example 1 by the method of (4) above. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1、2の結果に示されるように、含フッ素共重合体(Y)と含フッ素共重合体(Z)を混合して用いた実施例1~3は、蓄電デバイス用電極合剤の塗工性が良好であり、電極における柔軟性及び密着性に優れ、二次電池における充放電特性も良好であった。
 特に、実施例2と比較例1、2を比べると、含フッ素共重合体(Y2)と含フッ素共重合体(Z1)を混合して用いた実施例2は、それぞれを単独で用いた比較例1、2に比べて密着性が向上し、同等以上の充放電特性が得られた。また実施例2の柔軟性は、含フッ素共重合体(Y1)を単独で使用した比較例2よりも向上し、含フッ素共重合体(Z1)を単独で使用した比較例1とほぼ同等であった。また含フッ素共重合体(Y)と含フッ素共重合体(Z)を混合することによって塗工性の低下は生じなかった。
 また実施例1と実施例2を比較すると、構成単位(d)を含有する含フッ素共重合体(Y1)を用いた実施例1の方が、実施例2よりもさらに密着性及び充放電特性に優れていることがわかる。
As shown in the results of Tables 1 and 2, Examples 1 to 3 in which the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) were mixed were used in the application of the electrode mixture for the electricity storage device. The workability was good, the electrode was excellent in flexibility and adhesion, and the charge / discharge characteristics in the secondary battery were also good.
In particular, when Example 2 is compared with Comparative Examples 1 and 2, Example 2 using a mixture of the fluorine-containing copolymer (Y2) and the fluorine-containing copolymer (Z1) is a comparison using each of them alone. Adhesion was improved as compared with Examples 1 and 2, and charge / discharge characteristics equal to or higher than that were obtained. Further, the flexibility of Example 2 is improved as compared with Comparative Example 2 in which the fluorine-containing copolymer (Y1) is used alone, and is almost equivalent to Comparative Example 1 in which the fluorine-containing copolymer (Z1) is used alone. there were. Moreover, the coating property did not deteriorate by mixing the fluorinated copolymer (Y) and the fluorinated copolymer (Z).
Moreover, when Example 1 and Example 2 are compared, the direction of Example 1 using the fluorine-containing copolymer (Y1) containing a structural unit (d) is still more adhesive and charge / discharge characteristics than Example 2. It turns out that it is excellent in.
 また参考例1、2の結果に示されるように、特許文献1、2の実施例に記載されている方法では電極合剤の塗工性が劣るが、本発明にかかる実施例1~3では良好な塗工性が得られた。 Also, as shown in the results of Reference Examples 1 and 2, the methods described in Examples of Patent Documents 1 and 2 are inferior in the coating property of the electrode mixture, but in Examples 1 to 3 according to the present invention, Good coatability was obtained.
 さらに、表3の結果に示されるように、含フッ素共重合体(Y)と含フッ素共重合体(Z)を混合して用いた実施例1、実施例3は、含フッ素共重合体(Z1)を単独で使用した比較例1よりも正極の発熱量が低く、正極の反応性がより低く抑えられ、熱暴走がより生じ難く、安全性がより高い二次電池が得られていることが分かる。 Furthermore, as shown in the results of Table 3, Example 1 and Example 3 in which the fluorine-containing copolymer (Y) and the fluorine-containing copolymer (Z) were mixed and used were the fluorine-containing copolymer ( The positive electrode generates less heat than Comparative Example 1 using Z1) alone, and the reactivity of the positive electrode is kept lower, thermal runaway is less likely to occur, and a safer secondary battery is obtained. I understand.
 本発明の蓄電デバイス用バインダー組成物を含有する蓄電デバイス用電極合剤を用いた電極は、リチウム一次電池、リチウムイオン二次電池、リチウムポリマー電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイス、特にリチウムイオン二次電池の電極として広く用いることができる。
 なお、2014年11月14日に出願された日本特許出願2014-231896号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
An electrode using the electrode mixture for an electricity storage device containing the binder composition for an electricity storage device of the present invention is an electricity storage device such as a lithium primary battery, a lithium ion secondary battery, a lithium polymer battery, an electric double layer capacitor, or a lithium ion capacitor. In particular, it can be widely used as an electrode of a lithium ion secondary battery.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2014-231896, filed on November 14, 2014, are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (15)

  1.  下記単量体(A)に基づく単位(a)、下記単量体(B)に基づく単位(b)及び下記単量体(C)に基づく単位(c)を含有する含フッ素共重合体(Y)と、
     テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフッ化ビニリデンからなる群より選ばれる単量体(S)に基づく単位(s)の1種以上を有し、ガラス転移温度が
    -60~20℃である含フッ素共重合体(Z)と、
     並びに液状媒体と、を含有する蓄電デバイス用バインダー組成物。
     単量体(A):テトラフルオロエチレン、及びクロロトリフルオロエチレンからなる群より選ばれる1種以上の化合物。
     単量体(B):下式(I)で表わされる化合物、及び下記(II)で表わされる化合物からなる群より選ばれる1種以上の化合物。
     CH=CH-(CH-O-R・・・(I)
     CH=CH-(CH-OCO-R・・・(II)
     [式中、nは0又は1であり、Rは炭素数1~20の飽和炭化水素基を表す。2種以上の化合物を用いる場合は、複数のn及びRは同一であっても異なっていてもよい。]
     単量体(C):エチレン性不飽和結合とヒドロキシ基とを有する化合物、エチレン性不飽和結合とエポキシ基とを有する化合物、及びエチレン性不飽和結合とカルボキシ基とを有する化合物からなる群より選ばれる1種以上である化合物。
    Fluorine-containing copolymer comprising a unit (a) based on the following monomer (A), a unit (b) based on the following monomer (B) and a unit (c) based on the following monomer (C) ( Y)
    And having at least one unit (s) based on the monomer (S) selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride, and having a glass transition temperature of −60 to 20 ° C. A fluorine copolymer (Z);
    And a liquid medium, and a binder composition for an electricity storage device.
    Monomer (A): One or more compounds selected from the group consisting of tetrafluoroethylene and chlorotrifluoroethylene.
    Monomer (B): One or more compounds selected from the group consisting of a compound represented by the following formula (I) and a compound represented by the following (II).
    CH 2 ═CH— (CH 2 ) n —O—R (I)
    CH 2 ═CH— (CH 2 ) n —OCO—R (II)
    [Wherein n is 0 or 1, and R represents a saturated hydrocarbon group having 1 to 20 carbon atoms. When two or more kinds of compounds are used, a plurality of n and R may be the same or different. ]
    Monomer (C): from the group consisting of a compound having an ethylenically unsaturated bond and a hydroxy group, a compound having an ethylenically unsaturated bond and an epoxy group, and a compound having an ethylenically unsaturated bond and a carboxy group A compound that is one or more selected.
  2.  前記含フッ素共重合体(Y)のガラス転移温度が、前記含フッ素共重合体(Z)のガラス転移温度よりも10℃以上高い、請求項1に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electrical storage device according to claim 1, wherein the glass transition temperature of the fluorinated copolymer (Y) is 10 ° C or higher than the glass transition temperature of the fluorinated copolymer (Z).
  3.  前記含フッ素重合体(Y)と前記含フッ素重合体(Z)が5~70質量%含有され、液状媒体が30~95質量%含有される、請求項1又は2に記載の蓄電デバイス用バインダー組成物。 The binder for an electricity storage device according to claim 1 or 2, wherein the fluoropolymer (Y) and the fluoropolymer (Z) are contained in an amount of 5 to 70% by mass and the liquid medium is contained in an amount of 30 to 95% by mass. Composition.
  4.  含フッ素重合体(Y)の含有量/含フッ素重合体(Z)の含有量の質量比が、1/99~99/1である、請求項1~3のいずれか一項に記載の蓄電デバイス用バインダー組成物。 The electricity storage according to any one of claims 1 to 3, wherein a mass ratio of the content of the fluoropolymer (Y) / the content of the fluoropolymer (Z) is from 1/99 to 99/1. Binder composition for devices.
  5.  含フッ素重合体(Y)が、10~150℃のガラス転移温度を有する、請求項1~4のいずれか一項に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electricity storage device according to any one of claims 1 to 4, wherein the fluoropolymer (Y) has a glass transition temperature of 10 to 150 ° C.
  6.  含フッ素共重合体(Z)が、さらに、下記単量体(T)に基づく単位(t)を含有する、請求項1~3のいずれか一項に記載の蓄電デバイス用バインダー組成物。
     単量体(T):エチレン、プロピレン、ペルフルオロ(アルキルビニルエーテル)、1,2-ジフルオロエチレン、1,1,2-トリフルオロエチレン、3,3,3-トリフルオロ-1-プロペン、1,3,3,3-テトラフルオロプロペン、2,3,3,3-テトラフルオロプロペン、及びフッ化ビニルからなる群より選ばれる1種以上。
    The binder composition for an electricity storage device according to any one of claims 1 to 3, wherein the fluorine-containing copolymer (Z) further contains a unit (t) based on the following monomer (T).
    Monomer (T): ethylene, propylene, perfluoro (alkyl vinyl ether), 1,2-difluoroethylene, 1,1,2-trifluoroethylene, 3,3,3-trifluoro-1-propene, 1,3 , 3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, and one or more selected from the group consisting of vinyl fluoride.
  7.  前記含フッ素共重合体(Z)が、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/プロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン/3,3,3-トリフルオロ-1-プロペン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン/3,3,3-トリフルオロ-1-プロペン共重合体、フッ化ビニリデン/ペルフルオロ(アルキルビニルエーテル)共重合体、エチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/プロピレン/1,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/プロピレン/2,3,3,3-テトラフルオロプロペン共重合体、テトラフルオロエチレン/プロピレン/1,1,2-トリフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニル共重合体、及びテトラフルオロエチレン/プロピレン/1,2-ジフルオロエチレン共重合体からなる群から選ばれる1種以上である請求項6に記載の蓄電デバイス用バインダー組成物。 The fluorine-containing copolymer (Z) is a tetrafluoroethylene / propylene copolymer, a tetrafluoroethylene / propylene / vinylidene fluoride copolymer, a vinylidene fluoride / hexafluoropropylene copolymer, a vinylidene fluoride / 2, 3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / vinylidene fluoride / 2,3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / vinylidene fluoride / hexafluoropropylene copolymer Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / propylene / 3,3,3-trifluoro-1-propene copolymer, tetrafluoroethylene / propylene / vinylidene fluoride / 3,3, 3-trifluoro-1-pro Copolymer, vinylidene fluoride / hexafluoropropylene / 3,3,3-trifluoro-1-propene copolymer, tetrafluoroethylene / vinylidene fluoride / hexafluoropropylene / 3,3,3-trifluoro- 1-propene copolymer, vinylidene fluoride / perfluoro (alkyl vinyl ether) copolymer, ethylene / hexafluoropropylene copolymer, tetrafluoroethylene / propylene / 1,3,3,3-tetrafluoropropene copolymer, Tetrafluoroethylene / propylene / 2,3,3,3-tetrafluoropropene copolymer, tetrafluoroethylene / propylene / 1,1,2-trifluoroethylene copolymer, tetrafluoroethylene / propylene / vinyl fluoride copolymer Polymer and tetrafluoroethylene / polymer Pyrene / 1,2 storage device binder composition of claim 6 from the group consisting of difluoroethylene copolymer at least one is selected.
  8.  前記単量体(C)が、下式(III)~(VI)で表される化合物からなる群より選ばれる1種以上の化合物を含む、請求項1~7のいずれか一項に記載の蓄電デバイス用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000001
     [式中、nは0又は1であり、mは0~2の整数であり、Rは炭素数1~10の(m+2)価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~10の(m+2)価の飽和炭化水素基を表し、Rは炭素数1~8の2価の飽和炭化水素基、又はエーテル性酸素原子を有する炭素数2~8の2価の飽和炭化水素基を表し、Rは炭素数1~8のアルキレン基、又はエーテル性酸素原子を有する炭素数2~8のアルキレン基を表す。2種以上の化合物を用いる場合は、複数のm、n、R、R、及びRは同一であっても異なっていてもよい。]
    The monomer (C) according to any one of claims 1 to 7, comprising one or more compounds selected from the group consisting of compounds represented by the following formulas (III) to (VI): A binder composition for an electricity storage device.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein n is 0 or 1, m is an integer of 0 to 2, R 1 is a (m + 2) -valent saturated hydrocarbon group having 1 to 10 carbon atoms, or a carbon number having an etheric oxygen atom. Represents a (m + 2) -valent saturated hydrocarbon group having 2 to 10 carbon atoms, and R 2 is a divalent saturated hydrocarbon group having 1 to 8 carbon atoms or a divalent saturated hydrocarbon having 2 to 8 carbon atoms having an etheric oxygen atom R 3 represents a hydrocarbon group, and R 3 represents an alkylene group having 1 to 8 carbon atoms or an alkylene group having 2 to 8 carbon atoms having an etheric oxygen atom. When two or more types of compounds are used, a plurality of m, n, R 1 , R 2 , and R 3 may be the same or different. ]
  9.  前記含フッ素共重合体(Y)が、さらに、親水性部位を有するマクロモノマーであり、かつ、分子量が300以上である単量体(D)に基づく単位(d)の1種以上を含有する、請求項1~8のいずれか一項に記載の蓄電デバイス用バインダー組成物。 The fluorine-containing copolymer (Y) is further a macromonomer having a hydrophilic part and contains at least one unit (d) based on the monomer (D) having a molecular weight of 300 or more. The binder composition for an electricity storage device according to any one of claims 1 to 8.
  10.  前記液状媒体が水性媒体である、請求項1~9のいずれか一項に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electricity storage device according to any one of claims 1 to 9, wherein the liquid medium is an aqueous medium.
  11.  請求項1~10のいずれか一項に記載の蓄電デバイス用バインダー組成物の製造方法であり、単量体(A)、(B)、及び(C)を含む単量体成分を前記液状媒体中で乳化重合させて得られるラテックスと、前記単量体(S)を含む単量体成分を前記液状媒体中で乳化重合させて得られるラテックスとを混合する、製造方法。 A method for producing a binder composition for an electricity storage device according to any one of claims 1 to 10, wherein a monomer component containing monomers (A), (B), and (C) is used as the liquid medium. A production method of mixing a latex obtained by emulsion polymerization in a latex and a latex obtained by emulsion polymerization of a monomer component containing the monomer (S) in the liquid medium.
  12.  請求項1~10のいずれか一項に記載の蓄電デバイス用バインダー組成物と電池活物質とを含有する蓄電デバイス用電極合剤。 An electrode mixture for an electricity storage device comprising the binder composition for an electricity storage device according to any one of claims 1 to 10 and a battery active material.
  13.  集電体と、該集電体上に、請求項12に記載の蓄電デバイス用電極合剤を用いて形成された電極活物質層を有する、蓄電デバイス用電極。 An electrode for an electricity storage device, comprising: a current collector; and an electrode active material layer formed on the current collector using the electrode mixture for an electricity storage device according to claim 12.
  14.  前記電極活物質層と前記集電体との剥離強度が、3N以上である、請求項13に記載の蓄電デバイス用電極。 The electrode for an electrical storage device according to claim 13, wherein a peel strength between the electrode active material layer and the current collector is 3N or more.
  15.  請求項13又は14に記載の蓄電デバイス用電極及び電解液を備える二次電池。 A secondary battery comprising the electrode for an electricity storage device according to claim 13 or 14 and an electrolytic solution.
PCT/JP2015/081780 2014-11-14 2015-11-11 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery WO2016076371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-231896 2014-11-14
JP2014231896A JP2018005972A (en) 2014-11-14 2014-11-14 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery

Publications (1)

Publication Number Publication Date
WO2016076371A1 true WO2016076371A1 (en) 2016-05-19

Family

ID=55954449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081780 WO2016076371A1 (en) 2014-11-14 2015-11-11 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery

Country Status (2)

Country Link
JP (1) JP2018005972A (en)
WO (1) WO2016076371A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269890B1 (en) * 2016-10-07 2018-01-31 ダイキン工業株式会社 Binder for secondary battery and electrode mixture for secondary battery
WO2018180231A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrodes
CN109478667A (en) * 2016-07-11 2019-03-15 Agc株式会社 Electrolyte includes its liquid composition and application thereof
WO2019087652A1 (en) * 2017-10-30 2019-05-09 ダイキン工業株式会社 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
CN110663123A (en) * 2017-05-26 2020-01-07 大金工业株式会社 Separator for secondary battery and secondary battery
WO2022039260A1 (en) * 2020-08-20 2022-02-24 ダイキン工業株式会社 Binding agent for battery, electrode mixture, electrode, and secondary battery
WO2022054540A1 (en) * 2020-09-09 2022-03-17 ダイキン工業株式会社 Solid secondary battery binding agent, solid secondary battery slurry, method for forming solid secondary battery layer, and solid secondary battery
CN115087704A (en) * 2020-02-28 2022-09-20 大金工业株式会社 Composition, binder, electrode mixture, electrode, and secondary battery
WO2023182083A1 (en) * 2022-03-23 2023-09-28 ダイキン工業株式会社 Composition for secondary battery
WO2024034672A1 (en) * 2022-08-10 2024-02-15 ダイキン工業株式会社 Fluororesin for binder for electrochemical devices, binder for electrochemical devices, electrode mixture, electrode, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117043978A (en) * 2021-03-24 2023-11-10 Agc株式会社 Primer for electrode of electric storage device, primer-forming composition, electrode for electric storage device, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106170A (en) * 1990-08-28 1992-04-08 Asahi Glass Co Ltd Aqueous dispersion and water-base coating composition
JPH0797497A (en) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd Fluorinated aqueous dispersion
JP2002285016A (en) * 2001-03-26 2002-10-03 Asahi Glass Co Ltd Aqueous resin composition
WO2010134465A1 (en) * 2009-05-18 2010-11-25 旭硝子株式会社 Fluorine-containing binder
JP2011086378A (en) * 2008-02-08 2011-04-28 Asahi Glass Co Ltd Aqueous paste for forming electrode of electrical storage device
JP2012129104A (en) * 2010-12-16 2012-07-05 Daikin Ind Ltd Paste for forming conductive protection layer of current collecting laminate such as nonaqueous secondary battery
JP2014011002A (en) * 2012-06-29 2014-01-20 Nippon Zeon Co Ltd Slurry composition for electrochemical element electrode, and electrochemical element electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106170A (en) * 1990-08-28 1992-04-08 Asahi Glass Co Ltd Aqueous dispersion and water-base coating composition
JPH0797497A (en) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd Fluorinated aqueous dispersion
JP2002285016A (en) * 2001-03-26 2002-10-03 Asahi Glass Co Ltd Aqueous resin composition
JP2011086378A (en) * 2008-02-08 2011-04-28 Asahi Glass Co Ltd Aqueous paste for forming electrode of electrical storage device
WO2010134465A1 (en) * 2009-05-18 2010-11-25 旭硝子株式会社 Fluorine-containing binder
JP2012129104A (en) * 2010-12-16 2012-07-05 Daikin Ind Ltd Paste for forming conductive protection layer of current collecting laminate such as nonaqueous secondary battery
JP2014011002A (en) * 2012-06-29 2014-01-20 Nippon Zeon Co Ltd Slurry composition for electrochemical element electrode, and electrochemical element electrode

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478667A (en) * 2016-07-11 2019-03-15 Agc株式会社 Electrolyte includes its liquid composition and application thereof
CN109478667B (en) * 2016-07-11 2023-03-24 Agc株式会社 Electrolyte material, liquid composition containing the same, and use thereof
JP2018195552A (en) * 2016-10-07 2018-12-06 ダイキン工業株式会社 Binder for secondary battery and electrode mixture for secondary battery
US10847800B2 (en) 2016-10-07 2020-11-24 Daikin Industries, Ltd. Binder for secondary batteries and electrode mixture for secondary batteries
CN109075342A (en) * 2016-10-07 2018-12-21 大金工业株式会社 Secondary cell binder and electrode for secondary battery mixture
KR101947979B1 (en) * 2016-10-07 2019-02-13 다이킨 고교 가부시키가이샤 Binder for secondary battery and electrode compound for secondary battery
CN109075342B (en) * 2016-10-07 2020-03-24 大金工业株式会社 Binder for secondary battery and electrode mixture for secondary battery
WO2018066430A1 (en) * 2016-10-07 2018-04-12 ダイキン工業株式会社 Binder for secondary batteries and electrode mixture for secondary batteries
JP6269890B1 (en) * 2016-10-07 2018-01-31 ダイキン工業株式会社 Binder for secondary battery and electrode mixture for secondary battery
WO2018180231A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrodes
US11870076B2 (en) 2017-03-28 2024-01-09 Toagosei Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrode
CN110476285A (en) * 2017-03-28 2019-11-19 东亚合成株式会社 Non-aqueous electrolyte secondary battery electrode binding agent
JPWO2018180231A1 (en) * 2017-03-28 2020-05-14 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrode
CN110663123A (en) * 2017-05-26 2020-01-07 大金工业株式会社 Separator for secondary battery and secondary battery
US11394083B2 (en) * 2017-05-26 2022-07-19 Daikin Industries, Ltd. Secondary battery separator including porous film having fluorine-containing polymer of vinylidene fluoride, tetrafluoroethylene, and vinyl carboxylic acid or salt and secondary battery including the same
JPWO2019087652A1 (en) * 2017-10-30 2020-07-09 ダイキン工業株式会社 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
WO2019087652A1 (en) * 2017-10-30 2019-05-09 ダイキン工業株式会社 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
KR102369813B1 (en) * 2017-10-30 2022-03-03 다이킨 고교 가부시키가이샤 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
KR20200079516A (en) * 2017-10-30 2020-07-03 다이킨 고교 가부시키가이샤 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
CN111194495A (en) * 2017-10-30 2020-05-22 大金工业株式会社 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery, and secondary battery
US11742491B2 (en) 2017-10-30 2023-08-29 Daikin Industries, Ltd. Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
CN115087704A (en) * 2020-02-28 2022-09-20 大金工业株式会社 Composition, binder, electrode mixture, electrode, and secondary battery
JP2022036069A (en) * 2020-08-20 2022-03-04 ダイキン工業株式会社 Binder for battery, electrode combination, electrode, and secondary battery
WO2022039260A1 (en) * 2020-08-20 2022-02-24 ダイキン工業株式会社 Binding agent for battery, electrode mixture, electrode, and secondary battery
JP7212291B2 (en) 2020-08-20 2023-01-25 ダイキン工業株式会社 Binders for batteries, electrode mixtures, electrodes and secondary batteries
WO2022054540A1 (en) * 2020-09-09 2022-03-17 ダイキン工業株式会社 Solid secondary battery binding agent, solid secondary battery slurry, method for forming solid secondary battery layer, and solid secondary battery
JP7481649B2 (en) 2020-09-09 2024-05-13 ダイキン工業株式会社 Binder for solid secondary battery, slurry for solid secondary battery, method for forming layer for solid secondary battery, and solid secondary battery
WO2023182083A1 (en) * 2022-03-23 2023-09-28 ダイキン工業株式会社 Composition for secondary battery
WO2024034672A1 (en) * 2022-08-10 2024-02-15 ダイキン工業株式会社 Fluororesin for binder for electrochemical devices, binder for electrochemical devices, electrode mixture, electrode, and secondary battery
JP7460939B2 (en) 2022-08-10 2024-04-03 ダイキン工業株式会社 Fluororesin for binders for electrochemical devices, binders for electrochemical devices, electrode mixtures, electrodes, and secondary batteries

Also Published As

Publication number Publication date
JP2018005972A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2016076371A1 (en) Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JP6863470B2 (en) Batteries for secondary batteries, electrode mixture for secondary batteries, electrodes for secondary batteries and secondary batteries
JP6269890B1 (en) Binder for secondary battery and electrode mixture for secondary battery
KR101599658B1 (en) Binder, cathode mixture and anode mixture
JP5053073B2 (en) Vinylidene fluoride core / shell polymer and its use in non-aqueous electrochemical devices
KR101963637B1 (en) Aqueous vinylidene fluoride polymer latex
JP6891346B2 (en) Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery and its manufacturing method
JP6955355B2 (en) Core-shell type particles and their uses and manufacturing methods
KR20180041091A (en) Binder composition for all solid state batteries
KR20190090016A (en) Vinylidene fluoride copolymer particles and their use
KR20190074320A (en) Core shell-type particles and their use and manufacturing method
JP7447022B2 (en) Electrode forming composition
JPWO2010134465A1 (en) Fluorine-containing binder
JPWO2016076370A1 (en) Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JP2024026579A (en) Polyvinylidene fluoride, binder, electrode mixture, electrode, and secondary battery
JP2018063932A (en) Binder for secondary battery and electrode mixture for secondary battery
JP2018060745A (en) Binder for secondary battery and electrode mixture for secondary battery
WO2022124254A1 (en) Composition, binder, adhesive, and layered product
WO2015111724A1 (en) Binder for electricity storage devices, binder composition, electrode mixture, electrode and secondary battery
JP2024026580A (en) Composition, binder, electrode mixture, electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15859253

Country of ref document: EP

Kind code of ref document: A1