JP2011071301A - Joining method and joining body using metal nanoparticle - Google Patents

Joining method and joining body using metal nanoparticle Download PDF

Info

Publication number
JP2011071301A
JP2011071301A JP2009220890A JP2009220890A JP2011071301A JP 2011071301 A JP2011071301 A JP 2011071301A JP 2009220890 A JP2009220890 A JP 2009220890A JP 2009220890 A JP2009220890 A JP 2009220890A JP 2011071301 A JP2011071301 A JP 2011071301A
Authority
JP
Japan
Prior art keywords
spacer
joining
paste
metal nanoparticles
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009220890A
Other languages
Japanese (ja)
Inventor
Sukenori Makari
祐紀 真狩
Kazuo Ogawa
和男 小川
Nagatsugu Mukaibo
長嗣 向坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009220890A priority Critical patent/JP2011071301A/en
Publication of JP2011071301A publication Critical patent/JP2011071301A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining technique capable of improving joining strength while leaving a spacer in a joining layer, in a joining technique using metal nanoparticles. <P>SOLUTION: This joining body 10 includes a first member 11, a second member 12, and a joining layer 13 for joining the members 11, 12 to each other, wherein plastically-deformed spacers 14 are left in the joining layer 13. Since the spacers are employed, the thickness of the joining layer can be increased as much as needed. Then, since the spacer is plastically deformed, paste containing metal nanoparticles as a main constituent can be pressed by large pressing force, and densification can be increased. By the densification, joining among the metal nanoparticles can be facilitated, and joining strength after sintering can be increased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の部材を金属ナノ粒子で接合する接合技術に関する。   The present invention relates to a joining technique for joining a plurality of members with metal nanoparticles.

複数の部材を接着剤やはんだで接合することは広く知られている。ただし、一方の部材から他方の部材へ熱を伝えるような用途に供する場合は、接着剤は不向きである。はんだは金属であるため、伝熱の問題はないが、融点が低く、高温の用途には使えないなど、温度的な制約が大きい。   Joining a plurality of members with an adhesive or solder is widely known. However, the adhesive is unsuitable when it is used for a purpose of transferring heat from one member to the other member. Since solder is a metal, there is no problem of heat transfer, but there are significant temperature restrictions, such as low melting point and inability to use in high temperature applications.

対策として、熱伝導率が高く、融点が高い金属ナノ粒子で接合する技術が提案されてきた(例えば、特許文献1(図1)参照。)。   As a countermeasure, a technique of joining with metal nanoparticles having a high thermal conductivity and a high melting point has been proposed (see, for example, Patent Document 1 (FIG. 1)).

特許文献1を次図に基づいて説明する。
図11は従来の技術の基本構造を説明する図であり、絶縁基板101と半導体チップ102は、金属ナノ粒子を主体とする接合層103で接合され、半導体チップ102とヒートスプレッタ104は、金属ナノ粒子を主体とする接合層105で接合されている。
Patent document 1 is demonstrated based on the following figure.
FIG. 11 is a diagram for explaining the basic structure of the prior art. The insulating substrate 101 and the semiconductor chip 102 are joined by a joining layer 103 mainly composed of metal nanoparticles, and the semiconductor chip 102 and the heat spreader 104 are made of metal nanoparticles. Are joined by a joining layer 105 mainly composed of

なお、絶縁基板101と半導体チップ102との間に、金属コアと称するスペーサ106が挟まれ、同様に、半導体チップ102とヒートスプレッタ104との間に、スペーサ106が挟まれている。このスペーサ106は、製造過程で発生する熱分解ガスを逃がす蒸散経路を確保する役割を果たす。
また、スペーサ106は文字通り、空間を確保する部材であるから、接合層103や接合層105の厚さを確保することや均一化する役割を果たす。
Note that a spacer 106 called a metal core is sandwiched between the insulating substrate 101 and the semiconductor chip 102, and similarly, a spacer 106 is sandwiched between the semiconductor chip 102 and the heat spreader 104. The spacer 106 serves to secure a transpiration path through which pyrolysis gas generated in the manufacturing process is released.
In addition, since the spacer 106 is literally a member that secures a space, it plays a role of ensuring and uniforming the thickness of the bonding layer 103 and the bonding layer 105.

ところで、本発明者らが検討したところ、特許文献1の技術には、次に述べる問題点があることが判明した。
接合層103、105は、金属ナノ粒子を含むペーストを塗布し、乾燥し、焼結させることで、完成する。この際、焼結は加圧しながら実施する。無加圧では、接合層103、105の緻密化が期待できず、必要な強度が得られないからである。
しかし、特許文献1では、スペーサ106が存在するため、加圧作用が半減され、緻密化が不十分となる。すなわち、金属ナノ粒子同士の接合が弱くなり、接合強度が低くなるため、接合層103、105の強度が低くなる。
By the way, as a result of studies by the present inventors, it has been found that the technique of Patent Document 1 has the following problems.
The bonding layers 103 and 105 are completed by applying a paste containing metal nanoparticles, drying, and sintering. At this time, the sintering is carried out while applying pressure. This is because without applying pressure, the bonding layers 103 and 105 cannot be densified and the required strength cannot be obtained.
However, in Patent Document 1, since the spacer 106 exists, the pressurizing action is halved and the densification is insufficient. That is, the bonding between the metal nanoparticles is weakened, and the bonding strength is lowered, so that the strength of the bonding layers 103 and 105 is lowered.

対策として、始めからスペーサ106を使用しない方法と、製造の途中でスペーサ106を撤去する方法とが考えられる。
金属ナノ粒子を含むペーストは、ある程度の流動性を有するため、部材との表面張力により膜厚が決まってしまい、接合層が必然的に薄くなる。そのため、始めからスペーサ106を使用しない方法は、用途が限定される。
また、製造の途中でスペーサ106を撤去する方法は、撤去コストが発生すると共に生産性が低下し、好ましくない。
As a countermeasure, there are a method in which the spacer 106 is not used from the beginning and a method in which the spacer 106 is removed during the manufacturing.
Since the paste containing metal nanoparticles has a certain degree of fluidity, the film thickness is determined by the surface tension with the member, and the bonding layer is necessarily thin. Therefore, the use of the method that does not use the spacer 106 from the beginning is limited.
Further, the method of removing the spacer 106 during the production is not preferable because the removal cost is generated and the productivity is lowered.

そこで、スペーサを接合層に残しつつ、接合強度を高めることができる接合技術が求められる。   Therefore, a bonding technique that can increase the bonding strength while leaving the spacer in the bonding layer is required.

特開2008−10703公報JP 2008-10703 A

本発明は、金属ナノ粒子を用いた接合技術において、スペーサを接合層に残しつつ、接合強度を高めることができる接合技術を提供することを課題とする。   This invention makes it a subject to provide the joining technique which can improve joining strength in the joining technique using a metal nanoparticle, leaving a spacer in a joining layer.

請求項1に係る発明は、有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合する接合方法において、
第1の部材に、少なくとも1本のスペーサを載せる工程と、
このスペーサに被せるようにして、前記第1の部材上に前記ペーストを塗布する工程と、
このペーストに第2の部材を載せて積層体を得る工程と、
前記分散媒が蒸発するが前記有機物は蒸発しない温度で、前記積層体を加熱する工程と、
前記スペーサが塑性変形する大きさの加圧力で加圧しながら、前記有機物が蒸発し且つ前記金属ナノ粒子が焼結する温度で、更に加熱する工程と、からなることを特徴とする。
The invention according to claim 1 is a bonding method in which a plurality of members are bonded using a paste in which metal nanoparticles coated with an organic substance are dispersed in a dispersion medium.
Placing at least one spacer on the first member;
Applying the paste on the first member so as to cover the spacer;
A step of placing a second member on the paste to obtain a laminate;
Heating the laminate at a temperature at which the dispersion medium evaporates but the organic matter does not evaporate;
A step of further heating at a temperature at which the organic substance evaporates and the metal nanoparticles are sintered while the spacer is pressurized with a pressure large enough to cause plastic deformation.

請求項2に係る発明は、有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合する接合方法において、
第1の部材上に、スクリーン印刷法で前記ペーストを塗布する工程と、
このペーストに挿入するようにして、前記第1の部材上に、少なくとも1本のスペーサを載せる工程と、
このペーストに第2の部材を載せて積層体を得る工程と、
前記分散媒が蒸発するが前記有機物は蒸発しない温度で、前記積層体を加熱する工程と、
前記スペーサが塑性変形する大きさの加圧力で加圧しながら、前記有機物が蒸発し且つ前記金属ナノ粒子が焼結する温度で、更に加熱する工程と、からなることを特徴とする。
The invention according to claim 2 is a bonding method in which a plurality of members are bonded using a paste in which metal nanoparticles coated with an organic substance are dispersed in a dispersion medium.
Applying the paste on the first member by a screen printing method;
Placing at least one spacer on the first member so as to be inserted into the paste;
A step of placing a second member on the paste to obtain a laminate;
Heating the laminate at a temperature at which the dispersion medium evaporates but the organic matter does not evaporate;
A step of further heating at a temperature at which the organic matter evaporates and the metal nanoparticles are sintered while the spacer is pressurized with a pressure that is plastically deformed.

請求項3に係る発明は、有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合させてなる接合体において、
焼結結合された前記金属ナノ粒子で構成される接合層に、この接合層の製造過程で加圧され塑性変形されたスペーサが残されていることを特徴とする。
The invention according to claim 3 is a joined body formed by joining a plurality of members using a paste in which metal nanoparticles coated with an organic substance are dispersed in a dispersion medium.
A spacer that is pressed and plastically deformed in the manufacturing process of the bonding layer is left in the bonding layer composed of the sintered metal nanoparticles.

請求項1に係る発明では、スペーサを採用したため、金属ナノ粒子を主体とするペーストの膜厚を必要なだけ厚くすることができる。次に、スペーサを塑性変形させるため、金属ナノ粒子を主体とするペーストを、大きな加圧力で加圧することができ、緻密化を高めることができる。緻密化により、金属ナノ粒子同士の接合を促すことができ、焼結後の接合強度を高めることができる。   In the invention according to claim 1, since the spacer is employed, the film thickness of the paste mainly composed of metal nanoparticles can be increased as necessary. Next, since the spacer is plastically deformed, a paste mainly composed of metal nanoparticles can be pressed with a large pressure, and densification can be enhanced. By densification, joining of metal nanoparticles can be promoted, and joining strength after sintering can be increased.

そして、接合層に残すスペーサは、それ自体が補強材の役割を果たす。加えて、スペーサは塑性変形が施されることで、いわゆる加工硬化現象による強度付加が期待される。強度付加された補強材であるスペーサが、接合層に残されているため、接合体の強度向上が図れる。   The spacer that remains in the bonding layer itself serves as a reinforcing material. In addition, since the spacer is plastically deformed, strength is expected to be added by a so-called work hardening phenomenon. Since the spacer, which is a reinforcing material with added strength, remains in the bonding layer, the strength of the bonded body can be improved.

請求項2に係る発明では、スクリーン印刷されたペーストに、スペーサを挿入するため、スペーサの位置ずれを防止することができる。
仮に、スペーサを置いた後に、スクリーン印刷を行うと、スクリーン印刷時にペーストの一部が第1の部材の面に平行に流れ、この流れでスペーサが押されて、スペーサの位置ずれが発生する。本発明では、この欠点を解消することができる。
In the invention according to claim 2, since the spacer is inserted into the screen-printed paste, the positional deviation of the spacer can be prevented.
If screen printing is performed after placing the spacer, a part of the paste flows parallel to the surface of the first member during screen printing, and the spacer is pushed by this flow, and the spacer is displaced. In the present invention, this drawback can be solved.

請求項2に係る発明も、スペーサを採用したため、金属ナノ粒子を主体とするペーストの膜厚を必要なだけ厚くすることができる。次に、スペーサを塑性変形させるため、金属ナノ粒子を主体とするペーストを、大きな加圧力で加圧することができ、緻密化を高めることができる。緻密化により、金属ナノ粒子同士の接合を促すことができ、焼結後の接合強度を高めることができる。   Since the invention according to claim 2 also employs the spacer, the film thickness of the paste mainly composed of metal nanoparticles can be increased as necessary. Next, since the spacer is plastically deformed, a paste mainly composed of metal nanoparticles can be pressed with a large pressure, and densification can be enhanced. By densification, joining of metal nanoparticles can be promoted, and joining strength after sintering can be increased.

加えて、接合層に残すスペーサは、塑性変形されているため、加工硬化作用により、硬くなる。硬くなったスペーサは、接合層を補強し、接合体の強度向上に寄与する。   In addition, since the spacer left in the bonding layer is plastically deformed, it becomes hard due to work hardening. The hardened spacer reinforces the bonding layer and contributes to improving the strength of the bonded body.

請求項3に係る接合体は、接合層に、この接合層の製造過程で加圧され塑性変形されたスペーサが残されている。接合層に残すスペーサは、それ自体が補強材の役割を果たす。加えて、スペーサは塑性変形が施されることで、いわゆる加工硬化現象による強度付加が期待される。強度付加された補強材であるスペーサが、接合層に残されているため、接合体の強度向上が図れる。   In the joined body according to the third aspect, the spacer that is pressed and plastically deformed in the joining layer is left in the joining layer. The spacer that remains in the bonding layer itself serves as a reinforcing material. In addition, since the spacer is plastically deformed, strength is expected to be added by a so-called work hardening phenomenon. Since the spacer, which is a reinforcing material with added strength, remains in the bonding layer, the strength of the bonded body can be improved.

さらに、スペーサを採用したので、金属ナノ粒子を主体とするペーストの膜厚を必要なだけ厚くすることができ、接合層を厚くすることができる。
第1の部材と第2の部材との間に温度差に基づく熱膨張差が繰り返し発生すると、接合層が疲労破壊する虞がでてくる。
熱膨張差の影響は、接合層が薄いと大きくなり、厚いと小さくなる。本発明によれば、接合層を厚くすることができるため、疲労破壊の発生を防止し、熱疲労特性の向上を図ることができる。
Furthermore, since the spacer is employed, the film thickness of the paste mainly composed of metal nanoparticles can be increased as necessary, and the bonding layer can be increased.
When a difference in thermal expansion based on a temperature difference is repeatedly generated between the first member and the second member, the bonding layer may be fatigued.
The influence of the thermal expansion difference increases when the bonding layer is thin, and decreases when the bonding layer is thick. According to the present invention, since the joining layer can be thickened, the occurrence of fatigue failure can be prevented and the thermal fatigue characteristics can be improved.

本発明に係る接合体の平面図である。It is a top view of the joined body concerning the present invention. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. スペーサの断面図である。It is sectional drawing of a spacer. スペーサの配置例を説明する図である。It is a figure explaining the example of arrangement | positioning of a spacer. 接合体の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of a conjugate | zygote. 接合体の別の製造方法を説明するフロー図である。It is a flowchart explaining another manufacturing method of a conjugate | zygote. 比較例1に係るテスト品を説明する図である。It is a figure explaining the test article which concerns on the comparative example 1. FIG. 比較例2に係るテスト品を説明する図である。It is a figure explaining the test article which concerns on the comparative example 2. FIG. 実施例に係るテスト品を説明する図である。It is a figure explaining the test article which concerns on an Example. テスト品の断面図である。It is sectional drawing of a test article. 従来の技術の基本構造を説明する図である。It is a figure explaining the basic structure of the prior art.

本発明の実施の形態を添付図に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の実施例を図面に基づいて説明する。
図1に示されるように、接合体10は、第1の部材11と、第2の部材12と、これらの部材11、12とを接合する接合層13とからなる。
なお、部材11、12は、3個以上であってもよい。この場合は、隣り合う部材が接合層13で接合されるため、接合層13の数は部材の数から1を減じた数となる。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the joined body 10 includes a first member 11, a second member 12, and a joining layer 13 that joins these members 11 and 12.
In addition, the members 11 and 12 may be three or more. In this case, since adjacent members are joined by the joining layer 13, the number of joining layers 13 is the number obtained by subtracting 1 from the number of members.

部材11、12は、銅板が好適であるが、種類は特定しない。ただし、酸化膜で覆われるアルミニウム板の場合は、金めっきや銀めっきを施し、表面のぬれ性を確保することが推奨される。   The members 11 and 12 are preferably copper plates, but the type is not specified. However, in the case of an aluminum plate covered with an oxide film, it is recommended that gold plating or silver plating be applied to ensure the wettability of the surface.

接合体10の断面は、図2に示されるように、接合層13中に、1本以上(この例では2本)のスペーサ14が残されている。
このスペーサ14は、図3に示されるように、直径Aの丸断面の変形前スペーサ15が、上から加圧されて、高さBの横長断面に塑性変形されている。直径Aは例えば70μm、高さBは例えば45μmである。すなわち、スペーサ14は、塑性変形後のスペーサを指し、塑性変形前のスペーサ(変形前スペーサ15)と、区別して説明する。
As shown in FIG. 2, one or more (two in this example) spacers 14 are left in the bonding layer 13 in the cross section of the bonded body 10.
As shown in FIG. 3, the spacer 14 is plastically deformed into a horizontally long cross section having a height B by pressing the pre-deformation spacer 15 having a round cross section with a diameter A from above. The diameter A is 70 μm, for example, and the height B is 45 μm, for example. That is, the spacer 14 refers to a spacer after plastic deformation, and will be described separately from a spacer before plastic deformation (pre-deformation spacer 15).

変形前スペーサ15は、金属ワイヤが好適であるが、金属線、金属網でもよく、断面は丸の他、角、楕円であってよく、形状は任意である。   The pre-deformation spacer 15 is preferably a metal wire, but may be a metal wire or a metal net, and the cross section may be a corner or an ellipse in addition to a circle, and the shape is arbitrary.

スペーサ14の配置は、図4に示すように、任意である。
すなわち、図4(a)に示すように、第1の部材11上に2本(又は3本以上)のスペーサ14を平行に配置する他、(b)に示すように中央に1本のスペーサ14を配置することや、(c)に示すように、X字状にスペーサ14を配置することが可能である。X字の場合は、中央で交差しないように長いスペーサ1本と短いスペーサ2本とを組み合わせる。仮に、交差させるとXの中央一点に第2の部材が載ることとなり、加圧時に圧力が均等に掛からなる。加えて、加圧時に第2の部材の移動が、不安定になる。そのため、交差させないようにした。
The arrangement of the spacers 14 is arbitrary as shown in FIG.
That is, as shown in FIG. 4 (a), two (or three or more) spacers 14 are arranged in parallel on the first member 11, and one spacer at the center as shown in (b). It is possible to arrange the spacers 14 in an X shape as shown in FIG. In the case of X, one long spacer and two short spacers are combined so as not to intersect at the center. If they are crossed, the second member is placed at one central point of X, and the pressure is applied evenly during pressurization. In addition, the movement of the second member becomes unstable during pressurization. Therefore, I tried not to cross.

また(d)に示すように、格子状にスペーサ14を配置することができる。この場合は、加圧時に第2の部材の移動が、不安定にならないので、スペーサ14同士を交差させることができる。   Further, as shown in (d), the spacers 14 can be arranged in a lattice pattern. In this case, since the movement of the second member does not become unstable at the time of pressurization, the spacers 14 can intersect each other.

以上の構成からなる接合体10の製造方法を説明する。
図5(a)に示すように、有機物16で被覆されている金属ナノ粒子17を分散媒18に分散させてなるペースト19を準備する。
また、(b)に示すように、第1の部材11に、変形前スペーサ15を、例えば2本載せる。変形前スペーサ15は、金ワイヤ、銅ワイヤが採用できる。
A method for manufacturing the joined body 10 having the above configuration will be described.
As shown in FIG. 5A, a paste 19 is prepared by dispersing metal nanoparticles 17 coated with an organic substance 16 in a dispersion medium 18.
Further, as shown in (b), for example, two pre-deformation spacers 15 are placed on the first member 11. The pre-deformation spacer 15 can employ a gold wire or a copper wire.

次に、(c)に示すように、変形前スペーサ15に被せるようにして、第1の部材11にペースト19を塗布する。変形前スペーサ15の線径が70μmであれば、塗布厚さは、100μmとすることが望ましい。
次に、(d)に示すように、第2の部材12を載せ、積層体20を得る。
Next, as shown in (c), the paste 19 is applied to the first member 11 so as to cover the pre-deformation spacer 15. If the wire diameter of the pre-deformation spacer 15 is 70 μm, the coating thickness is desirably 100 μm.
Next, as shown in (d), the 2nd member 12 is mounted and the laminated body 20 is obtained.

次に、(e)に示すように、積層体20を乾燥炉21に入れ、分散媒18が蒸発する温度(ただし、有機物16は蒸発しない温度)で乾燥させる。これで、分散媒18は除去される。   Next, as shown in (e), the laminate 20 is placed in a drying furnace 21 and dried at a temperature at which the dispersion medium 18 evaporates (however, the organic matter 16 does not evaporate). Thereby, the dispersion medium 18 is removed.

次に、(f)に示すように、乾燥済みの積層体22を加熱炉23に入れる。そして、変形前スペーサ15が塑性変形する大きさの加圧力のプレス24を用いて、積層体22を加圧する。並行して、有機物が蒸発し且つ金属ナノ粒子17が焼結する温度で、加熱する。
すると、変形前スペーサ15が塑性変形されると共に、金属ナノ粒子17同士が強く接触しながら焼結結合され、図2に示す接合体10が得られる。
Next, as shown in (f), the dried laminate 22 is put into a heating furnace 23. Then, the laminate 22 is pressurized using a press 24 having a pressure that allows the pre-deformation spacer 15 to be plastically deformed. In parallel, heating is performed at a temperature at which the organic substance evaporates and the metal nanoparticles 17 are sintered.
Then, the pre-deformation spacer 15 is plastically deformed, and the metal nanoparticles 17 are sinter-bonded while being in strong contact with each other, and the joined body 10 shown in FIG. 2 is obtained.

次に、図5の変形例を図6に基づいて説明する。図6(a)、(d)〜(f)は図5と同一であるが、再度説明する。
図6(a)に示すように、有機物16で被覆されている金属ナノ粒子17を分散媒18に分散させてなるペースト19を準備する。
Next, the modification of FIG. 5 is demonstrated based on FIG. 6 (a), 6 (d) to 6 (f) are the same as FIG. 5, but will be described again.
As shown in FIG. 6A, a paste 19 is prepared by dispersing metal nanoparticles 17 coated with an organic substance 16 in a dispersion medium 18.

次に、(b)に示すように、スクリーン25を用いたスクリーン印刷法により、第1の部材11にペースト19を塗布する。
なお、スクリーン印刷法では、ペースト19の一部が第1の部材11の上面に沿って流れる。仮に、第1の部材11上に変形前スペーサ15が置かれていれば、ペースト19の流れで変形前スペーサ15が押されて位置ずれを起こす。この不具合を解消するために、先にペースト19を塗布するようにした。
Next, as shown in (b), the paste 19 is applied to the first member 11 by a screen printing method using the screen 25.
In the screen printing method, a part of the paste 19 flows along the upper surface of the first member 11. If the pre-deformation spacer 15 is placed on the first member 11, the pre-deformation spacer 15 is pushed by the flow of the paste 19 to cause a positional shift. In order to solve this problem, the paste 19 was applied first.

次に、塗布したペースト19に挿入するようにして、第1の部材11に、変形前スペーサ15を、例えば2本載せる。
次に、(c)に示すように、変形前スペーサ15に被せるようにして、第1の部材11にペースト19を塗布する。変形前スペーサ15の線径が70μmであれば、塗布厚さは、100μmとすることが望ましい。
次に、(d)に示すように、第2の部材12を載せ、積層体20を得る。
Next, for example, two pre-deformation spacers 15 are placed on the first member 11 so as to be inserted into the applied paste 19.
Next, as shown in (c), the paste 19 is applied to the first member 11 so as to cover the pre-deformation spacer 15. If the wire diameter of the pre-deformation spacer 15 is 70 μm, the coating thickness is desirably 100 μm.
Next, as shown in (d), the 2nd member 12 is mounted and the laminated body 20 is obtained.

次に、(e)に示すように、積層体20を乾燥炉21に入れ、分散媒18が蒸発する温度(ただし、有機物16は蒸発しない温度)で乾燥させる。これで、分散媒18は除去される。   Next, as shown in (e), the laminate 20 is placed in a drying furnace 21 and dried at a temperature at which the dispersion medium 18 evaporates (however, the organic matter 16 does not evaporate). Thereby, the dispersion medium 18 is removed.

次に、(f)に示すように、乾燥済みの積層体22を加熱炉23に入れる。そして、変形前スペーサ15が塑性変形する大きさの加圧力のプレス24を用いて、積層体22を加圧する。並行して、有機物が蒸発し且つ金属ナノ粒子17が焼結する温度で、加熱する。
すると、変形前スペーサ15が塑性変形されると共に、金属ナノ粒子17同士が強く接触しながら焼結結合され、図2に示す接合体10が得られる。
Next, as shown in (f), the dried laminate 22 is put into a heating furnace 23. Then, the laminate 22 is pressurized using a press 24 having a pressure that allows the pre-deformation spacer 15 to be plastically deformed. In parallel, heating is performed at a temperature at which the organic substance evaporates and the metal nanoparticles 17 are sintered.
Then, the pre-deformation spacer 15 is plastically deformed, and the metal nanoparticles 17 are sinter-bonded while being in strong contact with each other, and the joined body 10 shown in FIG. 2 is obtained.

本発明方法で製造された接合体10が、従来の接合体より優れていることを確認するために、次に述べる実験を行った。   In order to confirm that the joined body 10 manufactured by the method of the present invention is superior to the conventional joined body, the following experiment was conducted.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.

○材料:
第1の部材:5mm×5mmの銅板(無酸素銅、合金番号C1020P)
第2の部材:5mm×5mmの銅板(無酸素銅、合金番号C1020P)
変形前スペーサ:70μm径の銅ワイヤ
ペースト:有機物で被覆される金属ナノ粒子を分散媒に分散させたもの
有機物で被覆される金属ナノ粒子:25nm銀粒子(銀80質量%、有機物5質量%)
分散媒:エチレングリコール(15質量%)
○ Material:
First member: 5 mm × 5 mm copper plate (oxygen-free copper, alloy number C1020P)
Second member: 5 mm × 5 mm copper plate (oxygen-free copper, alloy number C1020P)
Spacer before deformation: Copper wire with a diameter of 70 μm Paste: Dispersed metal nanoparticles coated with organic matter in dispersion medium Metal nanoparticles coated with organic matter: 25 nm silver particles (silver 80% by mass, organics 5% by mass)
Dispersion medium: ethylene glycol (15% by mass)

○比較例1:
図7(a)に示すように、第1の部材11上に100μmの厚さでペースト14を塗布し、(b)に示すように、第2の部材12を載せ、100℃で15分間乾燥させた。
次に、(c)に示すように、2.5MPaの軽加圧力で加圧しながら、170℃で30分間焼結処理を行い、(d)に示すテスト品111を得た。このテスト品111では、接合層13の厚さは20μmと、1/5まで薄くなっていた。
○ Comparative Example 1:
As shown in FIG. 7A, the paste 14 is applied on the first member 11 to a thickness of 100 μm, and as shown in FIG. 7B, the second member 12 is placed and dried at 100 ° C. for 15 minutes. I let you.
Next, as shown in (c), sintering was performed at 170 ° C. for 30 minutes while applying a light pressure of 2.5 MPa, to obtain a test product 111 shown in (d). In the test product 111, the thickness of the bonding layer 13 was 20 μm, which was as thin as 1/5.

○比較例2:
図8(a)に示すように、第1の部材11上に、70μm径の変形前スペーサ15を載せ、100μmの厚さでペースト14を塗布し、(b)に示すように、第2の部材12を載せ、100℃で15分間乾燥させた。
次に、(c)に示すように、2.5MPaの軽加圧力で加圧しながら、170℃で30分間焼結処理を行い、(d)に示すテスト品112を得た。2.5MPaでは変形前スペーサ15は塑性変形されない。そのため、テスト品112では、接合層13の厚さは70μmのままであった。
○ Comparative Example 2:
As shown in FIG. 8A, a 70 μm-diameter pre-deformation spacer 15 is placed on the first member 11 and a paste 14 is applied with a thickness of 100 μm. As shown in FIG. The member 12 was placed and dried at 100 ° C. for 15 minutes.
Next, as shown in (c), sintering was performed at 170 ° C. for 30 minutes while pressurizing with a light pressure of 2.5 MPa to obtain a test product 112 shown in (d). At 2.5 MPa, the pre-deformation spacer 15 is not plastically deformed. Therefore, in the test product 112, the thickness of the bonding layer 13 remains 70 μm.

○実施例:
図9(a)に示すように、第1の部材11上に、70μm径の変形前スペーサ15を載せ、100μmの厚さでペースト14を塗布し、(b)に示すように、第2の部材12を載せ、100℃で15分間乾燥させた。
次に、(c)に示すように、10MPaの大きな加圧力で加圧しながら、170℃で30分間焼結処理を行い、(d)に示すテスト品27を得た。10MPaでは変形前スペーサ15は塑性変形される。そのため、テスト品27では、接合層13の厚さは45μmとなった。
○ Example:
As shown in FIG. 9A, a 70 μm diameter pre-deformation spacer 15 is placed on the first member 11 and a paste 14 is applied in a thickness of 100 μm. As shown in FIG. The member 12 was placed and dried at 100 ° C. for 15 minutes.
Next, as shown in (c), a sintering process was performed at 170 ° C. for 30 minutes while applying a large pressure of 10 MPa to obtain a test product 27 shown in (d). At 10 MPa, the pre-deformation spacer 15 is plastically deformed. Therefore, in the test product 27, the thickness of the bonding layer 13 was 45 μm.

以上の結果を、一覧表にすると共に、テスト品111、112及び27について剪断強さを測定した。   While making the above result into a table | surface, the shear strength was measured about the test products 111, 112, and 27. FIG.

Figure 2011071301
Figure 2011071301

比較例1では、スペーサが無いため100μmのペーストが、十分に圧縮された。この圧縮により、金属ナノ粒子同士が密着し、接合強度が高まった。結果、剪断強さは40MPaであった。ただし、接合層の厚さが20μmと薄くなり、次に述べる不具合が発生する。   In Comparative Example 1, since there was no spacer, the 100 μm paste was sufficiently compressed. By this compression, the metal nanoparticles were brought into close contact with each other, and the bonding strength was increased. As a result, the shear strength was 40 MPa. However, the thickness of the bonding layer is as thin as 20 μm, causing the following problems.

図10に示すモデルにおいて、第1の部材11の線膨張係数をα1、上面の温度をT1とし、接合層13の厚さをhとし、第2の部材12の線膨張係数をα2、下面の温度をT2とする。接合層の剪断歪は、(線膨張係数の差)・(温度差)/接合層の厚さに比例する。すなわち、接合層の剪断歪=K・|α1−α2|・|T1−T2|/h。(Kは常数)。   In the model shown in FIG. 10, the linear expansion coefficient of the first member 11 is α1, the temperature of the upper surface is T1, the thickness of the bonding layer 13 is h, the linear expansion coefficient of the second member 12 is α2, Let temperature be T2. The shear strain of the bonding layer is proportional to (difference in linear expansion coefficient) · (temperature difference) / thickness of the bonding layer. That is, the shear strain of the bonding layer = K · | α1−α2 | · | T1−T2 | / h. (K is a constant).

|α1−α2|・|T1−T2|がある一定の値であれば、hが大きいほど、接合層の剪断歪が小さくなり、接合層13が破壊する心配がなくなる。hが大きければ、温度変化が繰り返される半導体装置であっても、サイクル疲労(熱疲労)を解消することができる。
しかし、hが小さな比較例1では熱疲労の問題が発生する。
If | α1−α2 | · | T1−T2 | is a certain value, the larger h is, the smaller the shear strain of the bonding layer becomes, and there is no fear of the bonding layer 13 breaking. If h is large, cycle fatigue (thermal fatigue) can be eliminated even in a semiconductor device in which temperature changes are repeated.
However, in Comparative Example 1 where h is small, a problem of thermal fatigue occurs.

表に戻って、比較例2では、スペーサがあるため100μmのペーストが、70μmに圧縮されただけである。圧縮不足で、金属ナノ粒子同士が密着不良となり、接合強度が低くなる。結果、剪断強さは12MPaであった。   Returning to the table, in Comparative Example 2, the paste of 100 μm was only compressed to 70 μm because of the spacer. Due to insufficient compression, the metal nanoparticles become poorly adhered to each other and the bonding strength is lowered. As a result, the shear strength was 12 MPa.

実施例では、スペーサはあるが、100μmのペーストが、45μmまで圧縮された。この圧縮により、金属ナノ粒子同士が密着し、接合強度が高まった。
そして、接合層に残すスペーサは、それ自体が補強材の役割を果たす。加えて、スペーサは塑性変形が施されることで、いわゆる加工硬化現象による強度付加が期待される。強度付加された補強材であるスペーサが、接合層に残されているため、接合体の強度向上が図れる。結果、剪断強さは65MPaであった。
実施例では、接合層の厚さが45μmと大きいため、熱疲労特性が改善される。
In the example, although there was a spacer, 100 μm paste was compressed to 45 μm. By this compression, the metal nanoparticles were brought into close contact with each other, and the bonding strength was increased.
The spacer that remains in the bonding layer itself serves as a reinforcing material. In addition, since the spacer is plastically deformed, strength is expected to be added by a so-called work hardening phenomenon. Since the spacer, which is a reinforcing material with added strength, remains in the bonding layer, the strength of the bonded body can be improved. As a result, the shear strength was 65 MPa.
In the example, since the thickness of the bonding layer is as large as 45 μm, the thermal fatigue characteristics are improved.

尚、金属ナノ粒子の金属は、銀の他、金、銅、鉄、ニッケルであってもよく、種類は任意である。
また、接合体は、半導体装置が好適であるが、積層体であれば、種類や用途は限定しない。
The metal of the metal nanoparticles may be gold, copper, iron, or nickel in addition to silver, and the type is arbitrary.
Moreover, although a semiconductor device is suitable for a joined body, if it is a laminated body, a kind and application will not be limited.

本発明の接合体は、半導体装置が好適である。   The joined body of the present invention is preferably a semiconductor device.

10…接合体、11…第1の部材、12…第2の部材、13…接合層、14…スペーサ(塑性変形工後のスペーサ)、15…変形前スペーサ、16…有機物、17…金属ナノ粒子、18…分散媒、19…ペースト、20、22…積層体、21…乾燥炉、23…加熱炉、24…プレス、25…スクリーン。   DESCRIPTION OF SYMBOLS 10 ... Bonded body, 11 ... 1st member, 12 ... 2nd member, 13 ... Bonding layer, 14 ... Spacer (spacer after plastic deformation), 15 ... Spacer before deformation, 16 ... Organic matter, 17 ... Metal nano Particles, 18 ... dispersion medium, 19 ... paste, 20, 22 ... laminate, 21 ... drying furnace, 23 ... heating furnace, 24 ... press, 25 ... screen.

Claims (3)

有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合する接合方法において、
第1の部材に、少なくとも1本のスペーサを載せる工程と、
このスペーサに被せるようにして、前記第1の部材上に前記ペーストを塗布する工程と、
このペーストに第2の部材を載せて積層体を得る工程と、
前記分散媒が蒸発するが前記有機物は蒸発しない温度で、前記積層体を加熱する工程と、
前記スペーサが塑性変形する大きさの加圧力で加圧しながら、前記有機物が蒸発し且つ前記金属ナノ粒子が焼結する温度で、更に加熱する工程と、からなることを特徴とする金属ナノ粒子を用いた接合方法。
In a joining method of joining a plurality of members using a paste in which metal nanoparticles coated with organic matter are dispersed in a dispersion medium,
Placing at least one spacer on the first member;
Applying the paste on the first member so as to cover the spacer;
A step of placing a second member on the paste to obtain a laminate;
Heating the laminate at a temperature at which the dispersion medium evaporates but the organic matter does not evaporate;
A metal nanoparticle comprising the step of further heating at a temperature at which the organic substance evaporates and the metal nanoparticle is sintered while the spacer is pressed with a pressure that is plastically deformed. The joining method used.
有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合する接合方法において、
第1の部材上に、スクリーン印刷法で前記ペーストを塗布する工程と、
このペーストに挿入するようにして、前記第1の部材上に、少なくとも1本のスペーサを載せる工程と、
このペーストに第2の部材を載せて積層体を得る工程と、
前記分散媒が蒸発するが前記有機物は蒸発しない温度で、前記積層体を加熱する工程と、
前記スペーサが塑性変形する大きさの加圧力で加圧しながら、前記有機物が蒸発し且つ前記金属ナノ粒子が焼結する温度で、更に加熱する工程と、からなることを特徴とする金属ナノ粒子を用いた接合方法。
In a joining method of joining a plurality of members using a paste in which metal nanoparticles coated with organic matter are dispersed in a dispersion medium,
Applying the paste on the first member by a screen printing method;
Placing at least one spacer on the first member so as to be inserted into the paste;
A step of placing a second member on the paste to obtain a laminate;
Heating the laminate at a temperature at which the dispersion medium evaporates but the organic matter does not evaporate;
A metal nanoparticle comprising the step of further heating at a temperature at which the organic substance evaporates and the metal nanoparticle is sintered while the spacer is pressed with a pressure that is plastically deformed. The joining method used.
有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合させてなる接合体において、
焼結結合された前記金属ナノ粒子で構成される接合層に、この接合層の製造過程で加圧され塑性変形されたスペーサが残されていることを特徴とする接合体。
In a joined body in which a plurality of members are joined using a paste in which metal nanoparticles coated with an organic substance are dispersed in a dispersion medium,
A joined body, wherein a spacer that is pressed and plastically deformed in the manufacturing process of the joining layer is left in the joining layer composed of the sintered metal nanoparticles.
JP2009220890A 2009-09-25 2009-09-25 Joining method and joining body using metal nanoparticle Pending JP2011071301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220890A JP2011071301A (en) 2009-09-25 2009-09-25 Joining method and joining body using metal nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220890A JP2011071301A (en) 2009-09-25 2009-09-25 Joining method and joining body using metal nanoparticle

Publications (1)

Publication Number Publication Date
JP2011071301A true JP2011071301A (en) 2011-04-07

Family

ID=44016290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220890A Pending JP2011071301A (en) 2009-09-25 2009-09-25 Joining method and joining body using metal nanoparticle

Country Status (1)

Country Link
JP (1) JP2011071301A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028433A (en) * 2010-07-21 2012-02-09 Nec Network Products Ltd Packaging method of electronic component
JP2013039580A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Heat bonding material, heat bonding sheet body and heat bonding molding body
JP2014030829A (en) * 2012-08-01 2014-02-20 Kyocera Corp Joining method of metal surfaces and method for manufacturing semiconductor element mounted body using same
JP2014515927A (en) * 2011-05-17 2014-07-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド System and method for using an external heater system in a microfluidic device
JP2014517546A (en) * 2011-07-04 2014-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing structured sintered bonding layer and semiconductor device comprising structured sintered bonding layer
US9041190B2 (en) 2013-04-15 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor package
EP3208845A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a circuit carrier, circuit carrier, method of manufacturing a semiconductor module and semiconductor module
WO2018029983A1 (en) 2016-08-12 2018-02-15 国立大学法人大阪大学 Bonding device
JP2019102625A (en) * 2017-12-01 2019-06-24 パナソニックIpマネジメント株式会社 Joined body, joining method and joint material
US10332853B2 (en) 2014-02-03 2019-06-25 Osaka University Bonding structure and method for producing bonding structure
JP2019110317A (en) * 2016-06-14 2019-07-04 三菱電機株式会社 Power semiconductor device
US10593851B2 (en) 2017-04-28 2020-03-17 Nichia Corporation Metal powder sintering paste, method for producing the same, and method for producing conductive material
WO2021052752A1 (en) * 2019-09-17 2021-03-25 Danfoss Silicon Power Gmbh Method for connecting a first electronic component with a second electronic component

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028433A (en) * 2010-07-21 2012-02-09 Nec Network Products Ltd Packaging method of electronic component
US9554422B2 (en) 2011-05-17 2017-01-24 Canon U.S. Life Sciences, Inc. Systems and methods using external heater systems in microfluidic devices
JP2014515927A (en) * 2011-05-17 2014-07-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド System and method for using an external heater system in a microfluidic device
US11369007B2 (en) 2011-05-17 2022-06-21 Canon U.S.A., Inc. Systems and methods using external heater systems in microfluidic devices
JP2014517546A (en) * 2011-07-04 2014-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing structured sintered bonding layer and semiconductor device comprising structured sintered bonding layer
US9887173B2 (en) 2011-07-04 2018-02-06 Robert Bosch Gmbh Method for producing structured sintered connection layers, and semiconductor element having a structured sintered connection layer
JP2013039580A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Heat bonding material, heat bonding sheet body and heat bonding molding body
JP2014030829A (en) * 2012-08-01 2014-02-20 Kyocera Corp Joining method of metal surfaces and method for manufacturing semiconductor element mounted body using same
US9041190B2 (en) 2013-04-15 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor package
US10332853B2 (en) 2014-02-03 2019-06-25 Osaka University Bonding structure and method for producing bonding structure
EP3208845A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a circuit carrier, circuit carrier, method of manufacturing a semiconductor module and semiconductor module
WO2017140550A1 (en) * 2016-02-19 2017-08-24 Heraeus Deutschland GmbH & Co. KG Method for producing a circuit carrier, circuit carrier, method for producing a semiconductor module and semiconductor module
CN108701671A (en) * 2016-02-19 2018-10-23 贺利氏德国有限两合公司 Manufacture the method for circuit carrier, the method and semiconductor module of circuit carrier, manufacture semiconductor module
JP2019510367A (en) * 2016-02-19 2019-04-11 ヘラエウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Circuit carrier manufacturing method, circuit carrier, semiconductor module manufacturing method, and semiconductor module
JP2019110317A (en) * 2016-06-14 2019-07-04 三菱電機株式会社 Power semiconductor device
US11049840B2 (en) 2016-08-12 2021-06-29 Osaka University Bonding device
WO2018029983A1 (en) 2016-08-12 2018-02-15 国立大学法人大阪大学 Bonding device
US10593851B2 (en) 2017-04-28 2020-03-17 Nichia Corporation Metal powder sintering paste, method for producing the same, and method for producing conductive material
JP2019102625A (en) * 2017-12-01 2019-06-24 パナソニックIpマネジメント株式会社 Joined body, joining method and joint material
JP6994644B2 (en) 2017-12-01 2022-01-14 パナソニックIpマネジメント株式会社 Joining body and joining method and joining material
WO2021052752A1 (en) * 2019-09-17 2021-03-25 Danfoss Silicon Power Gmbh Method for connecting a first electronic component with a second electronic component

Similar Documents

Publication Publication Date Title
JP2011071301A (en) Joining method and joining body using metal nanoparticle
US9362242B2 (en) Bonding structure including metal nano particle
TWI344807B (en) Laminated multi-layer circuit board
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
JP2013209720A (en) Method for jointing metal body
CN107112657A (en) Anisotropic conductive film, its manufacture method and connecting structure body
CN111357100A (en) Heat sink and method for manufacturing the same
TW201719682A (en) Anisotropic conductive film and connection structure
CN102915985A (en) Double-sided adhering structure of power electronic device and production method of double-sided adhering structure
US9589864B2 (en) Substrate with embedded sintered heat spreader and process for making the same
JP2008192823A (en) Manufacturing apparatus and manufacturing method for circuit board, and cushion sheet used for the manufacturing method
JP2011041955A (en) Method for producing joined body, and joined body
JP2006143580A (en) Joined body and its production method
JP5647335B2 (en) Solder transfer substrate, method for manufacturing solder transfer substrate, and solder transfer method
US20210280534A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2010179313A (en) Method of joining two members and joined body by this method
CN109699131B (en) Method for manufacturing multilayer substrate
JP6258954B2 (en) Metal body joining method and metal body joining structure
KR101118696B1 (en) Separator plate for the production of circuit board components
JP2010227963A (en) Joining method using metal nanoparticle
JP6403873B2 (en) Semiconductor element bonding method and sheet-shaped laminated cushioning material for semiconductor element bonding
JP5319910B2 (en) Method of embedding conductive pattern, method of manufacturing laminated substrate, and method of manufacturing fine channel structure
JP6093633B2 (en) Bonding method of electronic parts
TW201802958A (en) Method for producing a substrate plate, substrate plate, method for producing a semiconductor module and semiconductor module
JP4425609B2 (en) Chip mounting method and apparatus