JP2009030024A - Method for producing composite semipermeable membrane - Google Patents

Method for producing composite semipermeable membrane Download PDF

Info

Publication number
JP2009030024A
JP2009030024A JP2008146552A JP2008146552A JP2009030024A JP 2009030024 A JP2009030024 A JP 2009030024A JP 2008146552 A JP2008146552 A JP 2008146552A JP 2008146552 A JP2008146552 A JP 2008146552A JP 2009030024 A JP2009030024 A JP 2009030024A
Authority
JP
Japan
Prior art keywords
composite semipermeable
semipermeable membrane
membrane
cleaning
unreacted components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008146552A
Other languages
Japanese (ja)
Inventor
Atsushi Okabe
淳 岡部
Hiroki Tomioka
洋樹 富岡
Hiroharu Nakatsuji
宏治 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008146552A priority Critical patent/JP2009030024A/en
Publication of JP2009030024A publication Critical patent/JP2009030024A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove unreacted components from a composite semipermeable membrane without inhibiting boron removing performances and to produce the composite semipermeable membrane with a high boron removal ratio and little residual amount of the unreacted components. <P>SOLUTION: A method for production comprises carrying out interfacial polycondensation of a polyfunctional amine with a polyfunctional acid derivative, forming a separation functional layer of a cross-linked aromatic polyamide on a porous supporting membrane and producing the composite semipermeable membrane. In the method, a washing treatment with a wash liquid containing sulfate ions is conducted at 70-100°C after the interfacial polycondensation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、逆浸透膜や限外ろ過膜等として用いるのに好適な複合半透膜の製造方法及び膜モジュールの性能向上方法に関する。   The present invention relates to a method for producing a composite semipermeable membrane suitable for use as a reverse osmosis membrane, an ultrafiltration membrane or the like, and a method for improving the performance of a membrane module.

複合半透膜は、液状混合物中に含まれる成分を選択的に分離するために使用されるものであり、超純水の製造、海水またはかん水の脱塩、染色や電着塗料廃水の除去・分離回収による工業用水のクローズドシステム構築、食品工業での有効成分の濃縮等に用いられている。その具体例として、多官能芳香族アミンと多官能酸誘導体(例えば塩化物)との界面重縮合反応によって得られる架橋ポリアミドからなる薄膜層を多孔性支持膜上に接触させた複合半透膜があり、この複合半透膜は、透過性や選択分離性の高い逆浸透膜として実用化されている。その複合半透膜において、高透水性を発現するために、界面重縮合反応で添加剤を用いて逆浸透膜を製造する技術も開発されている。該添加剤としては、水酸化カリウムやリン酸三ナトリウムなど界面反応にて生成する酸性物質を系外に除去するための化合物や、アシル化触媒、溶解度パラメーターが8〜14(cal/cm0.5の化合物などが提案されている。また、脱塩性能を向上させる手段としては複合半透膜を熱水処理する方法が提案されている。また、多価アルコールとトリアルキルアミンおよび有機酸の混合物を含有する水溶液に浸漬して熱水処理し、透過水量の低下を抑える方法が提案されている。 The composite semipermeable membrane is used to selectively separate the components contained in the liquid mixture, including the production of ultrapure water, the desalination of seawater or brine, and the removal of dyeing and electrodeposition paint wastewater. It is used for the construction of closed systems for industrial water by separation and recovery, and concentration of active ingredients in the food industry. As a specific example, there is a composite semipermeable membrane in which a thin film layer made of a crosslinked polyamide obtained by interfacial polycondensation reaction between a polyfunctional aromatic amine and a polyfunctional acid derivative (for example, chloride) is contacted on a porous support membrane. Yes, this composite semipermeable membrane has been put to practical use as a reverse osmosis membrane having high permeability and selective separation. In order to express high water permeability in the composite semipermeable membrane, a technology for producing a reverse osmosis membrane using an additive in an interfacial polycondensation reaction has also been developed. Examples of the additive include a compound for removing an acidic substance generated by an interfacial reaction such as potassium hydroxide and trisodium phosphate out of the system, an acylation catalyst, and a solubility parameter of 8 to 14 (cal / cm 3 ). 0.5 compounds have been proposed. As a means for improving the desalting performance, a method of hydrothermally treating the composite semipermeable membrane has been proposed. In addition, a method has been proposed in which immersion in an aqueous solution containing a mixture of a polyhydric alcohol, a trialkylamine, and an organic acid is treated with hot water to suppress a decrease in the amount of permeated water.

しかし、これら製法による複合半透膜には、芳香族系モノマーもしくは低重合度ポリマーといった未反応成分が残存しているので、そのまま分離膜として膜モジュールに組み込んで使用すると、残存する未反応成分が透過液中に含まれて流出する問題があった。さらに、複合半透膜内から未反応成分が脱落することにより細孔の孔径が大きくなり、ホウ素除去性能が低下するという問題もある。   However, since unreacted components such as aromatic monomers or low-polymerization degree polymers remain in the composite semipermeable membranes produced by these production methods, the remaining unreacted components will remain when incorporated in a membrane module as a separation membrane. There was a problem of being contained in the permeate and flowing out. Furthermore, there is a problem in that the pore removal diameter increases due to the unreacted components falling out of the composite semipermeable membrane, and the boron removal performance is lowered.

そこで、製造された複合半透膜中に残存している未反応成分を除去することを目的として、複合半透膜に対して有機物水溶液を接触させ未反応残存物を除去する方法(特許文献1参照)、半透性膜をリチウム塩、ストロンチウム塩に接触処理する方法(特許文献2参照)、未反応のモノマーを50℃以上の洗浄液で洗浄除去する方法(特許文献3参照)などが提案されている。   Therefore, for the purpose of removing unreacted components remaining in the produced composite semipermeable membrane, a method of removing an unreacted residue by bringing an organic aqueous solution into contact with the composite semipermeable membrane (Patent Document 1). And a method of contacting a semipermeable membrane with a lithium salt or a strontium salt (see Patent Document 2), a method of removing unreacted monomers with a cleaning solution at 50 ° C. or higher (see Patent Document 3), and the like. ing.

また、アミン不浸透処理を施した多孔性支持体上に架橋ポリアミドの分離機能層を形成することにより、膜洗浄後の未反応多官能アミン成分の残存量を極めて少ない水準とする方法(特許文献4参照)が提案されている。   Also, a method for reducing the residual amount of unreacted polyfunctional amine component after membrane cleaning to a very low level by forming a separation functional layer of crosslinked polyamide on a porous support subjected to amine impermeability treatment (Patent Document) 4) has been proposed.

しかしながら、これら従来の方法で洗浄処理しても、複合半透膜に残存する未反応成分を、ホウ素除去性能を悪化させることなく効率的に洗浄除去させることができなかった。
特開2000−24470号公報 特開2003−117361号公報 特許第3525759号公報 特開2006−122886号公報
However, even if these conventional methods are used for cleaning, unreacted components remaining in the composite semipermeable membrane cannot be efficiently cleaned and removed without deteriorating the boron removal performance.
JP 2000-24470 A JP 2003-117361 A Japanese Patent No. 3525759 JP 2006-122886 A

本発明の目的は、ホウ素除去性能を阻害することなく、複合半透膜から効率的に未反応成分を除去することができる洗浄方法によって、ホウ素除去率が高く、かつ、未反応成分の残存量が少ない複合半透膜を製造することにある。   An object of the present invention is to achieve a high boron removal rate and a residual amount of unreacted components by a cleaning method capable of efficiently removing unreacted components from a composite semipermeable membrane without impairing boron removal performance. It is to produce a composite semipermeable membrane with a small amount.

上記目的を達成するための本発明は、多官能アミンと多官能酸誘導体を界面重縮合させて架橋芳香族ポリアミドの分離機能層を多孔性支持膜上に形成させて複合半透膜を製造する方法において、前記界面重縮合の後に、硫酸イオンを含有する洗浄液によって70〜100℃で洗浄処理を行うことを特徴とする、複合半透膜の製造方法である。   In order to achieve the above object, the present invention produces a composite semipermeable membrane by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid derivative to form a separation functional layer of a crosslinked aromatic polyamide on a porous support membrane. In the method, after the interfacial polycondensation, a cleaning treatment is performed at 70 to 100 ° C. with a cleaning liquid containing sulfate ions.

本発明によれば、ホウ素除去性能を阻害することなく、複合半透膜から効率的に未反応成分を除去することができるので、ホウ素除去率が高く、かつ、未反応成分の残存量の少ない複合半透膜を得ることができる。   According to the present invention, since unreacted components can be efficiently removed from the composite semipermeable membrane without impairing boron removal performance, the boron removal rate is high and the remaining amount of unreacted components is small. A composite semipermeable membrane can be obtained.

本発明に係る複合半透膜は、脱塩性能、透水性能、ホウ素除去性能などの流体分離機能を発揮する分離機能層と、この分離機能層を支持するための多孔性支持膜とからなる。この多孔性支持膜は、基材と多孔質樹脂層からなる。   The composite semipermeable membrane according to the present invention includes a separation functional layer that exhibits fluid separation functions such as desalting performance, water permeability performance, and boron removal performance, and a porous support membrane for supporting the separation functional layer. This porous support membrane consists of a base material and a porous resin layer.

上記のような複合半透膜は、たとえば、不織布などの基材上に多孔質層を形成させて多孔質支持膜とした後、その多孔性支持膜の表面上で、多官能アミンと多官能酸誘導体とを界面重縮合させて架橋芳香族ポリアミドの分離機能層を形成させることにより得ることができる。   The composite semipermeable membrane as described above, for example, forms a porous support film by forming a porous layer on a substrate such as a nonwoven fabric, and then multi-functional amine and polyfunctional on the surface of the porous support film. It can be obtained by interfacial polycondensation with an acid derivative to form a separation functional layer of crosslinked aromatic polyamide.

本発明では、上記のようにして製造された複合半透膜を、特定の無機塩を含有する洗浄液でもって洗浄処理し、膜中に残存している未反応成分を除去する。この洗浄処理による未反応成分の除去効率を高めるために、膜中の未反応成分を酸化せしめる処理を、洗浄処理の前に、もしくは洗浄処理と同時に行ってもよい。ここで、未反応成分(未反応の芳香族系モノマー)を酸化させる処理としては、塩素を含む液体や気体を用いた処理を適用することができる。酸化せしめることによって、芳香族系モノマーの有するカチオン性を除去することができ、洗浄液による洗浄除去効率を改善させることができる。   In the present invention, the composite semipermeable membrane produced as described above is washed with a washing liquid containing a specific inorganic salt to remove unreacted components remaining in the membrane. In order to increase the removal efficiency of unreacted components by this cleaning process, the process of oxidizing the unreacted components in the film may be performed before the cleaning process or simultaneously with the cleaning process. Here, as the treatment for oxidizing the unreacted component (unreacted aromatic monomer), a treatment using a liquid or gas containing chlorine can be applied. By oxidizing, the cationic property of the aromatic monomer can be removed, and the cleaning removal efficiency by the cleaning liquid can be improved.

複合半透膜と洗浄液とを接触させる洗浄方法は特に限定されず、例えば、複合半透膜全体を洗浄液中に浸漬する方法、洗浄液をスプレーする方法、および膜の両面に圧力差を与えて洗浄液を通水する方法のいずれであってもかまわないが、簡便性の面から浸漬法が好ましい。通水法による場合の圧力については複合半透膜あるいは部材の耐性の範囲内であればなんら制限を受けるものではない。   The cleaning method for bringing the composite semipermeable membrane into contact with the cleaning liquid is not particularly limited. For example, the method of immersing the entire composite semipermeable membrane in the cleaning liquid, the method of spraying the cleaning liquid, and the cleaning liquid by applying a pressure difference to both sides of the membrane. Any method of passing water may be used, but the dipping method is preferable from the viewpoint of simplicity. The pressure in the case of the water flow method is not limited at all as long as it is within the tolerance range of the composite semipermeable membrane or member.

ここで用いる洗浄液は、複合半透膜から、多官能アミン、多官能酸誘導体、およびその低分子量重合体などの未反応成分を抽出除去する効果がある成分を含む。即ち、抽出除去を促進させる成分として、硫酸イオンを含む洗浄液で処理することにより膜中未反応成分を洗浄し、膜性能の改善、とりわけホウ素除去率を向上させることができる。この作用効果の原理の詳細は明らかではないが、硫酸イオンは水溶液中でタンパク質の溶解度を低下させ塩析させる効果が高いことが知られており、低分子量成分の抽出にも効果があるものと考えることができる。通常、複合半透膜を洗浄処理して、残存する未反応成分を抽出除去すると、未反応成分が除去されたことにより分離機能層内の空隙が増えるため、透水性能が向上し、代わりにホウ素の除去率は低下する傾向にある。しかし本発明の製造方法によれば、硫酸イオンが低分子量成分抽出後に空洞となったアミド分子の間隙に入り込んで分離機能層の未反応アミノ残基とも相互作用し、分子間隙を埋めることで細孔が小さく、ホウ素が排除可能な構造を構築するものと考えている。   The cleaning liquid used here contains components that have the effect of extracting and removing unreacted components such as polyfunctional amines, polyfunctional acid derivatives, and low molecular weight polymers thereof from the composite semipermeable membrane. That is, by treating with a cleaning solution containing sulfate ions as a component that promotes extraction and removal, unreacted components in the film can be washed to improve the film performance, especially the boron removal rate. Although the details of the principle of this effect are not clear, it is known that sulfate ion is highly effective in reducing the solubility of proteins and salting out in aqueous solution, and is also effective in extracting low molecular weight components. Can think. Normally, when the composite semipermeable membrane is washed and the remaining unreacted components are extracted and removed, the unreacted components are removed, resulting in an increase in voids in the separation functional layer, which improves the water permeability performance. The removal rate tends to decrease. However, according to the production method of the present invention, sulfate ions enter the gaps between amide molecules that become cavities after extraction of low molecular weight components, interact with unreacted amino residues in the separation functional layer, and fill the molecular gaps. It is thought that it will build a structure with small pores and boron exclusion.

さらに本発明の洗浄処理を、70℃以上の高温で行うことで、分離機能層の分子鎖は熱力学的に安定な構造となるように変形しやすくなり、未反応成分が抜けた後の空隙を埋めるように変形するため、ホウ素除去性能を向上させることができる。また、70℃以上の高温で洗浄処理を行うことにより、未反応成分の抽出効率を高めることができる。洗浄処理の温度は高温である方が好ましく、その取り得る上限温度は洗浄液の沸点である。具体的には、洗浄温度として70〜100℃の範囲が採用される。洗浄を効率的に行うためには、80℃〜100℃の範囲内がより好ましい。これに対し、洗浄温度が70℃未満である場合には、未反応成分の抽出に時間がかかる、もしくは抽出除去が困難となる問題があり、ポリマー鎖の運動が起こりにくいためホウ素の除去率を向上させることができない。   Furthermore, by performing the cleaning treatment of the present invention at a high temperature of 70 ° C. or higher, the molecular chains of the separation functional layer are easily deformed so as to have a thermodynamically stable structure, and voids after the unreacted components are removed. Therefore, the boron removal performance can be improved. Moreover, the extraction efficiency of an unreacted component can be improved by performing a washing process at a high temperature of 70 ° C. or higher. The temperature of the cleaning treatment is preferably high, and the maximum temperature that can be taken is the boiling point of the cleaning liquid. Specifically, a range of 70 to 100 ° C. is employed as the cleaning temperature. In order to perform washing efficiently, the temperature within the range of 80 ° C. to 100 ° C. is more preferable. On the other hand, when the washing temperature is less than 70 ° C., there is a problem that it takes time to extract unreacted components, or extraction and removal are difficult, and the movement of the polymer chain hardly occurs. It cannot be improved.

硫酸イオンを含有する洗浄液としては、硫酸イオンの濃度が0.01〜1mol/lの水溶液であることが好ましい。洗浄液中の硫酸イオン濃度が低すぎると、未反応成分の抽出除去効果が不十分であり、硫酸イオン濃度を上記した上限水準を超えるほどに高くしても未反応成分の抽出除去効果は飽和するので、高くし過ぎる必要はない。ホウ素除去率についてはJIS K0102に従い、メチレンブルー吸光光度法、アゾメチンH吸光光度法、誘導結合プラズマ発光分析法などで求めることができる。   The cleaning liquid containing sulfate ions is preferably an aqueous solution having a sulfate ion concentration of 0.01 to 1 mol / l. If the sulfate ion concentration in the cleaning solution is too low, the effect of extracting and removing unreacted components will be insufficient, and the effect of extracting and removing unreacted components will be saturated even if the sulfate ion concentration exceeds the above upper limit level. So it doesn't have to be too high. The boron removal rate can be determined according to JIS K0102, by methylene blue absorptiometry, azomethine H absorptiometry, inductively coupled plasma emission spectrometry, or the like.

ここで、硫酸イオンのカウンターイオンは特に限定しないが、テトラメチルアンモニウムイオン、アンモニウムイオン、カリウムイオン、ナトリウムイオン、リチウムイオンから選ばれる陽イオン成分を例示することができる。なかでも、硫酸イオンとナトリウムイオンからなる硫酸ナトリウムがコスト、安全性の面で好ましい。   Here, although the counter ion of sulfate ion is not particularly limited, a cation component selected from tetramethylammonium ion, ammonium ion, potassium ion, sodium ion, and lithium ion can be exemplified. Of these, sodium sulfate composed of sulfate ions and sodium ions is preferable in terms of cost and safety.

洗浄処理を行う時間は、複合半透膜の種類や処理温度により異なるが、一般的には10秒〜24時間の範囲が好ましく、特に好ましくは30秒〜3時間である。10秒未満と短すぎる場合には、複合半透膜中の未反応成分を十分に抽出除去することができない。24時間を越えるほどに長過ぎると未反応成分の抽出除去量が平衡に達し、処理時間を長くしても抽出除去量を増やすことができなくなる。   Although the time for performing the washing treatment varies depending on the type of the composite semipermeable membrane and the treatment temperature, it is generally preferably in the range of 10 seconds to 24 hours, particularly preferably 30 seconds to 3 hours. If it is too short, such as less than 10 seconds, unreacted components in the composite semipermeable membrane cannot be sufficiently extracted and removed. If it is too long to exceed 24 hours, the amount of unreacted components extracted and removed reaches equilibrium, and even if the treatment time is lengthened, the amount of extracted and removed cannot be increased.

複合半透膜中に残存する未反応の多官能アミンの量は、洗浄処理する際に処理時間や処理温度を調節することにより50mg/m以下に低減させることができ、より好ましくは20mg/m以下まで低減させることができる。この範囲であると、膜使用時に膜中アミンの溶出による孔径の拡大を抑えることができ、ホウ素除去性能の維持に十分な効果を得ることができる。なお、膜中アミン量の測定は、複合半透膜をエタノール中に浸漬し、エタノールに抽出された成分の紫外可視吸収スペクトル、クロマトグラフィー、質量分析測定などで求められる。 The amount of unreacted polyfunctional amine remaining in the composite semipermeable membrane can be reduced to 50 mg / m 2 or less by adjusting the treatment time and treatment temperature during the washing treatment, more preferably 20 mg / m 2. It can be reduced to m 2 or less. Within this range, expansion of the pore size due to elution of amine in the membrane can be suppressed when the membrane is used, and a sufficient effect for maintaining boron removal performance can be obtained. The measurement of the amount of amine in the membrane is obtained by immersing the composite semipermeable membrane in ethanol and measuring the components extracted into ethanol by ultraviolet-visible absorption spectrum, chromatography, mass spectrometry and the like.

本発明における複合半透膜は、多孔性支持膜上に分離機能層が形成されたものであるが、分離機能層は多孔性支持膜の少なくとも片面に設けられたものであることが好ましい。多孔性支持膜の両面に分離機能層を設けても良いが、通常、片面に1層の分離機能層があれば実用的には十分である。   The composite semipermeable membrane in the present invention has a separation functional layer formed on a porous support membrane, and the separation functional layer is preferably provided on at least one side of the porous support membrane. Although a separation functional layer may be provided on both sides of the porous support membrane, it is practically sufficient to have one separation functional layer on one side.

分離機能層を形成するために用いる多官能アミンとは、2つ以上の反応性アミノ基を有する多官能アミンのことであり、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼン、パラキシリレンジアミンなどを用いることができるが、反応効率の高い架橋反応を行うためにはメタフェニレンジアミンやパラフェニレンジアミンや1,3,5−トリアミノベンゼンを用いることが好ましい。また、多官能酸誘導体としては、トリメシン酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、トリメリット酸ハライド、ピロメリット酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ナフタレンジカルボン酸ハライド、ジフェニルジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンスルホン酸ハライド、クロロスルホニルイソフタル酸ハライドなどを用いることができるが、反応効率の高い架橋反応を行うためにイソフタル酸クロライド、テレフタル酸クロライド、トリメシン酸クロライド、またはこれらの混合物を用いることが好ましい。   The polyfunctional amine used to form the separation functional layer is a polyfunctional amine having two or more reactive amino groups, such as metaphenylenediamine, paraphenylenediamine, 1,3,5-triaminobenzene. Paraxylylenediamine and the like can be used, but metaphenylenediamine, paraphenylenediamine, and 1,3,5-triaminobenzene are preferably used in order to perform a crosslinking reaction with high reaction efficiency. Polyfunctional acid derivatives include trimesic acid halide, benzophenone tetracarboxylic acid halide, trimellitic acid halide, pyromellitic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarboxylic acid halide, pyridinedicarboxylic acid Halide, benzenesulfonic acid halide, chlorosulfonylisophthalic acid halide, etc. can be used, but isophthalic acid chloride, terephthalic acid chloride, trimesic acid chloride, or a mixture thereof may be used to perform a crosslinking reaction with high reaction efficiency. preferable.

ここで多孔性支持膜は、分離機能層を支持するための膜として複合半透膜に強度を与えるために配置されるものである。したがって、多数の孔を有する膜であって強度があれば特に限定されない。好ましくは、略均一な孔あるいは片面からもう一方の面まで徐々に孔径が大きくなる孔をもっていて、その孔の大きさはその片面の表面が100nm以下であるような構造の多孔質層が基材上に形成されたものが好ましい。さらに、その孔径は、1〜100nmの範囲内であるとより好ましい。孔径が1nmを下回ると、透過流束が低下する傾向にあり、100nmを超えると多孔性支持膜の強度が低下しやすい。   Here, the porous support membrane is disposed to give strength to the composite semipermeable membrane as a membrane for supporting the separation functional layer. Therefore, the film is not particularly limited as long as it is a film having a large number of holes and has strength. Preferably, the substrate has a substantially uniform hole or a porous layer having a structure in which the hole diameter gradually increases from one surface to the other surface, and the surface of one surface is 100 nm or less. Those formed above are preferred. Furthermore, the pore diameter is more preferably in the range of 1 to 100 nm. If the pore diameter is less than 1 nm, the permeation flux tends to decrease, and if it exceeds 100 nm, the strength of the porous support membrane tends to decrease.

また、多孔性支持膜の厚みは、1μm〜5mmの範囲内にあると好ましく、10〜100μmの範囲内にあるとより好ましい。厚みが1μmを下回ると多孔性支持膜の強度が低下しやすく、5mmを超えると取り扱いにくくなる。   The thickness of the porous support membrane is preferably in the range of 1 μm to 5 mm, and more preferably in the range of 10 to 100 μm. When the thickness is less than 1 μm, the strength of the porous support membrane tends to be lowered, and when it exceeds 5 mm, handling becomes difficult.

多孔性支持膜は、ポリエステル繊維やポリアミド繊維からなる不織布や平織物のような布帛を基材とし、この基材上に多孔質層が形成されたものである。この多孔質層に用いる樹脂素材としては特に限定されないが、たとえば、ポリスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして用いることができる。上記のうち、セルロース系ポリマーとしては、酢酸セルロース、硝酸セルロースなど、ビニル系ポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどを用いると好ましい。中でも、ポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーやコポリマーが好ましい。さらに、これらの素材の中でも、化学的、機械的、熱的に安定性が高く、成型が容易であるポリスルホンを用いることが特に好ましい。   The porous support membrane is made by using a fabric such as a nonwoven fabric or a plain fabric made of polyester fiber or polyamide fiber as a base material, and a porous layer is formed on the base material. The resin material used for the porous layer is not particularly limited. It can be used alone or blended. Among the above, it is preferable to use cellulose acetate, cellulose nitrate or the like as the cellulose polymer and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile or the like as the vinyl polymer. Among these, homopolymers and copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. Furthermore, among these materials, it is particularly preferable to use polysulfone which has high chemical, mechanical and thermal stability and is easy to mold.

このようにして得られた多孔性支持膜上に、多官能アミン化合物の水溶液、多官能酸誘導体の溶液を順に塗布してin−situ界面重縮合反応をさせて、実質的に分離性能を有するポリアミド分離機能層を形成させる。   On the porous support membrane thus obtained, an aqueous solution of a polyfunctional amine compound and a solution of a polyfunctional acid derivative are sequentially applied to cause an in-situ interfacial polycondensation reaction, thereby substantially having separation performance. A polyamide separation functional layer is formed.

多官能アミン化合物水溶液中の多官能アミン化合物の濃度は、0.5〜20重量%の範囲内にあることが好ましく、1〜15重量%の範囲内にあることがより好ましい。多官能アミン化合物濃度が0.5重量%を下回ると、純水透過係数が30×10−12/m・Pa・s以下の複合半透膜を作製することが困難となり、20重量%を超えると分離機能層の膜厚が大きくなり実用レベルの透過水量を得ることが困難となる。 The concentration of the polyfunctional amine compound in the polyfunctional amine compound aqueous solution is preferably in the range of 0.5 to 20% by weight, and more preferably in the range of 1 to 15% by weight. When the polyfunctional amine compound concentration is less than 0.5% by weight, it becomes difficult to produce a composite semipermeable membrane having a pure water permeability coefficient of 30 × 10 −12 m 3 / m 2 · Pa · s or less. If it exceeds 50%, the thickness of the separation functional layer becomes large, and it becomes difficult to obtain a permeated water amount at a practical level.

多官能酸誘導体を溶解する溶媒は、水と非混和性であり、かつ、多官能酸誘導体を溶解するとともに、多孔性支持膜を破壊せず、界面重縮合により架橋ポリマーを形成し得るものであればよい。例えば、炭化水素化合物、シクロヘキサン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどが挙げられるが、反応速度、溶媒の揮発性から、好ましくは、n−ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどである。   The solvent that dissolves the polyfunctional acid derivative is immiscible with water, dissolves the polyfunctional acid derivative, does not destroy the porous support film, and can form a crosslinked polymer by interfacial polycondensation. I just need it. For example, hydrocarbon compounds, cyclohexane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like are mentioned. From the reaction rate and solvent volatility, n-hexane, heptane, octane, Nonane, decane, undecane, dodecane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like.

上記有機溶媒中の多官能酸誘導体の濃度は、0.04〜1.0重量%の範囲内であると好ましい。0.04重量%を下回ると、活性層である分離機能層の形成が不十分となりやすく、1.0重量%を超えると実用レベルの透過水量を得ることが困難となり、また、コスト高となる。   The concentration of the polyfunctional acid derivative in the organic solvent is preferably in the range of 0.04 to 1.0% by weight. If the amount is less than 0.04% by weight, the formation of the separation functional layer, which is an active layer, is likely to be insufficient. If the amount exceeds 1.0% by weight, it is difficult to obtain a practical level of permeated water, and the cost is increased. .

これら多官能アミン化合物、多官能酸誘導体およびその他の成分の比率は、上記範囲内の濃度でもって製造する複合半透膜の純水透過係数が所望水準となるように適宜調整すればよい。   The ratio of these polyfunctional amine compound, polyfunctional acid derivative, and other components may be adjusted as appropriate so that the pure water permeability coefficient of the composite semipermeable membrane produced with a concentration within the above range becomes a desired level.

以下実施例をもって本発明をさらに具体的に説明する。ただし、本発明はこれにより限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited thereby.

以下の参考例、比較例、実施例における測定値は、次の方法により求めた。   The measured values in the following Reference Examples, Comparative Examples, and Examples were obtained by the following method.

(ホウ素除去率)
複合半透膜に、温度25℃、pH6.5に調整した海水(総蒸発残留物濃度約3.5%、ホウ素濃度約5.0ppm)を操作圧力5.5MPaで供給して処理を行ない、透過水の水質、供給水のホウ素濃度を誘導結合プラズマ発光分析法により測定し、次の式からホウ素除去率を求めた。
(Boron removal rate)
The composite semipermeable membrane is treated by supplying seawater (total evaporation residue concentration: about 3.5%, boron concentration: about 5.0 ppm) adjusted to a temperature of 25 ° C. and pH 6.5 at an operating pressure of 5.5 MPa, The water quality of the permeated water and the boron concentration of the feed water were measured by inductively coupled plasma optical emission spectrometry, and the boron removal rate was determined from the following equation.

ホウ素除去率(%)=100×{1−(透過水中のホウ素濃度/供給水中のホウ素濃度)}
(複合半透膜中のアミン含有量)
膜中アミン量は、10×10cmに切り出した複合半透膜をエタノール50gに16時間浸漬し、エタノールに抽出された成分の紫外可視吸収スペクトルを測定することで求めた。
Boron removal rate (%) = 100 × {1− (boron concentration in permeated water / boron concentration in feed water)}
(Amine content in composite semipermeable membrane)
The amount of amine in the membrane was determined by immersing the composite semipermeable membrane cut to 10 × 10 cm in 50 g of ethanol for 16 hours and measuring the UV-visible absorption spectrum of the component extracted in ethanol.

(参考例)
多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5デシテックスのポリエステルフィラメントと単糸繊度1.5デシテックスのポリエステルフィラメントとから構成される、通気度0.7cm/cm・秒、平均孔径7μm以下の湿式不織布であって、縦30cm、横20cmの大きさの物を、ガラス板上に固定した。その上に、ポリスルホン濃度15重量%のジメチルホルムアミド(DMF)溶液(2.5ポアズ:20℃)を、総厚み210〜215μmになるようにキャストし、直ちに水に浸漬してポリスルホンの多孔性支持膜を製造した。得られた多孔性支持膜をPS支持膜と記す。
(Reference example)
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a porous support membrane, was produced by the following method. That is, it is a wet nonwoven fabric composed of a polyester filament having a single yarn fineness of 0.5 dtex and a polyester filament having a single yarn fineness of 1.5 dtex and having an air permeability of 0.7 cm 3 / cm 2 · sec and an average pore diameter of 7 μm or less. Then, an object having a size of 30 cm in length and 20 cm in width was fixed on a glass plate. Further, a dimethylformamide (DMF) solution (2.5 poise: 20 ° C.) having a polysulfone concentration of 15% by weight was cast so as to have a total thickness of 210 to 215 μm and immediately immersed in water to support the porous support of polysulfone. A membrane was produced. The obtained porous support membrane is referred to as a PS support membrane.

このようにして得られたPS支持膜を、メタフェニレンジアミン(以下m−PDAという)3.4重量%水溶液中に2分間浸漬し、該PS支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(以下TMCという)0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合逆浸透膜とした。このようにして得られた複合半透膜の性能を評価したところ、表1に示す値であった。 The PS support membrane thus obtained was immersed in a 3.4% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as m-PDA) for 2 minutes, and the PS support membrane was slowly pulled up in the vertical direction. After removing excess aqueous solution from the surface of the supporting membrane by blowing nitrogen, an n-decane solution containing 0.175% by weight of trimesic acid chloride (hereinafter referred to as TMC) was completely removed at a rate of 160 cm 3 / m 2. It applied so that it might get wet, and left still for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it washed with 90 degreeC hot water for 2 minutes, and was set as the composite reverse osmosis membrane. When the performance of the composite semipermeable membrane obtained in this way was evaluated, the values shown in Table 1 were obtained.

(実施例1〜6)
参考例で得られた複合半透膜を、表1に示す条件にて硫酸ナトリウム水溶液に浸漬させ洗浄処理した後、直ちに水浴中へ浸漬した。得られた複合半透膜の性能を評価したところ、表1に示す値であった。
(Examples 1-6)
The composite semipermeable membrane obtained in the reference example was immersed in a sodium sulfate aqueous solution under the conditions shown in Table 1, washed, and then immediately immersed in a water bath. When the performance of the obtained composite semipermeable membrane was evaluated, the values shown in Table 1 were obtained.

(比較例1)
洗浄液に用いる水溶液の組成は実施例1と同じで、処理温度を室温(25℃)とした以外は実施例1と同様の方法で洗浄処理を行った。得られた複合半透膜の性能を評価したところ、表1に示す値であり、複合半透膜中のm−PDAの含有量が多く、洗浄処理による除去効率は実施例1に比べ劣るものであった。
(Comparative Example 1)
The composition of the aqueous solution used for the cleaning liquid was the same as in Example 1, and the cleaning process was performed in the same manner as in Example 1 except that the processing temperature was room temperature (25 ° C.). When the performance of the obtained composite semipermeable membrane was evaluated, the values shown in Table 1 were obtained. The content of m-PDA in the composite semipermeable membrane was large, and the removal efficiency by the cleaning treatment was inferior to that of Example 1. Met.

(比較例2)
洗浄液に用いる水溶液の濃度を0.001mol/lとした以外は実施例1と同様の方法で洗浄処理を行った。得られた複合半透膜の性能を評価したところ、表1に示す値であり、洗浄処理による除去率の向上が見られなかった。
(Comparative Example 2)
Cleaning treatment was performed in the same manner as in Example 1 except that the concentration of the aqueous solution used for the cleaning liquid was 0.001 mol / l. When the performance of the obtained composite semipermeable membrane was evaluated, it was the value shown in Table 1, and no improvement in the removal rate by the cleaning treatment was observed.

(実施例7〜8)
洗浄液を硫酸アンモニウム水溶液に換え、表1に示す条件にて浸漬処理による洗浄を行った。得られた複合半透膜の性能を評価したところ、表1に示す値であった。
(Examples 7 to 8)
The cleaning liquid was changed to an ammonium sulfate aqueous solution, and cleaning by immersion treatment was performed under the conditions shown in Table 1. When the performance of the obtained composite semipermeable membrane was evaluated, the values shown in Table 1 were obtained.

(比較例3)
洗浄液を、pH6.5の蒸留水に換えた以外は実施例1と同様の方法で洗浄処理を行った。得られた複合半透膜の性能を評価したところ表1に示す値であり、半透膜中のm−PDAの含有量が多く、洗浄処理による除去効率は実施例1に比べ劣るものであった。
(Comparative Example 3)
The cleaning treatment was performed in the same manner as in Example 1 except that the cleaning liquid was changed to distilled water having a pH of 6.5. When the performance of the obtained composite semipermeable membrane was evaluated, it was the value shown in Table 1. The content of m-PDA in the semipermeable membrane was large, and the removal efficiency by the cleaning treatment was inferior to that of Example 1. It was.

(比較例4)
洗浄液を、0.1mol/lのイソプロピルアルコール(IPA)水溶液に換え、処理温度を70℃とした以外は実施例1と同様の方法で洗浄処理を行った。得られた複合半透膜の性能を評価したところ表1に示す値であり、洗浄処理による除去効率は実施例1に比べ劣るものであった。
(Comparative Example 4)
The cleaning liquid was replaced with a 0.1 mol / l isopropyl alcohol (IPA) aqueous solution, and the cleaning process was performed in the same manner as in Example 1 except that the processing temperature was set to 70 ° C. When the performance of the obtained composite semipermeable membrane was evaluated, the values shown in Table 1 were obtained, and the removal efficiency by the cleaning treatment was inferior to that of Example 1.

(比較例5)
洗浄液を、0.1mol/lの亜硫酸ナトリウムに換えた以外は実施例1と同様の方法で洗浄処理を行った。得られた複合半透膜の性能を評価したところ表1に示す値であり、洗浄処理による除去効率は実施例1に比べ劣るものであった。
(Comparative Example 5)
The washing treatment was performed in the same manner as in Example 1 except that the washing liquid was changed to 0.1 mol / l sodium sulfite. When the performance of the obtained composite semipermeable membrane was evaluated, the values shown in Table 1 were obtained, and the removal efficiency by the cleaning treatment was inferior to that of Example 1.

Figure 2009030024
Figure 2009030024

Claims (3)

多官能アミンと多官能酸誘導体を界面重縮合させて架橋芳香族ポリアミドの分離機能層を多孔性支持膜上に形成させ、複合半透膜を製造する方法において、前記界面重縮合の後に、硫酸イオンを含有する洗浄液によって70〜100℃で洗浄処理を行うことを特徴とする複合半透膜の製造方法。   In the method for producing a composite semipermeable membrane by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid derivative to form a separation functional layer of a crosslinked aromatic polyamide on a porous support membrane, sulfuric acid is added after the interfacial polycondensation. A method for producing a composite semipermeable membrane, comprising performing a cleaning treatment at 70 to 100 ° C. with a cleaning liquid containing ions. 前記洗浄液が、硫酸イオンを0.01〜1mol/l含有する請求項1記載の複合半透膜の製造方法。   The method for producing a composite semipermeable membrane according to claim 1, wherein the cleaning liquid contains 0.01 to 1 mol / l of sulfate ions. 前記洗浄液が硫酸ナトリウム水溶液である請求項1又は2に記載の複合半透膜の製造方法。   The method for producing a composite semipermeable membrane according to claim 1, wherein the cleaning liquid is an aqueous sodium sulfate solution.
JP2008146552A 2007-06-29 2008-06-04 Method for producing composite semipermeable membrane Pending JP2009030024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146552A JP2009030024A (en) 2007-06-29 2008-06-04 Method for producing composite semipermeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007171608 2007-06-29
JP2008146552A JP2009030024A (en) 2007-06-29 2008-06-04 Method for producing composite semipermeable membrane

Publications (1)

Publication Number Publication Date
JP2009030024A true JP2009030024A (en) 2009-02-12

Family

ID=40400875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146552A Pending JP2009030024A (en) 2007-06-29 2008-06-04 Method for producing composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2009030024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067719A (en) * 2009-09-24 2011-04-07 Toray Ind Inc Method for manufacturing composite semipermeable membrane
JP2012001539A (en) * 2010-06-15 2012-01-05 Xerox Corp Periodic structured organic film
WO2012090862A1 (en) * 2010-12-28 2012-07-05 東レ株式会社 Composite semipermeable membrane
JP2012519759A (en) * 2009-03-04 2012-08-30 ゼロックス コーポレイション Structured organic thin films with additional functionality
CN109364764A (en) * 2018-12-19 2019-02-22 苏州瑞欧纳米设备开发有限公司 Reverse osmosis membrane or cleaning method and system in nanofiltration membrane preparation process
CN109456477A (en) * 2017-09-06 2019-03-12 湖州欧美新材料有限公司 A kind of modified meta-aramid, preparation method and hollow-fibre membrane
CN109456476A (en) * 2017-09-06 2019-03-12 湖州欧美新材料有限公司 A kind of modified meta-aramid, preparation method and hollow-fibre membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519759A (en) * 2009-03-04 2012-08-30 ゼロックス コーポレイション Structured organic thin films with additional functionality
JP2011067719A (en) * 2009-09-24 2011-04-07 Toray Ind Inc Method for manufacturing composite semipermeable membrane
JP2012001539A (en) * 2010-06-15 2012-01-05 Xerox Corp Periodic structured organic film
WO2012090862A1 (en) * 2010-12-28 2012-07-05 東レ株式会社 Composite semipermeable membrane
JPWO2012090862A1 (en) * 2010-12-28 2014-06-05 東レ株式会社 Composite semipermeable membrane
JP6136266B2 (en) * 2010-12-28 2017-05-31 東レ株式会社 Composite semipermeable membrane
CN109456477A (en) * 2017-09-06 2019-03-12 湖州欧美新材料有限公司 A kind of modified meta-aramid, preparation method and hollow-fibre membrane
CN109456476A (en) * 2017-09-06 2019-03-12 湖州欧美新材料有限公司 A kind of modified meta-aramid, preparation method and hollow-fibre membrane
CN109456477B (en) * 2017-09-06 2021-08-06 欧美新材料(浙江)有限公司 Modified meta-aramid fiber, preparation method thereof and hollow fiber membrane
CN109456476B (en) * 2017-09-06 2021-08-06 欧美新材料(浙江)有限公司 Modified meta-aramid fiber, preparation method thereof and hollow fiber membrane
CN109364764A (en) * 2018-12-19 2019-02-22 苏州瑞欧纳米设备开发有限公司 Reverse osmosis membrane or cleaning method and system in nanofiltration membrane preparation process

Similar Documents

Publication Publication Date Title
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
JP6402627B2 (en) Composite semipermeable membrane
KR101149122B1 (en) Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and method for water treatment using the same
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
KR20120083363A (en) Reverse osmosis composite membrane for boron removal
KR20160063337A (en) Composite semipermeable membrane and method for manufacturing same
JP2009030024A (en) Method for producing composite semipermeable membrane
CN106457165B (en) Composite semipermeable membrane
WO2006038409A1 (en) Process for producing semipermeable composite membrane
JPWO2014133133A1 (en) Composite semipermeable membrane
KR20190128241A (en) Composite Semipermeable Membrane and Manufacturing Method Thereof
EP3354333B1 (en) Water treatment membrane and method for manufacturing same
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
JP2008246419A (en) Production method for composite semi-permeable membrane
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
CN111036094B (en) Chlorine-resistant composite reverse osmosis membrane, and preparation method and application thereof
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
CN108430612B (en) Composite semipermeable membrane
JP6702181B2 (en) Composite semipermeable membrane
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102206809B1 (en) Method for preparing water treatment membrane and water treatment membrane prepared thereby
KR101825632B1 (en) Preparation Method of High Flux Polyamide composite Membrane
KR20050074166A (en) Producing method of nanofilteration composite membrane having high flow rate
JP2023177791A (en) Method for producing ultrapure water