JP2011068939A - Method for producing silver hyperfine particle, silver hyperfine particle-containing composition, and conductive member - Google Patents

Method for producing silver hyperfine particle, silver hyperfine particle-containing composition, and conductive member Download PDF

Info

Publication number
JP2011068939A
JP2011068939A JP2009219937A JP2009219937A JP2011068939A JP 2011068939 A JP2011068939 A JP 2011068939A JP 2009219937 A JP2009219937 A JP 2009219937A JP 2009219937 A JP2009219937 A JP 2009219937A JP 2011068939 A JP2011068939 A JP 2011068939A
Authority
JP
Japan
Prior art keywords
silver
ultrafine
particles
ultrafine particle
containing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009219937A
Other languages
Japanese (ja)
Other versions
JP5368925B2 (en
Inventor
Shoji Akaiwa
昌治 赤岩
Shigeki Shino
成樹 志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2009219937A priority Critical patent/JP5368925B2/en
Publication of JP2011068939A publication Critical patent/JP2011068939A/en
Application granted granted Critical
Publication of JP5368925B2 publication Critical patent/JP5368925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing silver hyperfine particles by which a recovery rate is high, and the dispersion stability of silver hyperfine particles with the lapse of time is excellent, to provide a silver hyperfine particle-containing composition having excellent dispersion stability and adhesion with a base material, and to provide a conductive member having excellent adhesion with the base material and electric conductivity. <P>SOLUTION: In the method for producing silver hyperfine particles where, into an aqueous medium mainly containing water, at least a water-soluble silver salt, a basic compound, a water-soluble polymer compound and a reducing agent are incorporated, and silver ions derived from the water-soluble silver salt are reduced so as to produce silver hyperfine particles, the basic compound is composed of a basic potassium salt. Further, the silver hyperfine particle-containing composition contains the silver hyperfine particles obtained thereby, and the conductive member is obtained thereby. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は銀超微粒子の製造方法に関する。また該銀超微粒子の製造方法によって得られた銀超微粒子を含有する銀超微粒子含有組成物、および該銀超微粒子含有組成物によってパターンが形成された導電性部材に関する。   The present invention relates to a method for producing ultrafine silver particles. Further, the present invention relates to a silver ultrafine particle-containing composition containing silver ultrafine particles obtained by the method for producing silver ultrafine particles, and a conductive member having a pattern formed by the silver ultrafine particle-containing composition.

一次粒子径が1μm以下の銀超微粒子、特に100nm以下の銀超微粒子は、極めて高い表面エネルギーによる融点低下や、局在化表面プラズモンによる電場増強効果等の特徴を有することから、導電性材料、表面増強ラマン散乱分光、太陽電池、光輝性塗料、色材等の様々な分野での応用が期待されており、特に導電性材料としての使用検討が進んでいる。この銀超微粒子の製造方法は、乾式法と湿式法に大別され、水および/または有機溶媒に分散された銀超微粒子分散液の形で使用される。   Silver ultrafine particles having a primary particle diameter of 1 μm or less, particularly silver ultrafine particles of 100 nm or less, have characteristics such as a melting point decrease due to extremely high surface energy and an electric field enhancement effect due to localized surface plasmons. Applications in various fields such as surface-enhanced Raman scattering spectroscopy, solar cells, glittering paints, and coloring materials are expected, and studies on use as conductive materials are in progress. The silver ultrafine particle production method is roughly classified into a dry method and a wet method, and is used in the form of a silver ultrafine particle dispersion liquid dispersed in water and / or an organic solvent.

導電性材料として使用する場合、焼結温度は低いほど使用可能な基材の選択肢が増え、使用エネルギーも低減することが可能であるため好ましく、例えば、特開平3−34211号公報には、乾式法であるガス中蒸発法により製造された銀を含む各種金属超微粒子を高沸点溶媒中に分散した金属超微粒子分散液の製造方法が開示されており、また特開2004−273205号公報には、ガス中蒸発法により合成された銀超微粒子を原料に用い、表面をアミン化合物によって被覆した銀超微粒子を高沸点溶媒中に分散した銀超微粒子分散液の製造方法が開示されている。しかしながらこの方法では金属蒸気を作製するための特別な装置が必要であるため製造装置が高価であり、更に金属蒸発のためにエネルギーが多量に必要であるという問題を有していた。   When used as a conductive material, the lower the sintering temperature, the more choices of usable base materials increase, and the use energy can be reduced. For example, JP-A-3-34211 discloses a dry process. A method for producing a metal ultrafine particle dispersion in which various metal ultrafine particles containing silver produced by a gas evaporation method is dispersed in a high boiling point solvent is disclosed, and Japanese Patent Application Laid-Open No. 2004-273205 discloses. Also disclosed is a method for producing a silver ultrafine particle dispersion in which silver ultrafine particles synthesized by a gas evaporation method are used as raw materials and silver ultrafine particles whose surface is coated with an amine compound are dispersed in a high boiling point solvent. However, this method requires a special apparatus for producing metal vapor, so that the production apparatus is expensive, and a large amount of energy is required for metal evaporation.

湿式法による銀超微粒子の製造方法としてはCarey Leaが1889年に発表した方法(非特許文献1、Am.J.Sci.,vol.37,pp.491,1889)が古くから知られており、また特公平1−28084号公報(特許文献1)、特開平10−66861号公報(特許文献2)、特開2003−103158号公報(特許文献3)、特開2006−328472号公報(特許文献4)等には、水を主体に含有する水性媒体中に、保護コロイドあるいは分散剤として作用する水溶性高分子化合物と金属イオンを含有させ、還元剤により該金属イオンを還元し金属超微粒子を製造する方法が開示されている。このような製造方法において金属イオンを還元する際に用いる塩基性化合物としては水酸化ナトリウム、炭酸ナトリウム等の塩基性ナトリウム塩が一般的であるが、これらの方法によって製造した銀超微粒子を含有する分散液は、経時によって銀超微粒子の分散安定性が低下するという問題があった。これに対して、特開2005−248204号公報(特許文献5)、アンモニア水を用いる方法によって製造した銀超微粒子の分散安定性は有効ではあるが、この方法では銀超微粒子の回収量が少ないという問題があった。   As a method for producing silver ultrafine particles by a wet method, a method published by Carey Lea in 1889 (Non-patent Document 1, Am. J. Sci., Vol. 37, pp. 491, 1889) has been known for a long time. Japanese Patent Publication No. 1-228084 (Patent Document 1), Japanese Patent Application Laid-Open No. 10-66861 (Patent Document 2), Japanese Patent Application Laid-Open No. 2003-103158 (Patent Document 3), Japanese Patent Application Laid-Open No. 2006-328472 (Patent Document 1). Document 4) and the like contain a water-soluble polymer compound that acts as a protective colloid or a dispersant and a metal ion in an aqueous medium mainly containing water, and the metal ion is reduced by a reducing agent to form ultrafine metal particles. A method of manufacturing is disclosed. Basic compounds used for reducing metal ions in such production methods are generally basic sodium salts such as sodium hydroxide and sodium carbonate, but contain silver ultrafine particles produced by these methods. The dispersion has a problem that the dispersion stability of the ultrafine silver particles decreases with time. On the other hand, although dispersion stability of silver ultrafine particles produced by JP 2005-248204 A (Patent Document 5) and a method using ammonia water is effective, this method has a small amount of silver ultrafine particles recovered. There was a problem.

また上記したような製造方法で得られた銀超微粒子は、分散媒として水を含有する水系分散液として得るのが一般的であり、該分散液は導体配線や導電膜等の導電性材料を製造する場合に用いられるスピンコート塗布法、スクリーン印刷法、インクジェット印刷法、ディスペンサー塗布法等の各種印刷方法や塗布方法に適した物性が付与された銀超微粒子含有組成物として利用されるが、この場合においても十分な分散安定性が求められる。   In addition, the silver ultrafine particles obtained by the production method as described above are generally obtained as an aqueous dispersion containing water as a dispersion medium, and the dispersion contains conductive materials such as conductor wirings and conductive films. It is used as a composition containing ultrafine silver particles provided with physical properties suitable for various printing methods and coating methods such as spin coating coating method, screen printing method, inkjet printing method, dispenser coating method, etc. Even in this case, sufficient dispersion stability is required.

また基材との密着性を良化する目的として、銀超微粒子含有組成物にポリマーラテックスを用いることは従来から知られており、例えば特公平7−26044号公報(特許文献6)には、ポリウレタンの水性分散体を含有し、導電性と基材への密着性が良好なペイント染料の製造方法として記載がされている。しかしながらポリマーラテックスを含有する銀超微粒子含有組成物においては、上記した経時によって銀超微粒子の分散安定性が低下するという問題がますます顕著に表れ、改善が求められていた。また前述の特許文献4には、銀超微粒子を含有する分散液にグリセリンやエチレングリコールモノブチルエーテル、およびエタノールやアセトン等の各種有機溶媒を添加しても金属超微粒子の粒度分布が変動しない金属コロイド溶液が記載されるが、十分満足できるものではなかった。   In addition, for the purpose of improving the adhesion with the substrate, it has been conventionally known that a polymer latex is used in a composition containing ultrafine silver particles. For example, Japanese Patent Publication No. 7-26044 (Patent Document 6) It is described as a method for producing a paint dye containing an aqueous dispersion of polyurethane and having good conductivity and adhesion to a substrate. However, in the silver ultrafine particle-containing composition containing the polymer latex, the problem that the dispersion stability of the silver ultrafine particles is lowered with the lapse of time described above appears more and more, and improvement has been demanded. Further, in Patent Document 4 mentioned above, a metal colloid in which the particle size distribution of ultrafine metal particles does not change even when various organic solvents such as glycerin, ethylene glycol monobutyl ether, and ethanol or acetone are added to a dispersion containing ultrafine silver particles. Although a solution is described, it was not fully satisfactory.

特公平1−28084号公報Japanese Patent Publication No. 1-228084 特開平10−66861号公報Japanese Patent Laid-Open No. 10-66861 特開2003−103158号公報JP 2003-103158 A 特開2006−328472号公報JP 2006-328472 A 特開2005−248204号公報JP 2005-248204 A 特公平7−26044号公報Japanese Patent Publication No. 7-26044

Am.J.Sci.,vol.37,pp.491,1889Am. J. et al. Sci. , Vol. 37, pp. 491, 1889

本発明の第1の目的は、銀超微粒子の回収量が多く、経時による銀超微粒子の分散安定性に優れた銀超微粒子の製造方法を提供することにある。また本発明の第2の目的は、分散安定性に優れた銀超微粒子含有組成物、および基材との密着性と分散安定性に優れた銀超微粒子含有組成物を提供することにある。また第3の目的は基材との密着安定性と導電性に優れた導電性部材を提供することにある。   A first object of the present invention is to provide a method for producing silver ultrafine particles that has a large amount of silver ultrafine particles recovered and that is excellent in dispersion stability of silver ultrafine particles over time. The second object of the present invention is to provide a silver ultrafine particle-containing composition excellent in dispersion stability, and a silver ultrafine particle-containing composition excellent in adhesion to a substrate and dispersion stability. A third object is to provide a conductive member having excellent adhesion stability and conductivity with a base material.

本発明の上記目的は、以下の発明によって基本的に達成された。
1.水を主体に含有する水性媒体中に少なくとも水溶性銀塩、塩基性化合物、水溶性高分子化合物、および還元剤を含有せしめ、水溶性銀塩由来の銀イオンを還元し銀超微粒子を製造する銀超微粒子の製造方法において、該塩基性化合物が塩基性カリウム塩であることを特徴とする銀超微粒子の製造方法。
2.前記塩基性カリウム塩が水酸化カリウムである上記1に記載の銀超微粒子の製造方法。
3.上記1または2記載の銀超微粒子の製造方法によって得られた銀超微粒子を含有する銀超微粒子含有組成物。
4.上記1または2記載の銀超微粒子の製造方法によって得られた銀超微粒子とポリマーラテックスを含有する銀超微粒子含有組成物。
5.基材上に上記3または4記載の銀超微粒子含有組成物によってパターンが形成された導電性部材。
The above object of the present invention has been basically achieved by the following invention.
1. An aqueous medium mainly containing water contains at least a water-soluble silver salt, a basic compound, a water-soluble polymer compound, and a reducing agent, and silver ions derived from the water-soluble silver salt are reduced to produce ultrafine silver particles. A method for producing silver ultrafine particles, wherein the basic compound is a basic potassium salt.
2. 2. The method for producing ultrafine silver particles according to 1 above, wherein the basic potassium salt is potassium hydroxide.
3. A composition containing ultrafine silver particles, comprising ultrafine silver particles obtained by the method for producing ultrafine silver particles according to 1 or 2 above.
4). 3. A silver ultrafine particle-containing composition comprising silver ultrafine particles obtained by the method for producing silver ultrafine particles according to 1 or 2 above and a polymer latex.
5). The electroconductive member by which the pattern was formed with the silver ultrafine particle containing composition of said 3 or 4 on the base material.

本発明によれば、回収量が多く、経時による銀超微粒子の分散安定性に優れた銀超微粒子の製造方法を提供することができる。また分散安定性に優れた銀超微粒子含有組成物、および基材との密着性と分散安定性に優れた銀超微粒子含有組成物を提供することができる。更には基材との密着安定性と導電性に優れた導電性部材を提供することができる。   According to the present invention, it is possible to provide a method for producing ultrafine silver particles that has a large recovery amount and is excellent in dispersion stability of ultrafine silver particles over time. In addition, it is possible to provide a silver ultrafine particle-containing composition excellent in dispersion stability, and a silver ultrafine particle-containing composition excellent in adhesion to the substrate and dispersion stability. Furthermore, it is possible to provide a conductive member having excellent adhesion stability and conductivity with the substrate.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、水を主体に含有する水性媒体中に少なくとも水溶性銀塩、塩基性化合物、水溶性高分子化合物、および還元剤を含有せしめ、水溶性銀塩由来の銀イオンを還元し銀超微粒子を製造する銀超微粒子の製造方法について鋭意検討した結果、従来から知られている水酸化ナトリウム、炭酸ナトリウム等の塩基性ナトリウム塩やアンモニア水等の塩基性化合物ではなく、塩基性カリウム塩を用いて製造すると、極めて分散安定性の高い銀超微粒子が得られることを見いだした。また、水溶性高分子および還元剤の兼用として多糖類を用いた場合、特に使用銀量に対する銀超微粒子の回収量が多いことを見いだした。そしてこの分散安定性は、各種印刷方法や塗布方法に適した物性が付与された銀超微粒子含有組成物においても同様にして得られることを見いだした。また導電性材料を製造する場合に基材との密着性を良化する目的として、銀超微粒子含有組成物にポリマーラテックスを用いることは従来から知られていたが、このような場合においても本発明の製造方法によって得られた銀超微粒子を用いることで、基材との密着性と銀超微粒子の分散安定性に優れた銀超微粒子含有組成物が得られることを見いだした。   The present inventors reduced the silver ions derived from the water-soluble silver salt by containing at least a water-soluble silver salt, a basic compound, a water-soluble polymer compound, and a reducing agent in an aqueous medium mainly containing water. As a result of intensive investigations on the method for producing silver ultrafine particles, the basic potassium salt is not the basic sodium salt such as sodium hydroxide or sodium carbonate, or the basic compound such as aqueous ammonia. It has been found that ultrafine silver particles with extremely high dispersion stability can be obtained by using a salt. In addition, it was found that when a polysaccharide is used as a water-soluble polymer and a reducing agent, the recovery amount of ultrafine silver particles is particularly large relative to the amount of silver used. It has been found that this dispersion stability can be obtained in the same manner even in a composition containing silver ultrafine particles to which physical properties suitable for various printing methods and coating methods are imparted. In addition, the use of a polymer latex in a silver ultrafine particle-containing composition has been known for the purpose of improving the adhesion to a substrate when producing a conductive material. It has been found that by using the silver ultrafine particles obtained by the production method of the invention, a composition containing ultrafine silver particles having excellent adhesion to the substrate and excellent dispersion stability of the ultrafine silver particles can be obtained.

本発明の銀超微粒子の製造方法において、水を主体に含有する水性媒体とは、溶媒として、水が少なくとも80質量%以上であることを示し、好ましくは90質量%以上であり、特に好ましくは98質量%以上であることを意味する。水以外に含まれる溶媒としては、アルコール類、グリコール類、アセトン等の水と混和性の高い有機溶媒を例示することができる。   In the method for producing ultrafine silver particles of the present invention, the aqueous medium mainly containing water indicates that water is at least 80% by mass or more as a solvent, preferably 90% by mass or more, particularly preferably. It means 98 mass% or more. Examples of the solvent other than water include organic solvents having high miscibility with water, such as alcohols, glycols, and acetone.

本発明において用いられる水溶性銀塩は、水に対する溶解度の高い硝酸銀塩、フッ化銀塩、過塩素酸銀塩が好ましく、工業用途として広く用いられている硝酸銀塩が特に好ましい。また、水を主体に含有する水性媒体中に含有せしめる水溶性銀塩の量は、該水性媒体中に水溶性銀塩、塩基性化合物、水溶性高分子化合物および還元剤等を含有せしめた混合物1kgに対して、銀イオンに換算して0.1モル以上、より好ましくは0.5モル以上であることが好ましい。なお上限は、水溶性銀塩および塩基性カリウム塩の溶解濃度の上限に到達することから、約2.8モル以下とすることが望ましい。   The water-soluble silver salt used in the present invention is preferably a silver nitrate salt, a silver fluoride salt or a silver perchlorate salt having a high solubility in water, and a silver nitrate salt widely used for industrial applications is particularly preferred. The amount of the water-soluble silver salt contained in the aqueous medium mainly containing water is a mixture in which the water-soluble silver salt, basic compound, water-soluble polymer compound and reducing agent are contained in the aqueous medium. It is preferably 0.1 mol or more, more preferably 0.5 mol or more, in terms of silver ion with respect to 1 kg. In addition, since an upper limit reaches | attains the upper limit of the melt | dissolution density | concentration of water-soluble silver salt and basic potassium salt, it is desirable to set it as about 2.8 mol or less.

本発明の銀超微粒子の製造方法において、塩基性化合物として塩基性カリウム塩を含有させることで銀超微粒子の分散安定性を向上させることができる。塩基性カリウム塩としては、炭酸水素カリウム、炭酸カリウム、酢酸カリウム、リン酸三カリウム、水酸化カリウム等を用いることができ、特に水酸化カリウムを用いることが好ましい。その他の塩基性化合物として水酸化ナトリウム、水酸化リチウム、水酸化バリウム、アンモニア水等の他の塩基性化合物と併用することもできるがその場合、塩基性化合物全体の添加量に対して50モル%以下、より好ましくは30モル%以下であることが好ましい。   In the method for producing ultrafine silver particles of the present invention, the dispersion stability of ultrafine silver particles can be improved by containing a basic potassium salt as a basic compound. As the basic potassium salt, potassium hydrogen carbonate, potassium carbonate, potassium acetate, tripotassium phosphate, potassium hydroxide and the like can be used, and potassium hydroxide is particularly preferably used. Other basic compounds can be used in combination with other basic compounds such as sodium hydroxide, lithium hydroxide, barium hydroxide, and aqueous ammonia, but in that case, 50 mol% with respect to the total amount of the basic compound added. Hereinafter, it is more preferably 30 mol% or less.

塩基性化合物の添加量は、水溶性銀塩由来の銀イオンと当量以上で添加することが好ましい。当量未満の場合、形成される銀超微粒子の量が減少し銀超微粒子の収率が低下する場合がある。上限は特にないが塩基性化合物の添加量を増やすと、反応後に得られる銀超微粒子を含有する分散液の総量が増加し生産性が低くなるため、2当量以下とすることが望ましい。   The addition amount of the basic compound is preferably added in an amount equal to or more than the silver ion derived from the water-soluble silver salt. If the amount is less than the equivalent, the amount of silver ultrafine particles formed may be reduced and the yield of silver ultrafine particles may be reduced. Although there is no particular upper limit, increasing the addition amount of the basic compound increases the total amount of the dispersion containing the ultrafine silver particles obtained after the reaction and lowers the productivity.

水溶性高分子化合物は、反応過程で一時的に生成する酸化銀あるいは還元により形成された銀超微粒子の保護コロイドあるいは分散剤として作用し、銀超微粒子の製造に使用される公知の水溶性高分子化合物を使用すれば良く、例えばアラビアゴム、デキストラン、デキストリン等の多糖類やゼラチン等の天然高分子化合物、ポリビニルアルコールやポリビニルピロリドン、ポリアリルアミン等の合成高分子化合物を広く用いることができる。   A water-soluble polymer compound acts as a protective colloid or a dispersing agent for silver ultrafine particles formed by silver oxide or reduction produced temporarily during the reaction process, and is a known water-soluble high-molecular compound used for the production of silver ultrafine particles. Molecular compounds may be used. For example, polysaccharides such as gum arabic, dextran and dextrin, natural polymer compounds such as gelatin, and synthetic polymer compounds such as polyvinyl alcohol, polyvinyl pyrrolidone and polyallylamine can be widely used.

水溶性高分子化合物の添加量は、種類および製造する銀超微粒子の粒径により変化するが、水溶性銀塩由来の銀イオン1モルに対して1gから200gが好ましく、より好ましくは20gから100gである。   The addition amount of the water-soluble polymer compound varies depending on the kind and the particle size of the silver ultrafine particles to be produced, but is preferably 1 to 200 g, more preferably 20 to 100 g, per 1 mol of silver ions derived from the water-soluble silver salt. It is.

還元剤としては、公知の銀イオンを銀に還元することができる還元剤から溶解度の高いものを選択すれば良く、銀塩写真用の現像試薬として知られるハイドロキノン、ハイドロキノンモノスルフォネートカリウム塩、アスコルビン酸またはその塩、無電解鍍金の還元剤として知られる水素化ホウ素ナトリウム、ヒドラジン化合物、ホルマリン、ホスフィン酸またはその塩、酒石酸またはその塩、他にデキストリン、マルトース、グルコース等の多糖類や二糖類、単糖類を例示することができる。   As the reducing agent, it is sufficient to select a highly soluble reducing agent that can reduce known silver ions to silver, hydroquinone known as a developing reagent for silver salt photography, hydroquinone monosulfonate potassium salt, Ascorbic acid or its salt, sodium borohydride known as reducing agent for electroless plating, hydrazine compound, formalin, phosphinic acid or its salt, tartaric acid or its salt, other polysaccharides and disaccharides such as dextrin, maltose, glucose And monosaccharides.

還元剤の添加量は、水溶性銀塩由来の銀イオンと当量以上添加することが望ましい。上限は特にないが還元剤の添加量を増やすと、得られる銀超微粒子分散液の総量が増加し生産性が低くなるため、2当量以下が好ましい。但し、多糖類や二糖類および単糖類を用いる場合には、同時に加えられる塩基性化合物により加水分解され、アルドン酸を経てグリコール酸等のオキシ酸およびギ酸等の種々の酸を種々の割合により生じ、これらが還元に寄与するため、化学量論的に論じることができない。実際にはグルコースあるいはフルクトース単位あたり少なくとも5電子から10電子の還元が可能である。従って多糖類や二糖類および単糖類を使用する場合、グルコースあるいはフルクトース単位として水溶性銀塩由来の銀イオンに対して0.1〜0.4当量とすることが好ましい。   As for the addition amount of a reducing agent, it is desirable to add more than an equivalent with the silver ion derived from water-soluble silver salt. Although there is no upper limit, if the amount of the reducing agent added is increased, the total amount of the obtained ultrafine silver particle dispersion is increased and the productivity is lowered. However, when polysaccharides, disaccharides, and monosaccharides are used, they are hydrolyzed by basic compounds added at the same time, and aldonic acid is used to produce various acids such as glycolic acid and other oxyacids and formic acid in various proportions. Because they contribute to reduction, they cannot be stoichiometrically discussed. In practice, a reduction of at least 5 to 10 electrons per glucose or fructose unit is possible. Therefore, when using polysaccharides, disaccharides, and monosaccharides, it is preferable to make it into 0.1-0.4 equivalent with respect to the silver ion derived from water-soluble silver salt as glucose or a fructose unit.

還元剤として多糖類や二糖類および単糖類を用いる場合には、塩基性化合物が加水分解に消費されるため、塩基性化合物は、水溶性銀塩由来の銀イオンに対して少なくとも当量を超えて添加することが必要であり、1.15当量以上が好ましく、1.3当量以上が特に好ましい。   When polysaccharides, disaccharides, and monosaccharides are used as the reducing agent, the basic compound is consumed for hydrolysis. Therefore, the basic compound exceeds at least an equivalent amount with respect to the silver ion derived from the water-soluble silver salt. It is necessary to add, 1.15 equivalent or more is preferable, and 1.3 equivalent or more is particularly preferable.

特に、澱粉の分解物であるデキストリン等の多糖類を水溶性高分子化合物および還元剤として兼用することは、多糖類の一部が塩基性化合物により加水分解され特に好ましく還元剤として作用するので、得られる銀超微粒子分散液の総量を減少させることから、使用銀量に対する銀超微粒子の回収量の効率が良好となり生産性を高めることができる。更に、本発明である塩基性カリウム塩を用いて製造することで、分散性の良化により、銀超微粒子分散液の粘度が低下することから特に高銀濃度での回収において回収量が良化する。   In particular, using a polysaccharide such as dextrin, which is a degradation product of starch, as a water-soluble polymer compound and a reducing agent is because a part of the polysaccharide is hydrolyzed by a basic compound and particularly preferably acts as a reducing agent. Since the total amount of the obtained silver ultrafine particle dispersion is reduced, the efficiency of the recovered amount of silver ultrafine particles relative to the amount of silver used is improved, and the productivity can be increased. Furthermore, by using the basic potassium salt of the present invention, the viscosity of the silver ultrafine particle dispersion is reduced due to the improved dispersibility, so the recovery amount is improved especially in the recovery at a high silver concentration. To do.

多糖類を水溶性高分子化合物および還元剤として兼用する場合、その添加量は、水溶性銀塩由来の銀イオン1モルに対して10gから200gが好ましく、より好ましくは30gから110gである。また、水性媒体中にはアルコール類が含まれると多糖類がアルコール類を包摂して沈殿しやすくなるため、多糖類を用いる場合にはアルコール類は多量に含まれないことが好ましい。具体的にはアルコール類は水性媒体中に5質量%以下であることが好ましい。   When the polysaccharide is used as a water-soluble polymer compound and a reducing agent, the amount added is preferably 10 to 200 g, more preferably 30 to 110 g, per 1 mol of silver ions derived from the water-soluble silver salt. In addition, when an alcohol is contained in the aqueous medium, the polysaccharide easily includes the alcohol and precipitates. Therefore, when the polysaccharide is used, it is preferable that the alcohol is not contained in a large amount. Specifically, it is preferable that alcohol is 5 mass% or less in an aqueous medium.

また、多糖類を用いる場合、還元反応が終了した段階で1,4−α−結合を不規則に切断するα−アミラーゼを作用させ、還元反応が終了した段階において残留している多糖類を低分子化することも好ましい。α−アミラーゼを作用させることにより、限外濾過や遠心分離等の公知の方法を用い銀超微粒子を含有する分散液中の銀超微粒子の濃度を30質量%以上に高めた場合に顕著に現れる、銀超微粒子分散液の経時に伴う増粘挙動を抑制することができる。またα−アミラーゼを作用させ、還元反応が終了した段階において残留している多糖類を低分子化することは、銀超微粒子の分散安定性の点からも好ましい。   In addition, when a polysaccharide is used, an α-amylase that randomly cleaves 1,4-α-bonds is allowed to act at the stage where the reduction reaction is completed, and the remaining polysaccharide is reduced at the stage where the reduction reaction is completed. It is also preferable to make it molecular. It appears remarkably when the concentration of ultrafine silver particles in a dispersion containing ultrafine silver particles is increased to 30% by mass or more by using a known method such as ultrafiltration or centrifugal separation by the action of α-amylase. The thickening behavior of the silver ultrafine particle dispersion with time can be suppressed. In addition, it is preferable from the viewpoint of dispersion stability of the ultrafine silver particles that α-amylase is allowed to act to lower the molecular weight of the remaining polysaccharide when the reduction reaction is completed.

α−アミラーゼは、例えば天野エンザイム(株)よりビオザイムAやビオザイムF10SDとして市販されている各種α−アミラーゼを用いることができる。α−アミラーゼ添加前の銀超微粒子分散液は、α−アミラーゼに適したpHを4から10に調整し、温度を20℃から50℃に調整されることが好ましい。pHの調整には、酢酸等のカルボン酸類や硝酸を用いることが好ましい。α−アミラーゼの添加量は、用いるデキストリン等の多糖類の質量に対し0.01質量%から10質量%が好ましく、より好ましくは0.1質量%から1質量%である。   As the α-amylase, for example, various α-amylases commercially available as Biozyme A or Biozyme F10SD from Amano Enzyme Co., Ltd. can be used. The ultrafine silver particle dispersion before addition of α-amylase is preferably adjusted to a pH suitable for α-amylase from 4 to 10 and a temperature from 20 ° C to 50 ° C. To adjust the pH, it is preferable to use carboxylic acids such as acetic acid or nitric acid. The addition amount of α-amylase is preferably 0.01% by mass to 10% by mass, and more preferably 0.1% by mass to 1% by mass with respect to the mass of the polysaccharide such as dextrin used.

本発明における製造方法の具体例としては例えば、水溶性銀塩である硝酸銀を銀イオン1モルに対して水溶性高分子化合物および還元剤として用いるデキストリンを71.2g(銀1当量に対して0.65当量)溶かした水溶液中に、塩基性化合物として水酸化カリウムを銀1当量に対して1.4当量を撹拌しながら加え、撹拌を続けることで還元反応を進める。還元反応は約1時間経過させることで、銀超微粒子を含む分散液を得ることができる。続いて、得られた銀超微粒子を含有する分散液を酢酸にてpH5から6の間になるように調整しα−アミラーゼであるビオザイムF10SDを0.26g(デキストリンの質量に対して0.367質量%)を添加し、温度45℃で1時間撹拌させ、デキストリンを低分子化する。その銀超微粒子分散液を遠心分離によって沈殿させ、銀超微粒子と塩類や、過剰なデキストリンを含んだ上澄み液を分離させて上澄み液を除去し、精製する。精製工程においては、沈殿した銀超微粒子を再分散させ、2回以上の遠心分離による精製を実施することが好ましい。精製されて、沈殿した銀超微粒子は所望の濃度になるように純水を加えて再分散することで銀超微粒子分散液を得ることができる。   Specific examples of the production method in the present invention include, for example, 71.2 g of dextrin using 0 to 1 mol of silver as a water-soluble polymer compound and a reducing agent for 1 mol of silver ions. .65 equivalents) To the dissolved aqueous solution, potassium hydroxide as a basic compound is added in an amount of 1.4 equivalents with respect to 1 equivalent of silver while stirring, and the reduction reaction proceeds by continuing stirring. By allowing the reduction reaction to proceed for about 1 hour, a dispersion containing ultrafine silver particles can be obtained. Subsequently, the dispersion containing the obtained ultrafine silver particles was adjusted with acetic acid so as to have a pH of 5 to 6, and 0.26 g of α-amylase biozyme F10SD (0.367 with respect to the mass of dextrin) was obtained. (Mass%) is added and stirred at a temperature of 45 ° C. for 1 hour to lower the molecular weight of the dextrin. The silver ultrafine particle dispersion is precipitated by centrifugal separation, and the supernatant containing silver ultrafine particles and salts and excess dextrin is separated, and the supernatant is removed and purified. In the purification step, it is preferable to redisperse the precipitated silver ultrafine particles and carry out purification by two or more centrifugations. Purified and precipitated silver ultrafine particles can be obtained by adding pure water and redispersing so as to obtain a desired concentration, thereby obtaining a silver ultrafine particle dispersion.

本発明で得られた銀超微粒子分散液中に、銀超微粒子と共に含まれている塩類や過剰な水溶性高分子化合物等を、限外濾過や遠心分離等の公知の方法により減少させ、含まれている銀超微粒子の濃度を目的に応じ調整し、必要に応じ粘度調整剤やバインダー等を添加して銀超微粒子含有組成物とし、導電性材料、表面増強ラマン散乱分光、太陽電池、光輝性塗料、色材等の公知の用途に使用することができる。また、銀超微粒子を含有する分散液より銀超微粒子を乾燥等の方法により取り出し、粉体として利用することや、有機溶媒等に再分散させ利用することもできる。   In the ultrafine silver particle dispersion obtained in the present invention, the salts and excess water-soluble polymer compound contained together with the ultrafine silver particles are reduced by a known method such as ultrafiltration or centrifugation, and contained. The concentration of the ultrafine silver particles is adjusted according to the purpose, and if necessary, a viscosity modifier or a binder is added to obtain a ultrafine silver particle-containing composition, conductive material, surface enhanced Raman scattering spectroscopy, solar cell, brightness It can be used for publicly known applications such as a conductive paint and a color material. Further, the ultrafine silver particles can be taken out from the dispersion containing the ultrafine silver particles by a method such as drying and used as a powder, or can be redispersed in an organic solvent or the like.

次に本発明の銀超微粒子含有組成物に用いられるポリマーラテックスについて説明する。前述の通り湿式法により得られた銀超微粒子を含有する分散液は、分散媒として水を含有する水系分散液であるのが一般的であるため、基材との接着性を高める目的で使用するポリマーラテックスとしては、単独重合体や共重合体等各種公知のラテックスの水分散物であるエマルジョンを用いることが好ましい。単独重合体としては酢酸ビニル、塩化ビニル、スチレン、メチルアクリレート、ブチルアクリレート、メタクリロニトリル、ブタジエン、イソプレン等の重合体があり、共重合体としてはエチレン・ブタジエン共重合体、スチレン・ブタジエン共重合体、スチレン・p−メトオキシスチレン共重合体、スチレン・酢酸ビニル共重合体、酢酸ビニル・塩化ビニル共重合体、酢酸ビニル・マレイン酸ジエチル共重合体、メチルメタクリレート・アクリロニトリル共重合体、メチルメタクリレート・ブタジエン共重合体、メチルメタクリレート・スチレン共重合体、メチルメタクリレート・酢酸ビニル共重合体、メチルメタクリレート・塩化ビニリデン共重合体、メチルアクリレート・アクリロニトリル共重合体、メチルアクリレート・ブタジエン共重合体、メチルアクリレート・スチレン共重合体、メチルアクリレート・酢酸ビニル共重合体、アクリル酸・ブチルアクリレート共重合体、メチルアクリレート・塩化ビニル共重合体、ブチルアクリレート・スチレン共重合体、エチレン塩化ビニル共重合体、ポリエステル、各種ウレタン等がある。この中でもポリエステルラテックス、アクリルラテックスおよびウレタンラテックスを用いることが好ましく、更に分散安定性と接着性の観点からウレタンラテックスが好ましい。ポリマーラテックスの平均粒子径は0.01〜10μmであることが好ましく、更に好ましくは0.02〜5μmである。なお、導電性の観点からはポリマーラテックスの平均粒子径は銀超微粒子よりも大きい方が好ましい。   Next, the polymer latex used in the silver ultrafine particle-containing composition of the present invention will be described. As described above, a dispersion containing ultrafine silver particles obtained by a wet method is generally an aqueous dispersion containing water as a dispersion medium, and is used for the purpose of improving the adhesion to a substrate. As the polymer latex to be used, it is preferable to use an emulsion which is an aqueous dispersion of various known latexes such as homopolymers and copolymers. Homopolymers include polymers such as vinyl acetate, vinyl chloride, styrene, methyl acrylate, butyl acrylate, methacrylonitrile, butadiene, and isoprene. Copolymers include ethylene / butadiene copolymers and styrene / butadiene copolymers. Polymer, styrene / p-methoxystyrene copolymer, styrene / vinyl acetate copolymer, vinyl acetate / vinyl chloride copolymer, vinyl acetate / diethyl maleate copolymer, methyl methacrylate / acrylonitrile copolymer, methyl methacrylate・ Butadiene copolymer, methyl methacrylate / styrene copolymer, methyl methacrylate / vinyl acetate copolymer, methyl methacrylate / vinylidene chloride copolymer, methyl acrylate / acrylonitrile copolymer, methyl acrylate / butadiene Polymer, methyl acrylate / styrene copolymer, methyl acrylate / vinyl acetate copolymer, acrylic acid / butyl acrylate copolymer, methyl acrylate / vinyl chloride copolymer, butyl acrylate / styrene copolymer, ethylene vinyl chloride copolymer There are polymers, polyesters, various urethanes and the like. Among these, polyester latex, acrylic latex and urethane latex are preferably used, and urethane latex is more preferable from the viewpoint of dispersion stability and adhesiveness. The average particle size of the polymer latex is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm. From the viewpoint of conductivity, the average particle diameter of the polymer latex is preferably larger than that of the ultrafine silver particles.

ポリマーラテックスの含有量としては、銀超微粒子を含有する分散液中の含有銀量の質量比1に対して0.4倍以下が好ましく、銀:ポリマーラテックスの質量比は1:0.01〜1:0.4であることが好ましく、更に1:0.03〜1:0.3であることがより好ましい。1:0.4を超える場合、ポリマーラテックスの膜中に銀超微粒子がうまってしまい導電性は悪化する場合がある。また、1:0.01未満であればポリマーラテックスによる所望の密着性の効果が得られない場合がある。   The content of the polymer latex is preferably not more than 0.4 times the mass ratio 1 of the silver content in the dispersion containing the ultrafine silver particles, and the mass ratio of silver: polymer latex is 1: 0.01- It is preferably 1: 0.4, and more preferably 1: 0.03 to 1: 0.3. When it exceeds 1: 0.4, silver ultrafine particles are trapped in the polymer latex film, and the conductivity may deteriorate. Moreover, if it is less than 1: 0.01, the effect of the desired adhesiveness by polymer latex may not be acquired.

本発明における銀超微粒子とは、平均粒子径が1μm以下の銀超微粒子を示す。より好ましくは0.3μm以下であり、特に好ましくは100nm以下である。銀超微粒子の直径の下限は1nmである。1nm未満になると、銀超微粒子の単位質量あたりの表面積が増大し、被覆している水溶性高分子化合物の付着量の増大による極端な増粘等の弊害が生じる場合がある。なお、銀超微粒子の平均粒子径は、電子顕微鏡下での観察により求めることができる。詳細にはポリエチレンテレフタレートフィルムの上に、銀超微粒子分散液を塗布、乾燥させ、走査型電子顕微鏡にて観察し、一定面積内に存在する100個の粒子各々の投影面積に等しい円の直径を粒子径として平均し求める。   The ultrafine silver particles in the present invention are ultrafine silver particles having an average particle diameter of 1 μm or less. More preferably, it is 0.3 micrometer or less, Most preferably, it is 100 nm or less. The lower limit of the diameter of the silver ultrafine particles is 1 nm. When the thickness is less than 1 nm, the surface area per unit mass of the ultrafine silver particles increases, which may cause adverse effects such as extreme thickening due to an increase in the amount of water-soluble polymer compound coated. In addition, the average particle diameter of silver ultrafine particles can be calculated | required by observation under an electron microscope. Specifically, a silver ultrafine particle dispersion is coated on a polyethylene terephthalate film, dried, and observed with a scanning electron microscope. The diameter of a circle equal to the projected area of each of 100 particles existing within a certain area is obtained. The average is obtained as the particle diameter.

精製された銀超微粒子分散液および銀超微粒子含有組成物は、基板上に例えば、スクリーン印刷、ディスペンサー塗布、スピンコート塗布、インクジェット印刷、フレキソ印刷、グラビア印刷、オフセットグラビア印刷、凸版印刷等公知の方法により基材上にパターニングされる。本発明の導電性部材はこのようにしてパターニングされた後に例えば焼結処理に代表される導電性発現処理を施すことによって得られるが、焼結処理を施すと耐熱性の観点から基材が限定される。従って導電性発現処理としては、特開2008−4375号公報、特開2008−235224号公報、特開2009−21153号公報、特開2009−104807号公報に記載される基材にパターニングする、あるいはこれら公報に記載されるような浸漬処理によって、導電性発現処理を施すことが好ましい。   The purified silver ultrafine particle dispersion and the silver ultrafine particle-containing composition are known on the substrate, for example, screen printing, dispenser coating, spin coating coating, ink jet printing, flexographic printing, gravure printing, offset gravure printing, letterpress printing, and the like. Patterned on a substrate by a method. The conductive member of the present invention can be obtained by patterning in this way, for example, by performing a conductivity development process represented by a sintering process. However, if the sintering process is performed, the base material is limited from the viewpoint of heat resistance. Is done. Therefore, as the conductive expression treatment, patterning is performed on the base material described in JP 2008-4375 A, JP 2008-235224 A, JP 2009-21153 A, JP 2009-104807 A, or It is preferable to conduct the conductive expression treatment by an immersion treatment as described in these publications.

導電性部材としては、例えば微細配線、RFIDアンテナや地上波デジタル放送の受信アンテナ等の各種アンテナ、電磁波シールド、有機TFTのゲート、ソース、ドレイン電極、各種ディスプレイのデータ電極、アドレス電極、太陽電池の集電電極等の導電性パターン、バンプ等の端子、複数層からなるプリント配線基板における配線パターンおよび配線層間のコンタクトホールやビアホール、電子部品の電極等を例示することができるが、これに限定されるものではない。   Examples of conductive members include fine wiring, various antennas such as RFID antennas and terrestrial digital broadcast receiving antennas, electromagnetic wave shields, organic TFT gates, sources, drain electrodes, data electrodes for various displays, address electrodes, solar cells, etc. Examples include, but are not limited to, conductive patterns such as current collecting electrodes, terminals such as bumps, wiring patterns in printed wiring boards composed of multiple layers, contact holes and via holes between wiring layers, and electrodes of electronic components. It is not something.

また、精製された銀超微粒子を含有する分散液は、界面活性剤を添加し各種印刷方式に適した表面張力に調整し、高沸点溶媒を乾燥防止のために加えた銀ナノインク液にすることができる。例えば、インクジェット印刷用の銀ナノインク液として調整する場合には、公知の各種界面活性剤(例えばアルキル硫酸ナトリウム類、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム類、フッ素系界面活性剤等)を用いて使用するインクジェットヘッドに適した値に表面張力を調整し、乾燥を抑制するために高沸点溶媒(例えばエチレングリコールやプロピレングリコール等)を添加し、銀濃度の調整やポリアクリル酸等の増粘剤を微量に用いて使用するインクジェットヘッドに適した値に粘度を調整することができる。   In addition, the dispersion containing purified ultrafine silver particles should be made into a silver nanoink solution with a surfactant added and adjusted to a surface tension suitable for various printing methods, and a high-boiling solvent added to prevent drying. Can do. For example, when preparing as a silver nano ink liquid for inkjet printing, various known surfactants (for example, sodium alkyl sulfates, polyoxyethylene alkyl ethers, polyoxyethylene nonyl phenyl ether sodium sulfate, fluorine-based surface activity) The surface tension is adjusted to a value suitable for the inkjet head used, and a high boiling point solvent (for example, ethylene glycol or propylene glycol) is added to suppress drying, thereby adjusting the silver concentration or polyacrylic. The viscosity can be adjusted to a value suitable for an ink jet head using a thickening agent such as an acid in a minute amount.

以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the content of this invention is not restricted to an Example.

《実施例1》
<銀超微粒子分散液1の作製>
2Lのステンレスビーカーに平均分子量が8600の焙焼デキストリン(日澱化学(株)製、デキストリンNo.1−A)を54.4gと純水860gを加え、約30分間撹拌した。その後、硝酸銀131.8gを加え、更に約30分間撹拌し、完全に溶解した。この液を氷浴中にて約5℃まで冷却を行い、それに塩基性化合物として水酸化カリウム60.9gを純水83.9gに溶解した20℃の液を添加し、撹拌回転数400rpmの状態で温度が30℃以上にならないように氷浴中で60分間還元反応を実施した。還元反応が終了した銀超微粒子分散液を続いて、酢酸にてpH=5.6に調整した後、ビオザイムF10SD(天野エンザイム(株)製)を200mg添加し45℃で1時間撹拌し、7質量%の銀超微粒子分散液を得た。次に、得られた銀超微粒子分散液の精製工程として、遠心分離を実施することで、銀超微粒子と上澄み液を綺麗に分離させ、上澄み液を廃棄した。残った銀超微粒子を再分散させ、繰り返し遠心分離を実施し、上澄み液を廃棄した。その後、銀濃度が30質量%になるように純水を加えて再分散し、回収量が265gの精製した銀超微粒子を含有する分散液を得た。使用銀量から計算した回収率は94.9%であった。
Example 1
<Preparation of silver ultrafine particle dispersion 1>
To a 2 L stainless beaker, 54.4 g of roasted dextrin (manufactured by Nissho Chemical Co., Ltd., dextrin No. 1-A) having an average molecular weight of 8600 was added and stirred for about 30 minutes. Thereafter, 131.8 g of silver nitrate was added, and the mixture was further stirred for about 30 minutes to completely dissolve. This solution is cooled to about 5 ° C. in an ice bath, and a 20 ° C. solution in which 60.9 g of potassium hydroxide is dissolved as a basic compound in 83.9 g of pure water is added thereto, and the stirring speed is 400 rpm. Then, the reduction reaction was carried out in an ice bath for 60 minutes so that the temperature did not exceed 30 ° C. The silver ultrafine particle dispersion after the reduction reaction was subsequently adjusted to pH = 5.6 with acetic acid, 200 mg of Biozyme F10SD (manufactured by Amano Enzyme) was added, and the mixture was stirred at 45 ° C. for 1 hour. A mass% ultrafine silver particle dispersion was obtained. Next, as a purification process of the obtained silver ultrafine particle dispersion, centrifugation was performed to cleanly separate the silver ultrafine particles and the supernatant, and the supernatant was discarded. The remaining ultrafine silver particles were redispersed, repeatedly centrifuged, and the supernatant was discarded. Thereafter, pure water was added and redispersed so that the silver concentration was 30% by mass to obtain a dispersion containing purified silver ultrafine particles with a recovery amount of 265 g. The recovery rate calculated from the amount of silver used was 94.9%.

<銀ナノインク1の作製>
上記のようにして得た銀超微粒子分散液1の100質量部に対して、活性剤(日光ケミカルズ(株)製BT−9)を0.15質量%、およびエチレングリコールを20質量%添加し、純水で濃度調整したインクジェット印刷用の銀超微粒子含有組成物1として銀濃度が15質量%の銀ナノインク1を得た。
<Preparation of silver nano ink 1>
To 100 parts by mass of the silver ultrafine particle dispersion 1 obtained as described above, 0.15% by mass of an activator (BT-9 manufactured by Nikko Chemicals Co., Ltd.) and 20% by mass of ethylene glycol are added. Silver nano-ink 1 having a silver concentration of 15% by mass was obtained as silver ultrafine particle-containing composition 1 for inkjet printing, the concentration of which was adjusted with pure water.

《実施例2》
<銀超微粒子分散液2の作製>
実施例1の水酸化カリウム60.9gに代わって水酸化カリウム48.8g、および水酸化ナトリウム8.7g(水酸化ナトリウムが20モル%)に変更し、純水87.3gで溶解した液を用いる以外は実施例1同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用銀量から計算した回収率は93.4%であった。
Example 2
<Preparation of silver ultrafine particle dispersion 2>
In place of 60.9 g of potassium hydroxide in Example 1, 48.8 g of potassium hydroxide and 8.7 g of sodium hydroxide (sodium hydroxide was 20 mol%) were used, and a solution dissolved in 87.3 g of pure water was used. A silver ultrafine particle dispersion was prepared and purified in the same manner as in Example 1 except that it was used to obtain a silver ultrafine particle dispersion having a silver concentration of 30% by mass. The recovery rate calculated from the amount of silver used was 93.4%.

<銀ナノインク2の作製>
上記のようにして得た銀超微粒子分散液2を用いて実施例1と同様にして、銀超微粒子含有組成物2として銀濃度が15質量%の銀ナノインク2を得た。
<Preparation of silver nano ink 2>
Using the silver ultrafine particle dispersion 2 obtained as described above, a silver nanoink 2 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 2 in the same manner as in Example 1.

《実施例3》
<銀超微粒子分散液3の作製>
実施例1の水酸化カリウム60.9gに代わって水酸化カリウム36.6g、および水酸化ナトリウム17.4g(水酸化ナトリウムが40モル%)に変更し、純水90.8gで溶解した液を用いる以外は実施例1同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用した銀量から計算した回収率は91.5%であった。
Example 3
<Preparation of silver ultrafine particle dispersion 3>
In place of 60.9 g of potassium hydroxide in Example 1, 36.6 g of potassium hydroxide and 17.4 g of sodium hydroxide (40 mol% of sodium hydroxide) were used, and a solution dissolved in 90.8 g of pure water was used. A silver ultrafine particle dispersion was prepared and purified in the same manner as in Example 1 except that it was used to obtain a silver ultrafine particle dispersion having a silver concentration of 30% by mass. The recovery calculated from the amount of silver used was 91.5%.

<銀ナノインク3の作製>
上記のようにして得た銀超微粒子分散液3を用いて実施例1と同様にして、銀超微粒子含有組成物3として銀濃度が15質量%の銀ナノインク3を得た。
<Preparation of silver nano ink 3>
Using the silver ultrafine particle dispersion 3 obtained as described above, a silver nanoink 3 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 3 in the same manner as in Example 1.

《実施例4》
<銀超微粒子分散液4の作製>
実施例1の水酸化カリウム60.9gに代わって炭酸カリウム120g、および水酸化ナトリウム8.7g(水酸化ナトリウムが20モル%)に変更し、純水180gで溶解した液を用いる以外は実施例1同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用した銀量から計算した回収率は92.0%であった。
Example 4
<Preparation of silver ultrafine particle dispersion 4>
In place of 60.9 g of potassium hydroxide in Example 1, 120 g of potassium carbonate and 8.7 g of sodium hydroxide (20 mol% of sodium hydroxide) were used, and a solution dissolved in 180 g of pure water was used. 1 A silver ultrafine particle dispersion was prepared and purified to obtain a silver ultrafine particle dispersion having a silver concentration of 30% by mass. The recovery calculated from the amount of silver used was 92.0%.

<銀ナノインク4の作製>
上記のようにして得た銀超微粒子分散液4を用いて実施例1と同様にして、銀超微粒子含有組成物4として銀濃度が15質量%の銀ナノインク4を得た。
<Preparation of silver nano ink 4>
Using the silver ultrafine particle dispersion 4 obtained as described above, a silver nanoink 4 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 4 in the same manner as in Example 1.

《実施例5》
<銀超微粒子分散液5の作製>
実施例1の水酸化カリウム60.9gに代わって炭酸カリウム90g、および水酸化ナトリウム17.4g(水酸化ナトリウムが40モル%)に変更し、純水135gで溶解した液を用いる以外は実施例1同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用した銀量から計算した回収率は90.3%であった。
Example 5
<Preparation of silver ultrafine particle dispersion 5>
In place of 60.9 g of potassium hydroxide in Example 1, 90 g of potassium carbonate and 17.4 g of sodium hydroxide (40 mol% of sodium hydroxide) were used, and a solution dissolved in 135 g of pure water was used. 1 A silver ultrafine particle dispersion was prepared and purified to obtain a silver ultrafine particle dispersion having a silver concentration of 30% by mass. The recovery calculated from the amount of silver used was 90.3%.

<銀ナノインク5の作製>
上記のようにして得た銀超微粒子分散液5を用いて実施例1と同様にして、銀超微粒子含有組成物5として銀濃度が15質量%の銀ナノインク5を得た。
<Preparation of silver nano ink 5>
Using the silver ultrafine particle dispersion 5 obtained as described above, a silver nanoink 5 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 5 in the same manner as in Example 1.

《比較例1》
<銀超微粒子分散液6の作製>
実施例1の水酸化カリウム60.9gに代わって、水酸化ナトリウム43.6gに変更し純水101gで溶解した液を用いる以外は同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用した銀量から計算した回収率は89.2%であった。
<< Comparative Example 1 >>
<Preparation of silver ultrafine particle dispersion 6>
A silver ultrafine particle dispersion was prepared and purified in the same manner except that 63.6 g of potassium hydroxide in Example 1 was used and a solution dissolved in 101 g of pure water was used instead of 43.6 g of sodium hydroxide. A mass% ultrafine silver particle dispersion was obtained. The recovery calculated from the amount of silver used was 89.2%.

<銀ナノインク6の作製>
上記のようにして得た銀超微粒子分散液6を用いて実施例1と同様にして、銀超微粒子含有組成物5として銀濃度が15質量%の銀ナノインク6を得た。
<Preparation of silver nano ink 6>
Using the silver ultrafine particle dispersion 6 obtained as described above, a silver nanoink 6 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 5 in the same manner as in Example 1.

《比較例2》
<銀超微粒子分散液7の作製>
実施例1において塩基性化合物として添加した水酸化カリウム60.9gを純水83.9gに溶解した液に代わって、アンモニア水を135g用いる以外は同様に銀超微粒子分散液を作製、精製し、銀濃度30質量%の銀超微粒子分散液を得た。使用した銀量から計算した回収率は44.5%であった。
<< Comparative Example 2 >>
<Preparation of silver ultrafine particle dispersion 7>
In place of the solution obtained by dissolving 60.9 g of potassium hydroxide added as a basic compound in Example 1 in 83.9 g of pure water, a silver ultrafine particle dispersion was prepared and purified in the same manner except that 135 g of ammonia water was used. A silver ultrafine particle dispersion having a silver concentration of 30% by mass was obtained. The recovery calculated from the amount of silver used was 44.5%.

<銀ナノインク7の作製>
上記のようにして得た銀超微粒子分散液7を用いて実施例1と同様にして、銀超微粒子含有組成物6として銀濃度が15質量%の銀ナノインク7を得た。
<Preparation of silver nano ink 7>
Using the silver ultrafine particle dispersion 7 obtained as described above, a silver nanoink 7 having a silver concentration of 15% by mass was obtained as the silver ultrafine particle-containing composition 6 in the same manner as in Example 1.

<分散安定性の評価>
このようにして得られた銀超微粒子分散液1〜7、および銀ナノインク1〜7の分散安定性を評価するために、ポリプロピレン容器に各50gずつに小分けし、常温状態で2ヶ月間放置し、沈降状態を確認した。評価は以下の基準で実施した。結果を表1に示す。
◎:8週間以上放置しても容器の底全体に赤茶色の沈降物が認められなかった。
○:6週間以上8週間未満で容器の底全体に赤茶色の沈降物が認められた。
△:4週間以上6週間未満で容器の底全体に赤茶色の沈降物が認められた。
×:2週間以上4週間未満で容器の底全体に赤茶色の沈降物が認められた。
××:2週間未満で容器の底全体に赤茶色の沈降物が認められた。
<Evaluation of dispersion stability>
In order to evaluate the dispersion stability of the silver ultrafine particle dispersions 1 to 7 and the silver nano inks 1 to 7 thus obtained, each of them was divided into 50 g portions in a polypropylene container and left at room temperature for 2 months. The sedimentation state was confirmed. Evaluation was carried out according to the following criteria. The results are shown in Table 1.
A: No reddish brown sediment was observed on the entire bottom of the container even after standing for 8 weeks or more.
○: Red-brown sediment was observed on the entire bottom of the container in 6 weeks or more and less than 8 weeks.
(Triangle | delta): The reddish brown sediment was recognized by the whole bottom of the container in 4 weeks or more and less than 6 weeks.
X: Red-brown sediment was observed on the entire bottom of the container in 2 weeks or more and less than 4 weeks.
XX: Red-brown sediment was observed on the entire bottom of the container in less than 2 weeks.

Figure 2011068939
Figure 2011068939

表1の結果、本発明により回収量が多く、経時による銀超微粒子の分散安定性に優れた銀超微粒子が得られることが判る。また本発明により得られた銀超微粒子を含有する銀超微粒子含有組成物も分散安定性が良好であることが判る。   As a result of Table 1, it can be seen that the present invention yields silver ultrafine particles having a large recovery amount and excellent dispersion stability of silver ultrafine particles over time. Moreover, it turns out that the dispersion stability is also favorable for the composition containing silver ultrafine particles obtained by the present invention.

《実施例6》
<銀超微粒子含有組成物8の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとして第一工業製薬(株)製スーパーフレックス150HS(ポリウレタン水分散体、平均粒径0.11μm、固形分38質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物8を作製した。
Example 6
<Preparation of Silver Ultrafine Particle-Containing Composition 8>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. Superflex 150HS manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (polyurethane aqueous dispersion, average particle size 0.11 μm, solid content 38% by mass) as a polymer latex with respect to 200 g of the silver ultrafine particle dispersion having a silver concentration of 33% by mass. By adding 20 g, a silver ultrafine particle-containing composition 8 having a silver concentration of 30% by mass was produced.

《実施例7》
<銀超微粒子含有組成物9の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとしてDIC(株)製WLS−210(ポリカーボネート系ウレタン樹脂、平均粒子径0.05μm、固形分35質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物9を作製した。
Example 7
<Preparation of silver ultrafine particle-containing composition 9>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. 20 g of WLS-210 (polycarbonate urethane resin, average particle diameter 0.05 μm, solid content 35% by mass) manufactured by DIC Corporation is added as a polymer latex to 200 g of the silver ultrafine particle dispersion having a silver concentration of 33% by mass. Thus, a silver ultrafine particle-containing composition 9 having a silver concentration of 30% by mass was produced.

《実施例8》
<銀超微粒子含有組成物10の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとして住友化学(株)製スミエリート−1010(エチレン−塩化ビニルエマルジョン、平均粒子径0.10μm、固形分50質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物10を作製した。
Example 8
<Preparation of Silver Ultrafine Particle-Containing Composition 10>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. Sumitite-1010 manufactured by Sumitomo Chemical Co., Ltd. (ethylene-vinyl chloride emulsion, average particle size 0.10 μm, solid content 50% by mass) as a polymer latex with respect to 200 g of the silver ultrafine particle dispersion having a silver concentration of 33% by mass By adding 20 g, a silver ultrafine particle-containing composition 10 having a silver concentration of 30% by mass was produced.

《実施例9》
<銀超微粒子含有組成物11の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとして高松油脂(株)製ペスレジンA−115G(ポリエステル樹脂、固形分25質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物11を作製した。
Example 9
<Preparation of silver ultrafine particle-containing composition 11>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. By adding 20 g of pesresin A-115G (polyester resin, solid content 25% by mass) manufactured by Takamatsu Oil Co., Ltd. as a polymer latex to 200 g of the ultrafine silver particle dispersion having a silver concentration of 33% by mass, the silver concentration is 30. A composition 11 containing ultra-fine silver particles of mass% was prepared.

《実施例10》
<銀超微粒子含有組成物12の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとして中央理化工業(株)製ES−21(アクリル樹脂、固形分43質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物12を作製した。
Example 10
<Preparation of Silver Ultrafine Particle-Containing Composition 12>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. By adding 20 g of ES-21 (acrylic resin, solid content: 43% by mass) manufactured by Chuo Rika Kogyo Co., Ltd. as a polymer latex to 200 g of the silver ultrafine particle dispersion having a silver concentration of 33% by mass, the silver concentration is 30. A composition 12% by mass of silver ultrafine particles was prepared.

《実施例11》
<銀超微粒子含有組成物13の作製>
実施例1と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。その銀濃度33質量%の銀超微粒子分散液200gに対して、ポリマーラテックスとしてDIC(株)製VONDC1610NE(ポリウレタン樹脂、平均粒子径0.03μm、固形分25質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物13を作製した。
Example 11
<Preparation of silver ultrafine particle-containing composition 13>
In the same manner as in Example 1, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. By adding 20 g of VONDC1610NE (polyurethane resin, average particle size 0.03 μm, solid content 25 mass%) manufactured by DIC Corporation as a polymer latex to 200 g of the ultrafine silver particle dispersion having a silver concentration of 33 mass%. A silver ultrafine particle-containing composition 13 having a concentration of 30% by mass was produced.

《実施例12》
<銀超微粒子含有組成物14の作製>
実施例3と同様にして銀イオンを還元し銀超微粒子分散液を作製、精製し、銀濃度33質量%の銀超微粒子分散液を得た。この銀超微粒子分散液200gに対して、ポリマーラテックスとして第一工業製薬(株)製スーパーフレックス150HS(ポリウレタン水分散体、平均粒子径0.11μm、固形分38質量%)を20g添加することで銀濃度が30質量%の銀超微粒子含有組成物14を作製した。
Example 12
<Preparation of silver ultrafine particle-containing composition 14>
In the same manner as in Example 3, silver ions were reduced to produce and purify a silver ultrafine particle dispersion, thereby obtaining a silver ultrafine particle dispersion having a silver concentration of 33% by mass. By adding 20 g of Superflex 150HS (polyurethane aqueous dispersion, average particle size 0.11 μm, solid content 38 mass%) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as a polymer latex to 200 g of this silver ultrafine particle dispersion. A silver ultrafine particle-containing composition 14 having a silver concentration of 30% by mass was produced.

《比較例3》
<銀超微粒子含有組成物15の作製>
銀超微粒子含有組成物8の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物15を作製した。
<< Comparative Example 3 >>
<Preparation of silver ultrafine particle-containing composition 15>
The silver ultrafine particle-containing composition was similarly obtained except that the silver ultrafine particle dispersion liquid produced in Comparative Example 1 was used instead of the silver ultrafine particle dispersion liquid of Example 1 used for the production of the silver ultrafine particle-containing composition 8. Object 15 was produced.

《比較例4》
<銀超微粒子含有組成物16の作製>
銀超微粒子含有組成物9の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物16を作製した。
<< Comparative Example 4 >>
<Preparation of Silver Ultrafine Particle-Containing Composition 16>
A silver ultrafine particle-containing composition was prepared in the same manner except that the silver ultrafine particle dispersion prepared in Comparative Example 1 was used instead of the silver ultrafine particle dispersion of Example 1 used for the preparation of the silver ultrafine particle-containing composition 9. Object 16 was produced.

《比較例5》
<銀超微粒子含有組成物17の作製>
銀超微粒子含有組成物10の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物17を作製した。
<< Comparative Example 5 >>
<Preparation of silver ultrafine particle-containing composition 17>
A silver ultrafine particle-containing composition was similarly obtained except that the silver ultrafine particle dispersion liquid produced in Comparative Example 1 was used instead of the silver ultrafine particle dispersion liquid of Example 1 used for the production of the silver ultrafine particle-containing composition 10. Object 17 was produced.

《比較例6》
<銀超微粒子含有組成物18の作製>
銀超微粒子含有組成物11の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物18を作製した。
<< Comparative Example 6 >>
<Preparation of Silver Ultrafine Particle-Containing Composition 18>
The silver ultrafine particle-containing composition was similarly obtained except that the silver ultrafine particle dispersion liquid produced in Comparative Example 1 was used instead of the silver ultrafine particle dispersion liquid of Example 1 used for the production of the silver ultrafine particle-containing composition 11. Object 18 was produced.

《比較例7》
<銀超微粒子含有組成物19の作製>
銀超微粒子含有組成物12の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物19を作製した。
<< Comparative Example 7 >>
<Preparation of silver ultrafine particle-containing composition 19>
The silver ultrafine particle-containing composition was similarly obtained except that the silver ultrafine particle dispersion liquid prepared in Comparative Example 1 was used instead of the silver ultrafine particle dispersion liquid of Example 1 used for the production of the silver ultrafine particle-containing composition 12. Object 19 was produced.

《比較例8》
<銀超微粒子含有組成物20の作製>
銀超微粒子含有組成物13の作製に用いた実施例1の銀超微粒子分散液に代えて、比較例1で作製した銀超微粒子分散液を用いた以外は同様にして、銀超微粒子含有組成物20を作製した。
<< Comparative Example 8 >>
<Preparation of Silver Ultrafine Particle-Containing Composition 20>
A silver ultrafine particle-containing composition was similarly obtained except that the silver ultrafine particle dispersion liquid produced in Comparative Example 1 was used instead of the silver ultrafine particle dispersion liquid of Example 1 used for the production of the silver ultrafine particle-containing composition 13. Product 20 was made.

<分散安定性の評価>
以上のようにして作製した銀濃度が30質量%の銀超微粒子含有組成物8〜20の分散安定性を、実施例1の銀超微粒子分散液および銀ナノインクと同様にして評価した。この結果を表2に示す。
<Evaluation of dispersion stability>
The dispersion stability of the silver ultrafine particle-containing compositions 8 to 20 having a silver concentration of 30% by mass produced as described above was evaluated in the same manner as the silver ultrafine particle dispersion liquid and silver nanoink of Example 1. The results are shown in Table 2.

<導電性の評価>
上記銀超微粒子含有組成物8〜20と、これらを1ヶ月間放置したものそれぞれに、銀超微粒子含有組成物100質量部に対して、活性剤(日光ケミカルズ(株)製BT−9)を0.15質量%添加した後に均一になるよう撹拌し、コロナ処理を施した非接着の厚み100μmのポリエチレンテレフタレートフィルム(三菱樹脂(株)製)上にワイヤーバーを用いて、銀の塗布量が1mあたり2.0gとなるよう塗布、乾燥した。その後、3N−塩化ナトリウム溶液中に80℃で30秒間浸漬し、水洗、乾燥して導電性部材を得た。この導電性部材それぞれについて、(株)ダイアインスツルメンツ製ロレスターGPを用いて抵抗値を測定した。この結果を表2に示す。
<Evaluation of conductivity>
An active agent (BT-9 manufactured by Nikko Chemicals Co., Ltd.) is added to 100 parts by mass of the silver ultrafine particle-containing composition on each of the above-described silver ultrafine particle-containing compositions 8 to 20 and those left for one month. After adding 0.15% by mass, the mixture was stirred to be uniform and a corona-treated non-adhesive 100 μm thick polyethylene terephthalate film (Mitsubishi Resin Co., Ltd.) was used to apply the silver coating amount. coated so as to be 1m 2 per 2.0g, and then dried. Then, it was immersed in 3N-sodium chloride solution at 80 ° C. for 30 seconds, washed with water and dried to obtain a conductive member. About each of these conductive members, the resistance value was measured using Lorester GP manufactured by Dia Instruments Co., Ltd. The results are shown in Table 2.

<密着性の評価>
上記導電性の評価において、銀超微粒子含有組成物8〜20(1ヶ月間放置しなかった組成物)を用いて作製した導電性部材の密着性評価として、碁盤目試験(JIS5400)方法を実施するため1cmの中に100個のマス目ができるように碁盤目状の切り傷をつけた後、積水化学工業(株)製セキスイセロハン粘着テープ(テープ規格JIS Z 1522)を張り付け、馬楝で粘着テープ表面を上から擦った後、いきおいよくテープを剥がした。碁盤目試験の評価点数を以下の基準で実施した。結果を表2に示す。
10点:剥がれが全くない。
8点:剥がれた欠損部の面積が全正方形面積の5%未満。
6点:剥がれた欠損部の面積が全正方形面積の5%以上15%未満。
4点:剥がれた欠損部の面積が全正方形面積の15%以上35%未満。
2点:剥がれた欠損部の面積が全正方形面積の35%以上65%未満。
0点:剥がれた欠損部の面積が全正方形面積の65%以上。
<Evaluation of adhesion>
In the above evaluation of conductivity, a cross-cut test (JIS 5400) method was carried out as an adhesion evaluation of conductive members prepared using silver ultrafine particle-containing compositions 8 to 20 (compositions that were not left for one month). In order to make 100 squares in 1 cm 2 , a grid-like cut is made, and then Sekisui-Cerohan adhesive tape (tape standard JIS Z 1522) made by Sekisui Chemical Co., Ltd. is applied. After rubbing the adhesive tape surface from above, the tape was peeled off. The evaluation score of the cross cut test was carried out according to the following criteria. The results are shown in Table 2.
10 points: No peeling at all.
8 points: The area of the removed defect part is less than 5% of the total square area.
6 points: The area of the removed defect part is 5% or more and less than 15% of the total square area.
4 points: The area of the removed defect part is 15% or more and less than 35% of the total square area.
2 points: The area of the peeled defect part is 35% or more and less than 65% of the total square area.
0 point: The area of the removed defect part is 65% or more of the total square area.

Figure 2011068939
Figure 2011068939

表2より明らかなように、本発明により基材との密着性と銀超微粒子の分散安定性に優れた銀超微粒子含有組成物が得られることが判る。また本発明により得られた導電性部材は、機材との密着性と導電性に優れることが判る。   As is clear from Table 2, it can be seen that the present invention can provide a composition containing ultrafine silver particles having excellent adhesion to the substrate and excellent dispersion stability of ultrafine silver particles. Moreover, it turns out that the electroconductive member obtained by this invention is excellent in adhesiveness with an equipment, and electroconductivity.

Claims (5)

水を主体に含有する水性媒体中に少なくとも水溶性銀塩、塩基性化合物、水溶性高分子化合物、および還元剤を含有せしめ、水溶性銀塩由来の銀イオンを還元し銀超微粒子を製造する銀超微粒子の製造方法において、該塩基性化合物が塩基性カリウム塩であることを特徴とする銀超微粒子の製造方法。   An aqueous medium mainly containing water contains at least a water-soluble silver salt, a basic compound, a water-soluble polymer compound, and a reducing agent, and silver ions derived from the water-soluble silver salt are reduced to produce ultrafine silver particles. A method for producing silver ultrafine particles, wherein the basic compound is a basic potassium salt. 前記塩基性カリウム塩が水酸化カリウムである請求項1記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 1, wherein the basic potassium salt is potassium hydroxide. 請求項1または請求項2記載の銀超微粒子の製造方法によって得られた銀超微粒子を含有する銀超微粒子含有組成物。   An ultrafine silver particle-containing composition comprising ultrafine silver particles obtained by the method for producing ultrafine silver particles according to claim 1 or 2. 請求項1または請求項2記載の銀超微粒子の製造方法によって得られた銀超微粒子とポリマーラテックスを含有する銀超微粒子含有組成物。   A silver ultrafine particle-containing composition comprising silver ultrafine particles obtained by the method for producing silver ultrafine particles according to claim 1 or 2, and a polymer latex. 基材上に請求項3または請求項4記載の銀超微粒子含有組成物によってパターンが形成された導電性部材。   The electroconductive member by which the pattern was formed with the silver ultrafine particle containing composition of Claim 3 or Claim 4 on the base material.
JP2009219937A 2009-09-25 2009-09-25 Method for producing silver ultrafine particles Expired - Fee Related JP5368925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219937A JP5368925B2 (en) 2009-09-25 2009-09-25 Method for producing silver ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219937A JP5368925B2 (en) 2009-09-25 2009-09-25 Method for producing silver ultrafine particles

Publications (2)

Publication Number Publication Date
JP2011068939A true JP2011068939A (en) 2011-04-07
JP5368925B2 JP5368925B2 (en) 2013-12-18

Family

ID=44014474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219937A Expired - Fee Related JP5368925B2 (en) 2009-09-25 2009-09-25 Method for producing silver ultrafine particles

Country Status (1)

Country Link
JP (1) JP5368925B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076982A (en) * 2009-10-01 2011-04-14 Bando Chemical Industries Ltd Conductive paste
JP2011202265A (en) * 2010-03-26 2011-10-13 Dowa Electronics Materials Co Ltd Low temperature sinterable metal nanoparticle composition and electronic article formed using the composition
JP2013137891A (en) * 2011-12-28 2013-07-11 Dowa Electronics Materials Co Ltd Silver conductive film and method for producing the same
JP2013231103A (en) * 2012-04-27 2013-11-14 Mitsubishi Paper Mills Ltd Metal ultrafine particle-containing composition, and method for forming conductive pattern
JP2018148108A (en) * 2017-03-08 2018-09-20 三菱製紙株式会社 Substrate for forming conductive pattern and method for producing conductive member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285454A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Homogeneous fine particle of inorganic metal, and manufacturing method
JP2006519291A (en) * 2003-01-29 2006-08-24 パレレック インコーポレイテッド High conductivity ink with improved adhesion
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material
JP2008527169A (en) * 2005-01-10 2008-07-24 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム Aqueous dispersion of metal nanoparticles
JP2009531540A (en) * 2006-03-31 2009-09-03 ユミコア ソシエテ アノニム Method for producing silver-based particles and electrical contact materials
JP2009533558A (en) * 2006-04-15 2009-09-17 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing metal particles, metal particles produced by the method and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519291A (en) * 2003-01-29 2006-08-24 パレレック インコーポレイテッド High conductivity ink with improved adhesion
JP2004285454A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Homogeneous fine particle of inorganic metal, and manufacturing method
JP2008527169A (en) * 2005-01-10 2008-07-24 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム Aqueous dispersion of metal nanoparticles
JP2009531540A (en) * 2006-03-31 2009-09-03 ユミコア ソシエテ アノニム Method for producing silver-based particles and electrical contact materials
JP2009533558A (en) * 2006-04-15 2009-09-17 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing metal particles, metal particles produced by the method and use thereof
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076982A (en) * 2009-10-01 2011-04-14 Bando Chemical Industries Ltd Conductive paste
JP2011202265A (en) * 2010-03-26 2011-10-13 Dowa Electronics Materials Co Ltd Low temperature sinterable metal nanoparticle composition and electronic article formed using the composition
JP2013137891A (en) * 2011-12-28 2013-07-11 Dowa Electronics Materials Co Ltd Silver conductive film and method for producing the same
JP2013231103A (en) * 2012-04-27 2013-11-14 Mitsubishi Paper Mills Ltd Metal ultrafine particle-containing composition, and method for forming conductive pattern
JP2018148108A (en) * 2017-03-08 2018-09-20 三菱製紙株式会社 Substrate for forming conductive pattern and method for producing conductive member

Also Published As

Publication number Publication date
JP5368925B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5982033B2 (en) Metal fine particle dispersion, copper fine particle dispersion, method for producing copper fine particle dispersion, and method for producing conductive substrate
JP5788003B2 (en) Conductive metal ink composition and method for forming conductive pattern
US8673049B2 (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
JP5368925B2 (en) Method for producing silver ultrafine particles
US10522274B2 (en) Ferromagnetic metal nanowire dispersion and method for manufacturing same
JP5701379B2 (en) Conductive metal ink composition and method for forming conductive pattern
JP2009074054A (en) Non-aqueous electroconductive nano ink composition
JP2013513220A (en) Compositions and methods for growing copper nanowires
EP2371472A2 (en) Low temperature sinterable metal nanoparticle composition and electronic article formed using the composition
JP2013199690A (en) Method for producing metal nanowire dispersion, metal nanowire dispersion, conductive member formed by using metal nanowire dispersion, and touch panel and solar cell using the conductive member
JP5485729B2 (en) Conductive pattern preparation method
TW201602272A (en) Conductive composition
JP2012178334A (en) Copper nano paste, method for forming the same, and method for forming electrode using copper nano paste
KR20190048316A (en) Surface-treated silver powder and method for producing the same
TW201819303A (en) Cuprous oxide particle, method for producing same, composition for light sintering, method for forming conductive film, and cuprous oxide particle paste
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2009242874A (en) Method for producing silver hyperfine particle
JP7145869B2 (en) Fine silver particle dispersion
TWI791829B (en) Photosintering composition and method of forming conductive film using the same
JP2005019248A (en) Metal-containing paste and interlayer connection method
US11227702B2 (en) Fine silver particle dispersion
JP2023107750A (en) Graphene dispersion and graphene resin composite film
JP2023019838A (en) Prussian blue-type metal complex dispersion liquid and method for producing prussian blue-type metal complex-containing thin film material
JP2006056740A (en) Method for preparing silver oxide fine particle, method for preparing conductive composition or conductive image by using the same
JP2013104019A (en) Conductive ink composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees