JP2011067719A - Method for manufacturing composite semipermeable membrane - Google Patents

Method for manufacturing composite semipermeable membrane Download PDF

Info

Publication number
JP2011067719A
JP2011067719A JP2009218613A JP2009218613A JP2011067719A JP 2011067719 A JP2011067719 A JP 2011067719A JP 2009218613 A JP2009218613 A JP 2009218613A JP 2009218613 A JP2009218613 A JP 2009218613A JP 2011067719 A JP2011067719 A JP 2011067719A
Authority
JP
Japan
Prior art keywords
support membrane
membrane
composite semipermeable
microporous support
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009218613A
Other languages
Japanese (ja)
Other versions
JP5263104B2 (en
Inventor
Tomoko Mitsuhata
智子 光畑
Takao Sasaki
崇夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009218613A priority Critical patent/JP5263104B2/en
Publication of JP2011067719A publication Critical patent/JP2011067719A/en
Application granted granted Critical
Publication of JP5263104B2 publication Critical patent/JP5263104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of manufacturing a composite semipermeable membrane having a high solute removability and a high water permeability without increasing economic load nor wastewater treatment load. <P>SOLUTION: In the method for manufacturing the composite semipermeable membrane, multifunctional amine aqueous solutions having different concentrations are applied to the front and rear surfaces of a fine porous support membrane, and then a multifunctional acid halide solution is applied to the front surface of the fine porous support membrane to form a polyamide separation functional layer on the fine porous support membrane. The concentration of the multifunctional amine aqueous solution applied to the front surface of the fine porous support membrane is lower than that of the multifunctional amine aqueous solution applied to the rear face of the fine porous support membrane. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液状混合物の選択的分離に有用な複合半透膜の製造方法に関し、例えば海水やかん水から塩分を除去するにあたって好適に用いることができる、微多孔性支持膜上にポリアミド分離機能層を形成した複合半透膜の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a composite semipermeable membrane useful for selective separation of a liquid mixture, for example, a polyamide separation functional layer on a microporous support membrane that can be suitably used for removing salt from seawater or brine. The present invention relates to a method for producing a composite semipermeable membrane formed with a film.

近年、複合半透膜を用いた海水やかん水の淡水化が試みられ、世界中の水処理プラントで実用化されてきている。複合半透膜は、一般に微多孔性支持膜上に分離機能層を被覆してなり、その分離機能層を架橋芳香族ポリアミドから形成した場合には、ベンゼン環を含むことによって剛直性に富み、芳香族多官能アミン水溶液と芳香族多官能酸ハロゲン化物の有機溶媒溶液との界面重縮合により容易に製膜できる利点があり、さらに高塩除去率、高透過流束であることが知られている(特許文献1、2)。   In recent years, desalination of seawater and brackish water using a composite semipermeable membrane has been attempted and has been put to practical use in water treatment plants around the world. The composite semipermeable membrane is generally formed by coating a separation functional layer on a microporous support membrane, and when the separation functional layer is formed from a crosslinked aromatic polyamide, it is rich in rigidity by including a benzene ring, It has the advantage that it can be easily formed by interfacial polycondensation between an aromatic polyfunctional amine aqueous solution and an aromatic polyfunctional acid halide organic solvent solution, and is also known to have a high salt removal rate and a high permeation flux. (Patent Documents 1 and 2).

しかし、複合半透膜の利用が広まるにつれ、省エネルギー化による運転コスト削減の要求が高まっており、低圧力で運転が可能な複合半透膜の開発が望まれている。   However, as the use of composite semipermeable membranes has become widespread, there has been an increasing demand for reducing operating costs through energy saving, and the development of composite semipermeable membranes that can be operated at low pressure is desired.

微多孔性支持膜上にポリアミド分離機能層を形成してなる複合半透膜を使用して低圧力で運転するためには、とくに複合半透膜の透水量を向上させることが重要である。このような方法として、例えば、多官能アミン水溶液と多官能酸ハロゲン化物の有機溶媒溶液との界面重縮合で複合半透膜を製膜する際に、その水溶液および有機溶媒溶液の両方に、溶解度パラメーターが8〜14(cal/cm31/2である化合物を存在させる方法(特許文献3)や、該界面重縮合の前または反応中に、IUPAC周期律表のIIIA−VIB族及び3−6族から選ばれる非硫黄原子から選ばれる結合性コアをもつ錯化剤を多官能酸ハロゲン化物と接触させる方法(特許文献4)が開示されている。しかしながらこれらの方法では、製膜に必要な薬剤の量が増大し、経済的な負担や廃液処理への負荷が増加するなどの問題があった。 In order to operate at a low pressure using a composite semipermeable membrane having a polyamide separation functional layer formed on a microporous support membrane, it is particularly important to improve the water permeability of the composite semipermeable membrane. As such a method, for example, when a composite semipermeable membrane is formed by interfacial polycondensation between a polyfunctional amine aqueous solution and a polyfunctional acid halide organic solvent solution, the solubility in both the aqueous solution and the organic solvent solution is increased. In the method in which a compound having a parameter of 8 to 14 (cal / cm 3 ) 1/2 is present (Patent Document 3), or before or during the interfacial polycondensation, the IIIA-VIB groups and 3 in the IUPAC periodic table A method (Patent Document 4) is disclosed in which a complexing agent having a binding core selected from non-sulfur atoms selected from Group -6 is brought into contact with a polyfunctional acid halide. However, these methods have problems such as an increase in the amount of chemicals required for film formation and an increase in the economic burden and waste liquid treatment.

特開平1−180208号公報JP-A-1-180208 特開平2−115027号公報Japanese Patent Laid-Open No. 2-115027 特許第3023300号公報Japanese Patent No. 3023300 特表2003−531219号公報Special table 2003-53219

本発明は、経済的な負担や廃液処理への負荷を増加させることなく、高い溶質除去性と高い水透過性を有する複合半透膜を製造できる方法を提供することを目的とするものである。   An object of the present invention is to provide a method capable of producing a composite semipermeable membrane having a high solute removal property and a high water permeability without increasing an economical burden and a load on waste liquid treatment. .

上記目的を達成するための本発明は、微多孔性支持膜の表面と裏面とにそれぞれ濃度の異なる多官能アミン水溶液を塗布した後、該微多孔性支持膜の表面から多官能酸ハロゲン化物溶液を塗布することにより、該微多孔性支持膜上にポリアミド分離機能層を形成させる複合半透膜の製造方法であって、該微多孔性支持膜の表面に塗布する多官能アミン水溶液の濃度が、該微多孔性支持膜の裏面に塗布する多官能アミン水溶液の濃度よりも低いことを特徴とする複合半透膜の製造方法、である。   In order to achieve the above object, the present invention provides a polyfunctional acid halide solution from the surface of a microporous support membrane after coating polyfunctional amine aqueous solutions having different concentrations on the surface and the back surface of the microporous support membrane. Is applied to form a polyamide separation functional layer on the microporous support membrane, and the concentration of the polyfunctional amine aqueous solution applied to the surface of the microporous support membrane is A method for producing a composite semipermeable membrane, characterized in that the concentration is lower than the concentration of an aqueous polyfunctional amine solution applied to the back surface of the microporous support membrane.

本発明の製造方法によれば、高い透水性と高い溶質除去性を併せ持つ複合半透膜を得ることができる。また、新たな薬剤の添加を必要としないため、経済的な負担や廃液処理の負荷を少なくし、より簡便に安全な方法によって達成することができる。   According to the production method of the present invention, a composite semipermeable membrane having both high water permeability and high solute removal property can be obtained. In addition, since it is not necessary to add a new chemical agent, it is possible to reduce the economic burden and the waste liquid treatment load, and to achieve this by a simpler and safer method.

本発明において複合半透膜は、実質的に分離性能を有するポリアミド分離機能層が、実質的に分離性能を有さない微多孔性支持膜上に被覆されてなり、該ポリアミド分離機能層は多官能アミンと多官能酸ハロゲン化物との界面重縮合によって得られる架橋ポリアミドからなるものである。   In the present invention, the composite semipermeable membrane is formed by coating a polyamide separation functional layer having substantially separation performance on a microporous support membrane having substantially no separation performance. It consists of a crosslinked polyamide obtained by interfacial polycondensation of a functional amine and a polyfunctional acid halide.

ここで多官能アミンは脂肪族多官能アミンと芳香族多官能アミンのうち、少なくとも1つの成分からなる。   Here, the polyfunctional amine comprises at least one component of an aliphatic polyfunctional amine and an aromatic polyfunctional amine.

脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジンなどが例示され、性能発現の安定性から、特に、ピペラジン、2,5−ジメチルピペラジンが好ましい。   The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, and is preferably a piperazine-based amine and a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine and 2,5-di-n-butylpiperazine, and piperazine and 2,5-dimethylpiperazine are particularly preferable from the viewpoint of stability of performance.

また、芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどがあり、そのN−アルキル化物としてN,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示され、性能発現の安定性から、特にメタフェニレンジアミン、1,3,5−トリアミノベンゼンが好ましい。   The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylene diamine, paraphenylene diamine, 1, 3, 5 -Triaminobenzene and the like, and N-alkylated products thereof include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, N, N-diethylparaphenylenediamine, etc. In view of the stability of performance, metaphenylenediamine and 1,3,5-triaminobenzene are particularly preferable.

多官能酸ハロゲン化物とは、カルボキシル基がハロゲン化された部位を一分子中に2個以上有する酸ハロゲン化物であり、上記アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸の酸ハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロリドが好ましい。上記多官能酸ハロゲン化物は単独で用いることもできるが、混合物として用いてもよい。   The polyfunctional acid halide is an acid halide having two or more sites where a carboxyl group is halogenated in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and acid halides of 1,4-benzenedicarboxylic acid can be used. Of the acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, ease of reactivity, and the like. Trimesic acid chloride is preferred. Although the said polyfunctional acid halide can also be used independently, you may use it as a mixture.

多官能酸ハロゲン化物を溶解する有機溶媒は、水と非混和性であり、かつ微多孔性支持膜を破壊しないものであり、架橋ポリアミドの生成反応を阻害しないものであればいずれであっても良い。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられるが、オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカンなど、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。   The organic solvent that dissolves the polyfunctional acid halide may be any one that is immiscible with water and does not destroy the microporous support membrane and does not inhibit the formation reaction of the crosslinked polyamide. good. Typical examples include halogenated hydrocarbons such as liquid hydrocarbons and trichlorotrifluoroethane, but they are substances that do not destroy the ozone layer, are easily available, are easy to handle, and are safe for handling. In consideration of the properties, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, etc., and simple substances such as cyclooctane, ethylcyclohexane, 1-octene, 1-decene, or a mixture thereof are preferably used.

本発明において微多孔性支持膜は、実質的にイオン等の分離性能を有さず、実質的に分離性能を有するポリアミド分離機能層に強度を与えるためのものである。孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。   In the present invention, the microporous support membrane is for imparting strength to the polyamide separation functional layer that has substantially no separation performance such as ions and substantially has the separation performance. The size and distribution of the pores are not particularly limited. For example, the pores have uniform and fine pores or gradually have large pores from the surface on the side where the separation functional layer is formed to the other surface, and the separation functional layer has A support film having a micropore size of 0.1 nm or more and 100 nm or less on the surface to be formed is preferable.

微多孔性支持膜に使用する材料やその形状は特に限定されないが、例えば支持体(基材)に樹脂をキャストして形成した膜を例示することができる。基材としては、ポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛が例示される。基材にキャストする樹脂の種類としては、例えばポリスルホンや酢酸セルロースやポリ塩化ビニル、あるいはそれらを混合したものが好ましく使用され、化学的、機械的、熱的に安定性の高いポリスルホンを使用するのが特に好ましい。   Although the material used for a microporous support membrane and its shape are not specifically limited, For example, the film | membrane formed by casting resin to a support body (base material) can be illustrated. Examples of the base material include a fabric mainly composed of at least one selected from polyester or aromatic polyamide. For example, polysulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof is preferably used as the type of resin cast on the substrate, and polysulfone having high chemical, mechanical, and thermal stability is used. Is particularly preferred.

具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径が制御しやすく、寸法安定性が高いため好ましい。   Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.

Figure 2011067719
Figure 2011067719

例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜を得ることができる。   For example, an N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester cloth or non-woven fabric to a certain thickness, and wet coagulated in water. A microporous support membrane having fine pores with a diameter of several tens of nm or less can be obtained.

上記の微多孔性支持膜の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。微多孔性支持膜の厚みは、十分な機械的強度および充填密度を得るためには、50〜300μmの範囲内にあることが好ましく、より好ましくは100〜250μmの範囲内である。また、微多孔性支持膜を強化する基材の厚みは、10〜200μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。   The thickness of the microporous support membrane affects the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the thickness of the microporous support membrane is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm. Moreover, it is preferable that the thickness of the base material which reinforces a microporous support membrane exists in the range of 10-200 micrometers, More preferably, it exists in the range of 30-100 micrometers.

微多孔性支持膜の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材からキャストした樹脂を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜6kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S−900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から微多孔性支持膜の膜厚や表面孔径を決定する。なお、本発明における厚みや孔径は平均値を意味するものである。   The form of the microporous support membrane can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, the cast resin is peeled off from the base material, and then cut by the freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV. A Hitachi S-900 electron microscope or the like can be used as the high-resolution field emission scanning electron microscope. The film thickness and surface pore diameter of the microporous support membrane are determined from the obtained electron micrograph. In addition, the thickness and the hole diameter in this invention mean an average value.

本発明に使用する微多孔性支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるが、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。   The microporous support membrane used in the present invention may be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. Although it is possible, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).

次に、本発明の複合半透膜の製造方法について説明する。複合半透膜中の実質的に分離性能を有するポリアミド分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する、水とは非混和性の有機溶媒溶液を用い、前述の微多孔性支持膜上で接触させ界面重縮合させることにより形成される。   Next, the manufacturing method of the composite semipermeable membrane of this invention is demonstrated. The polyamide separation functional layer having substantially separation performance in the composite semipermeable membrane is, for example, an aqueous solution containing the aforementioned polyfunctional amine and an aqueous solution containing the aforementioned polyfunctional acid halide and immiscible with water. It is formed by using an organic solvent solution and bringing it into contact with the above-mentioned microporous support membrane for interfacial polycondensation.

多官能アミンを含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。   In the case of an aqueous solution containing a polyfunctional amine or an organic solvent solution containing a polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid scavenger may be used as long as it does not interfere with the reaction between the two components. In addition, compounds such as surfactants and antioxidants may be contained.

そして、本発明では、微多孔性支持膜の表面と裏面とにそれぞれ濃度の異なる多官能アミン水溶液を塗布した後、該微多孔性支持膜の表面から多官能酸ハロゲン化物溶液を塗布する際に、該微多孔性支持膜の表面に塗布する多官能アミン水溶液の濃度を、該微多孔性支持膜の裏面に塗布する多官能アミン水溶液の濃度よりも低くすることを特徴とするものである。   And in this invention, after apply | coating the polyfunctional amine aqueous solution from which the density | concentration differs in the surface and the back surface of a microporous support membrane, respectively, when apply | coating a polyfunctional acid halide solution from the surface of this microporous support membrane. The concentration of the polyfunctional amine aqueous solution applied to the surface of the microporous support membrane is lower than the concentration of the polyfunctional amine aqueous solution applied to the back surface of the microporous support membrane.

多官能アミンを微多孔性支持膜の両面に塗布する方法としては特に限定されるものではなく、例えばバーコーター、ダイコーター、グラビアコーター、スプレー等によって多官能アミン水溶液を微多孔性支持膜の表面及び裏面に塗布する。   The method for applying the polyfunctional amine on both sides of the microporous support membrane is not particularly limited. For example, a polyfunctional amine aqueous solution is applied to the surface of the microporous support membrane by a bar coater, a die coater, a gravure coater, a spray, or the like. And apply to the back side.

本発明において、微多孔性支持膜の表面に塗布する多官能アミン水溶液の濃度を、微多孔性支持膜の裏面に塗布する多官能アミン水溶液の濃度よりも低くすることにより、多官能酸ハロゲン化物と界面重縮合させる際に、微多孔性支持膜の表面から内部へ向かって多官能アミンを高濃度になるように勾配させて存在せしめることができると考えられる。その他の製造条件である、微多孔性支持膜の表面及び裏面に塗布する多官能アミン水溶液の濃度、接触時間、温度、さらに多官能アミン水溶液を該微多孔性支持膜に含有させた後に多官能酸ハロゲン化物溶液を塗布するまでの時間などについては、本発明の目的に則して適宜調整することにより決定することができる。ここで、多官能アミンを含有する水溶液の濃度は、微多孔性支持膜の状態によっても変化するが、微多孔性支持膜の表面では0.1〜15重量%、微多孔性支持膜の裏面では0.1〜20重量%が好ましく、多官能アミン水溶液を塗布により膜と接触させる時間は0.01〜120秒が好ましい。   In the present invention, the concentration of the polyfunctional amine aqueous solution applied to the surface of the microporous support membrane is made lower than the concentration of the polyfunctional amine aqueous solution applied to the back surface of the microporous support membrane, thereby producing a polyfunctional acid halide. It is considered that the polyfunctional amine can be present in a gradient so as to increase in concentration from the surface to the inside of the microporous support membrane. Other manufacturing conditions, such as the concentration, contact time, and temperature of the polyfunctional amine aqueous solution to be applied to the front and back surfaces of the microporous support membrane, and the polyfunctional amine aqueous solution are incorporated into the microporous support membrane and then multifunctional. The time until the acid halide solution is applied can be determined by appropriately adjusting in accordance with the object of the present invention. Here, the concentration of the aqueous solution containing the polyfunctional amine varies depending on the state of the microporous support membrane, but is 0.1 to 15% by weight on the surface of the microporous support membrane, and the back surface of the microporous support membrane. In this case, 0.1 to 20% by weight is preferable, and the time for bringing the polyfunctional amine aqueous solution into contact with the film by coating is preferably 0.01 to 120 seconds.

ここで、本発明において、微多孔性支持膜の表面とは、この後の工程において多官能酸ハロゲン化物溶液を塗布する側の面を指し、その反対側の面を微多孔性支持膜の裏面と称する。   Here, in the present invention, the surface of the microporous support membrane refers to the surface on the side where the polyfunctional acid halide solution is applied in the subsequent step, and the opposite surface is the back surface of the microporous support membrane. Called.

なお、本発明は、微多孔性支持膜の表面と裏面とにそれぞれ多官能アミン水溶液を塗布することで達成されるものであり、微多孔性支持膜を多官能アミン水溶液に浸漬させることで微多孔性支持膜の表面と裏面とに多官能アミン水溶液を接触させる方法では、本発明の目的は達成されない。   The present invention is achieved by applying a polyfunctional amine aqueous solution to the surface and the back surface of the microporous support membrane, respectively, and the microporous support membrane is microscopically immersed in the polyfunctional amine aqueous solution. The object of the present invention is not achieved by the method of bringing the polyfunctional amine aqueous solution into contact with the front and back surfaces of the porous support membrane.

微多孔性支持膜の表面と裏面とに多官能アミン水溶液を塗布した後、過剰に塗布された多官能アミン水溶液を微多孔性支持膜上に液滴が残らないように十分に液切りすることが好ましい。十分に液切りすることで、複合半透膜形成後に液滴残存部分が膜欠点となって性能が低下することを防ぐことができる。液切りの方法としては、例えば、特開平2−78428号公報に記載されているように、多官能アミン水溶液接触後の微多孔性支持膜を垂直方向に把持して過剰の溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて溶液の水分を一部除去することもできる。   After applying the polyfunctional amine aqueous solution to the front and back surfaces of the microporous support membrane, thoroughly drain the excess polyfunctional amine aqueous solution so that no droplets remain on the microporous support membrane. Is preferred. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the formation of the composite semipermeable membrane, thereby reducing the performance. As a method of draining, for example, as described in JP-A-2-78428, the microporous support membrane after contacting with the polyfunctional amine aqueous solution is vertically gripped to allow the excess solution to flow down naturally. A method or a method of forcibly draining an air stream such as nitrogen from an air nozzle can be used. In addition, after draining, the membrane surface can be dried to remove some of the water in the solution.

その後、多官能アミンを存在せしめた微多孔性支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、界面重縮合によりポリアミド分離機能層を形成させる。該微多孔性支持膜の界面重縮合までの把持時間は、膜の内部拡散の影響から0.01〜120秒の間にあることが好ましい。   Thereafter, an organic solvent solution containing the aforementioned polyfunctional acid halide is applied to the microporous support membrane in which the polyfunctional amine is present, and a polyamide separation functional layer is formed by interfacial polycondensation. The holding time until interfacial polycondensation of the microporous support membrane is preferably between 0.01 and 120 seconds due to the influence of internal diffusion of the membrane.

有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であると好ましく、0.02〜2.0重量%の範囲内であるとさらに好ましい。この範囲であると、十分な反応速度が得られ、また副反応の発生を抑制することができる。さらに、この有機溶媒溶液にN,N−ジメチルホルムアミドのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。   The concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. Within this range, a sufficient reaction rate can be obtained, and the occurrence of side reactions can be suppressed. Further, it is more preferable that an acylation catalyst such as N, N-dimethylformamide is contained in the organic solvent solution because interfacial polycondensation is promoted.

多官能酸ハロゲン化物の有機溶媒溶液を接触させて界面重縮合を行い、微多孔性支持膜上にポリアミド分離機能層を形成したあとは、余剰の溶媒を液切りすることが好ましい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒溶液を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1〜5分間の間にあることが好ましく、1〜3分間であるとより好ましい。短すぎると分離機能層が完全に形成せず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、性能低下を起こしやすい。   After interfacial polycondensation is carried out by contacting an organic solvent solution of a polyfunctional acid halide to form a polyamide separation functional layer on the microporous support membrane, it is preferable to drain off excess solvent. As a method for draining, for example, a method of removing the excess organic solvent solution by naturally flowing it by holding the film in the vertical direction can be used. In this case, the time for gripping in the vertical direction is preferably 1 to 5 minutes, more preferably 1 to 3 minutes. If it is too short, the separation functional layer will not be completely formed, and if it is too long, the organic solvent will be overdried and defects will easily occur and performance will be deteriorated.

上述の方法により得られた複合半透膜は、50〜150℃の範囲内、好ましくは70〜130℃の範囲内で1〜10分間、より好ましくは2〜8分間熱水処理する工程などを付加することで、複合半透膜の溶質阻止性能や透水性をより一層向上させることができる。   The composite semipermeable membrane obtained by the above-described method includes a step of hydrothermal treatment in a range of 50 to 150 ° C., preferably in a range of 70 to 130 ° C. for 1 to 10 minutes, more preferably 2 to 8 minutes. By adding, the solute blocking performance and water permeability of the composite semipermeable membrane can be further improved.

このように形成される本発明に係る複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。   The composite semipermeable membrane according to the present invention formed in this way includes a large number of raw water channel materials such as plastic nets, permeate channel materials such as tricot, and a film for increasing pressure resistance as necessary. It is wound around a cylindrical water collecting pipe having holes, and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.

また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。   In addition, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump that supplies raw water to them, a device that pretreats the raw water, and the like to form a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

参考例、比較例、実施例における複合半透膜の特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(塩濃度約3.5%、ホウ素濃度約5.0%)を操作圧力5.5MPaの条件で3時間ろ過したときの透過水、供給水の水質を測定することにより、次の式から求めた。   The characteristics of the composite semipermeable membranes in the Reference Examples, Comparative Examples, and Examples are as follows. Seawater adjusted to a temperature of 25 ° C. and pH 6.5 (salt concentration of about 3.5%, boron concentration of about 5.0%). ) Was measured from the following equation by measuring the water quality of the permeated water and the feed water when filtered for 3 hours under the operating pressure of 5.5 MPa.

(ホウ素除去率)
供給水(海水)透過水中のホウ素濃度をICP発光分析装置で分析し、次の式から求めた。
ホウ素除去率(%)=100×{1−(透過水中のホウ素濃度/供給水中のホウ素濃度)}
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
<参考例>
微多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5デシテックスのポリエステル繊維と1.5デシテックスのポリエステル繊維との混繊糸からなる、通気度0.7cm/cm/秒、平均孔径7μm以下の湿式不織布であって、縦30cm、横20cmの大きさのものを、ガラス板上に固定し、その上に、ジメチルホルムアミド(DMF)溶媒のポリスルホン(ソルベイ社製、P3500)濃度15重量%の溶液(20℃)を、総厚み210〜215μmになるようにキャストし、直ちに水に浸積してポリスルホンの微多孔性支持膜を製造した。得られた微多孔性支持膜をPS支持膜と記す。
<実施例1>
参考例から得られたPS支持膜を、メタフェニレンジアミン(以下mPDAという)7.6重量%水溶液を含む縦35cm、横25cmの大きさのバットの液上面に固定し、室温下、15秒間支持膜の裏面のみをmPDA水溶液と接触させる方法で塗布した。次に、垂直に把持して液切りした後、PS支持膜を、mPDA3.8重量%水溶液を含むバットの上面に固定し、室温下、5秒間支持膜の表面のみをmPDA水溶液と接触させる方法で塗布して垂直に把持して液切りした。さらに、得られた支持膜を最初の裏面塗布から60秒後、トリメシン酸クロリド(以下TMCという)0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水に2分間浸漬し複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
(Boron removal rate)
The boron concentration in the feed water (seawater) permeated water was analyzed with an ICP emission analyzer, and obtained from the following equation.
Boron removal rate (%) = 100 × {1− (boron concentration in permeated water / boron concentration in feed water)}
(Membrane permeation flux)
Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).
<Reference example>
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a microporous support membrane, was produced by the following method. That is, a wet nonwoven fabric having a permeability of 0.7 cm 3 / cm 2 / sec and an average pore diameter of 7 μm or less, comprising a blended yarn of polyester fibers having a single yarn fineness of 0.5 dtex and 1.5 dtex polyester fibers. A sample having a size of 30 cm in length and 20 cm in width is fixed on a glass plate, and a solution (20 ° C.) of polysulfone in dimethylformamide (DMF) solvent (manufactured by Solvay, P3500) with a concentration of 15% by weight is fixed thereon. The resultant was cast to a total thickness of 210 to 215 μm and immediately immersed in water to produce a polysulfone microporous support membrane. The obtained microporous support membrane is referred to as a PS support membrane.
<Example 1>
The PS support membrane obtained from the reference example was fixed on the liquid surface of a bat having a size of 35 cm in length and 25 cm in width containing 7.6% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as mPDA), and supported at room temperature for 15 seconds. Only the back surface of the film was applied by a method of contacting with the mPDA aqueous solution. Next, after vertically holding and draining, the PS support membrane is fixed to the upper surface of the bat containing 3.8 wt% aqueous solution of mPDA, and only the surface of the support membrane is brought into contact with the mPDA aqueous solution at room temperature for 5 seconds. The solution was applied and held vertically to drain the liquid. Further, after 60 seconds from the first backside coating of the obtained support film, an n-decane solution containing 0.175% by weight of trimesic acid chloride (hereinafter referred to as TMC) was applied to the support film surface at a rate of 160 cm 3 / m 2. It applied so that it might get completely wet, and left still for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it was immersed in 90 degreeC hot water for 2 minutes, and the composite semipermeable membrane was obtained. Table 1 shows the water permeability and the boron removal rate.

Figure 2011067719
Figure 2011067719

<実施例2>
mPDA水溶液の濃度、塗布時間を表1に示す条件へと変えた以外は実施例1と同様の方法で複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<比較例1>
参考例から得られたPS支持膜をmPDA3.0重量%水溶液中に室温下120秒間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水に2分間浸漬し複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<比較例2>
参考例から得られたPS支持膜をmPDA3.8重量%水溶液中に室温下120秒間浸漬した以外は比較例1と同様の方法で複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<比較例3>
参考例から得られたPS支持膜をmPDA7.6重量%水溶液中に室温下12秒間浸漬した以外は比較例1と同様の方法で複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<比較例4>
参考例から得られたPS支持膜をmPDA7.6重量%水溶液中に室温下12秒間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ垂直に把持して液切りした後、PS支持膜をmPDA3.8重量%水溶液を含むバットの上面に固定し、室温下5秒間支持膜の表面のみmPDA水溶液と接触させる方法で塗布し垂直に把持して液切りした後、TMCを溶解したn−デカン溶液を支持膜表面に塗布した以外は実施例1と同様の方法で複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<比較例5〜7>
参考例から得られたPS支持膜をmPDA水溶液の濃度、塗布時間を表1に示す条件へと変えた以外は実施例1と同様の方法で複合半透膜を得た。透水量及びホウ素除去率を表1に示す。
<Example 2>
A composite semipermeable membrane was obtained in the same manner as in Example 1 except that the concentration of mPDA aqueous solution and the coating time were changed to the conditions shown in Table 1. Table 1 shows the water permeability and the boron removal rate.
<Comparative Example 1>
The PS support membrane obtained from the reference example was immersed in a 3.0% by weight aqueous solution of mPDA at room temperature for 120 seconds, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support membrane. After the removal, an n-decane solution containing 0.175% by weight was applied at a rate of 160 cm 3 / m 2 so that the surface of the support film was completely wetted, and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it was immersed in 90 degreeC hot water for 2 minutes, and the composite semipermeable membrane was obtained. Table 1 shows the water permeability and the boron removal rate.
<Comparative Example 2>
A composite semipermeable membrane was obtained in the same manner as in Comparative Example 1 except that the PS support membrane obtained from the Reference Example was immersed in an aqueous 3.8 wt% mPDA solution at room temperature for 120 seconds. Table 1 shows the water permeability and the boron removal rate.
<Comparative Example 3>
A composite semipermeable membrane was obtained in the same manner as in Comparative Example 1 except that the PS support membrane obtained from the reference example was immersed in a 7.6 wt% aqueous solution of mPDA at room temperature for 12 seconds. Table 1 shows the water permeability and the boron removal rate.
<Comparative example 4>
The PS support membrane obtained from the reference example was immersed in a 7.6% by weight aqueous solution of mPDA for 12 seconds at room temperature, the support membrane was slowly pulled up vertically and held vertically to drain the liquid, and then the PS support membrane was removed from mPDA3. N-decane solution in which TMC was dissolved after being fixed on the top surface of a vat containing 8 wt% aqueous solution, applied by a method in which only the surface of the support membrane was brought into contact with the mPDA aqueous solution at room temperature for 5 seconds, drained by holding vertically A composite semipermeable membrane was obtained in the same manner as in Example 1 except that was applied to the surface of the support membrane. Table 1 shows the water permeability and the boron removal rate.
<Comparative Examples 5-7>
A composite semipermeable membrane was obtained in the same manner as in Example 1 except that the PS support membrane obtained from the reference example was changed to the conditions shown in Table 1 in terms of the concentration of the mPDA aqueous solution and the coating time. Table 1 shows the water permeability and the boron removal rate.

実施例および比較例の結果から、本発明の製造方法によって作製された複合半透膜は、従来技術によって得られた複合半透膜と比較して、高いホウ素除去性能を維持したまま透水量が増大したことがわかる。   From the results of Examples and Comparative Examples, the composite semipermeable membrane produced by the production method of the present invention has a water permeability while maintaining high boron removal performance as compared with the composite semipermeable membrane obtained by the conventional technique. It can be seen that it has increased.

本発明の製造方法により得られる複合半透膜は、溶媒と溶質とを分離するための逆浸透膜として用いられる。例えば、原水中に含まれる無機物や有機物などの有害物質やその前駆物質を除去する膜分離法において用いられる。   The composite semipermeable membrane obtained by the production method of the present invention is used as a reverse osmosis membrane for separating a solvent and a solute. For example, it is used in a membrane separation method for removing harmful substances such as inorganic substances and organic substances and precursors thereof contained in raw water.

Claims (1)

微多孔性支持膜の表面と裏面とにそれぞれ濃度の異なる多官能アミン水溶液を塗布した後、該微多孔性支持膜の表面から多官能酸ハロゲン化物溶液を塗布することにより、該微多孔性支持膜上にポリアミド分離機能層を形成させる複合半透膜の製造方法であって、該微多孔性支持膜の表面に塗布する多官能アミン水溶液の濃度が、該微多孔性支持膜の裏面に塗布する多官能アミン水溶液の濃度よりも低いことを特徴とする複合半透膜の製造方法。 After applying polyfunctional amine aqueous solutions having different concentrations on the surface and back surface of the microporous support membrane, the polyfunctional acid halide solution is applied from the surface of the microporous support membrane to thereby provide the microporous support membrane. A method for producing a composite semipermeable membrane in which a polyamide separation functional layer is formed on a membrane, wherein the concentration of the polyfunctional amine aqueous solution applied to the surface of the microporous support membrane is applied to the back surface of the microporous support membrane. A method for producing a composite semipermeable membrane, wherein the concentration is lower than the concentration of a polyfunctional amine aqueous solution.
JP2009218613A 2009-09-24 2009-09-24 Manufacturing method of composite semipermeable membrane Expired - Fee Related JP5263104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218613A JP5263104B2 (en) 2009-09-24 2009-09-24 Manufacturing method of composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218613A JP5263104B2 (en) 2009-09-24 2009-09-24 Manufacturing method of composite semipermeable membrane

Publications (2)

Publication Number Publication Date
JP2011067719A true JP2011067719A (en) 2011-04-07
JP5263104B2 JP5263104B2 (en) 2013-08-14

Family

ID=44013559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218613A Expired - Fee Related JP5263104B2 (en) 2009-09-24 2009-09-24 Manufacturing method of composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP5263104B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184892A (en) * 1992-01-13 1993-07-27 Nitto Denko Corp Tubular reverse osmotic composite membrane or module and its production
JPH09141071A (en) * 1995-11-22 1997-06-03 Toray Ind Inc Laminated membrane, its production and method for using the same
JPH09187631A (en) * 1996-01-12 1997-07-22 Toray Ind Inc Production of composite reverse-osmosis membrane and device therefor
JP2009030024A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Method for producing composite semipermeable membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184892A (en) * 1992-01-13 1993-07-27 Nitto Denko Corp Tubular reverse osmotic composite membrane or module and its production
JPH09141071A (en) * 1995-11-22 1997-06-03 Toray Ind Inc Laminated membrane, its production and method for using the same
JPH09187631A (en) * 1996-01-12 1997-07-22 Toray Ind Inc Production of composite reverse-osmosis membrane and device therefor
JP2009030024A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Method for producing composite semipermeable membrane

Also Published As

Publication number Publication date
JP5263104B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5696361B2 (en) Composite semipermeable membrane and method for producing the same
JP5741431B2 (en) Composite semipermeable membrane and method for producing the same
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP5262668B2 (en) Composite nanofiltration membrane
JP2011078980A (en) Composite semipermeable membrane and manufacturing method of the same
JP2010094641A (en) Method of treating composite semipermeable film
JP2009226320A (en) Composite semi-permeable membrane and its manufacturing method
JP6237233B2 (en) Composite semipermeable membrane and composite semipermeable membrane element
JP5120006B2 (en) Manufacturing method of composite semipermeable membrane
WO2016052427A1 (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP2006102594A (en) Method for manufacturing composite semipermeable membrane
JP5177056B2 (en) Composite semipermeable membrane
JP2010201303A (en) Composite semipermeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2013223861A (en) Composite diaphragm
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP5263104B2 (en) Manufacturing method of composite semipermeable membrane
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP5050335B2 (en) Manufacturing method of composite semipermeable membrane
JP2016010771A (en) Composite semipermeable membrane
JP2009220023A (en) Method for manufacturing composite semi-permeable membrane
JP2014065003A (en) Composite semipermeable membrane and water production
JP2012024756A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5263104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees