JP2011063486A - Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method - Google Patents

Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method Download PDF

Info

Publication number
JP2011063486A
JP2011063486A JP2009216851A JP2009216851A JP2011063486A JP 2011063486 A JP2011063486 A JP 2011063486A JP 2009216851 A JP2009216851 A JP 2009216851A JP 2009216851 A JP2009216851 A JP 2009216851A JP 2011063486 A JP2011063486 A JP 2011063486A
Authority
JP
Japan
Prior art keywords
impurity
metal
metal boride
oxide
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216851A
Other languages
Japanese (ja)
Inventor
Kentaro Takahashi
健太郎 高橋
Kazuto Ando
和人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2009216851A priority Critical patent/JP2011063486A/en
Publication of JP2011063486A publication Critical patent/JP2011063486A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce high-purity metal boride particles having little impurity content without using hydrofluoric acid, the particles which are useful for sintering or a coating film having excellent conductivity or heat ray shielding property. <P>SOLUTION: The method for producing high-purity metal boride particles includes steps of: (a) heat treating a metal boride powder containing at least one kind of impurity selected from metal carbides, metal oxides, metal-boron compound oxides, boron carbides and boron oxides in air at a temperature of 600 to 800°C to oxidize the impurity; and (b) removing the impurity by treating the heat-treated metal boride powder obtained in the step (a) in an inorganic acid so as to elute the oxidized impurity. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高純度金属ホウ化物粒子の製造方法及びその方法により得られた高純度金属ホウ化物粒子に関し、さらに詳しくは、焼結用として、あるいは導電性や熱線遮蔽性に優れる塗布膜用などとして有用な、不純物含有量の少ない高純度金属ホウ化物粒子を効率よく製造する方法に関する。   The present invention relates to a method for producing high-purity metal boride particles and high-purity metal boride particles obtained by the method, and more specifically, for sintering or for coating films having excellent conductivity and heat ray shielding properties. It is related with the method of manufacturing efficiently the high purity metal boride particle | grains with little impurity content useful as.

従来、導電性材料は、太陽電池や液晶ディスプレイ等の透明電極や透明導電膜、あるいは建築用ガラス、車両用窓ガラス等に対する透明熱線遮蔽膜として用途展開されてきた。電極膜や透明導電膜、熱線遮蔽膜の成膜技術としては、スパッタリング法や真空蒸着、CVD等の乾式成膜法、あるいはナノ粒子を溶媒中に分散させ、塗布することにより成膜する湿式成膜法が検討されている。
その中で、金属ホウ化物は優れた導電性、赤外線遮蔽能が高いという特徴を有していることから、電極膜、透明導電膜、透明熱線遮蔽膜への用途開発が進められている。
Conventionally, conductive materials have been used as transparent heat ray shielding films for transparent electrodes such as solar cells and liquid crystal displays, transparent conductive films, architectural glass, vehicle window glass, and the like. The electrode film, the transparent conductive film, and the heat ray shielding film may be formed by a sputtering method, a vacuum deposition method, a dry deposition method such as CVD, or a wet deposition method in which nanoparticles are dispersed in a solvent and applied. Membrane methods are being considered.
Among them, metal borides are characterized by excellent electrical conductivity and high infrared shielding ability, and therefore, application development to electrode films, transparent conductive films, and transparent heat ray shielding films is being promoted.

特許文献1には、金属ホウ化物を用いた熱線遮蔽樹脂シート材として、透明な樹脂基材中に、熱線遮蔽成分として、六ホウ化物微粒子が分散され、若しくは六ホウ化物微粒子とITO微粒子及び/又はATO微粒子が分散されている熱線遮蔽樹脂シート材が提案されており、そして上記六ホウ化物微粒子として、LaB6、CeB6、PrB6、NdB6、GdB6、TbB6、DyB6、HoB6、YB6、SmB6、EuB6、ErB6、TmB6、YbB6、LuB6、SrB6及びCaB6などが開示されている。
これらの金属六ホウ化物は、金属ホウ化物の中で、特に赤外線(熱線)遮蔽能に優れていることが知られている。
In Patent Document 1, as a heat ray shielding resin sheet material using a metal boride, hexaboride fine particles are dispersed as a heat ray shielding component in a transparent resin base material, or hexaboride fine particles and ITO fine particles and / or Alternatively, a heat ray shielding resin sheet material in which ATO fine particles are dispersed has been proposed, and as the hexaboride fine particles, LaB 6 , CeB 6 , PrB 6 , NdB 6 , GdB 6 , TbB 6 , DyB 6 , HoB 6 are used. YB 6 , SmB 6 , EuB 6 , ErB 6 , TmB 6 , YbB 6 , LuB 6 , SrB 6 and CaB 6 are disclosed.
Among these metal borides, these metal hexaborides are known to be particularly excellent in infrared (heat ray) shielding ability.

金属ホウ化物を成膜する場合、乾式成膜法としては金属ホウ化物ターゲットを用いたスパッタリング法が、湿式成膜法としては金属ホウ化物ナノ粒子を有機溶媒中に分散して塗料とし、得られた塗料を塗布する方法が主に用いられている。
スパッタリング法を用いる場合、スパッタリング用ターゲットは緻密で高純度であることが必要とされており、これまでのターゲット材料は市販の金属ホウ化物粉末を焼成したものが用いられてきた。
When forming a metal boride film, a sputtering method using a metal boride target is used as a dry film forming method, and a metal boride nanoparticle is dispersed in an organic solvent as a wet film forming method. The method of applying the paint is mainly used.
When the sputtering method is used, the sputtering target is required to be dense and highly pure, and the target material so far has been obtained by firing a commercially available metal boride powder.

金属ホウ化物市販粉末は、金属源とホウ素源を固相法、液相法、気相法などにより反応させることで合成される。その合成方法によって得られる金属ホウ化物の粒径、純度が異なり、平均粒径が0.5〜20μm程度の比較的粒径が大きい粒子は焼結用原料に用いられ、平均粒径が100nm程度以下のナノ粒子は金属ホウ化物塗布膜用に用いられる。
金属源としては、金属酸化物、金属炭化物、金属水酸化物、金属炭酸塩や塩化物塩等の金属塩が用いられ、ホウ素源としては金属ホウ素、ホウ素炭化物、ホウ素酸化物、ホウ酸等が用いられている。
合成の際に各種金属源化合物からホウ素と反応可能な金属状態に還元するために炭素が添加されているが、完全に還元させるためには過剰に添加されており、過剰成分が金属やホウ素と反応して金属炭化物及びホウ素炭化物を生成することを、避けることは現実的には不可能である。
The metal boride commercial powder is synthesized by reacting a metal source and a boron source by a solid phase method, a liquid phase method, a gas phase method or the like. The particle size and purity of the metal boride obtained by the synthesis method are different, and particles having a relatively large particle size with an average particle size of about 0.5 to 20 μm are used as a raw material for sintering, and the average particle size is about 100 nm. The following nanoparticles are used for metal boride coatings.
As metal sources, metal oxides, metal carbides, metal hydroxides, metal salts such as metal carbonates and chloride salts are used, and as boron sources, metal boron, boron carbide, boron oxide, boric acid and the like are used. It is used.
In the synthesis, carbon is added to reduce from various metal source compounds to a metal state capable of reacting with boron, but in order to reduce completely, it is added in excess, and the excess component is combined with metal and boron. It is practically impossible to avoid reacting to form metal carbides and boron carbides.

焼結用原料に用いられる金属ホウ化物市販粉末には、不純物として前述の金属炭化物及びホウ素炭化物に加えて、金属酸化物、ホウ素酸化物、金属−ホウ素複合酸化物などが含まれている(特許文献2〜4参照)。焼結用途に用いられる金属ホウ化物粉末は、粒子径を大きくするため比較的高温で合成されることから、未反応の金属源及びホウ素源は比較的少ない。しかしながら、焼結用に適した粒子径に調整する際に粉砕工程が必要であり、完全に大気を遮断して取り扱うことは、現実的に不可能であるため、粉砕により新しく表面に露出する部分が大気中の酸素と反応して、金属酸化物及びホウ素酸化物、金属−ホウ素複合酸化物となる。   Commercially available metal boride powder used as a raw material for sintering contains metal oxide, boron oxide, metal-boron composite oxide, etc. in addition to the aforementioned metal carbide and boron carbide as impurities (patent) References 2-4). Since the metal boride powder used for the sintering application is synthesized at a relatively high temperature in order to increase the particle size, there are relatively few unreacted metal sources and boron sources. However, a pulverization process is required when adjusting to a particle size suitable for sintering, and it is practically impossible to handle completely with the atmosphere shut down. Reacts with oxygen in the atmosphere to form metal oxides, boron oxides, and metal-boron composite oxides.

このように一般的な焼結原料用金属ホウ化物粉末には、通常不純物酸化物が酸素換算で1.5質量%以上、不純物炭化物が炭素換算で0.2質量%以上含まれている。
このような不純物が含まれる焼結体原料用金属ホウ化物粉末を用いて焼結体を作製すると、不純物は焼結中に除去できないうえに、焼結中に不純物同士が反応して非晶質状態となり、金属ホウ化物焼結体の粒界に存在する。そのため市販粉末を用いて作製した焼結体には原料粉末由来の不純物が多量に含むことは避けられない。スパッタリング用ターゲット材料中に不純物が含まれているとスパッタ膜にも不純物が取り込まれてしまう。従って市販の金属ホウ化物粉末を焼結して作製した従来のターゲットを用いると、純度が高い金属ホウ化物膜が得られないという問題があった。
As described above, a general metal boride powder for a sintering raw material usually contains 1.5 mass% or more of impurity oxide in terms of oxygen and 0.2 mass% or more of impurity carbide in terms of carbon.
When a sintered body is produced using a metal boride powder for sintered body material containing such impurities, the impurities cannot be removed during the sintering, and the impurities react with each other during the sintering to form an amorphous material. It exists in the grain boundary of a metal boride sintered compact. Therefore, it is inevitable that a sintered body produced using a commercial powder contains a large amount of impurities derived from the raw material powder. If an impurity is contained in the sputtering target material, the impurity is also taken into the sputtered film. Therefore, when a conventional target prepared by sintering a commercially available metal boride powder is used, there is a problem that a metal boride film with high purity cannot be obtained.

特許文献5には、金属ホウ化物を用いたスパッタリング用ターゲットとして、ホウ化ハフニウム、ホウ化チタン、ホウ化タングステン、ホウ化ランタンから選択された1種以上を主成分とするスパッタリング用ターゲットであって、該ターゲットの焼結体密度比が80%以上であり、かつ、その結晶粒径が50μm以下であるスパッタリング用ターゲット、及びその製造方法が開示されている。
しかしながら、この技術は、ターゲットの粒子間の空隙を大幅に減少させて、該ターゲットの密度比(実際の焼結体の密度と理論密度との比)をさらに向上させることにより、高密度のホウ化物ターゲットとし、当該ターゲットを用いて製品を生産した場合、その量産性を向上させるための技術であって、ターゲット中の不純物については、なんら言及されていない。
Patent Document 5 discloses a sputtering target mainly containing at least one selected from hafnium boride, titanium boride, tungsten boride, and lanthanum boride as a sputtering target using a metal boride. A sputtering target having a sintered body density ratio of 80% or more and a crystal grain size of 50 μm or less and a method for producing the same are disclosed.
However, this technique greatly reduces the voids between the target particles and further improves the density ratio of the target (the ratio of the actual sintered body density to the theoretical density), thereby increasing the density of the high density boron. This is a technique for improving the mass productivity when a product is produced using a target as a chemical target, and no mention is made of impurities in the target.

一方、金属ホウ化物塗布用の金属ホウ化物粉末中のナノ粒子の含有量は焼結原料用粉末よりも多い。これは、生成される金属ホウ化物の粒径を小さくするために反応温度を低くしているためである。一般的な金属ホウ化物ナノ粒子には、通常不純物酸化物が酸素換算で5質量%以上、不純物炭化物が炭素換算で2質量%以上含まれている。
不純物酸化物及び不純物炭化物は、金属ホウ化物と比較して電気伝導性、赤外線遮蔽能が著しく低い。また、これら不純物は金属ホウ化物と屈折率が異なる。このような不純物が多量に含まれる金属ホウ化物ナノ粒子を用いて塗布すると、膜の電気伝導性、赤外線遮蔽能が低くなるだけではなく、屈折率が異なる不純物が含まれているために散乱が発生し、透光性に優れた膜が得られないという問題があった。
On the other hand, the content of nanoparticles in the metal boride powder for metal boride coating is greater than that of the powder for sintering raw material. This is because the reaction temperature is lowered in order to reduce the particle size of the produced metal boride. Common metal boride nanoparticles usually contain 5% by mass or more of impurity oxides in terms of oxygen and 2% by mass or more of impurity carbides in terms of carbon.
Impurity oxides and impurity carbides have significantly lower electrical conductivity and infrared shielding ability than metal borides. These impurities have a refractive index different from that of metal borides. When applied using metal boride nanoparticles containing a large amount of such impurities, not only the electrical conductivity and infrared shielding ability of the film are lowered, but also the scattering is caused by the inclusion of impurities with different refractive indexes. There was a problem that a film excellent in translucency could not be obtained.

特開2003−327717号公報JP 2003-327717 A 特開昭61−261272号公報JP-A 61-261272 特開平4−228474号公報JP-A-4-228474 特開2004−250725号公報JP 2004-250725 A 特開平6−248446号公報JP-A-6-248446

一般に非酸化物粉末中の不純物を除去する手段として、炭化ケイ素中の酸化ケイ素をフッ酸で洗浄する方法が知られている。しかし、フッ酸は溶解力が強く、金属ホウ化物自体も溶解してしまうが、炭化物に対する溶解性に乏しいため不純物炭化物は除去できない。さらにフッ酸は、毒物であり、危険性が高く使用にあたっては安全対策、廃液処理などでコストがかかるために、フッ酸を使用することは好ましくない。そこでフッ酸を使用しないで、なおかつ不純物炭化物も除去できる金属ホウ化物の不純物除去方法が望まれていた。
本発明は、このような状況下になされたもので、焼結用として、あるいは導電性や熱線遮蔽性に優れる塗布膜用などとして有用な、不純物含有量の少ない高純度金属ホウ化物粒子を、フッ酸を用いることなく効率よく製造することを目的とするものである。
In general, as a means for removing impurities in non-oxide powder, a method of washing silicon oxide in silicon carbide with hydrofluoric acid is known. However, although hydrofluoric acid has a strong dissolving power and the metal boride itself dissolves, the impurity carbide cannot be removed because of poor solubility in carbide. Furthermore, hydrofluoric acid is a poisonous substance, and it is highly dangerous. Therefore, it is not preferable to use hydrofluoric acid because it is costly for safety measures and waste liquid treatment. Therefore, there has been a demand for a method for removing impurities from metal borides that can remove impurity carbides without using hydrofluoric acid.
The present invention has been made under such circumstances, high purity metal boride particles having a low impurity content, useful for sintering or for coating films having excellent conductivity and heat ray shielding properties, etc. The object is to produce efficiently without using hydrofluoric acid.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
金属ホウ化物粉末を無機酸で洗浄する場合、前述のように不純物酸化物として含まれている金属酸化物、ホウ素酸化物、金属−ホウ素複合酸化物は無機酸に溶解するが、不純物炭化物として含まれている金属炭化物、ホウ素炭化物は無機酸には溶解しない。そこで、金属ホウ化物粉末を大気中にて、特定の温度で加熱することにより、不純物炭化物を酸化して酸化物とし、この酸化処理を行った粉末を酸洗浄することで酸化物化した不純物を除去し得ることを見出した。
さらに酸洗浄に用いる無機酸として、好ましくは塩酸、特に加熱した塩酸を使用することで金属ホウ化物を溶解することなく酸化物化した不純物を除去して、不純物酸化物含有量が酸素換算で所定の値以下で、かつ不純物炭化物含有量が炭素換算で所定の値以下の金属ホウ化物粒子を製造できることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
When the metal boride powder is washed with an inorganic acid, the metal oxide, boron oxide, and metal-boron composite oxide contained as impurity oxide as described above are dissolved in the inorganic acid, but are contained as impurity carbide. Metal carbides and boron carbides are not soluble in inorganic acids. Therefore, by heating the metal boride powder at a specific temperature in the atmosphere, the impurity carbides are oxidized into oxides, and the oxidized impurities are removed by acid cleaning of the oxidized powder. I found out that I could do it.
Further, as the inorganic acid used for the acid cleaning, preferably, hydrochloric acid, particularly heated hydrochloric acid is used to remove the oxidized oxide without dissolving the metal boride, so that the impurity oxide content is predetermined in terms of oxygen. It has been found that metal boride particles having an impurity carbide content of not more than a value and an impurity carbide content of not more than a predetermined value in terms of carbon can be produced.
The present invention has been completed based on such findings.

すなわち、本発明は、
[1] (a)金属炭化物、金属酸化物、金属−ホウ素複合酸化物、ホウ素炭化物及びホウ素酸化物の中から選ばれる少なくとも一種の不純物を含む金属ホウ化物粉末を、大気中にて600〜800℃の温度で加熱処理して、前記不純物を酸化する工程、及び(b)前記(a)工程で得られた金属ホウ化物粉末の加熱処理物を無機酸中で処理することで酸化した不純物を溶出させ、不純物の除去を行う工程を含む高純度金属ホウ化物粒子の製造方法、
[2] 前記(b)工程において使用する無機酸が塩酸である上記[1]に記載の高純度金属ホウ化物粒子の製造方法、
[3] 金属ホウ化物粒子中の不純物酸化物含有量が酸素換算で0.5質量%以下、かつ不純物炭化物含有量が炭素換算で0.05質量%以下である上記[1]又は[2]に記載の高純度金属ホウ化物粒子の製造方法により得られた高純度金属ホウ化物粒子、
を提供するものである。
That is, the present invention
[1] (a) A metal boride powder containing at least one impurity selected from metal carbide, metal oxide, metal-boron composite oxide, boron carbide, and boron oxide is 600 to 800 in the atmosphere. A step of oxidizing the impurities by heat treatment at a temperature of ° C., and (b) impurities oxidized by treating the heat-treated product of the metal boride powder obtained in the step (a) in an inorganic acid. A method for producing high-purity metal boride particles comprising a step of elution and removing impurities,
[2] The method for producing high-purity metal boride particles according to the above [1], wherein the inorganic acid used in the step (b) is hydrochloric acid,
[3] The above [1] or [2], wherein the content of the impurity oxide in the metal boride particles is 0.5% by mass or less in terms of oxygen and the content of the impurity carbide is 0.05% by mass or less in terms of carbon. High-purity metal boride particles obtained by the method for producing high-purity metal boride particles described in 1.
Is to provide.

本発明によれば、焼結用としてあるいは導電性や熱線遮蔽性に優れる塗布膜用などとして有用な、不純物含有量の少ない高純度金属ホウ化物粒子を、フッ酸を用いないでも効率よく製造することができる。   According to the present invention, high-purity metal boride particles having a low impurity content, which are useful for sintering or for coating films having excellent conductivity and heat ray shielding properties, are efficiently produced without using hydrofluoric acid. be able to.

本発明の高純度金属ホウ化物粒子の製造方法は、金属ホウ化物粉末の製造時に不可避的に混入する金属炭化物、金属酸化物、金属−ホウ素複合酸化物、ホウ素炭化物及びホウ素酸化物の中から選ばれる少なくとも一種の不純物を含む金属ホウ化物を用い、以下に示す(a)工程及び(b)工程を施すことにより、不純物酸化物含有量が酸素換算で0.5質量%以下で、かつ不純物炭化物含有量が炭素換算で0.05質量%以下の金属ホウ化物粒子を得ることができる。   The method for producing high-purity metal boride particles of the present invention is selected from metal carbides, metal oxides, metal-boron composite oxides, boron carbides, and boron oxides inevitably mixed during the production of metal boride powder. By using the metal boride containing at least one kind of impurity and performing the following steps (a) and (b), the impurity oxide content is 0.5% by mass or less in terms of oxygen, and the impurity carbide Metal boride particles having a content of 0.05% by mass or less in terms of carbon can be obtained.

[金属ホウ化物粉末]
本発明の高純度金属ホウ化物粒子の製造方法において、原料として用いる金属ホウ化物粉末としては特に制限はないが、例えばXB6(ただし、XはLa、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr及びCaの中から選ばれる少なくとも一種である。)で示される六ホウ化物粉末を挙げることができる。
前記の金属ホウ化物粉末は、合成して用いてもよいし、市販品を用いてもよいが、その製造時に不可避的に混入する金属炭化物、金属酸化物、金属−ホウ素複合酸化物、ホウ素炭化物及びホウ素酸化物の中から選ばれる少なくとも一種の不純物を含む。
この金属ホウ化物粉末の平均粒径は、用途により異なり、例えば焼結用原料として用いる場合には、成形性の観点から、通常0.1〜20μm程度、好ましくは0.5〜20μmであり、塗布膜用原料として用いる場合には、透明性の観点から、通常100nm以下、好ましくは30nm以下である。
[Metal boride powder]
In the method for producing high purity metal boride particles of the present invention, the metal boride powder used as a raw material is not particularly limited. For example, XB 6 (where X is La, Ce, Pr, Nd, Gd, Tb, Dy) , Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca.).
The metal boride powder may be synthesized and used, or a commercial product may be used, but metal carbides, metal oxides, metal-boron composite oxides, boron carbides inevitably mixed during the production thereof. And at least one impurity selected from boron oxide.
The average particle diameter of the metal boride powder varies depending on the use. For example, when used as a raw material for sintering, it is usually about 0.1 to 20 μm, preferably 0.5 to 20 μm from the viewpoint of moldability. When used as a raw material for the coating film, it is usually 100 nm or less, preferably 30 nm or less, from the viewpoint of transparency.

[(a)工程]
前述したように、原料の金属ホウ化物粉末に含まれる不純物は、金属酸化物や金属炭化物、ホウ素炭化物、ホウ素酸化物、金属−ホウ素複合酸化物であることから、まず、酸処理により除去可能な酸化物にする必要がある。すなわち不純物酸化物は酸に溶解するが、不純物炭化物は酸に溶解しないからである。
したがって、本発明においては、この(a)工程において、前述した原料の金属ホウ化物粉末を、大気中にて600〜800℃の温度で加熱処理して、前記不純物を酸化させる。ここで大気中の酸化処理温度を、600℃以上800℃以下とした理由は600℃未満では金属炭化物及びホウ素炭化物が十分に酸化されないためであり、800℃を超えると金属ホウ化物自体が酸化されて収率が低下するためである。好ましい酸化処理温度は700〜800℃である。
金属炭化物及びホウ素炭化物が酸化して生成される酸化物は、酸に溶解することから、次の(b)工程において無機酸で処理することで、金属炭化物とホウ素炭化物を効果的に除去することができる。
[Step (a)]
As described above, since the impurities contained in the raw material metal boride powder are metal oxide, metal carbide, boron carbide, boron oxide, and metal-boron composite oxide, they can be removed by acid treatment first. It needs to be an oxide. That is, the impurity oxide dissolves in the acid, but the impurity carbide does not dissolve in the acid.
Therefore, in the present invention, in the step (a), the above-described raw material metal boride powder is heat-treated in the atmosphere at a temperature of 600 to 800 ° C. to oxidize the impurities. Here, the reason why the oxidation treatment temperature in the atmosphere is set to 600 ° C. or more and 800 ° C. or less is that the metal carbide and boron carbide are not sufficiently oxidized when the temperature is less than 600 ° C. When the temperature exceeds 800 ° C., the metal boride itself is oxidized. This is because the yield decreases. A preferable oxidation treatment temperature is 700 to 800 ° C.
The oxide produced by oxidation of metal carbide and boron carbide dissolves in the acid, so that the metal carbide and boron carbide can be effectively removed by treating with an inorganic acid in the next step (b). Can do.

なお、不純物が、ホウ素酸化物、金属−ホウ素複合酸化物のみである場合、これらは既に酸化されて酸化物になっているで、この(a)工程は必要ないように思える。しかし、ホウ素酸化物、金属−ホウ素複合酸化物の酸化の程度が充分でないことがあり、またホウ素酸化物、金属−ホウ素複合酸化物のみが不純物として存在していることはほとんどなく、金属炭化物、ホウ素炭化物なども含まれているのが通常であるから、この(a)工程が必要となる。   In addition, when impurities are only a boron oxide and a metal-boron composite oxide, since these have already been oxidized and become an oxide, it seems that this (a) process is unnecessary. However, the degree of oxidation of the boron oxide and the metal-boron composite oxide may not be sufficient, and only the boron oxide and the metal-boron composite oxide are rarely present as impurities. Since boron carbide is usually contained, this step (a) is required.

[(b)工程]
本発明における(b)工程は、前記(a)工程で得られた金属ホウ化物粉末の加熱処理物を無機酸中で処理することで酸化した不純物を溶出させる工程である。
当該(b)工程における酸化した不純物を溶出させるための無機酸としては、塩酸、硫酸、硝酸から選択することができる。ここで、使用する無機酸の種類、濃度、処理温度及び処理時間は、溶解させる酸化物の成分や量により、選択することが好ましい。これは、無機酸の酸化力が高すぎる場合は、酸化物のみならず金属ホウ化物自体を酸化溶解させてしまい、金属ホウ化物自体の収率が低下してしまうためであり、一方、無機酸の酸化物溶解力が低い場合には、酸化物の溶解に時間を要したり、場合によっては溶解が不十分となり酸化物が十分に除去できなくなるためである。なお、無機酸としては、リン酸、フッ酸もあるが、リン酸は溶解力に乏しく、フッ酸は前述したように毒物等の欠点を有しており、好適な無機酸ではない。一方、有機酸は酸化物溶解力に乏しいため不適当である。
[Step (b)]
The step (b) in the present invention is a step of eluting impurities oxidized by treating the metal boride powder heat-treated product obtained in the step (a) in an inorganic acid.
The inorganic acid for eluting the oxidized impurities in the step (b) can be selected from hydrochloric acid, sulfuric acid, and nitric acid. Here, the kind, concentration, treatment temperature, and treatment time of the inorganic acid to be used are preferably selected according to the component and amount of the oxide to be dissolved. This is because, when the oxidizing power of the inorganic acid is too high, not only the oxide but also the metal boride itself is oxidized and dissolved, and the yield of the metal boride itself is reduced. This is because, when the oxide dissolving power is low, it takes time to dissolve the oxide, or in some cases, the dissolution becomes insufficient and the oxide cannot be removed sufficiently. In addition, although there exist phosphoric acid and hydrofluoric acid as an inorganic acid, phosphoric acid has a poor dissolving power, and hydrofluoric acid has a defect such as a poison as described above and is not a suitable inorganic acid. On the other hand, organic acids are unsuitable because they have poor oxide dissolving power.

これらの点を考慮すると、硝酸、硫酸は強い酸化力を有しているために金属ホウ化物自体を酸化溶解させてしまう可能性が高く、処理条件の選択や制御を厳密に行う必要が生じるため、使用には注意を要する。一方、塩酸は酸化力がほとんど無いことから、金属ホウ化物自体を酸化溶解させてしまう可能性が低く、好適に用いることができる。
例えば、塩酸を使用する場合、濃度は1mol/dm3以上かつ6mol/dm3以下が好ましい。その理由は1mol/dm3未満では不純物の溶出速度が遅く時間がかかるためであり、6mol/dm3を越えるとでは金属ホウ化物自体が酸化されやすくなるためである。より好ましい濃度は、2〜6mol/dm3であり、特に好ましい濃度は4〜6mol/dm3である。
Considering these points, since nitric acid and sulfuric acid have a strong oxidizing power, there is a high possibility that the metal boride itself will be oxidized and dissolved, and it is necessary to strictly select and control processing conditions. Use with caution. On the other hand, since hydrochloric acid has almost no oxidizing power, it is less likely to oxidize and dissolve the metal boride itself and can be suitably used.
For example, when hydrochloric acid is used, the concentration is preferably 1 mol / dm 3 or more and 6 mol / dm 3 or less. The reason is that if the amount is less than 1 mol / dm 3 , the elution rate of impurities is slow and time-consuming, and if it exceeds 6 mol / dm 3 , the metal boride itself is easily oxidized. A more preferable concentration is 2 to 6 mol / dm 3 , and a particularly preferable concentration is 4 to 6 mol / dm 3 .

また、この処理は常温で行ってもよいが、加熱して行うのが好ましく、加熱処理する場合の処理温度は、40℃以上かつ80℃以下が望ましい。40℃未満では不純物の溶出に時間がかかるためであり、80℃を越えると金属ホウ化物自体が酸化されやすくなるからである。
酸処理後の粉末は、イオン交換水にて酸成分を除去した後に水分を除去するために乾燥処理、特に真空乾燥処理することが好ましい。
This treatment may be performed at room temperature, but is preferably performed by heating, and the treatment temperature in the case of heat treatment is desirably 40 ° C. or higher and 80 ° C. or lower. This is because the elution of impurities takes time when the temperature is lower than 40 ° C., and the metal boride itself is easily oxidized when the temperature exceeds 80 ° C.
The powder after the acid treatment is preferably subjected to a drying treatment, particularly a vacuum drying treatment, in order to remove moisture after removing the acid component with ion exchange water.

このように、金属炭化物、金属酸化物、金属−ホウ素複合酸化物、ホウ素炭化物及びホウ素酸化物の中から選ばれる少なくとも一種の不純物を含む金属ホウ化物粉末に、前記(a)工程及び(b)工程を施すことにより、不純物酸化物含有量が酸素換算で0.5質量%以下、好ましくは0.2質量%以下で、かつ不純物炭化物含有量が炭素換算で0.05質量%以下、好ましくは0.02質量%以下の金属ホウ化物粒子が得られる。
なお、前記の不純物酸化物含有量(酸素換算量)及び不純物炭化物含有量(炭素換算量)は、以下に示す方法で測定した値である。
In this way, the metal boride powder containing at least one impurity selected from metal carbide, metal oxide, metal-boron composite oxide, boron carbide and boron oxide is added to the step (a) and (b). By applying the step, the impurity oxide content is 0.5% by mass or less, preferably 0.2% by mass or less in terms of oxygen, and the impurity carbide content is 0.05% by mass or less, preferably in terms of carbon. 0.02% by mass or less of metal boride particles can be obtained.
In addition, the said impurity oxide content (oxygen conversion amount) and impurity carbide content (carbon conversion amount) are the values measured by the method shown below.

<不純物酸化物含有量及び不純物炭化物含有量の測定>
不純物酸化物の酸素量は、グラファイト中の試料を不活性ガス雰囲気で加熱し、試料から分解あるいは解離してくる酸素を炭素と反応させ、生成した一酸化炭素あるいは二酸化炭素を赤外線吸光度で定量する方法、すなわち通常不活性ガス溶融法と呼ばれる方法により測定した。
また、不純物炭化物の炭素量は、石英管状炉内で試料を加熱し、試料から揮発、分解、燃焼等により発生した炭素成分を赤外線吸収法を用いて測定する方法により測定した。
<Measurement of impurity oxide content and impurity carbide content>
The amount of oxygen in the impurity oxide is determined by heating a sample in graphite in an inert gas atmosphere, reacting oxygen decomposed or dissociated from the sample with carbon, and quantifying the generated carbon monoxide or carbon dioxide by infrared absorbance. It was measured by a method, that is, a method usually called an inert gas melting method.
The carbon content of the impurity carbide was measured by a method in which a sample was heated in a quartz tube furnace, and carbon components generated by volatilization, decomposition, combustion, etc. from the sample were measured using an infrared absorption method.

本発明の方法で得られた高純度金属ホウ化物粒子を用いることにより、純度が高い金属ホウ化物スパッタリング用ターゲット材料が作製できるようになり、従来よりも純度が高い金属ホウ化物膜を成膜できる。
また、金属ホウ化物ナノ粒子を高純度化処理することにより、従来よりもヘイズ値が低い金属ホウ化物塗布膜が成膜できる。
By using the high-purity metal boride particles obtained by the method of the present invention, a high-purity metal boride sputtering target material can be produced, and a metal boride film having a higher purity than before can be formed. .
In addition, a metal boride coating film having a haze value lower than before can be formed by subjecting the metal boride nanoparticles to a high-purity treatment.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例で使用した金属ホウ化物粉末及び無機酸による処理後に得られた金属ホウ化物粉末(粒子)の不純物酸化物含有量の酸素換算量及び不純物炭化物含有量の炭素換算量、並びに各例で使用した金属ホウ化物粉末の平均粒径は、以下に示す方法に従って測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the metal boride powder used in each example and the oxygen equivalent amount of the impurity oxide content and the carbon equivalent amount of the impurity carbide content of the metal boride powder (particles) obtained after the treatment with the inorganic acid, and each example The average particle size of the metal boride powder used in 1 was measured according to the method shown below.

(1)不純物酸化物含有量(酸素換算量)及び不純物炭化物含有量(炭素換算量)の測定
不純物酸化物の酸素量は、試料粉末50mgを取り、LECO社製TC−436型を使用して、前記不活性ガス溶融法にて測定した。
また、不純物炭化物の炭素量は、試料粉末100mgを取り、LECO社製WC−200型を使用して,前記方法にて測定した。
(2)使用した金属ホウ化物粉末の平均粒径の測定
走査型電子顕微鏡(SEM)[日立製作所社製、S−4000]により測定した。
また、各例における金属ホウ化物の処理物は、イオン交換水で酸成分を除去後、真空乾燥処理を行い、金属ホウ化物粉末(粒子)を得た。
(1) Measurement of impurity oxide content (oxygen equivalent amount) and impurity carbide content (carbon equivalent amount) The oxygen content of the impurity oxide is 50 mg of sample powder, and using TC-436 type manufactured by LECO. , And measured by the inert gas melting method.
The carbon content of the impurity carbide was measured by the above method using 100 mg of sample powder and using a WC-200 type manufactured by LECO.
(2) Measurement of average particle diameter of used metal boride powder It measured with the scanning electron microscope (SEM) [Hitachi Ltd. make, S-4000].
Moreover, the processed product of metal boride in each example was subjected to vacuum drying after removing the acid component with ion-exchanged water to obtain metal boride powder (particles).

実施例1
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中700℃で120分間酸化処理し[(a)工程]、次いで80℃の6mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は80gで、不純物酸素含有量を0.37質量%、不純物炭素含有量を0.01質量%に低減できた。
Example 1
100 g of LaB 6 powder having an average particle size of 1.5 μm, containing an impurity oxide content of 1.6% by mass in terms of oxygen and an impurity carbide content of 0.2% by mass in terms of carbon, is 120 ° C. at 700 ° C. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 6 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes (step (b)). The obtained LaB 6 powder (particles) was 80 g, and the impurity oxygen content could be reduced to 0.37% by mass and the impurity carbon content to 0.01% by mass.

実施例2
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中600℃で120分間酸化処理し[(a)工程]、次いで80℃の6mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は83gで、不純物酸素含有量を0.32質量%、不純物炭素含有量を0.02質量%に低減できた。
Example 2
100 g of LaB 6 powder with an average particle size of 1.5 μm containing an impurity oxide content of 1.6 mass% in terms of oxygen and an impurity carbide content of 0.2 mass% in terms of carbon is 120 at 600 ° C. in the atmosphere. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 6 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes (step (b)). The obtained LaB 6 powder (particles) was 83 g, and the impurity oxygen content could be reduced to 0.32 mass% and the impurity carbon content to 0.02 mass%.

実施例3
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中700℃で120分間酸化処理し[(a)工程]、次いで80℃の2mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は90gで、不純物酸素含有量を0.49質量%、不純物炭素含有量を0.02質量%に低減できた。
Example 3
100 g of LaB 6 powder having an average particle size of 1.5 μm, containing an impurity oxide content of 1.6% by mass in terms of oxygen and an impurity carbide content of 0.2% by mass in terms of carbon, is 120 ° C. at 700 ° C. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 2 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes (step (b)). The obtained LaB 6 powder (particles) was 90 g, and the impurity oxygen content could be reduced to 0.49 mass% and the impurity carbon content to 0.02 mass%.

実施例4
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中700℃で120分間酸化処理し[(a)工程]、次いで40℃の6mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は88gで、不純物酸素含有量を0.41質量%、不純物炭素含有量を0.015質量%に低減できた。
Example 4
100 g of LaB 6 powder having an average particle size of 1.5 μm, containing an impurity oxide content of 1.6% by mass in terms of oxygen and an impurity carbide content of 0.2% by mass in terms of carbon, is 120 ° C. at 700 ° C. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 6 mol / dm 3 hydrochloric acid at 40 ° C. for 120 minutes (step (b)). The obtained LaB 6 powder (particles) was 88 g, and the impurity oxygen content could be reduced to 0.41% by mass and the impurity carbon content to 0.015% by mass.

実施例5
不純物酸化物含有量が酸素換算で1.8質量%、不純物炭化物含有量が炭素換算で0.5質量%含まれている平均粒径2.0μmのCeB6粉末100gを大気中700℃で120分間酸化処理し[(a)工程]、次いで80℃の6mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたCeB6粉末(粒子)は75gで、不純物酸素含有量を0.44質量%、不純物炭素含有量を0.02質量%に低減できた。
Example 5
100 g of CeB 6 powder having an average particle size of 2.0 μm, containing an impurity oxide content of 1.8% by mass in terms of oxygen and an impurity carbide content of 0.5% by mass in terms of carbon, is 120 ° C. at 700 ° C. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 6 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes (step (b)). The obtained CeB 6 powder (particles) was 75 g, and the impurity oxygen content could be reduced to 0.44 mass% and the impurity carbon content to 0.02 mass%.

実施例6
不純物酸化物含有量が酸素換算で6.5質量%、不純物炭化物含有量が炭素換算で2.5質量%含まれている平均粒径50nmのLaB6粉末100gを大気中600℃で120分間酸化処理し[(a)工程]、次いで80℃の6mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は70gで、不純物酸素含有量を0.49質量%、不純物炭素含有量を0.02質量%に低減できた。
Example 6
Oxidation of 100 g of LaB 6 powder with an average particle size of 50 nm, which contains an impurity oxide content of 6.5 mass% in terms of oxygen and an impurity carbide content of 2.5 mass% in terms of carbon, at 600 ° C. for 120 minutes. It was treated [step (a)], and then treated in 200 ml of 6 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes [step (b)]. The obtained LaB 6 powder (particles) was 70 g, and the impurity oxygen content could be reduced to 0.49 mass% and the impurity carbon content to 0.02 mass%.

実施例7
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中700℃で120分間酸化処理し[(a)工程]、次いで80℃の2mol/dm3硫酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は55gと収率がやや低下していた。また、このLaB6粉末(粒子)は、不純物炭素含有量を0.01質量%に低減できた。一方、不純物酸素含有量は0.8質量%と半減したが、他の実施例に比べて多かった。これは、LaB6粉末(粒子)の一部が硫酸により酸化分解されているためと考えられる。
Example 7
100 g of LaB 6 powder having an average particle size of 1.5 μm, containing an impurity oxide content of 1.6% by mass in terms of oxygen and an impurity carbide content of 0.2% by mass in terms of carbon, is 120 ° C. at 700 ° C. Oxidation treatment was performed for [minute (step (a)]], followed by treatment in 200 ml of 2 mol / dm 3 sulfuric acid at 80 ° C. for 120 minutes (step (b)). The obtained LaB 6 powder (particles) was 55 g and the yield was slightly reduced. Further, this LaB 6 powder (particles) was able to reduce the impurity carbon content to 0.01% by mass. On the other hand, the impurity oxygen content was halved to 0.8 mass%, but was higher than in the other examples. This is presumably because a part of LaB 6 powder (particles) is oxidized and decomposed by sulfuric acid.

実施例8
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中700℃にて120分間酸化処理し[(a)工程]、次いで20℃の1mol/dm3塩酸200ml中で120分間処理を行った[(b)工程]。得られたLaB6粉末(粒子)は92gで、不純物酸素含有量を1.2質量%、不純物炭素含有量が0.01質量%に低減できた。
なお、不純物酸素含有量が1.2質量%であったのは、塩酸の濃度が薄く、処理温度が低いことによるものと考えられる。
Example 8
100 g of LaB 6 powder with an average particle size of 1.5 μm containing an impurity oxide content of 1.6 mass% in terms of oxygen and an impurity carbide content of 0.2 mass% in terms of carbon at 700 ° C. in the atmosphere. Oxidation treatment was performed for 120 minutes [step (a)], followed by treatment in 200 ml of 1 mol / dm 3 hydrochloric acid at 20 ° C. for 120 minutes [step (b)]. The obtained LaB 6 powder (particles) was 92 g, and the impurity oxygen content could be reduced to 1.2 mass% and the impurity carbon content to 0.01 mass%.
The impurity oxygen content of 1.2% by mass is thought to be due to the low concentration of hydrochloric acid and the low processing temperature.

比較例1
不純物酸化物含有量が酸素換算で1.6質量%、不純物炭化物含有量が炭素換算で0.2質量%含まれている平均粒径1.5μmのLaB6粉末100gを大気中の酸化処理[(a)工程]を行わずに、80℃の6mol/dm3塩酸200ml中で処理を120分間行った[(b)工程]。得られたLaB6粉末(粒子)は、不純物酸素含有量を0.42質量%と不純物酸化物量は低減できたものの、不純物炭素含有量が0.21質量%と不純物炭化物量を低減することができなかった。
Comparative Example 1
Oxidation treatment of 100 g of LaB 6 powder with an average particle size of 1.5 μm, which contains an impurity oxide content of 1.6 mass% in terms of oxygen and an impurity carbide content of 0.2 mass% in terms of carbon [ Without performing step (a), treatment was performed in 200 ml of 6 mol / dm 3 hydrochloric acid at 80 ° C. for 120 minutes [step (b)]. The obtained LaB 6 powder (particles) could reduce the impurity oxygen content to 0.42 mass% and the impurity oxide content, but reduce the impurity carbon content to 0.21 mass% and the impurity carbide content. could not.

本発明の高純度金属ホウ化物粒子の製造方法は、焼結用として、あるいは導電性や熱線遮蔽性に優れる塗布膜用などとして有用な、不純物含有量の少ない高純度金属ホウ化物粒子を効率よく製造することができる。
本発明の方法で得られた高純度金属ホウ化物粒子を用いることにより、純度が高い金属ホウ化物スパッタリング用ターゲット材料が作製できるようになり、従来よりも純度が高い金属ホウ化物膜を成膜することができる。また、金属ホウ化物ナノ粒子を高純度化処理することにより、従来よりもヘイズ値が低い金属ホウ化物塗布膜を成膜することができる。
The method for producing high-purity metal boride particles of the present invention efficiently uses high-purity metal boride particles with a low impurity content that are useful for sintering or for coating films having excellent conductivity and heat ray shielding properties. Can be manufactured.
By using the high-purity metal boride particles obtained by the method of the present invention, a high-purity metal boride sputtering target material can be produced, and a metal boride film having a higher purity than conventional films is formed. be able to. Moreover, the metal boride coating film whose haze value is lower than before can be formed by subjecting the metal boride nanoparticles to a high purity treatment.

Claims (3)

(a)金属炭化物、金属酸化物、金属−ホウ素複合酸化物、ホウ素炭化物及びホウ素酸化物の中から選ばれる少なくとも一種の不純物を含む金属ホウ化物粉末を、大気中にて600〜800℃の温度で加熱処理して、前記不純物を酸化する工程、及び(b)前記(a)工程で得られた金属ホウ化物粉末の加熱処理物を無機酸中で処理することで酸化した不純物を溶出させ、不純物の除去を行う工程を含む高純度金属ホウ化物粒子の製造方法。   (A) A metal boride powder containing at least one impurity selected from metal carbide, metal oxide, metal-boron composite oxide, boron carbide and boron oxide is heated to a temperature of 600 to 800 ° C. in the atmosphere. The step of oxidizing the impurities by heat treatment with, and (b) eluting the oxidized impurities by treating the heat-treated product of the metal boride powder obtained in the step (a) in an inorganic acid, A method for producing high-purity metal boride particles, comprising a step of removing impurities. 前記(b)工程において使用する無機酸が塩酸である請求項1に記載の高純度金属ホウ化物粒子の製造方法。   The method for producing high-purity metal boride particles according to claim 1, wherein the inorganic acid used in the step (b) is hydrochloric acid. 金属ホウ化物粒子中の不純物酸化物含有量が酸素換算で0.5質量%以下、かつ不純物炭化物含有量が炭素換算で0.05質量%以下である請求項1又は2に記載の高純度金属ホウ化物粒子の製造方法により得られた高純度金属ホウ化物粒子。   The high-purity metal according to claim 1 or 2, wherein the content of the impurity oxide in the metal boride particles is 0.5% by mass or less in terms of oxygen, and the content of the impurity carbide is 0.05% by mass or less in terms of carbon. High purity metal boride particles obtained by a method for producing boride particles.
JP2009216851A 2009-09-18 2009-09-18 Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method Pending JP2011063486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216851A JP2011063486A (en) 2009-09-18 2009-09-18 Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216851A JP2011063486A (en) 2009-09-18 2009-09-18 Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method

Publications (1)

Publication Number Publication Date
JP2011063486A true JP2011063486A (en) 2011-03-31

Family

ID=43950127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216851A Pending JP2011063486A (en) 2009-09-18 2009-09-18 Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method

Country Status (1)

Country Link
JP (1) JP2011063486A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122041A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Boride particle and boride particle dispersion liquid
JP2017122219A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Infrared-shielding particle dispersion, infrared-shielding laminated transparent substrate, infrared-shielding particle dispersion powder, and master batch
WO2017119394A1 (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
JP2017122042A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Infrared-shielding transparent substrate and infrared-shielding optical member
CN108473324A (en) * 2016-01-04 2018-08-31 住友金属矿山株式会社 Boride particle, boride particle dispersion, infrared ray masking transparent base, infrared ray masking optical component, infrared ray masking particle dispersion, infrared ray masking interlayer transparent base, infrared ray masking particle dispersion powders and masterbatch

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261272A (en) * 1985-05-10 1986-11-19 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Polycrystal sintered body based on lanthanum hexaboride and manufacture
JPH01230423A (en) * 1987-11-26 1989-09-13 Rhone Poulenc Chim Production of boride of rare earth element
JPH01320216A (en) * 1988-06-23 1989-12-26 Japan Metals & Chem Co Ltd Production of lanthanum boride
JPH03193623A (en) * 1989-12-25 1991-08-23 Toyo Kohan Co Ltd Production of conjugated boride powder in as mo2feb2-base
JPH03213142A (en) * 1990-01-17 1991-09-18 Ngk Insulators Ltd Method for purifying particulate material
JPH04228474A (en) * 1990-04-25 1992-08-18 Rhone Poulenc Chim Method for sintering lanthanum hexaboride or hexaboride having the same structure as that of lanthanum hexabiride
JPH06248446A (en) * 1993-02-26 1994-09-06 Mitsubishi Materials Corp Target for sputtering and its production
JP2000281447A (en) * 1999-03-29 2000-10-10 Kao Corp Production of silicon carbide powder
JP2002187711A (en) * 2000-12-14 2002-07-05 Japan Science & Technology Corp Method of synthesizing titanium carbide or titanium diborate
JP2003327717A (en) * 2002-05-13 2003-11-19 Sumitomo Metal Mining Co Ltd Heat ray-shielding resin sheet material and liquid additive for producing the same
JP2004099367A (en) * 2002-09-10 2004-04-02 Sumitomo Metal Mining Co Ltd Metal boride powder and its manufacturing method
JP2004250725A (en) * 2003-02-18 2004-09-09 Kohan Kogyo Kk Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
WO2006038406A1 (en) * 2004-10-07 2006-04-13 Nippon Mining & Metals Co., Ltd. HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCTION THEREOF
JP2008063191A (en) * 2006-09-07 2008-03-21 Fuji Titan Kogyo Kk Manufacturing method of metal boride fine powder

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261272A (en) * 1985-05-10 1986-11-19 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Polycrystal sintered body based on lanthanum hexaboride and manufacture
JPH01230423A (en) * 1987-11-26 1989-09-13 Rhone Poulenc Chim Production of boride of rare earth element
JPH01320216A (en) * 1988-06-23 1989-12-26 Japan Metals & Chem Co Ltd Production of lanthanum boride
JPH03193623A (en) * 1989-12-25 1991-08-23 Toyo Kohan Co Ltd Production of conjugated boride powder in as mo2feb2-base
JPH03213142A (en) * 1990-01-17 1991-09-18 Ngk Insulators Ltd Method for purifying particulate material
JPH04228474A (en) * 1990-04-25 1992-08-18 Rhone Poulenc Chim Method for sintering lanthanum hexaboride or hexaboride having the same structure as that of lanthanum hexabiride
JPH06248446A (en) * 1993-02-26 1994-09-06 Mitsubishi Materials Corp Target for sputtering and its production
JP2000281447A (en) * 1999-03-29 2000-10-10 Kao Corp Production of silicon carbide powder
JP2002187711A (en) * 2000-12-14 2002-07-05 Japan Science & Technology Corp Method of synthesizing titanium carbide or titanium diborate
JP2003327717A (en) * 2002-05-13 2003-11-19 Sumitomo Metal Mining Co Ltd Heat ray-shielding resin sheet material and liquid additive for producing the same
JP2004099367A (en) * 2002-09-10 2004-04-02 Sumitomo Metal Mining Co Ltd Metal boride powder and its manufacturing method
JP2004250725A (en) * 2003-02-18 2004-09-09 Kohan Kogyo Kk Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
WO2006038406A1 (en) * 2004-10-07 2006-04-13 Nippon Mining & Metals Co., Ltd. HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCTION THEREOF
JP2008063191A (en) * 2006-09-07 2008-03-21 Fuji Titan Kogyo Kk Manufacturing method of metal boride fine powder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013034712; Maofeng ZHANG et al.: 'Direct low-temperature synthesis of RB6(R=Ce,Pr,Nd) nanocubes and nanoparticles' Journal of Solid State Chemistry Available online 9 September 2009, Vol.182, pp.3098-3104 *
JPN6013034714; Maofeng ZHANG et al.: 'A low-temperature route for the synthesis of nanocrystalline LaB6' Journal of Solid State Chemistry Available online 23 December 2007, Vol.181, pp.294-297 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122041A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Boride particle and boride particle dispersion liquid
JP2017122219A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Infrared-shielding particle dispersion, infrared-shielding laminated transparent substrate, infrared-shielding particle dispersion powder, and master batch
WO2017119394A1 (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
JP2017122042A (en) * 2016-01-04 2017-07-13 住友金属鉱山株式会社 Infrared-shielding transparent substrate and infrared-shielding optical member
CN108473324A (en) * 2016-01-04 2018-08-31 住友金属矿山株式会社 Boride particle, boride particle dispersion, infrared ray masking transparent base, infrared ray masking optical component, infrared ray masking particle dispersion, infrared ray masking interlayer transparent base, infrared ray masking particle dispersion powders and masterbatch
EP3401279A4 (en) * 2016-01-04 2018-12-05 Sumitomo Metal Mining Co., Ltd. Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
TWI703090B (en) * 2016-01-04 2020-09-01 日商住友金屬礦山股份有限公司 Boride particles, boride particle dispersion, infrared shielding transparent substrate, infrared shielding optical member, infrared shielding particle dispersion, infrared shielding interlayer transparent substrate, infrared shielding particle dispersion powder, and master batch
US11312116B2 (en) 2016-01-04 2022-04-26 Sumitomo Metal Mining Co., Ltd. Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
IL260353B (en) * 2016-01-04 2022-08-01 Sumitomo Metal Mining Co Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
CN108473324B (en) * 2016-01-04 2023-06-02 住友金属矿山株式会社 Infrared shielding transparent substrate, optical member, particle dispersion, interlayer transparent substrate, particle dispersion powder, and master batch

Similar Documents

Publication Publication Date Title
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JP2017514273A5 (en)
JP2017514273A (en) Methods and materials for lithium ion battery anodes
JP2011063486A (en) Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP5761178B2 (en) Lanthanum hexaboride sintered body, target using the same, lanthanum hexaboride film, and method for producing the sintered body
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
JP2014172783A (en) Zinc oxide powder and method for producing the same
JP5910242B2 (en) Method for producing lanthanum hexaboride fine particles, lanthanum hexaboride fine particles, lanthanum hexaboride sintered body, lanthanum hexaboride film, and organic semiconductor device
JP6684049B2 (en) Nitrogen-containing carbon material, method for producing the same, and fuel cell electrode
KR102525267B1 (en) Method for producing graphene oxide from electrode graphite scrap
JP5641402B2 (en) Oxide film and method for producing the same, and method for producing target and oxide sintered body
JP5175464B2 (en) Method for producing metal boride fine powder
JP2014019584A (en) Lanthanum hexaboride sintered body, production method thereof, lanthanum hexaboride film and organic semiconductor device
JP5434583B2 (en) Method for producing sintered metal boride
KR101305903B1 (en) Tin oxide powder and manufacturing method of producing the same
CN110783555A (en) Nano silicon material with low cost and high yield and preparation method thereof
JP2011063487A (en) Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
US9908782B2 (en) Method for synthesis of boron suboxide
KR102151983B1 (en) Manufacturing method of graphene oxides
JP4463157B2 (en) Indium oxide fine powder and method for producing tin-containing indium oxide fine powder
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
CN113582191A (en) Rare earth hexaboride nano powder and solid-liquid dual-phase preparation method thereof
TWI568676B (en) ITO powder and its manufacturing method
CN108373150B (en) Preparation method of defective graphene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112