JP2011069749A - 表面検査装置及び表面検査方法 - Google Patents

表面検査装置及び表面検査方法 Download PDF

Info

Publication number
JP2011069749A
JP2011069749A JP2009221776A JP2009221776A JP2011069749A JP 2011069749 A JP2011069749 A JP 2011069749A JP 2009221776 A JP2009221776 A JP 2009221776A JP 2009221776 A JP2009221776 A JP 2009221776A JP 2011069749 A JP2011069749 A JP 2011069749A
Authority
JP
Japan
Prior art keywords
light
subject
aperture
lens
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009221776A
Other languages
English (en)
Other versions
JP5532792B2 (ja
Inventor
Takashi Fuse
貴史 布施
Takeshi Nagato
毅 長門
Fumiyuki Takahashi
文之 高橋
博之 ▲塚▼原
Hiroyuki Tsukahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009221776A priority Critical patent/JP5532792B2/ja
Publication of JP2011069749A publication Critical patent/JP2011069749A/ja
Application granted granted Critical
Publication of JP5532792B2 publication Critical patent/JP5532792B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】 被検体の表面に段差があっても、光学系の調整なしで、より正確に表面欠陥を検出することができる。
【解決手段】 光源からの光を被検体の表面に照明する照明部と、被検体表面からの反射光を捕捉する光学系と、光学系により捕捉された反射光の一部を通過させるアパーチャと、アパーチャを通過した反射光の強度を検出する検出部を具備し、光学系が、被検体の表面の位置から光学系の焦点距離となる位置に、且つ光学系の光軸に垂直な面が照明部の照明光の光軸と平行となる角度で配置し、アパーチャを、光学系に対し被検体の表面位置とは反対の側で、光学系の焦点距離の位置で、且つ反射光が通過する位置に配置した。
【選択図】図1

Description

本発明は、表面検査装置及び表面検査方法に関し、特に被検体の高さ方向の位置が異なる表面の凹凸、傷、及び撓み(以下、「表面欠陥」と総称する)を検出する表面検査装置及び表面検査方法に関する。
近年、電子機器の筐体の検査コストを抑制し、検査結果の定量性を確保するために、表面検査装置を用いた自動検査により表面欠陥を検出する要望が拡大している。このような表面検査装置は、被検体の表面に光を照射した後、正常面及び表面欠陥から発生する反射光を受光素子によって受光し、反射光中の回折光及び散乱光の光量変化を検出することにより、表面欠陥の検出を行う。
このような表面検査装置の一例として、光源から照射される光を被検体に集束する第1レンズと、被検体からの反射光を集束する第2レンズと、第2レンズを通過した反射光から回折光又は散乱光を通過させるスリットと、スリットを通過した回折光又は散乱光の強度を検出する検出器と、を備える表面検査装置が知られている。被検体の表面状態による散乱光のみをスリットから通過させ、散乱光の光量変化により表面の異常状態の有無を検出するものである。
このような表面検査装置を用いて、例えば携帯電話の筐体など、表面に段差がある被検体の表面欠陥を検出することは困難である。なぜなら、表面欠陥からの散乱光強度は、表面欠陥の状態のみならず、表面欠陥が段差上部に存在するか、又は段差下部に存在するかによっても変化する。そして、被検体表面が照射光の集束距離範囲、即ち被写界深度、の外に位置してしまうと検査スポットの光強度レベルが低下して表面欠陥からの散乱反射光の強度も低下し、また照射光スポットが拡大することで周囲からの反射光による背景ノイズ成分が増加するため、コントラストの低い検出信号しか得られないためである。従って、被検体の表面に段差がある場合、表面欠陥の状態変化を散乱光の強度変化から正確に検出できない。即ち、被検体の表面における高さ方向の位置が異なると、正常面及び表面欠陥の判別を定量的に行うことが困難となる。
上記の問題を解決するために、被検体の表面段差に応じて照明光の集光位置を自動的に調整する機構を追加することは、検査装置を複雑かつ高価にするため、望ましくない。これに対し、被写界深度の大きな照射光学系を採用する方策がある。その場合は、検出器から見て、表面欠陥からの散乱反射光と、正常平滑面からの反射光や、周囲からのノイズ光との強度差、即ちコントラストが全体として低下し、表面欠陥を正確に判別するのが難しくなる。その上、被検体面の高さに相違があると、同様の表面欠陥があったとしても、散乱反射光が検出器に向かう角度が相違することになるので、検出器に到達する散乱反射光の強度は相違することになる。このように同一表面欠陥からの反射散乱光強度が異なる条件で信号検出するのでは、特に低コントラストの光学系という条件が加わると、正確な表面欠陥検出が難しくなる。
特開昭57−94903号公報
本発明は、被検体の表面に段差があっても、光学系の調整なしで、より正確に表面欠陥を検出することができる表面検査装置及び表面検査方法を提供することを目的とする。
本発明の課題を解決するため、本発明の第1の側面によれば、
光源からの光を被検体の表面に照明する照明部と、
被検体表面からの反射光を捕捉する光学系と、
該光学系により捕捉された反射光の一部を通過させるアパーチャと、
該アパーチャを通過した反射光の強度を検出する検出部を具備し、
前記光学系が、前記被検体の表面の位置から該光学系の焦点距離となる位置に、且つ該光学系の光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記光学系に対し前記被検体の表面位置とは反対の側で、前記光学系の焦点距離の位置で、且つ前記反射光が通過する位置に配置したことを特徴とする表面検査装置が提供される。
本発明の第2の側面によれば、
光源からの光を被検体の表面に照明し、
被検体表面からの反射光をレンズにより捕捉し、
該レンズにより捕捉された反射光の一部をアパーチャを介して通過させ、
該アパーチャを通過した反射光の強度を検出して被検体の表面を検査する表面検査方法であって、
前記レンズを該レンズの主点が前記被検体の表面の位置から焦点距離となる位置に、且つ該レンズの光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記レンズに対し前記被検体の表面位置とは反対の側で、前記レンズの主点から該レンズの焦点距離の位置で、且つ前記反射光が通過する位置に配置して、該通過した反射光の強度を検出することにより、被検体表面を検査することを特徴とする表面検査方法が提供される。
本発明によれば、被検体の表面高さが変化しても、光学系で捕捉できる範囲であれば、被検体表面からの反射光のうち一定の角度範囲の成分を、アパーチャへ到達する角度でかつ平行光束となるよう屈折させることができるので、同一の表面欠陥であれば、その高さ位置にかかわらず一定の反射角度範囲の散乱反射光成分をアパーチャを通過させ、検出器に到達させることができるので、高い精度で欠陥検出を行うことができる。
図1は、実施例1に係る表面検査装置の概略構成図を示す図である。 図2は、実施例1に係る制御部の機能ブロックを示す図である。 図3は、実施例1に係る制御部のハードウェア構成を示す図である。 図4は、実施例1に係る表面検査処理の動作を示すフローチャートである。 図5は、実施例1に係る信号処理の動作を示すフローチャートである。 図6は、実施例1に係る表面検査装置によって取得された画像データの信号強度と照射位置との関係を示す図である。 図7は、実施例1に係る表面検査装置において、表面欠陥からの反射光の強度に対し、被検体の段差による影響が抑制されることを説明する図である。 図8は、実施例1に係る表面検査装置の光学系を示す図である。 図9は、実施例2に係る表面検査装置の概略構成図を示す図である。 図10は、実施例2に係る表面検査装置において、表面欠陥からの反射光の強度に対し、被検体の斜面による影響が抑制されることを説明する図である。
以下、本発明の実施例1及び実施例2に係る表面検査装置、及び表面検査方法が説明される。ただし、本発明は本実施例に限定されるものではない。
本発明の実施例1において、図1から図8は、表面検査装置10、及び表面検査装置10を用いた表面検査方法が説明される。
図1は、表面検査装置10の概略構成図を示す。図1に示す表面検査装置10は、ステージ11、光源12、集光レンズ13、受光素子14、受光レンズ15、アパーチャ16、制御部17、光源制御部18、ステージ制御部19、受光素子制御部20、アパーチャ制御部21、及び出力部22を備える。図1に係る被検体23は、検査対象である。なお、図1における一点鎖線24は、光源12からZ方向に照射される光L1の光軸24を示す。図1における一点鎖線25は、被検体23の表面から受光レンズ15の中心点を通る主光線25を示す。
ステージ11は、ステージ制御部19に接続されている。ステージ11は、被検体23を載置するために備えられている。ステージ11は、不図示の駆動部によってX方向又はY方向に移動される。
光源12は、光源制御部18に接続されている。光源12は、不図示のLight Emitting Diode(LED)、又はLaser Diode(LD)から発生する単波長の光L1を被検体23の表面に対してZ方向に照射させる。
集光レンズ13は、Z方向における光源12と被検体23との間に配置される。集光レンズ13は、例えば不図示のガルバノミラー等による光L1のY方向の光走査手段とともに走査レンズを用いることができる。光源12から発生した光L1が集光レンズ13を通過することによって、Y方向に延在する走査光が発生する。集光レンズ13を通過した光L1は、被検体23に対してZ方向に照射される。集光レンズ13の直径は、例えば50mmから100mmである。即ち、照明部としての集光レンズ13は、光源12からの光を被検体23の表面に照明するものである。そして、照明部としての集光レンズ13の照明光を、線状に集光して被検体23表面に照射するようにした。
受光レンズ15は、入射した被検体23の表面からの反射光を集光し、集光した反射光を主光線25と平行の方向に屈折させるために設けられる。受光レンズ15は、光軸24とアパーチャ16との間に配置される。受光レンズ15は、光源12から発生した光L1と平行に設けられる。光軸24と受光レンズ15とのX方向における距離、及び、受光レンズ15とアパーチャ16とのX方向における距離は、受光レンズ15の焦点距離fと等しい。受光レンズ15は、両凸レンズを用いることができる。受光レンズ15の焦点距離fは、例えば100mmである。受光レンズ15の直径は、例えば50mmから100mmである。即ち、光学系としての受光レンズ15は、被検体23表面からの反射光を捕捉するものである。そして、光学系としての受光レンズ15が、被検体23の表面の位置から光学系23の焦点距離fとなる位置に、且つ光学系としての受光レンズ15の光軸に垂直な面が照明部としての集光レンズ13の照明光の光軸と平行となる角度で配置されている。そして、受光レンズ15の主点は、被検体23の表面の位置から受光レンズ15の焦点距離fとなる位置に配置され、被検体23表面からの反射光を受光レンズ15で平行光束に屈折させてアパーチャ16を通過させるように構成されている。そして、受光レンズ15は、被検体23の表面位置とされる範囲のほぼ中央からの反射光が、受光レンズ15の主点を通過してアパーチャ16を通過するように配置されている。
アパーチャ16は、例えば、不図示の金属板、又は金属薄膜に形成された開口を備える。アパーチャ16は、被検体23表面の高さが異なるときに、受光レンズ15により集光される平行な光束の入射角が異なっても、検出器としての受光素子14へ通過させる反射光成分を妨げない十分薄い遮光体で構成されている。アパーチャ16は、受光素子14と受光レンズ15との間に設けられている。受光素子14によって受光される反射光の角度は、受光素子14に対するアパーチャ16の開口位置によって制御される。アパーチャ16は、受光レンズ15から焦点距離fだけ隔てた距離に配置される。アパーチャ16は、被検体23の表面から反射し、受光レンズ15を通過した光のうち、被検体23の表面に対して所定角度で反射し、主光線25と平行の方向に屈折した光L1Aを通過させる。アパーチャ16は、アパーチャ制御部21によって制御される不図示のモータによって、Z方向に移動可能である。アパーチャ16の開口径は、例えば5mmから10mmである。即ち、アパーチャ16は、光学系としての受光レンズ15により捕捉された反射光の一部を通過させるものである。そして、アパーチャ16は、光学系としての受光レンズ15に対し被検体23の表面位置とは反対の側で、光学系としての受光レンズ15の焦点距離fの位置で、且つ反射光が通過する位置に配置されている。
受光素子14は、例えば、Photo Detector(PD)を用いることができる。受光素子14は、受光レンズ15及びアパーチャ16を通過した被検体23の表面からの反射光L1Aを受光する。受光素子14は、X方向のステージ移動とY方向の光走査に同期して被検体23表面からの反射光L1Aを受光して光信号データを取得する。なお、実施例1に使用される受光素子14はPDに限定されるものではなく、被検体23からの反射光強度を取得できるならば何を用いてもよい。即ち、検出器として受光素子14は、アパーチャ16を通過した反射光の強度を検出するものである。
制御部17は、光源制御部18、ステージ制御部19、受光素子制御部20、アパーチャ制御部21、及び出力部22と接続されている。制御部17は、光源制御部18、ステージ制御部19、受光素子制御部20、及びアパーチャ制御部21の制御を行い、被検体23の表面検査処理を行う。表面検査処理においては後述する。また、制御部17は、表面検査処理によって得られた検査結果を、出力部22に出力する。
光源制御部18は、光源12及び制御部17に接続されている。光源制御部18は、光源12を制御して、不図示のLED、又はLDから発生する単波長の光L1をZ方向に照射させる。
ステージ制御部19は、ステージ11及び制御部17に接続されている。ステージ制御部19は、ステージ11に備えられた不図示の駆動部を制御して、ステージ11をX方向又はY方向に移動させる。即ち、照明部としての集光レンズ13の照明光の光軸がほぼ垂直な方向に被検体23の表面を相対的に移動させることにより、照明光を被検体23表面に対して走査し、表面検査を行うようにした。
受光素子制御部20は、受光素子14及び制御部17に接続されている。受光素子制御部20は、受光素子14を制御して、被検体23の表面からの反射光L1Aを受光させる。また、受光素子制御部20は、不図示の駆動部を制御して、受光素子14をZ方向に移動させる。
アパーチャ制御部21は、アパーチャ16及び制御部17に接続されている。アパーチャ制御部21は、不図示の駆動部を制御して、アパーチャ16をZ方向に移動させる。
出力部22は、制御部17に接続されている。出力部22は、例えばプリンタ又はディスプレイから構成される。出力部22は、制御部17から、表面検査処理の結果を出力する。
被検体23は、例えばPersonal Digital Assistant(PDA)、又は携帯電話等の電子機器の筐体として用いられる。被検体23は、表面に凹凸、傷、及び撓みからなる表面欠陥23A及び表面欠陥23Bを有する。表面欠陥23A及び表面欠陥23Bのサイズは、例えば数μmである。
図2は、実施例1に係る制御部17の機能ブロックを示す図である。図2に示す制御部17は、信号取得部17A、信号処理部17B、及び検査結果出力部17Cを備える。
信号取得部17Aは、受光素子14を制御し、受光レンズ15を介して入射される被検体23の表面から反射される光L1Aを、X方向のステージ移動とY方向の光走査に同期して受光することによって光L1Aの受光強度に基づく光信号データを取得する。
信号処理部17Bは、信号取得部17Aが取得した光信号データに基づいて後述する信号処理を行う。信号処理部17Bは、ローカットフィルタ信号処理部171B、及び良否判定部172Bを備える。
ローカットフィルタ信号処理部171Bは、取得した光信号データにおいて、光信号の受光強度の変化量に基づいて閾値を設定することによって、受光強度の変化が急峻な光信号を検出する信号処理を行う。被検体23に表面欠陥23A及び表面欠陥23Bが存在する領域は、表面欠陥が存在しない被検体23の表面と比較して、光信号の受光強度が急峻に変化する。そのため、ローカットフィルタ信号処理部171Bによる信号処理により、変化が急峻な光信号の受光強度は「1」の信号として検出され、変化が滑らかな光信号の受光強度は「0」として検出される。
良否判定部172Bは、ローカットフィルタ信号処理部171Bによって信号処理がなされた光強度データに対し、予め設定された信号の累積値の閾値を用いて、信号強度の累積値が所定値以上である被検体23を不具合と判定する信号処理を行う。且つ、良否判定部172Bは、信号の累積値が所定値未満である被検体23を合格と判定する信号処理を行う。なお、予め設定された信号の累積値の閾値は、不具合と判定する表面欠陥23A又は表面欠陥23Bのサイズにより決定される。
検査結果出力部17Cは、後述する制御部17のメモリ170Bに格納され、且つ良否判定部172Bによって信号処理された被検体23の光信号データを出力部22に出力する信号処理を行う。
図3は、実施例1に係る制御部17のハードウェア構成を示す図である。図3に示すように、制御部17は、Central Processing Unit(CPU)170A、及びメモリ170Bを備える。CPU170Aは、制御部17の動作の制御を行う。メモリ170Bは、CPU170Aにより使用され、データの読み出し、又は書き込みが行われる。図2に示す信号取得部17A、信号処理部17B、及び検査結果出力部17Cからなる機能ブロックは、メモリ170Bに格納されているプログラムをCPU170Aが読み出し、実行することで実現される。
図4は、実施例1に係る表面検査処理の動作を示すフローチャートである。先ず、表面検査処理の開始の指示を受けると、制御部17は、不図示のハンドラを制御し、被検体23をステージ11上に設置する(S1、被検体設置ステップ)。被検体23がステージ11上に設置された後、制御部17は、ステージ制御部19を介してステージ11を作動し、光源12から照射される光L1が被検体23の検査領域上に位置するように測定準備を行う(S2、測定準備ステップ)。同時に、制御部17は、受光素子制御部20及びアパーチャ制御部21を介して受光素子14及びアパーチャ16を作動し、予め設定した被検体23の表面からの反射光L1Aを受光できる位置に移動させる(S2、測定準備ステップ)。次いで、制御部17は、光源制御部18を介して光源12を作動し、光L1を被検体23に照射させる(S3、光照射ステップ)。即ち、光源12からの光を被検体23の表面に照明するステップである。光照射ステップの際、光L1は、光源12と被検体23との間に配置された集光レンズ13に入射する。集光レンズ13には不図示のガルバノミラー等による光L1のY方向の光走査手段とともに走査レンズが用いられているため、光源12から発生した光L1は集光レンズ13を通過することによって、Y方向に延在する走査光となる。集光レンズ13を通過した光L1は、被検体23に対してZ方向に照射される。被検体23が光L1によって照射された後、被検体23から反射した光L1Aは、受光レンズ15を通過することによって主光線25と平行の方向に屈折する。被検体23表面からの反射光はレンズにより捕捉される。次いで、受光レンズ15を通過した光L1Aは、被検体23の表面に対する角度が所定値である場合、アパーチャ16を通過する。受光レンズ15により捕捉された反射光の一部は、アパーチャ16を介して通過する。アパーチャ16を通過した光L1Aは受光素子14によって受光され、光信号データが取得される(S4、光信号データ取得ステップ)。即ち、アパーチャ16を通過した反射光の強度を検出して被検体23の表面を検査するステップである。制御部17は、受光素子制御部20を介して受光素子14を制御することによって、Y方向に延在するラインセンサにより被検体23におけるY方向の1ライン分の光信号データを取得する。受光レンズ15は、被検体23から反射した光を集光し、主光線25と平行の方向に屈折させる。受光素子14によって受光される光の角度は、受光素子14に対するアパーチャ16の開口位置によって制御される。即ち、被検体23から反射した光のうち、アパーチャ16の開口位置以外に到達した反射光は、アパーチャ16によって遮光される。アパーチャ16によって遮光された反射光は、受光素子14によって受光されない。アパーチャ16は、受光レンズ15を通過した反射光のうち、被検体23の表面における反射角度が所定値である光L1Aを通過させる。そのため、受光素子14は、反射角度が所定値である光L1Aのみ受光する。受光素子14は、光L1Aが有する受光強度に基づく光信号データを取得する。受光素子14によって光信号データが取得された後、信号処理部17Bは、取得された光信号データに基づく信号処理を行う(S5、信号処理)。信号処理については後述する。信号処理の終了後、良否判定部172Bは、被検体23の全検査領域に対し検査が完了したか判定を行う(S6)。被検体23の検査が完了している場合(S6、YES)、良否判定部172Bは、検査対象である複数の被検体23において、全数の検査が完了したか判定を行う(S7)。検査対象である複数の被検体23において、全数の検査が完了している場合(S7、YES)、検査結果出力部17Cは、出力部22を制御して、被検体23の検査結果を例えばプリンタ又はディスプレイを用いて出力する(S8、検査結果出力ステップ)。被検体23の検査結果が出力部22によって出力された後、実施例1に係る表面検査工程は終了となる。
一方、ステップS6において、被検体23の検査が完了していない場合(S6、NO)、ステージ制御部19は、ステージ11をX方向又はY方向に移動させ、被検体23における光L1の照射位置を変更する(S9、光照射位置の変更ステップ)。又、ステップS7において、検査対象である複数の被検体23において、全数の検査が完了していない場合(S7、NO)、制御部17は、不図示のハンドラを制御し、未検査の被検体23をステージ11上に設置する(S10、被検体の設置準備ステップ)。
次に、信号処理について説明する。図5は、実施例1に係る表面検査装置10における1つの検査領域で取得された取得された光信号データの信号処理の動作を示すフローチャートである。
先ず、信号取得部17Aは、被検体23に対する反射角度が所定値である光L1Aが有する受光強度に基づく光信号データを取得する(S11、光信号データ取得ステップ)。次いで、ローカットフィルタ信号処理部171Bは、取得した光信号データにおいて、光信号の受光強度の変化量に基づいて閾値を設定することによって、急峻に変化する光信号の受光強度を検出する信号処理を行う(S12、ローカットフィルタ信号処理ステップ)。被検体23に表面欠陥23A及び表面欠陥23Bが存在する領域は、表面欠陥が存在しない被検体23の表面と比較して、光信号の受光強度が急峻に変化する。そのため、ローカットフィルタ信号処理部171Bによる信号処理により、急峻に変化する光信号の受光強度は「1」の信号として検出され、滑らかに変化する光信号の受光強度は「0」の信号として検出される。次いで、良否判定部172Bは、ローカットフィルタ信号処理部171Bによって信号処理がなされた光信号データに対し、信号の累積値の閾値を予め設定し、信号強度の累積値が所定値以上である被検体23を不具合と判定する信号処理を行う(S13、良否判定ステップ)。且つ、良否判定部172Bは、信号の累積値が所定値未満である被検体23を合格と判定する信号処理を行う(S13、良否判定ステップ)。なお、信号の累積値の閾値は、不具合と判定する表面欠陥23A又は表面欠陥23Bのサイズ及び個数により設定される。
図6は、実施例1に係る表面検査装置10によって取得された光信号データと照射位置の関係を示す図である。なお、図1に係る表面検査装置10で説明した構成と同様の構成には同一の符号を付し、説明を省略する。
図6Aは、段差がある被検体23の断面図を示す。被検体23は、検査対象である。被検体23は、X方向の位置Aに表面欠陥23A、及びX方向の位置Bに表面欠陥23Bを有する。なお、表面欠陥23A及び表面欠陥23Bは、例えば、被検体23の表面に形成された凹凸、傷、及び撓みからなる。
図6Bは、図6Aの被検体23の表面からの反射光L1Aが受光素子14に受光されて得られた光信号、及び光源12からZ方向に照射される光L1の照射位置との関係を示す図である。縦軸は、光信号の受光強度を示す。横軸は、光L1の照射位置を示す。図6Bの実線は、光L1Aの光信号の受光強度を示す。図6Bの破線は、ローカットフィルタ信号処理部171Bによって予め設定されたローカットフィルタ27を示す。ローカットフィルタ27は、予め設定された光信号の受光強度の閾値である。ローカットフィルタ27は、光L1Aの光信号の受光強度を中心に所定の幅を持って設定されている。
図6Bに示すように、被検体23に表面欠陥23Aが存在する位置A及び表面欠陥23Bが存在する位置Bにおいて、表面欠陥が存在しない被検体23の表面と比較して、光信号の受光強度は急峻な傾きをもって変化する。そして、位置A及び位置Bにおいて、光信号の受光強度は、ローカットフィルタ27によって示される受光強度の閾値を越え、一定以上の変化率をもって変動する。なぜなら、表面欠陥23Aが存在する位置A及び表面欠陥23Bが存在する位置Bにおいて、被検体23の表面には凹凸が存在する。凹凸が存在する位置A及び位置Bに光L1を照射すると、被検体23に照射される光L1が散乱するため、被検体23から反射される光L1Aの光信号の受光強度が急峻な傾きをもって変化するからである。光信号の受信信号の急峻な傾きがローカットフィルタ27によって検出されるため、表面欠陥23A及び表面欠陥23Bの存在箇所A及びBを検出することができる。
図6Cは、図6Aの光L1Aの光信号の受光強度における検出信号、及び、光L1の照射位置との関係を示す図である。縦軸は、光L1Aの検出信号を示す。横軸は、光L1の照射位置を示す。図6Cの実線は、光L1Aの光信号の検出信号を示す。
図6Cに示すように、ローカットフィルタ信号処理部171Bによる信号処理により、急峻に変化する光信号の受光強度は「1」の信号として検出され、滑らかに変化する光信号の受光強度は「0」の信号として検出される。そのため、被検体23における位置A及び位置B、即ち被検体23における表面欠陥A及び表面欠陥Bが存在する位置において、受光強度は「1」の信号として検出される。
図7及び図8は、実施例1に係る表面検査装置10において、表面欠陥からの反射光の強度に対し、被検体23の段差による影響が抑制されることを説明する図である。なお、図7及び図8に係る表面検査装置10において、図1に係る表面検査装置10で説明した構成と同様の構成には同一の符号を付し、説明を省略する。
図7Aは、実施例1に係る表面検査装置10が、被検体23の段差の上部の表面欠陥からの光を受光するところを示す図である。図7Aに示す表面検査装置10は、ステージ11、及び光学系29を示す。被検体23は、検査対象である。被検体23は、表面23C及び表面23Dを有する。光学系29は、集光レンズ13、受光素子14、及びアパーチャ16を備える。図7AにおけるZ方向の一点鎖線は、被検体23の表面に対して、Z方向に照射される光L1の光軸24Aを示す。図7AにおけるXZ方向の一点鎖線は、被検体23の表面欠陥23Aから受光レンズ15の中心点を通る主光線25Aを示す。σは、照射光線L1の焦点深度である。照射光線L1の焦点深度σは、例えば10mmである。なお、照明部としての集光レンズ13の焦点深度σ、即ち集光被写界深度は、被検体23の表面位置とされる範囲以上に設定されている。
光L1Aは、被検体23に照射される光L1が、被検体23の表面に対して角度Aで反射する光である。光L1Bは、被検体23に照射される光L1が、被検体23の表面に対して角度Bで反射する光である。光L1A及び光L1Bは、共に被検体23の表面23Cからの反射光である。
図7Aで示すように、アパーチャ16は、被検体23の表面から反射する光のうち、被検体23の表面23Cに対して角度Aで反射する光L1Aを通過させる。そのため、受光素子14は、被検体23の表面23Cに対して角度Aで反射する光L1Aを受光する。しかし、被検体23の表面から角度Bで反射する光L1Bは、アパーチャ16を通過することができず受光素子14には到達しない。
図1で説明したように、受光レンズ15の上部を通過した角度Aの光L1Aは主光線25Aと平行になるように屈折し、主光線25Aの位置から所定の位置にあるアパーチャ16に到達する。一方、受光レンズ15の下部を通過する光L1Bは、アパーチャ16の開口に到達しない。そのため、光L1Aは受光素子14によって受光されるが、光L1Bは受光素子14によって受光されない。
図7Bは、実施例1に係る表面検査装置10が、被検体23の段差の下部の表面欠陥からの光を受光するところを示す図である。図7Bに示す表面検査装置10は、ステージ11、及び光学系29を示す。図7BにおけるZ方向の一点鎖線は、被検体23の表面に対してZ方向に照射される光L2の光軸24Bを示す。図7BにおけるXZ方向の一点鎖線25Bは、被検体23の表面23Dから受光レンズ15の中心点を通る主光線25Bを示す。光L2Aは、被検体23から反射して発生する光のうち、被検体23の表面に対して角度Aで反射する光である。光L2Bは、被検体23から反射して発生する光のうち、被検体23の表面に対して角度Bで反射する光である。なお、図7Bは、ステージ11がX方向に移動することにより、図7Aの被検体23における表面23Cから、図7Bの被検体23における表面23Dまで、光源12からZ方向に照射される光L2の位置が移動したようすを示す図である。
図7Bで示すように、被検体23の段差下段にある表面23Dから反射した光L2Aも、受光レンズ15の口径内に入る光であれば、受光レンズ15を通過することができる。ここで、被検体23の段差下段から反射した光L2Aに対する主光線25Bの角度は、図7Aに示す主光線25Aの角度と比較して大きくなる。そのため、角度Aの光L2Aの屈折角度は浅くなり、図7Bにおいても、角度Aの光L2Aは、図7Aと同じ位置にあるアパーチャ16の開口に到達する。一方、受光レンズ15の下部を通過する光L2Bは、アパーチャ16の開口に到達しない。そのため、光L2Aは受光素子14によって受光されるが、光L2Bは受光素子14によって受光されない。
図8は、図7A及び図7Bについて、被検体23の上部及び下部における表面欠陥からの散乱光の状態をまとめたものである。図8に係る表面検査装置10は、受光レンズ15、アパーチャ16、及び受光素子14を示す。発光面26は、被検体23の表面23C及び表面23Dに係る光L1の照射位置を示す。表面23C及び表面23Dは、Z方向に異なる高さを有する。焦点面28は、アパーチャ16が受光レンズ15に対して平行に、且つ受光レンズ15の焦点距離fを隔てた間隔で配置されている面である。
被検体23の段差によって、反射光の強度が影響を受ける理由は、表面欠陥からの反射光を受光するとき、段差のために異なる角度の反射光を、受光素子14によって受光することになるからである。しかし、図8に示すように、受光素子14は、表面欠陥が段差の上部にあっても、又は段差の下部にあっても、同じ角度Aを有する表面欠陥からの反射光しか受光しない。そうすると、受光素子14が受光する表面欠陥からの光の強度は、段差の影響を受けない。
このような表面検査装置10の構造によれば、被検体23の表面高さが変化しても、光学系としての受光レンズ15で捕捉できる範囲であれば、被検体23表面からの反射光のうち一定の角度範囲の成分を、アパーチャ16へ到達する角度でかつ平行光束となるよう屈折させることができるので、同一の表面欠陥であれば、その高さ位置にかかわらず一定の反射角度範囲の散乱反射光成分をアパーチャ16を通過させ、検出器としての受光素子14に到達させることができるので、高い精度で欠陥検出を行うことができる。
本発明の実施例2において、図9から図10は、表面検査装置40、及び表面検査装置40を用いた表面検査方法が説明される。
図9は、表面検査装置40の概略構成図を示す。図9に示す表面検査装置40は、ステージ11、光源12、集光レンズ13、第1受光素子14A、第2受光素子14B、第1受光レンズ15A、第2受光レンズ15B、第1アパーチャ16A、第2アパーチャ16B、制御部47、光源制御部18、ステージ制御部19、第1受光素子制御部20A、第2受光素子制御部20B、第1アパーチャ制御部21A、第2アパーチャ制御部21B、及び出力部22を備える。図9の被検体23は、検査対象である。図9における一点鎖線24は、光源12からZ方向に照射される光L3の光軸を示す。図9におけるXZ方向の一点鎖線25Cは、被検体23の表面から第1受光レンズ15Aを通る主光線25Cを示す。図9における(−X)Z方向の一点鎖線25Dは、被検体23の表面から第2受光レンズ15Bを通る主光線25Dを示す。なお、図9に係る表面検査装置40において、図1に係る表面検査装置10で説明した構成と同様の構成には同一の符号を付し、説明を省略する。
光源12は、光源制御部18に接続されている。光源12は、不図示のLED、又はLDから発生する単波長の光L3を被検体23の表面に対してZ方向に照射させる。
集光レンズ13は、光源12と被検体23との間に配置される。光源12から発生した光L3が集光レンズ13を通過することによって、Y方向に延在する走査光が発生する。集光レンズ13を通過した光L3は、被検体23に対してZ方向に照射される。
第1受光レンズ15Aは、入射した被検体23からの反射光を集光し、反射光を主光線25Cと平行の方向に屈折させる。第1受光レンズ15Aは、光軸24と第1アパーチャ16Aとの間に配置される。第1受光レンズ15Aは、光源12から発生した光L3と平行に設けられる。光軸24と第1受光レンズ15AとのX方向における距離、及び、第1受光レンズ15Aと第1アパーチャ16AとのX方向における距離は、第1受光レンズ15Aの焦点距離fと等しい。第1受光レンズ15Aは、両凸レンズを用いることができる。第1受光レンズ15Aの焦点距離fは、例えば100mmである。第1受光レンズ15Aの直径は、例えば50mmから100mmである。
第2受光レンズ15Bは、入射した被検体23からの反射光を集光し、反射光を主光線25Dと平行の方向に屈折させる。第2受光レンズ15Bは、光軸24と第2アパーチャ16Bとの間に配置される。第2受光レンズ15Bは、光源12から発生した光L3と平行に設けられる。光軸24と第2受光レンズ15BとのX方向における距離、及び、第2受光レンズ15Bと第2アパーチャ16BとのX方向における距離は、第2受光レンズ15Bの焦点距離fと等しい。第2受光レンズ15Bは、両凸レンズを用いることができる。第2受光レンズ15Bの焦点距離fは、例えば100mmである。第2受光レンズ15Bの直径は、例えば50mmから100mmである。
第1アパーチャ16Aは、例えば、不図示の金属板、又は金属薄膜に形成された開口を備える。第1アパーチャ16Aは、第1受光素子14Aと第1受光レンズ15Aとの間に設けられている。第1受光素子14Aによって受光される反射光の角度は、第1受光素子14Aに対する第1アパーチャ16Aの開口位置によって制御される。第1アパーチャ16Aは、第1受光レンズ15Aから焦点距離fだけ隔てた距離に配置される。第1アパーチャ16Aは、被検体23の表面から反射し、第1受光レンズ15Aを通過した光のうち、所定の反射角度を有する光L3Aを通過させる。第1アパーチャ16Aは、第1アパーチャ制御部21Aによって制御される不図示のモータによって、Z方向に移動可能である。第1アパーチャ16Aの開口径は、例えば5mmから10mmである。
第2アパーチャ16Bは、例えば、不図示の金属板、又は金属薄膜に形成された開口を備える。第2アパーチャ16Bは、第2受光素子14Bと第2受光レンズ15Bとの間に設けられている。第2受光素子14Bによって受光される反射光の角度は、第2受光素子14Bに対する第2アパーチャ16Bの開口位置によって制御される。第2アパーチャ16Bは、第2受光レンズ15Bから焦点距離fだけ隔てた距離に配置される。第2アパーチャ16Bは、被検体23の表面から反射し、第2受光レンズ15Bを通過した光のうち、所定の反射角度を有する光L3Bを通過させる。第2アパーチャ16Bは、第2アパーチャ制御部21Bによって制御される不図示のモータによって、Z方向に移動可能である。第2アパーチャ16Bの開口径は、例えば5mmから10mmである。
第1受光素子14Aは、例えば、PDを用いることができる。第1受光素子14Aは、第1受光レンズ15A及び第1アパーチャ16Aを通過した被検体23の表面に対し所定角度で反射する光L3Aを受光する。第1受光素子14Aは、X方向のステージ移動とY方向の光走査に同期して光L3Aを受光することによって光強度データを取得する。
第2受光素子14Bは、例えば、PDを用いることができる。第2受光素子14Bは、第2受光レンズ15B及び第2アパーチャ16Bを通過した被検体23の表面に対し所定角度で反射する光L3Bを受光する。第2受光素子14Bは、X方向のステージ移動とY方向の光走査に同期して光L3Bを受光することによって光強度データを取得する。即ち、光学系としての第1受光レンズ15Aと第2受光レンズ15B、第1アパーチャ16Aと第2アパーチャ16B、及び検出器としての第1受光素子14A及び第2受光素子14Bを、照射部としての集光レンズ13の照射光の光軸からみて線対象の位置に2系統配置し、検出器としての第1受光レンズ15Aと第2受光レンズ15Bの検出信号により表面欠陥を判別するようにしている。
制御部47は、光源制御部18、ステージ制御部19、第1受光素子制御部20A、第2受光素子制御部20B、第1アパーチャ制御部21A、第2アパーチャ制御部21B、及び出力部22と接続されている。制御部47は、光源制御部18、ステージ制御部19、第1受光素子制御部20A、第2受光素子制御部20B、第1アパーチャ制御部21A、及び第2アパーチャ制御部21Bの制御を行い、被検体23の表面検査処理を行う。また、制御部47は、表面検査処理によって得られた検査結果を、出力部22に出力する。
光源制御部18は、光源12及び制御部47に接続されている。光源制御部18は、光源12を制御して、不図示のLED、又はLDから発生する単波長の光L3をZ方向に照射させる。
ステージ制御部19は、ステージ11及び制御部47に接続されている。ステージ制御部19は、ステージ11に備えられた不図示の駆動部を制御して、ステージ11をX方向又はY方向に移動させる。
第1受光素子制御部20Aは、第1受光素子14A及び制御部47に接続されている。第1受光素子制御部20Aは、第1受光素子14Aを制御して、光源12からの光L3のうち、被検体23の表面から所定角度で反射した光L3Aを受光させる。また、第1受光素子制御部20Aは、不図示の駆動部を制御して、第1受光素子14AをZ方向に移動させる。
第2受光素子制御部20Bは、第2受光素子14B及び制御部47に接続されている。第2受光素子制御部20Bは、第2受光素子14Bを制御して、光源12からの光L3のうち、被検体23の表面から所定角度で反射した光L3Bを受光させる。また、第2受光素子制御部20Bは、不図示の駆動部を制御して、第2受光素子14BをZ方向に移動させる。
第1アパーチャ制御部21Aは、第1アパーチャ16A及び制御部47に接続されている。第1アパーチャ制御部21Aは、不図示の駆動部を制御して、第1アパーチャ16AをZ方向に移動させる。
第2アパーチャ制御部21Bは、第2アパーチャ16B及び制御部47に接続されている。第2アパーチャ制御部21Bは、不図示の駆動部を制御して、第2アパーチャ16BをZ方向に移動させる。
出力部22は、制御部47に接続されている。出力部22は、制御部47から、表面検査処理の結果を出力する。
図10は、実施例2に係る表面検査装置40において、表面欠陥の反射光の強度に対し、被検体23の斜面による影響が抑制されることを説明する図である。なお、図10に係る表面検査装置40において、図9に係る表面検査装置40で説明した構成と同様の構成には同一の符号を付し、説明を省略する。
図10Aは、実施例2に係る表面検査装置40が、被検体23の主光線25C側に傾斜した斜面の表面欠陥からの光を受光するところを示す図である。図10Aに示す表面検査装置40は、ステージ11、第1光学系29A、及び第2光学系29Bを示す。第1光学系29Aは、集光レンズ13、第1受光素子14A、第1受光レンズ15A、及び第1アパーチャ16Aから構成されている。第2光学系29Bは、集光レンズ13、第2受光素子14B、第2受光レンズ15B、及び第2アパーチャ16Bから構成されている。被検体23は、検査対象である。被検体23は、表面23Eを有する。表面23Eは、被検体23において、主光線25C側に傾斜した斜面である。第1光学系29Aのうち、第1受光素子14A、第1受光レンズ15A、及び第1アパーチャ16Aは、表面23Eの斜面と対向して配置されている。σは、照射光線L3の焦点深度である。照射光線L1の焦点深度σは、例えば10mmである。光L3Aは、被検体23の表面23Cからの反射光である。
図10Aで示すように、第1アパーチャ16Aは、集光レンズ13に入射する光L3が被検体23から反射して発生する光のうち、被検体23の表面23Eに対して角度Cで反射する光L3Aが選択的に通過するように、表面23Eの斜面と対向して配置されている。そのため、第1受光素子14Aは、被検体23の表面23Eに対して角度Cで反射する光L3Aを受光する。図9で説明したように、第1受光レンズ15Aの上部を通過した角度Aの光L3Aは主光線25Cと平行になるように屈折し、主光線25Cの位置から所定の位置にある第1アパーチャ16Aに到達する。そのため、光L3Aは第1受光素子14Aによって受光される。
図10Bは、実施例2に係る表面検査装置40が、被検体23の主光線25D側に傾斜した斜面の表面欠陥からの光を受光するところを示す図である。図10Bに示す表面検査装置40は、ステージ11、第1光学系29A、及び第2光学系29Bを示す。被検体23は、検査対象である。被検体23は、表面23Fを有する。表面23Fは、被検体23において、主光線25D側に傾斜した斜面である。なお、第2光学系29Bのうち、第2受光素子14B、第2受光レンズ15B、及び第2アパーチャ16Bは、表面23Fの斜面と対向して配置されている。光L4Aは、被検体23の表面23Fからの反射光である。なお、図10Bは、ステージ11がX方向に移動することにより、図10Aの被検体23における表面23Eから、図10Bの被検体23における表面23Fまで、光源12からZ方向に照射される光L3の位置が移動したようすを示す図である。
図10Bで示すように、被検体23の表面23Fから反射した光L4Aは、第2受光レンズ15Bの口径内に入る光であれば、第2受光レンズ15Bを通過することができる。第2アパーチャ16Bは、集光レンズ13に入射する光L3が被検体23から反射して発生する光のうち、被検体23の表面23Fに対して角度Dで反射する光L4Aが選択的に通過するように、表面23Fの斜面と対向して配置されている。そのため、第2受光素子14Bは、被検体23の表面23Fに対して角度Dで反射する光L4Aを受光する。図9で説明したように、第2受光レンズ15Bの上部を通過した角度Dの光L4Aは主光線25Dと平行になるように屈折し、主光線25Dの位置から所定の位置にある第2アパーチャ16Bに到達する。そのため、光L4Aは第2受光素子14Bによって受光される。
このような表面検査装置40の構造によれば、被検体23の表面高さが変化しても、光学系としての第1受光レンズ15A及び第2受光レンズ15Bで捕捉できる範囲であれば、被検体23表面からの反射光のうち一定の角度範囲の成分を、第1アパーチャ16A及び第2アパーチャ16Bへ到達する角度でかつ平行光束となるよう屈折させることができるので、同一の表面欠陥であれば、その高さ位置にかかわらず一定の反射角度範囲の散乱反射光成分を第1アパーチャ16A及び第2アパーチャ16Bを通過させ、検出器としての第1受光素子14A及び第2受光素子14Bに到達させることができるので、高い精度で欠陥検出を行うことができる。
さらに、第1光学系29A及び第2光学系29B、第1アパーチャ16A及び第2アパーチャ16B、及び検出器としての第1受光素子14A及び第2受光素子14Bを、照射部としての集光レンズ13の照射光の光軸からみて線対象の位置に2系統配置し、各検出器の検出信号により表面欠陥を判別するようにした。そのため、被検体23の傾斜方向が異なる斜面に対向して第1光学系29A及び第2光学系29Bを配置することにより、被検体23の表面が斜面であっても、第1受光素子14A又は第2受光素子14Bのいずれかを用いて、被検体23からの反射光を受光することができる。表面検査装置40に係る第1受光素子14A又は第2受光素子14Bが受光する表面欠陥からの光の強度は、実施例1に係る表面検査装置10と同様に、被検体の表面の傾斜方向による影響を受けないため、斜面がある被検体23の表面における正常面及び表面欠陥の判別を定量的に行うことができる。
(付記1)
光源からの光を被検体の表面に照明する照明部と、
被検体表面からの反射光を捕捉する光学系と、
該光学系により捕捉された反射光の一部を通過させるアパーチャと、
該アパーチャを通過した反射光の強度を検出する検出器を具備し、
前記光学系が、前記被検体の表面の位置から該光学系の焦点距離となる位置に、且つ該光学系の光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記光学系に対し前記被検体の表面位置とは反対の側で、前記光学系の焦点距離の位置で、且つ前記反射光が通過する位置に配置したことを特徴とする表面検査装置。
(付記2)
前記光学系が凸レンズで構成され、該凸レンズの主点を前記被検体の表面の位置から該凸レンズの焦点距離となる位置に配置し、被検体表面からの反射光を該凸レンズで平行光束に屈折させて前記アパーチャを通過させるように構成したことを特徴とする付記1記載の表面検査装置。
(付記3)
前記照明部の集光被写界深度は、前記被検体の表面位置とされる範囲以上としたことを特徴とする付記2記載の表面検査装置。
(付記4)
前記凸レンズを、前記被検体の表面位置とされる範囲のほぼ中央からの反射光が、前記凸レンズの主点を通過して前記アパーチャを通過するように配置したことを特徴とする付記3記載の表面検査装置。
(付記5)
前記照明部の照明光の光軸がほぼ垂直な方向に前記被検体の表面を相対的に移動させることにより、前記照明光を被検体表面に対して走査し、表面検査を行うようにしたことを特徴とする付記1記載の表面検査装置。
(付記6)
前記照明部の照明光を線状に集光して被検体表面に照射するようにしたことを特徴とする付記1又は5記載の表面検査装置。
(付記7)
前記アパーチャは、前記被検体表面の高さが異なるときに、前記凸レンズにより集光される平行な光束の入射角が異なっても前記検出器へ通過させる反射光成分を妨げない十分薄い遮光体で構成したことを特徴とする付記2記載の表面検査装置。
(付記8)
前記光学系、前記アパーチャ、及び前記検出器を、前記照射部の照射光の光軸からみて線対象の位置に2系統配置し、各検出器の検出信号により表面欠陥を判別するようにしたことを特徴とする付記1記載の表面検査装置。
(付記9)
光源からの光を被検体の表面に照明し、
被検体表面からの反射光をレンズにより捕捉し、
該レンズにより捕捉された反射光の一部をアパーチャを介して通過させ、
該アパーチャを通過した反射光の強度を検出して被検体の表面を検査する表面検査方法であって、
前記レンズを該レンズの主点が前記被検体の表面の位置から焦点距離となる位置に、且つ該レンズの光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記レンズに対し前記被検体の表面位置とは反対の側で、前記レンズの主点から該レンズの焦点距離の位置で、且つ前記反射光の一部が通過する位置に配置して、該通過した反射光の強度を検出することにより、被検体表面を検査することを特徴とする表面検査方法。
10 表面検査装置
11 ステージ
12 光源
13 集光レンズ
14 受光素子
14A 第1受光素子
14B 第2受光素子
15 受光レンズ
15A 第1受光レンズ
15B 第2受光レンズ
16 アパーチャ
16A 第1アパーチャ
16B 第2アパーチャ
17 制御部
170A CPU
170B メモリ
17A 信号取得部
17B 信号処理部
171B ローカットフィルタ信号処理部
172B 良否判定部
17C 検査結果出力部
18 光源制御部
19 ステージ制御部
20 受光素子制御部
20A 第1受光素子制御部
20B 第2受光素子制御部
21 アパーチャ制御部
21A 第1アパーチャ制御部
21B 第2アパーチャ制御部
22 出力部
23 被検体
23A 表面欠陥
23B 表面欠陥
23C 表面
23D 表面
23E 表面
23F 表面
24 光軸
24A 光軸
24B 光軸
25 主光線
25A 主光線
25B 主光線
25C 主光線
25D 主光線
26 発光面
27 ローカットフィルタ
28 焦点面
29 光学系
29A 第1光学系
29B 第2光学系
40 表面検査装置
47 制御部
L1 光
L2 光
L3 光
L1A 光
L2A 光
L3A 光
L4A 光
f 焦点距離
σ 焦点深度

Claims (6)

  1. 光源からの光を被検体の表面に照明する照明部と、
    被検体表面からの反射光を捕捉する光学系と、
    該光学系により捕捉された反射光の一部を通過させるアパーチャと、
    該アパーチャを通過した反射光の強度を検出する検出器を具備し、
    前記光学系が、前記被検体の表面の位置から該光学系の焦点距離となる位置に、且つ該光学系の光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記光学系に対し前記被検体の表面位置とは反対の側で、前記光学系の焦点距離の位置で、且つ前記反射光が通過する位置に配置したことを特徴とする表面検査装置。
  2. 前記光学系が凸レンズで構成され、該凸レンズの主点を前記被検体の表面の位置から該凸レンズの焦点距離となる位置に配置し、被検体表面からの反射光を該凸レンズで平行光束に屈折させて前記アパーチャを通過させるように構成したことを特徴とする請求項1記載の表面検査装置。
  3. 前記照明部の照明光の光軸がほぼ垂直な方向に前記被検体の表面を相対的に移動させることにより、前記照明光を被検体表面に対して走査し、表面検査を行うようにしたことを特徴とする請求項1記載の表面検査装置。
  4. 前記照明部の照明光を線状に集光して被検体表面に照射するようにしたことを特徴とする請求項1又は3記載の表面検査装置。
  5. 前記光学系、前記アパーチャ、及び前記検出器を、前記照射部の照射光の光軸からみて線対象の位置に2系統配置し、各検出器の検出信号により表面欠陥を判別するようにしたことを特徴とする請求項1記載の表面検査装置。
  6. 光源からの光を被検体の表面に照明し、
    被検体表面からの反射光をレンズにより捕捉し、
    該レンズにより捕捉された反射光の一部をアパーチャを介して通過させ、
    該アパーチャを通過した反射光の強度を検出して被検体の表面を検査する表面検査方法であって、
    前記レンズを該レンズの主点が前記被検体の表面の位置から焦点距離となる位置に、且つ該レンズの光軸に垂直な面が前記照明部の照明光の光軸と平行となる角度で配置し、前記アパーチャを、前記レンズに対し前記被検体の表面位置とは反対の側で、前記レンズの主点から該レンズの焦点距離の位置で、且つ前記反射光の一部が通過する位置に配置して、該通過した反射光の強度を検出することにより、被検体表面を検査することを特徴とする表面検査方法。
JP2009221776A 2009-09-28 2009-09-28 表面検査装置及び表面検査方法 Expired - Fee Related JP5532792B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221776A JP5532792B2 (ja) 2009-09-28 2009-09-28 表面検査装置及び表面検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221776A JP5532792B2 (ja) 2009-09-28 2009-09-28 表面検査装置及び表面検査方法

Publications (2)

Publication Number Publication Date
JP2011069749A true JP2011069749A (ja) 2011-04-07
JP5532792B2 JP5532792B2 (ja) 2014-06-25

Family

ID=44015150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221776A Expired - Fee Related JP5532792B2 (ja) 2009-09-28 2009-09-28 表面検査装置及び表面検査方法

Country Status (1)

Country Link
JP (1) JP5532792B2 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129582A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Flaw detector
JPS5794903A (en) * 1980-12-05 1982-06-12 Hitachi Ltd Defect detector for disk surface
JPH01260348A (ja) * 1988-04-12 1989-10-17 Hitachi Electron Eng Co Ltd ガラスディスクの表面検査装置
JPH02143150A (ja) * 1988-11-25 1990-06-01 Hitachi Electron Eng Co Ltd 透明膜の異物検査光学系
JPH0569300B2 (ja) * 1986-03-20 1993-09-30 Canon Kk
JPH0634560A (ja) * 1992-07-21 1994-02-08 Canon Inc 表面状態検査装置
JPH0711491B2 (ja) * 1985-04-19 1995-02-08 サイスキャン・システムズ・インク 半導体ウエ−ハ走査装置及び方法
JPH0815177A (ja) * 1994-06-29 1996-01-19 Kawasaki Steel Corp 表面欠陥撮像方法及び装置
JPH09329422A (ja) * 1996-06-12 1997-12-22 Fujitsu Ltd 高さ測定方法及び装置
JP2000009452A (ja) * 1998-06-22 2000-01-14 Hitachi Tobu Semiconductor Ltd 表面の凹凸検査方法および装置
JP2001083098A (ja) * 1999-09-16 2001-03-30 Sumitomo Osaka Cement Co Ltd 光学的表面検査機構及び光学的表面検査装置
JP3257010B2 (ja) * 1992-01-07 2002-02-18 株式会社日立製作所 パターン検査方法及び装置
JP2002531825A (ja) * 1998-11-30 2002-09-24 オブスチェストボ・エス・オグラニチェノイ・オトベツトステベノスチユ“リフレックス・レート” 解析表面の検査方法と、表面走査解析装置
JP2002539494A (ja) * 1999-03-18 2002-11-19 ゼテティック・インスティチュート 波数ドメイン反射率計を使用した多重層の共焦干渉顕微鏡、並びに、背景振幅減少及び補償方法
JP3507262B2 (ja) * 1996-08-30 2004-03-15 松下電器産業株式会社 表面検査装置
JP2005055196A (ja) * 2003-08-05 2005-03-03 Olympus Corp 基板検査方法及びその装置
JP2006058224A (ja) * 2004-08-23 2006-03-02 Mitsutoyo Corp 測定器
JP2006250640A (ja) * 2005-03-09 2006-09-21 Ricoh Co Ltd 表面状態測定方法及び表面状態測定装置
JP2008076257A (ja) * 2006-09-22 2008-04-03 Nikon Corp 光学装置、光学装置の制御プログラム、及び像の取得方法
JP2009036696A (ja) * 2007-08-03 2009-02-19 Yokogawa Electric Corp 画像検査装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129582A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Flaw detector
JPS5794903A (en) * 1980-12-05 1982-06-12 Hitachi Ltd Defect detector for disk surface
JPH0711491B2 (ja) * 1985-04-19 1995-02-08 サイスキャン・システムズ・インク 半導体ウエ−ハ走査装置及び方法
JPH0569300B2 (ja) * 1986-03-20 1993-09-30 Canon Kk
JPH01260348A (ja) * 1988-04-12 1989-10-17 Hitachi Electron Eng Co Ltd ガラスディスクの表面検査装置
JPH02143150A (ja) * 1988-11-25 1990-06-01 Hitachi Electron Eng Co Ltd 透明膜の異物検査光学系
JP3257010B2 (ja) * 1992-01-07 2002-02-18 株式会社日立製作所 パターン検査方法及び装置
JPH0634560A (ja) * 1992-07-21 1994-02-08 Canon Inc 表面状態検査装置
JPH0815177A (ja) * 1994-06-29 1996-01-19 Kawasaki Steel Corp 表面欠陥撮像方法及び装置
JPH09329422A (ja) * 1996-06-12 1997-12-22 Fujitsu Ltd 高さ測定方法及び装置
JP3507262B2 (ja) * 1996-08-30 2004-03-15 松下電器産業株式会社 表面検査装置
JP2000009452A (ja) * 1998-06-22 2000-01-14 Hitachi Tobu Semiconductor Ltd 表面の凹凸検査方法および装置
JP2002531825A (ja) * 1998-11-30 2002-09-24 オブスチェストボ・エス・オグラニチェノイ・オトベツトステベノスチユ“リフレックス・レート” 解析表面の検査方法と、表面走査解析装置
JP2002539494A (ja) * 1999-03-18 2002-11-19 ゼテティック・インスティチュート 波数ドメイン反射率計を使用した多重層の共焦干渉顕微鏡、並びに、背景振幅減少及び補償方法
JP2001083098A (ja) * 1999-09-16 2001-03-30 Sumitomo Osaka Cement Co Ltd 光学的表面検査機構及び光学的表面検査装置
JP2005055196A (ja) * 2003-08-05 2005-03-03 Olympus Corp 基板検査方法及びその装置
JP2006058224A (ja) * 2004-08-23 2006-03-02 Mitsutoyo Corp 測定器
JP2006250640A (ja) * 2005-03-09 2006-09-21 Ricoh Co Ltd 表面状態測定方法及び表面状態測定装置
JP2008076257A (ja) * 2006-09-22 2008-04-03 Nikon Corp 光学装置、光学装置の制御プログラム、及び像の取得方法
JP2009036696A (ja) * 2007-08-03 2009-02-19 Yokogawa Electric Corp 画像検査装置

Also Published As

Publication number Publication date
JP5532792B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4979246B2 (ja) 欠陥観察方法および装置
CN109540004B (zh) 一种光学检测***及其检测方法
JP5349742B2 (ja) 表面検査方法及び表面検査装置
EP2993463B1 (en) Fluorescence imaging autofocus systems and methods
US20170328842A1 (en) Defect observation method and defect observation device
US20160211112A1 (en) Method and Apparatus for Reviewing Defects
TWI480542B (zh) A defect detection method and apparatus therefor, and a defect observation method and apparatus therefor
JP2016038302A (ja) 欠陥検査装置及び欠陥検査方法
JP2010096554A (ja) 欠陥検出方法の高感度化
JP2012078164A (ja) パターン検査装置
JP5728395B2 (ja) 円筒内周面検査用光学系及び円筒内周面検査装置
CN107782732B (zh) 自动对焦***、方法及影像检测仪器
KR102554867B1 (ko) 기판 검사 장치
EP1197745A1 (en) Through hole inspecting method and device
US7142315B1 (en) Slit confocal autofocus system
JP2010181317A (ja) 欠陥検査装置
JP2003017536A (ja) パターン検査方法及び検査装置
JP5532792B2 (ja) 表面検査装置及び表面検査方法
JP4834363B2 (ja) 表面検査装置
KR20210058657A (ko) 촬상 장치
JP4654408B2 (ja) 検査装置、検査方法及びパターン基板の製造方法
JP2012068321A (ja) マスク欠陥検査装置およびマスク欠陥検査方法
JP4406873B2 (ja) スキャン測定検査装置
JP4924931B2 (ja) ステンシルマスクの検査方法および装置
JP4680545B2 (ja) 外観検査方法、および外観検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees