JP2011046606A - Silica fine particle, paint for forming coating film and base material with coating film - Google Patents

Silica fine particle, paint for forming coating film and base material with coating film Download PDF

Info

Publication number
JP2011046606A
JP2011046606A JP2010211073A JP2010211073A JP2011046606A JP 2011046606 A JP2011046606 A JP 2011046606A JP 2010211073 A JP2010211073 A JP 2010211073A JP 2010211073 A JP2010211073 A JP 2010211073A JP 2011046606 A JP2011046606 A JP 2011046606A
Authority
JP
Japan
Prior art keywords
silica
fine particles
based fine
dispersion
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010211073A
Other languages
Japanese (ja)
Other versions
JP5404568B2 (en
Inventor
Makoto Muraguchi
良 村口
Mitsuaki Kumazawa
光章 熊沢
Toshiharu Hirai
俊晴 平井
Masabumi Hirai
正文 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2010211073A priority Critical patent/JP5404568B2/en
Publication of JP2011046606A publication Critical patent/JP2011046606A/en
Application granted granted Critical
Publication of JP5404568B2 publication Critical patent/JP5404568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing spherical silica fine particles having a void in an outer shell to obtain silica fine particles of a low refractivity index, by growing porous composite oxide particles (primary particles) in the presence of an electrolyte salt, then removing the inorganic oxides other than silica in the presence of an electrolyte salt, a paint for forming coating film containing the spherical silica fine particles having a void and a matrix for forming a coating film and excellent in stability and film forming property and a base material with a coating film having a low refractive index and excellent in close adhesiveness with a resin etc., strength, reflection preventive capacity etc. by forming a coating film containing the silica fine particles having a void, on the surface of the base material. <P>SOLUTION: The silica fine particles having a void in the outer shell have an average particle diameter in the range of 5-500 nm, a refractive index in the range of 1.15-1.38, molar ratio, MO<SB>X</SB>/SiO<SB>2</SB>, of 0.0001-0.2, wherein silica is represented by SiO<SB>2</SB>and the inorganic oxides other than silica is represented by MO<SB>X</SB>, and the content of alkali metal oxide A<SB>2</SB>O (A: an alkali metal element) is not higher than 5 ppm. In the method of manufacturing, a composite oxide fine particle dispersion solution is prepared by simultaneously adding a silicate and/or a bisilicate and an aqueous solution of an alkali-soluble inorganic compound to an aqueous alkali solution, and then at least a part of elements constituting the composite oxide other than silica is removed by adding an acid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内部に空洞を有するシリカ系微粒子およびその製造方法と、該シリカ系微粒子を含む被膜形成用塗料と、該シリカ系微粒子を含む被膜が基材表面上に形成された被膜付基材に関するものである。   The present invention relates to silica-based fine particles having cavities therein, a method for producing the same, a coating-forming coating material containing the silica-based fine particles, and a coated substrate in which a film containing the silica-based fine particles is formed on the surface of the substrate It is about.

従来、粒径が0.1〜300μm程度の中空シリカ粒子は公知である(特許文献1、特許文献2など参照)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材料からなるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去することによって、稠密なシリカシェルからなる中空粒子を製造する方法が公知である(特許文献3など参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・シェル構造であるミクロンサイズの球状シリカ粒子が公知である(特許文献4など参照)。
Conventionally, hollow silica particles having a particle size of about 0.1 to 300 μm are known (see Patent Document 1, Patent Document 2, etc.). Also, there is a method for producing hollow particles made of a dense silica shell by precipitating active silica from an alkali metal silicate aqueous solution on a core made of a material other than silica and removing the material without destroying the silica shell. It is publicly known (see Patent Document 3).
Furthermore, micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell, the central portion is hollow, the outer shell is denser on the outer side, and has a coarser concentration gradient structure on the inner side are known (Patent Document 4, etc.) reference).

また、本願出願人は先に、多孔性の無機酸化物微粒子の表面をシリカ等で完全に被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られることを提案すると共に(特許文献5参照)、さらに、シリカとシリカ以外の無機酸化物からなる複合酸化物の核粒子にシリカ被覆層を形成し、ついでシリカ以外の無機酸化物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子が得られることを提案している(特許文献6参照)。
しかしながら、上記本願出願人の提案に係る粒子では、粒子の使用目的および用途によっては充分な低屈折率効果が得られない場合があった。また、特許文献6記載の製造方法では、前記シリカ以外の無機酸化物の除去に先立ってシリカ被覆層を形成するなど、製造工程が複雑となり、再現性や生産性の点が隘路となっていた。
さらに、前記した従来の微粒子では被膜付基材の製造に用いる被膜形成用塗料の安定性が不充分で、該被膜形成用塗料を用いて得られる被膜は厚さが不均一であったり膜強度が不充分となることがあった。
In addition, the applicant of the present application previously proposed that nanometer-sized composite oxide particles having a low refractive index can be obtained by completely covering the surface of porous inorganic oxide particles with silica or the like ( Furthermore, a silica coating layer is formed on the core particles of a composite oxide composed of silica and an inorganic oxide other than silica, and then the inorganic oxide other than silica is removed, and silica is coated as necessary. By doing so, it has been proposed that nanometer-sized silica-based fine particles with a low refractive index having cavities inside can be obtained (see Patent Document 6).
However, in the particles according to the proposal of the applicant of the present application, a sufficient low refractive index effect may not be obtained depending on the purpose and application of the particles. Moreover, in the manufacturing method described in Patent Document 6, the manufacturing process is complicated, such as forming a silica coating layer prior to the removal of inorganic oxides other than silica, and the points of reproducibility and productivity have become bottlenecks. .
Further, the conventional fine particles described above are insufficient in the stability of the film-forming paint used for the production of the coated substrate, and the film obtained using the film-forming paint has a nonuniform thickness or film strength. May be insufficient.

特開平6ー330606号公報JP-A-6-330606 特開平7ー013137号公報Japanese Patent Laid-Open No. 7-013137 特表2000ー500113号公報Special Table 2000-500113 特開平11ー029318号公報JP-A-11-029318 特開平7ー133105号公報JP-A-7-133105 特開2001−233611号公報JP 2001-233611 A

本発明は、前記特許文献6記載の発明に基づきこれを発展させたものであり、低屈折率のシリカ系微粒子を得ることを目的とするものであって、多孔質の複合酸化物粒子(一次粒子)を、電解質塩の存在下で粒子成長させ、ついで電解質塩の存在下でシリカ以外の無機酸化物を除去することにより、外殻内部に空洞を有する中空で球状のシリカ系微粒子の製造方法を提供することを目的としている。
また、本発明は前記中空で球状のシリカ系微粒子と被膜形成用マトリックスとを含有し、安定性、膜形成性等に優れた被膜形成用塗料を提供することを目的とするものである。
また、本発明は前記中空で球状のシリカ系微粒子を含有する被膜を基材の表面に形成して、低屈折率で、樹脂等との密着性、強度、反射防止能等に優れた被膜付きの基材を提供することを目的とするものである。
The present invention has been developed on the basis of the invention described in Patent Document 6 and aims to obtain silica-based fine particles having a low refractive index. Particles) are grown in the presence of an electrolyte salt, and then inorganic oxides other than silica are removed in the presence of the electrolyte salt, thereby producing hollow spherical silica-based fine particles having a cavity inside the outer shell. The purpose is to provide.
Another object of the present invention is to provide a coating material for forming a film which contains the hollow spherical silica-based fine particles and a film forming matrix and is excellent in stability, film forming property and the like.
In addition, the present invention forms a coating containing the above-mentioned hollow, spherical silica-based fine particles on the surface of the substrate, and has a coating having a low refractive index, excellent adhesion to a resin, strength, antireflection ability, etc. It aims at providing the base material of this.

本発明に係るシリカ系微粒子の製造方法は下記工程(a)、(b)、(d)および(e)からなるものである。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液中に同時に添加して、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.3〜1.0の範囲にある複合酸化物微粒子分散液を調製する際に、複合酸化物微粒子の平均粒子径が5〜300nmになった時点で電解質塩を電解質塩のモル数(ME)とSiO2のモル数(MS)との比(ME/MS)が0.1〜10の範囲で添加する工程
(b)前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸を加えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去してシリカ系微粒子分散液とする工程
(d)必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜300℃の範囲で熟成する工程
(e)必要に応じて洗浄した後、50〜300℃の範囲で水熱処理する工程
The method for producing silica-based fine particles according to the present invention comprises the following steps (a), (b), (d) and (e).
(A) An aqueous solution of silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution or an alkaline aqueous solution in which seed particles are dispersed, if necessary. When preparing a composite oxide fine particle dispersion having a molar ratio MO X / SiO 2 in the range of 0.3 to 1.0 when SiO 2 is represented by SiO 2 and an inorganic oxide other than silica is represented by MO X When the average particle diameter of the composite oxide fine particles becomes 5 to 300 nm, the ratio of the electrolyte salt to the number of moles of electrolyte salt (M E ) and the number of moles of SiO 2 (M S ) (M E / M S ) Is added in the range of 0.1 to 10 (b) Other than silicon constituting the composite oxide fine particles by adding an electrolyte salt to the composite oxide fine particle dispersion as necessary and then adding an acid. Silica-based fine particle dispersion by removing at least part of the element Step (d) After washing as necessary, the silica-based fine particle dispersion is aged in the range of room temperature to 300 ° C. (e) After washing as necessary, hydrothermal treatment in the range of 50 to 300 ° C. Process

工程(e)は複数回繰り返すことが好ましい。
工程(b)と工程(d)の間で下記工程(c)を実施することが好ましい。
(c)前記工程(b)で得られたシリカ系微粒子分散液に、アルカリ水溶液と、下記化学式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、該微粒子にシリカ被覆層を形成する工程
nSiX(4-n) ・・・(1)
〔但し、R:炭素数1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、メタクリル基、アミノ基、CF3基、X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素、n:0〜3の整数〕
The step (e) is preferably repeated a plurality of times.
It is preferable to carry out the following step (c) between step (b) and step (d).
(C) An aqueous alkali solution and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof are added to the silica-based fine particle dispersion obtained in the step (b), and the fine particles Forming a silica coating on the substrate
R n SiX (4-n) (1)
[However, R: unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF 3 group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 to 3]

前記アルカリ水溶液または、必要に応じて種粒子が分散したアルカリ水溶液のpHは、10以上であることが好ましい。
前記シリカ以外の無機酸化物はアルミナであることが好ましい。
前記で得られたシリカ系微粒子分散液を洗浄し、乾燥し、必要に応じて焼成することが好ましい。
前記シリカ系微粒子の平均粒子径は5nm〜500nmの範囲にあることが好ましく、前記シリカ系微粒子におけるアルカリ金属酸化物の含有量がA2O(A:アルカリ金属元素)として5ppm以下であり、アンモニア及び/又はアンモニウムイオンの含有量がNH3として1500ppm以下であることが好ましい。
The pH of the alkaline aqueous solution or the alkaline aqueous solution in which seed particles are dispersed as required is preferably 10 or more.
The inorganic oxide other than silica is preferably alumina.
It is preferable that the silica-based fine particle dispersion obtained above is washed, dried, and fired as necessary.
The average particle diameter of the silica-based fine particles is preferably in the range of 5 nm to 500 nm, and the content of alkali metal oxide in the silica-based fine particles is 5 ppm or less as A 2 O (A: alkali metal element), ammonia In addition, the content of ammonium ions is preferably 1500 ppm or less as NH 3 .

本発明に係る外殻内部に空洞を有するシリカ系微粒子は、平均粒子径が5〜500nmの範囲にあり、屈折率が1.15〜1.38の範囲にあり、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.0001〜0.2の範囲にあり、アルカリ金属酸化物の含有量がA2O(A:アルカリ金属元素)として5ppm以下であることを特徴とするものである。該シリカ系微粒子におけるアンモニアおよび/またはアンモニウムイオンの含有量はNH3として1500ppm以下であることが好ましい。
本発明に係る被膜形成用塗料は、前記シリカ系微粒子または前記製造方法によって得られたシリカ系微粒子と、被膜形成用マトリックスとを含んでなるものである。
本発明に係る被膜付基材は、前記シリカ系微粒子または前記製造方法によって得られたシリカ系微粒子と被膜形成用マトリックスとを含んでなる被膜が、単独でまたは他の被膜とともに基材表面上に形成されたものである。
The silica-based fine particles having cavities inside the outer shell according to the present invention have an average particle diameter in the range of 5 to 500 nm, a refractive index in the range of 1.15 to 1.38, and silica is represented by SiO 2 . molar ratio MO X / SiO 2 when the inorganic oxide other than silica, expressed in MO X is in the range of 0.0001 to 0.2, an alkali metal oxide content of a 2 O (a: alkali metal Element) is 5 ppm or less. The content of ammonia and / or ammonium ions in the silica-based fine particles is preferably 1500 ppm or less as NH 3 .
The coating film-forming paint according to the present invention comprises the silica-based fine particles or the silica-based fine particles obtained by the production method and a film-forming matrix.
The coated substrate according to the present invention is a coating comprising the silica-based fine particles or the silica-based fine particles obtained by the production method and a film-forming matrix, either alone or together with other coatings on the surface of the substrate. It is formed.

本発明方法によれば、電解質塩の存在下で複合酸化物粒子(一次粒子)を粒子成長させるので、後続する脱元素工程においても当該複合酸化物微粒子が球状を維持して、破壊されることがなく、極めて簡易な製造工程により非常に低屈折率のシリカ系微粒子を得ることができる。また、シリカ系微粒子の製造再現性や生産性の点でも優れている。
さらに、脱元素工程あるいはシリカ被覆層を形成して熟成した後、高温で水熱処理するのでアルカリ金属酸化物とアンモニア等が低減され、得られるシリカ系微粒子を配合した被膜形成用塗料は安定性が高く、得られる被膜は強度に優れている。
本発明の被膜形成用塗料は、配合するシリカ系微粒子あるいはシリカ系微粒子分散液中のアルカリ金属酸化物とアンモニアの含有量が少ないので、安定性に優れ、これを用いて得られる被膜は強度に優れている。
また、本発明の被膜付基材は、低屈折率で、樹脂等との密着性、強度、透明性、反射防止能等に優れている。
According to the method of the present invention, since the composite oxide particles (primary particles) are grown in the presence of the electrolyte salt, the composite oxide fine particles are maintained in a spherical shape and destroyed in the subsequent de-elementary process. The silica-based fine particles having a very low refractive index can be obtained by an extremely simple manufacturing process. In addition, the production reproducibility and productivity of silica-based fine particles are also excellent.
In addition, since the film is aged after forming a silica coating layer or aging, hydrothermal treatment is performed at a high temperature, so that alkali metal oxides and ammonia are reduced. High and the resulting coating is excellent in strength.
The coating material for forming a film of the present invention is excellent in stability because the content of alkali metal oxide and ammonia in the silica-based fine particles or silica-based fine particle dispersion is low, and the film obtained by using this has high strength. Are better.
Moreover, the base material with a film of the present invention has a low refractive index and is excellent in adhesion to a resin and the like, strength, transparency, antireflection ability and the like.

以下、本発明の好適な実施形態を説明する。
〔シリカ系微粒子の製造方法〕
本発明に係るシリカ系微粒子の製造方法は、下記工程(a)、(b)、(d)および(e)からなる。また、工程(b)と工程(d)の間に工程(c)を実施することもある。以下、工程順に説明する。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液中に同時に添加して、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.3〜1.0の範囲にある複合酸化物微粒子分散液を調製する際に、複合酸化物微粒子の平均粒子径が5〜300nmになった時点で電解質塩を電解質塩のモル数(ME)とSiO2のモル数(MS)との比(ME)/(MS)が0.1〜10の範囲で添加する工程
(b)前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸を加えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去してシリカ系微粒子分散液とする工程
(c)前記工程(b)で得られたシリカ系微粒子分散液に、アルカリ水溶液と、下記化学式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、該微粒子にシリカ被覆層を形成する工程
nSiX(4-n) ・・・(1)
〔但し、R:炭素数1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、メタクリル基、アミノ基、CF3基、X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素、n:0〜3の整数〕
(d)必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜300℃の範囲で熟成する工程
(e)必要に応じて洗浄した後、50〜300℃の範囲で水熱処理する工程
Hereinafter, preferred embodiments of the present invention will be described.
[Method for producing silica-based fine particles]
The method for producing silica-based fine particles according to the present invention comprises the following steps (a), (b), (d) and (e). Moreover, a process (c) may be implemented between a process (b) and a process (d). Hereinafter, it demonstrates in order of a process.
(A) An aqueous solution of silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution or an alkaline aqueous solution in which seed particles are dispersed, if necessary. When preparing a composite oxide fine particle dispersion having a molar ratio MO X / SiO 2 in the range of 0.3 to 1.0 when SiO 2 is represented by SiO 2 and an inorganic oxide other than silica is represented by MO X When the average particle diameter of the composite oxide fine particles becomes 5 to 300 nm, the electrolyte salt is converted into the ratio of the number of moles of electrolyte salt (M E ) to the number of moles of SiO 2 (M S ) (M E ) / (M S ) is added in the range of 0.1 to 10 (b) An electrolyte salt is further added to the composite oxide fine particle dispersion as necessary, and then an acid is added to form the composite oxide fine particles. Silica-based fine particles by removing at least part of elements other than silicon Step (c) to make a liquid dispersion To the silica-based fine particle dispersion obtained in the step (b), an alkaline aqueous solution and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof are added. Adding and forming a silica coating layer on the fine particles
R n SiX (4-n) (1)
[However, R: unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF 3 group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 to 3]
(D) A step of aging the silica-based fine particle dispersion in the range of room temperature to 300 ° C. after washing as necessary (e) A step of hydrothermal treatment in the range of 50 to 300 ° C. after washing as necessary.

工程(a)
珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましく用いられる。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2〜pH4、SiO2濃度が約7重量%以下の酸性珪酸液が好ましい。
Step (a)
As the silicate, one or more silicates selected from alkali metal silicates, ammonium silicates and organic base silicates are preferably used. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution in which ammonia, quaternary ammonium hydroxide, an amine compound, or the like is added to the silicic acid solution.
As the acidic silicic acid solution, a silicic acid solution obtained by removing alkali by treating an alkali silicate aqueous solution with a cation exchange resin can be used. In particular, pH 2 to pH 4 and SiO 2 concentration is about 7% by weight. The following acidic silicic acid solutions are preferred.

無機酸化物としては、Al23、B23、TiO2、ZrO2、SnO2、Ce23、P25、Sb23、MoO3、ZnO2、WO3等の1種または2種以上を挙げることができる。2種以上の無機酸化物として、TiO2−Al23、TiO2−ZrO2等を例示することができる。
このような無機酸化物の原料として、アルカリ可溶の無機化合物を用いることが好ましく、前記した無機酸化物を構成する金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウム等が好適である。
Examples of the inorganic oxide include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3 . 1 type or 2 or more types can be mentioned. Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 .
As a raw material for such an inorganic oxide, an alkali-soluble inorganic compound is preferably used, and an alkali metal salt, an alkaline earth metal salt, or an ammonium salt of a metal or a non-metal oxo acid constituting the inorganic oxide described above. And quaternary ammonium salts, and more specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, Sodium phosphate and the like are preferred.

複合酸化物微粒子分散液を調製するためには、予め、前記無機化合物のアルカリ水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目的とするシリカとシリカ以外の無機酸化物の複合割合に応じて、アルカリ水溶液中に、好ましくはpH10以上のアルカリ水溶液中に攪拌しながら徐々に添加する。
アルカリ水溶液中に添加するシリカ原料と無機化合物の添加割合は、シリカ成分をSiO2 で表し、シリカ以外の無機化合物をMOXで表したときのモル比MOX/SiO2が0. 3〜1. 0、特に、0. 35〜0. 85の範囲となるようにすることが好ましい。MOX/SiO2が0. 3未満では、最終的に得られるシリカ系微粒子の空洞容積が十分大きくならず、他方、MOX/SiO2が1. 0を越えると、球状の複合酸化物微粒子を得ることが困難となり、この結果、得られる中空微粒子中の空洞容積の割合が低下する。
モル比MOX/SiO2が0. 3〜1. 0の範囲にあれば、複合酸化物微粒子の構造は主として、珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、珪素原子の4つの結合手に酸素原子が結合し、この酸素原子にはシリカ以外の元素Mが結合した構造が多く生成し、後述の工程(b)でシリカ以外の元素Mを除去する際、元素Mに随伴させて珪素原子も珪酸モノマーやオリゴマーとして除去することができるようになる。
In order to prepare the composite oxide fine particle dispersion, either an alkali aqueous solution of the inorganic compound is separately prepared in advance, or a mixed aqueous solution is prepared, and the target silica and inorganic other than silica are prepared. Depending on the composite ratio of the oxide, it is gradually added with stirring to an aqueous alkali solution, preferably an aqueous alkali solution having a pH of 10 or higher.
The addition ratio of the silica raw material and the inorganic compound added to the alkaline aqueous solution is such that the molar ratio MO X / SiO 2 is 0.3 to 1 when the silica component is expressed by SiO 2 and the inorganic compound other than silica is expressed by MO X. It is preferable that the range be in the range of 0, in particular 0.35 to 0.85. When MO X / SiO 2 is less than 0.3, the finally obtained silica-based fine particles do not have a sufficiently large cavity volume. On the other hand, when MO X / SiO 2 exceeds 1.0, spherical composite oxide fine particles As a result, the ratio of the cavity volume in the obtained hollow microparticles decreases.
When the molar ratio MO X / SiO 2 is in the range of 0.3 to 1.0, the composite oxide fine particles have a structure in which silicon and an element other than silicon are alternately bonded through oxygen. That is, oxygen atoms are bonded to the four bonds of silicon atoms, and many structures in which elements M other than silica are bonded to the oxygen atoms are generated, and the elements M other than silica are removed in the step (b) described later. At this time, the silicon atom can be removed as a silicic acid monomer or oligomer in association with the element M.

本発明の製造方法では、複合酸化物微粒子分散液を調製する際に種粒子の分散液を出発原料とすることも可能である。この場合には、種粒子として、SiO2、Al23、TiO2、ZrO2、SnO2およびCeO2等の無機酸化物またはこれらの複合酸化物、例えば、SiO2−Al23、TiO2−Al23、TiO2−ZrO2、SiO2−TiO2、SiO2−TiO2−Al23等の微粒子が用いられ、通常、これらのゾルを用いることができる。このような種粒子の分散液は、従来公知の方法によって調製することができる。例えば、上記無機酸化物に対応する金属塩、金属塩の混合物あるいは金属アルコキシド等に酸またはアルカリを添加して加水分解し、必要に応じて熟成することによって得ることができる。
この種粒子分散アルカリ水溶液中に、好ましくはpH10以上に調整した種粒子分散アルカリ水溶液中に前記化合物の水溶液を、上記したアルカリ水溶液中に添加する方法と同様にして、攪拌しながら添加する。このように、種粒子を種として複合酸化物微粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。種粒子分散液中に添加するシリカ原料および無機酸化物の添加割合は、前記したアルカリ水溶液に添加する場合と同じ範囲とする。
上記したシリカ原料および無機酸化物原料はアルカリ側で高い溶解度をもっている。しかしながら、この溶解度の高いpH領域で両者を混合すると、珪酸イオンおよびアルミン酸イオンなどのオキソ酸イオンの溶解度が低下し、これらの複合物が析出してコロイド粒子に成長し、あるいは、種粒子上に析出して粒子成長が起こる。
In the production method of the present invention, it is also possible to use a seed particle dispersion as a starting material when preparing a composite oxide fine particle dispersion. In this case, inorganic particles such as SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 and CeO 2 or composite oxides thereof such as SiO 2 —Al 2 O 3 , Fine particles such as TiO 2 —Al 2 O 3 , TiO 2 —ZrO 2 , SiO 2 —TiO 2 , SiO 2 —TiO 2 —Al 2 O 3 are used, and these sols can be usually used. Such a dispersion of seed particles can be prepared by a conventionally known method. For example, it can be obtained by adding an acid or alkali to a metal salt, a mixture of metal salts, a metal alkoxide, or the like corresponding to the inorganic oxide, hydrolyzing, and aging as necessary.
In the seed particle-dispersed alkaline aqueous solution, the aqueous solution of the compound is preferably added to the seed particle-dispersed alkaline aqueous solution adjusted to a pH of 10 or more with stirring in the same manner as in the method of adding the above-mentioned alkaline aqueous solution. As described above, when the composite oxide fine particles are grown using the seed particles as seeds, it is easy to control the particle size of the grown particles, and particles having uniform particle sizes can be obtained. The addition ratio of the silica raw material and the inorganic oxide to be added to the seed particle dispersion is set to the same range as the case of adding to the aqueous alkali solution.
The silica raw material and inorganic oxide raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into colloidal particles, or on the seed particles. Precipitates into particles and causes particle growth.

上記複合酸化物微粒子分散液の調製に際し、シリカ原料として後述する化学式(1)に示す有機珪素化合物および/またはその加水分解物をアルカリ水溶液中に添加しても良い。
該有機珪素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシトリプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。
When preparing the composite oxide fine particle dispersion, an organosilicon compound represented by the following chemical formula (1) and / or a hydrolyzate thereof may be added as a silica raw material to an alkaline aqueous solution.
Specific examples of the organosilicon compound include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, and dimethyldiethoxy. Silane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl- 3,3,3-trifluoropropyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, -Glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ- Methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxy Silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane Examples include orchid, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, and diethylsilane.

上記有機珪素化合物でnが1〜3の化合物は親水性に乏しいので、予め加水分解しておくことにより、反応系に均一に混合できるようにすることが好ましい。加水分解には、これら有機珪素化合物の加水分解法として周知の方法を採用することができる。加水分解触媒として、アルカリ金属の水酸化物や、アンモニア水、アミン等の塩基性のものを用いた場合、加水分解後これらの塩基性触媒を除去して、酸性溶液にして用いることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調製した場合、加水分解後、イオン交換等によって酸性触媒を除去することが好ましい。なお、得られた有機珪素化合物の加水分解物は、水溶液の形態で使用することが望ましい。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有している状態を意味する。   Since the above-mentioned organosilicon compound having n of 1 to 3 is poor in hydrophilicity, it is preferable that the compound be uniformly mixed in the reaction system by hydrolysis in advance. For the hydrolysis, a well-known method can be adopted as a hydrolysis method of these organosilicon compounds. When a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or an amine is used as the hydrolysis catalyst, these basic catalysts can be removed after hydrolysis and used as an acidic solution. Moreover, when preparing a hydrolyzate using acidic catalysts, such as an organic acid and an inorganic acid, it is preferable to remove an acidic catalyst by ion exchange etc. after a hydrolysis. The obtained hydrolyzate of the organosilicon compound is desirably used in the form of an aqueous solution. Here, the aqueous solution means a state in which the hydrolyzate has transparency without being clouded as a gel.

本発明では、上記工程(a)において、複合酸化物微粒子の平均粒子径が概ね5〜300nmになった時点(このときの複合酸化物微粒子を一次粒子ということがある)で電解質塩を電解質塩のモル数(ME)とSiO2 のモル数(MS)との比(ME/MS)が0.1〜10、好ましくは0.2〜8の範囲で添加する。
電解質塩としては、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、硫酸カリウム、硝酸アンモニウム、硫酸アンモニウム、塩化マグネシウム、硝酸マグネシウムなどの水溶性の電解質塩が挙げられる。
なお、電解質塩はこの時点で全量を添加してもよく、アルカリ金属珪酸塩やシリカ以外の無機化合物を添加して複合酸化物微粒子の粒子成長を行いながら連続的にあるいは断続的に添加してもよい。
In the present invention, in the step (a), when the average particle diameter of the composite oxide fine particles becomes approximately 5 to 300 nm (the composite oxide fine particles at this time may be referred to as primary particles), the electrolyte salt is converted into the electrolyte salt. the ratio (M E / M S) is 0.1 to 10, preferably added in the range of 0.2 to 8 of the number of moles and (M E) SiO 2 moles and (M S).
Examples of the electrolyte salt include water-soluble electrolyte salts such as sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, magnesium chloride, and magnesium nitrate.
The electrolyte salt may be added in its entirety at this point, or continuously or intermittently while adding inorganic compounds other than alkali metal silicate and silica and growing the composite oxide fine particles. Also good.

電解質塩の添加量は、複合酸化物微粒子分散液の濃度にもよるが、前記モル比(ME/MS)が0.1未満の場合は、電解質塩を加えた効果が不充分となり、工程(b)で酸を加えて複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去する際に複合酸化物微粒子が球状を維持できず破壊され、内部に空洞を有するシリカ系微粒子を得ることが困難となることがある。このような電解質塩を加える効果についてその理由は明らかではないが、粒子成長した複合酸化物微粒子の表面にシリカが多くなり、酸に不溶性のシリカが複合酸化物微粒子の保護膜的な作用をしているものと考えられる。 The amount of the electrolyte salt added depends on the concentration of the composite oxide fine particle dispersion, but when the molar ratio (M E / M S ) is less than 0.1, the effect of adding the electrolyte salt becomes insufficient, When removing at least a part of the elements other than silicon constituting the composite oxide fine particles by adding an acid in the step (b), the composite oxide fine particles cannot be maintained in a spherical shape and are destroyed, and silica-based fine particles having cavities therein May be difficult to obtain. The reason for the effect of adding such an electrolyte salt is not clear, but the amount of silica on the surface of the grown complex oxide fine particles increases, and the acid-insoluble silica acts as a protective film for the composite oxide fine particles. It is thought that.

前記モル比(ME/MS)が10を越えても、前記電解質を添加する効果が向上することもなく、新たな微粒子が生成するなど、経済性が低下する。
また、電解質塩を添加する際の一次粒子の平均粒子径が5nm未満の場合は、新たな微粒子が生成して一次粒子の選択的な粒子成長が起きず、複合酸化物微粒子の粒子径分布が不均一となることがある。電解質塩を添加する際の一次粒子の平均粒子径が300nmを越えると、工程(b)での珪素以外の元素の除去に時間を要したり、困難となることがある。このようにして得られる複合酸化物微粒子は、最終的に得られるシリカ系微粒子と同程度の、平均粒子径が5〜500nmの範囲にある。
Even if the molar ratio (M E / M S ) exceeds 10, the effect of adding the electrolyte is not improved, and the economic efficiency is lowered, for example, new fine particles are formed.
In addition, when the average particle size of the primary particles when the electrolyte salt is added is less than 5 nm, new fine particles are generated and selective particle growth of the primary particles does not occur, and the particle size distribution of the composite oxide fine particles is May be non-uniform. If the average particle diameter of the primary particles when adding the electrolyte salt exceeds 300 nm, it may take time or difficulty to remove elements other than silicon in the step (b). The composite oxide fine particles thus obtained have an average particle diameter in the range of 5 to 500 nm, which is about the same as the finally obtained silica-based fine particles.

工程(b)
工程(b)では前記複合酸化物微粒子から、該複合酸化物微粒子を構成する珪素以外の元素の一部または全部を除去することにより内部に空洞を有する中空球状のシリカ系微粒子を製造する。
元素の除去に際しては、複合酸化物微粒子分散液に、電解質塩のモル数(ME)とSiO2のモル数(MS)との比(ME/MS)が0.1〜10、好ましくは0.2〜8の範囲となるように、必要に応じて再び電解質塩を添加した後、例えば、鉱酸や有機酸を添加することによって溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除去したり、あるいは、これらの方法を組み合わせることによって除去する。
Step (b)
In step (b), hollow spherical silica-based fine particles having cavities therein are produced by removing a part or all of elements other than silicon constituting the composite oxide fine particles from the composite oxide fine particles.
Upon removal of the element, the composite oxide fine particle dispersion, the number of moles of the electrolyte salt (M E) and SiO 2 of moles (M S) and the ratio of (M E / M S) is 0.1 to 10, Preferably, the electrolyte salt is added again as necessary so as to be in the range of 0.2 to 8, and then dissolved and removed, for example, by adding a mineral acid or an organic acid, or contacted with a cation exchange resin. To remove by ion exchange or a combination of these methods.

このとき、複合酸化物微粒子分散液中の複合酸化物微粒子の濃度は処理温度によっても異なるが、酸化物に換算して0.1〜50重量%、特に0.5〜25重量%の範囲にあることが好ましい。複合酸化物微粒子の濃度が0.1重量%未満では、シリカの溶解量が多くなり、複合酸化物微粒子の形状を維持できないことがあり、できたとしても低濃度のために処理効率が低下する。また、複合酸化物微粒子の濃度が50重量%を越えると、粒子の分散性が不充分となり、珪素以外の元素の含有量が多い複合酸化物微粒子では均一に、あるいは効率的に少ない回数で除去できないことがある。
上記元素の除去は、得られるシリカ系微粒子のMOX/SiO2が、0. 0001〜0. 2、特に、0. 0001〜0. 1となるまで行うことが好ましい。
At this time, the concentration of the composite oxide fine particles in the composite oxide fine particle dispersion varies depending on the treatment temperature, but in the range of 0.1 to 50% by weight, particularly 0.5 to 25% by weight in terms of oxide. Preferably there is. When the concentration of the composite oxide fine particles is less than 0.1% by weight, the amount of silica dissolved increases, and the shape of the composite oxide fine particles may not be maintained. Even if it is possible, the processing efficiency decreases due to the low concentration. . If the concentration of the composite oxide fine particles exceeds 50% by weight, the dispersibility of the particles becomes insufficient, and the composite oxide fine particles having a high content of elements other than silicon are uniformly or efficiently removed in a small number of times. There are things that cannot be done.
The removal of the above elements is preferably performed until the MO x / SiO 2 of the silica-based fine particles obtained is from 0.0001 to 0.2, particularly from 0.0001 to 0.1.

工程(c)
本工程(c)は任意工程である。
前記化学式(1)に示す有機珪素化合物としては、前記工程(a)と同様の有機珪素化合物を用いることができ、化学式(1)において、n=0の有機珪素化合物を用いる場合はそのまま用いることができるが、n=1〜3の有機珪素化合物を用いる場合は前記工程(a)と同様の有機珪素化合物の部分加水分解物を用いることが好ましい。
Step (c)
This step (c) is an optional step.
As the organosilicon compound represented by the chemical formula (1), the same organosilicon compound as in the step (a) can be used. In the chemical formula (1), when an organosilicon compound with n = 0 is used, it should be used as it is. However, when an organosilicon compound with n = 1 to 3 is used, it is preferable to use a partial hydrolyzate of an organosilicon compound similar to the step (a).

このようなシリカ被覆層は緻密であるために、内部が屈折率の低い気相あるいは液層に保たれ、被膜の形成等に用いる場合、屈折率の高い物質、例えば塗料用樹脂等が内部に進入することがなく、低屈折率効果の高い被膜を形成することができる。
また、上記において、シリカ被覆層の形成にn=1〜3の有機珪素化合物を用いる場合は有機溶媒への分散性が良く、樹脂との親和性の高いシリカ系微粒子分散液を得ることができる。さらに、シランカップリング剤等で表面処理して用いることもできるが、有機溶媒への分散性、樹脂との親和性等に優れているため、このような処理を特別に必要とすることもない。
Since such a silica coating layer is dense, the inside is kept in a gas phase or liquid layer having a low refractive index, and when used for forming a film, a substance having a high refractive index, such as a coating resin, is contained inside. It is possible to form a film having a low refractive index effect without entering.
In the above, when an organosilicon compound of n = 1 to 3 is used for forming the silica coating layer, a silica-based fine particle dispersion having good dispersibility in an organic solvent and high affinity with the resin can be obtained. . Furthermore, it can be used after being surface-treated with a silane coupling agent or the like, but since it is excellent in dispersibility in an organic solvent, affinity with a resin, etc., such treatment is not particularly required. .

また、シリカ被覆層の形成に含フッ素有機珪素化合物を用いる場合は、F原子を含む被覆層が形成されるために、得られる粒子はより低屈折率となると共に有機溶媒への分散性が良く、樹脂との親和性の高いシリカ系微粒子分散液を得ることができる。このような含フッ素有機珪素化合物としては、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルトリクロロシシラン、ヘプタデカフルオロデシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン等が挙げられる。また、下記〔化2〕として化学式(2)で表される化合物、下記〔化3〕として化学式(3)で表される化合物も同様の効果を有することから好適に用いることができる。   In addition, when a fluorine-containing organosilicon compound is used for forming the silica coating layer, since the coating layer containing F atoms is formed, the resulting particles have a lower refractive index and good dispersibility in organic solvents. A silica-based fine particle dispersion having high affinity with the resin can be obtained. Such fluorine-containing organic silicon compounds include 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecyl. Examples include trichlorosisilane, heptadecafluorodecyltrimethoxysilane, trifluoropropyltrimethoxysilane, and tridecafluorooctyltrimethoxysilane. Further, the compound represented by the chemical formula (2) as the following [Chemical Formula 2] and the compound represented by the chemical formula (3) as the following [Chemical Formula 3] can also be preferably used because they have the same effect.

[化2]
3 5
| |
1O−Si−(X)−Si−OR2 ・・・(2)
| |
4 6
[Chemical 2]
R 3 R 5
| |
R 1 O—Si— (X) —Si—OR 2 (2)
| |
R 4 R 6

[化3]
3

1O−Si−(X)−R7 ・・・(3)

4
[Chemical formula 3]
R 3

R 1 O—Si— (X) —R 7 (3)

R 4

上記化学式(2)と(3)中、R1とR2およびR1とR7とは互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、水素原子またはハロゲン原子を示す。
3〜R6は互いに同一であっても異なっていてもよく、アルコキシ基、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、水素原子またはハロゲン原子を示す。
Xは、−(Cabc)−を示し、aは2以上の偶数である整数、bとcは0以上の偶数である整数とする。
例えば、(CH3O)3SiC2461224Si(CH3O)3で表されるメトキシシランは上記化学式(2)で表される化合物の1つである。
In the chemical formulas (2) and (3), R 1 and R 2 and R 1 and R 7 may be the same or different from each other, and may be an alkyl group, a halogenated alkyl group, an aryl group, or an alkylaryl group. Represents an arylalkyl group, an alkenyl group, a hydrogen atom or a halogen atom.
R 3 to R 6 may be the same or different from each other, and each represents an alkoxy group, an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, a hydrogen atom or a halogen atom. .
X represents-(C a H b F c )-, where a is an integer that is an even number of 2 or more, and b and c are integers that are an even number of 0 or more.
For example, methoxysilane represented by (CH 3 O) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (CH 3 O) 3 is one of the compounds represented by the chemical formula (2).

工程(d)
工程(d)では必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜300℃の範囲で熟成する。
元素を除去した分散液は、必要に応じて限外濾過等の公知の洗浄方法により洗浄することができ、洗浄によって溶解したケイ素以外の元素の一部を除去する。この場合、予め分散液中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニウムイオン等の一部を除去した後に限外濾過すれば、分散安定性の高いシリカ系微粒子が分散したゾルが得られる。
また、元素を除去した分散液は、陽イオン交換樹脂および/または陰イオン交換樹脂と接触させることによっても溶解したケイ素以外の元素の一部あるいはアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニウムイオン等を除去することができる。また、洗浄する際、加温して行うと効果的に洗浄することができる。
Step (d)
In the step (d), after washing as necessary, the silica-based fine particle dispersion is aged in the range of room temperature to 300 ° C.
The dispersion from which the elements have been removed can be washed by a known washing method such as ultrafiltration, if necessary, and a part of the elements other than silicon dissolved by the washing is removed. In this case, a sol in which silica-based fine particles with high dispersion stability are dispersed can be obtained by previously removing a part of alkali metal ions, alkaline earth metal ions, ammonium ions and the like in the dispersion liquid and then performing ultrafiltration.
In addition, the dispersion from which the element has been removed is a part of the element other than silicon dissolved by contact with the cation exchange resin and / or anion exchange resin, or alkali metal ions, alkaline earth metal ions, ammonium ions, etc. Can be removed. In addition, when washing, heating can be effectively performed.

このように洗浄することによって、後述する水熱処理して得られるシリカ系微粒子中のアルカリ金属酸化物、アンモニアの含有量を効果的に低減することができ、このため、後述するシリカ系微粒子を用いて得られる被膜形成用塗料の安定性、膜形成等が向上し、得られる被膜は強度に優れている。
ついで、常温〜300℃、好ましくは50〜250℃で通常1〜24時間程度熟成する。熟成を行うとシリカ被覆層が均一でより緻密になり、前述したように屈折率の高い物質が粒子内部に進入することができなくなるため、低屈折率効果の高い被膜を形成することができる。
By washing in this way, the content of alkali metal oxides and ammonia in silica-based fine particles obtained by hydrothermal treatment described later can be effectively reduced. For this reason, silica-based fine particles described later are used. The stability and film formation of the coating film-forming coating obtained are improved, and the resulting coating film is excellent in strength.
Next, the mixture is aged at room temperature to 300 ° C., preferably 50 to 250 ° C. for usually 1 to 24 hours. When aging is performed, the silica coating layer becomes uniform and denser, and a substance having a high refractive index cannot enter the inside of the particle as described above, so that a film having a high low refractive index effect can be formed.

工程(e)
工程(e)では、必要に応じて洗浄した後、50〜300℃の範囲で水熱処理する。
洗浄方法は工程(d)と同様、従来公知の方法を採用することができる。
水熱処理温度が50℃未満の場合は最終的に得られるシリカ系微粒子またはシリカ系微粒子分散液中のアルカリ金属酸化物および/またはアンモニアの含有量を効果的に低減することができず、被膜形成用塗料の安定性、膜形成等の向上効果が不充分となり、得られる被膜の強度の向上も不充分となる。
水熱処理温度が300℃を超えても被膜形成用塗料の安定性、膜形成性、膜強度等がさらに向上することもなく、場合によってはシリカ系微粒子が凝集することがある。
なお、前記水熱処理温度が150℃〜300℃の範囲にあれば、シリカ系微粒子を用いて得られる被膜は耐水性に優れ、被膜上に水滴が落ちた場合に拭き取りやすく、水滴が乾燥した場合にも水滴の跡形が残り難い等の効果が得られる。
Step (e)
In the step (e), hydrothermal treatment is performed in the range of 50 to 300 ° C. after washing as necessary.
As in the step (d), a conventionally known method can be adopted as the cleaning method.
When the hydrothermal treatment temperature is less than 50 ° C., the content of alkali metal oxide and / or ammonia in the finally obtained silica-based fine particles or silica-based fine particle dispersion cannot be effectively reduced, and a film is formed. The effect of improving the stability of the paint for coating and film formation is insufficient, and the strength of the resulting coating is also insufficiently improved.
Even when the hydrothermal treatment temperature exceeds 300 ° C., the stability, film formability, film strength and the like of the coating film-forming coating material are not further improved, and in some cases, silica-based fine particles may aggregate.
If the hydrothermal treatment temperature is in the range of 150 ° C. to 300 ° C., the coating obtained using silica-based fine particles is excellent in water resistance, and is easy to wipe off when water drops fall on the coating. In addition, it is possible to obtain an effect such that traces of water droplets hardly remain.

工程(e)は複数回繰り返しても良い。工程(e)を繰り返すことによって、得られるシリカ系微粒子中のアルカリ金属酸化物および/またはアンモニア(アンモニウムイオンを含む)の含有量を低減することができる。
このようにして得られたシリカ系微粒子は、平均粒子径が5〜500nm、さらには10〜400nmの範囲にあることが好ましい。平均粒子径が5nm未満では、充分な空洞が得られず、低屈折率の効果が充分得られないことがある。平均粒子径が500nmを越えると、安定した分散液が得にくくなり、また、該微粒子を含有する塗膜の表面に凹凸が生じたりヘーズが高くなることがある。なお、本発明のシリカ系微粒子の平均粒子径は動的光散乱法によって求めることができる。
Step (e) may be repeated a plurality of times. By repeating the step (e), the content of alkali metal oxide and / or ammonia (including ammonium ions) in the obtained silica-based fine particles can be reduced.
The silica-based fine particles thus obtained preferably have an average particle size in the range of 5 to 500 nm, more preferably 10 to 400 nm. If the average particle diameter is less than 5 nm, sufficient cavities cannot be obtained, and the low refractive index effect may not be sufficiently obtained. When the average particle diameter exceeds 500 nm, it is difficult to obtain a stable dispersion, and irregularities may be formed on the surface of the coating film containing the fine particles or haze may be increased. The average particle size of the silica-based fine particles of the present invention can be determined by a dynamic light scattering method.

前記シリカ系微粒子中のアルカリ金属酸化物の含有量は、A2O(A:アルカリ金属元素)として5ppm以下、さらには2ppm以下であることが好ましい。前記アルカリ金属酸化物の含有量が5ppmを超えると、シリカ系微粒子を配合した被膜形成用塗料の安定性が不充分で、粘度が高くなり、膜形成性が低下し、得られる被膜の強度が不充分であったり、膜厚が不均一となることがある。
また、前記シリカ系微粒子中のアンモニア(アンモニウムイオンを含む)の含有量は、NH3として1500ppm以下、さらには1000ppm以下であることが好ましい。前記アンモニアの含有量が1500ppmを超えると、前記アルカリ金属酸化物の場合と同様にシリカ系微粒子を配合した被膜形成用塗料の安定性が不充分で、粘度が高くなり、膜形成性が低下し、得られる被膜の強度が不充分であったり、膜厚が不均一となることがある。
The content of the alkali metal oxide in the silica-based fine particles is preferably 5 ppm or less, more preferably 2 ppm or less as A 2 O (A: alkali metal element). When the content of the alkali metal oxide exceeds 5 ppm, the stability of the coating material for forming a film containing silica-based fine particles is insufficient, the viscosity is increased, the film forming property is lowered, and the strength of the resulting coating is increased. It may be insufficient or the film thickness may be uneven.
Further, the content of ammonia (including ammonium ions) in the silica-based fine particles is preferably 1500 ppm or less, more preferably 1000 ppm or less as NH 3 . When the ammonia content exceeds 1500 ppm, the stability of the film-forming coating material containing silica-based fine particles is insufficient as in the case of the alkali metal oxide, the viscosity increases, and the film-forming property decreases. In some cases, the strength of the resulting film is insufficient or the film thickness is not uniform.

なお、本発明のシリカ系微粒子の製造方法では、得られたシリカ系微粒子分散液を限外濾過膜、ロータリーエバポレーター等を用いて有機溶媒で置換することによって有機溶媒分散ゾルを得ることができる。
また、本発明のシリカ系微粒子の製造方法では、洗浄後、乾燥し、必要に応じて焼成することができる。
このようにして得られたシリカ系微粒子は、内部に空洞を有し、低屈折率となる。従って、該シリカ系微粒子を用いて形成される被膜は低屈折率となり、反射防止性能に優れた被膜が得られる。
In the method for producing silica-based fine particles of the present invention, an organic solvent-dispersed sol can be obtained by substituting the obtained silica-based fine particle dispersion with an organic solvent using an ultrafiltration membrane, a rotary evaporator or the like.
Moreover, in the manufacturing method of the silica type microparticles | fine-particles of this invention, after washing | cleaning, it can dry and it can bake as needed.
The silica-based fine particles obtained in this way have cavities inside and have a low refractive index. Therefore, the film formed using the silica-based fine particles has a low refractive index, and a film excellent in antireflection performance can be obtained.

本発明に係るシリカ系微粒子は、内部に空洞を有している。このため、通常シリカの屈折率が1.45であるのに対し、シリカ系微粒子の屈折率は、1.15〜1.38であった。なお、空洞については、粒子断面の透過型電子顕微鏡写真(TEM)を観察することによって確認することができる。   The silica-based fine particles according to the present invention have cavities inside. For this reason, the refractive index of silica-based fine particles was 1.15 to 1.38, whereas the refractive index of silica was usually 1.45. In addition, about a cavity, it can confirm by observing the transmission electron micrograph (TEM) of a particle | grain cross section.

〔被膜形成用塗料〕
続いて、本発明に係る被膜形成用塗料について説明する。
本発明に係る被膜形成用塗料は、前記シリカ系微粒子と、被膜形成用マトリックスと、必要に応じて配合される有機溶媒とからなっている。
被膜形成用マトリックスとは、基材の表面に被膜を形成し得る成分をいい、基材との密着性や硬度、塗工性等の条件に適合する樹脂等から選択して用いることができ、例えば、従来から用いられているポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、シリコン樹脂、ブチラール樹脂、フェノール樹脂、酢酸ビニル樹脂、紫外線硬化樹脂、電子線硬化樹脂、エマルジョン樹脂、水溶性樹脂、親水性樹脂、これら樹脂の混合物、さらにはこれら樹脂の共重合体や変性体などの塗料用樹脂、または、前記アルコキシシラン等の加水分解性有機珪素化合物およびこれらの部分加水分解物等が挙げられる。
[Coating paint]
Next, the coating film forming paint according to the present invention will be described.
The coating film-forming paint according to the present invention comprises the silica-based fine particles, the film-forming matrix, and an organic solvent blended as necessary.
The matrix for forming a film refers to a component that can form a film on the surface of a substrate, and can be selected and used from a resin that meets conditions such as adhesion to the substrate, hardness, and coating properties, For example, conventionally used polyester resin, acrylic resin, urethane resin, vinyl chloride resin, epoxy resin, melamine resin, fluorine resin, silicon resin, butyral resin, phenol resin, vinyl acetate resin, UV curable resin, electron beam curing Resins, emulsion resins, water-soluble resins, hydrophilic resins, mixtures of these resins, coating resins such as copolymers and modified products of these resins, hydrolyzable organosilicon compounds such as alkoxysilanes, and the like And a partial hydrolyzate thereof.

マトリックスとして塗料用樹脂を用いる場合には、例えば、シリカ系微粒子分散液の分散媒をアルコール等の有機溶媒で置換した有機溶媒分散ゾル、好ましくは前記有機基を含む有機ケイ素化合物によりシリカ被覆層を形成したシリカ系微粒子を用いることができ、必要に応じて前記微粒子を公知のカップリング剤で処理した後、有機溶媒に分散させた有機溶媒分散ゾルと塗料用樹脂とを適当な有機溶剤で希釈して、塗布液とすることができる。   When a coating resin is used as the matrix, for example, an organic solvent dispersion sol obtained by replacing the dispersion medium of the silica-based fine particle dispersion with an organic solvent such as alcohol, preferably the silica coating layer with an organic silicon compound containing the organic group. The formed silica-based fine particles can be used. If necessary, the fine particles are treated with a known coupling agent, and then the organic solvent-dispersed sol dispersed in an organic solvent and the coating resin are diluted with a suitable organic solvent. Thus, a coating solution can be obtained.

一方、マトリックスとして加水分解性有機珪素化合物を用いる場合には、例えば、アルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを加えることにより、アルコキシシランの部分加水分解物を得、これに前記ゾルを混合し、必要に応じて有機溶剤で希釈して、塗布液とすることができる。   On the other hand, when using a hydrolyzable organosilicon compound as a matrix, for example, by adding water or an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol, a partially hydrolyzed product of alkoxysilane is obtained, The sol can be mixed with this and diluted with an organic solvent as necessary to obtain a coating solution.

被膜形成用塗布液中のシリカ系微粒子とマトリックスの重量割合は、シリカ系微粒子/マトリックス=1/99〜9/1の範囲が好ましい。重量比が9/1を越えると被膜の強度や基材との密着性が低下して実用性に欠ける一方、1/99未満では当該シリカ系微粒子の添加による被膜の低屈折率化、基材との密着性向上、被膜強度向上等の効果が不充分となる。   The weight ratio between the silica-based fine particles and the matrix in the coating-forming coating solution is preferably in the range of silica-based fine particles / matrix = 1/99 to 9/1. If the weight ratio exceeds 9/1, the strength of the coating and the adhesion to the substrate will be reduced, resulting in lack of practicality. The effects of improving adhesion with the film and improving the film strength are insufficient.

〔被膜付基材〕
本発明に係る被膜付基材は、前記シリカ系微粒子と被膜形成用マトリックスとを含む被膜が単独でまたは他の被膜とともに基材表面上に形成されている。
当該基材は、ガラス、ポリカーボネート、アクリル樹脂、PET、TAC等のプラスチックシート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、陰極線管、蛍光表示管、液晶表示板等の基材の表面に被膜を形成したものであり、用途によって異なるが被膜が単独であるいは基材上に保護膜、ハードコート膜、平坦化膜、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属微粒子膜、導電性金属酸化物微粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されている。なお、組み合わせて用いる場合、本発明の被膜が必ずしも最外表面に形成されている必要はない。
このような被膜は、前記被膜形成用塗料をディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、加熱あるいは紫外線照射等により硬化して得ることができる。
[Base material with coating]
In the substrate with a coating according to the present invention, the coating containing the silica-based fine particles and the coating-forming matrix is formed on the substrate surface alone or together with other coatings.
The base material is formed on the surface of a base material such as glass, polycarbonate, acrylic resin, plastic sheet such as PET, TAC, plastic film, plastic lens, plastic panel, cathode ray tube, fluorescent display tube, liquid crystal display plate, etc. A film is formed. Depending on the application, the film may be used alone or on a substrate, protective film, hard coat film, planarizing film, high refractive index film, insulating film, conductive resin film, conductive metal fine particle film In addition, the conductive metal oxide fine particle film and other primer films used as necessary are formed in combination. When used in combination, the coating of the present invention is not necessarily formed on the outermost surface.
Such a coating is applied to the substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, dried, and further heated or irradiated with ultraviolet rays as necessary. Can be obtained by curing.

上記基材の表面に形成される被膜の屈折率は、シリカ系微粒子とマトリックス成分等の混合比率および使用するマトリックスの屈折率によっても異なるが、1. 15〜1. 42と低屈折率となる。なお、本発明のシリカ系微粒子自体の屈折率は、1.15〜1.38であった。これは、本発明のシリカ系微粒子が内部に空洞を有し、樹脂等のマトリックス形成成分は粒子外部に止まり、シリカ系微粒子内部の空洞が保持されるからである。   The refractive index of the coating film formed on the surface of the base material is 1.15 to 1.42, although it varies depending on the mixing ratio of silica-based fine particles and matrix components and the refractive index of the matrix used. . The refractive index of the silica-based fine particle itself of the present invention was 1.15 to 1.38. This is because the silica-based fine particles of the present invention have cavities inside, matrix forming components such as resin remain outside the particles, and the cavities inside the silica-based fine particles are retained.

さらに、上記した被膜付基材において、基材の屈折率が1. 60以下の場合には、基材表面に屈折率が1. 60以上の被膜(以下、中間被膜という。)を形成した上で、前記本発明のシリカ系微粒子を含む被膜を形成することが推奨される。中間被膜の屈折率が1. 60以上であれば前記本発明のシリカ系微粒子を含む被膜の屈折率との差が大きく反射防止性能に優れた被膜付基材が得られる。中間被膜の屈折率は、中間被膜の屈折率を高めるために用いる金属酸化物微粒子の屈折率、金属酸化物微粒子と樹脂等の混合比率および使用する樹脂の屈折率によって調整することができる。
中間被膜の被膜形成用塗布液は、金属酸化物粒子と被膜形成用マトリックスとの混合液であり、必要により有機溶媒が混合される。被膜形成用マトリックスとしては前記本発明のシリカ系微粒子を含む被膜と同様のものを用いることができ、同一の被膜形成用マトリックスを用いることにより、両被膜間の密着性に優れた被膜付基材が得られる。
Furthermore, in the above-mentioned coated substrate, when the refractive index of the substrate is 1.60 or less, a coating having a refractive index of 1.60 or more (hereinafter referred to as an intermediate coating) is formed on the surface of the substrate. Therefore, it is recommended to form a film containing the silica-based fine particles of the present invention. When the refractive index of the intermediate coating is 1.60 or more, a coated substrate having a large difference from the refractive index of the coating containing the silica-based fine particles of the present invention and excellent antireflection performance can be obtained. The refractive index of the intermediate coating can be adjusted by the refractive index of the metal oxide fine particles used for increasing the refractive index of the intermediate coating, the mixing ratio of the metal oxide fine particles and the resin, and the refractive index of the resin used.
The coating solution for forming an intermediate coating is a mixed solution of metal oxide particles and a matrix for forming a coating, and an organic solvent is mixed as necessary. As the film forming matrix, the same film as that containing the silica-based fine particles of the present invention can be used. By using the same film forming matrix, the coated substrate having excellent adhesion between the two films Is obtained.

[実施例1]
シリカ系微粒子(P-1)の調製
平均粒径5nm、SiO2濃度20重量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.17重量%の珪酸ナトリウム水溶液9000gとAl23として0.83重量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、殆ど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20重量%のSiO2・Al23一次粒子分散液を調製した。
この一次粒子分散液500gに純水1,700gを加えて98℃に加温し、この温度を保持しながら、濃度0.5重量%の硫酸ナトリウム50,400gを添加し、ついでSiO2として濃度1.17重量%の珪酸ナトリウム水溶液3,000gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液9,000gを添加して複合酸化物微粒子(1)の分散液を得た。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(P-1-1)の水分散液を得た。
[Example 1]
Preparation of silica-based fine particles (P-1) A mixture of 100 g of silica sol having an average particle diameter of 5 nm and SiO 2 concentration of 20% by weight and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 9000 g of a 1.17 wt% sodium silicate aqueous solution as SiO 2 and 9000 g of a 0.83 wt% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. . Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition, and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 primary particle dispersion having a solid content concentration of 20% by weight.
1,700 g of pure water was added to 500 g of this primary particle dispersion and heated to 98 ° C., and while maintaining this temperature, 50,400 g of sodium sulfate having a concentration of 0.5% by weight was added, and then the concentration was set as SiO 2. A dispersion of composite oxide fine particles (1) was obtained by adding 3,000 g of a 1.17 wt% sodium silicate aqueous solution and 9,000 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 . .
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Next, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid concentration of 20% by weight by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-1-1)分散液にアンモニア水を加えて分散液のpHを10.5に調整し、ついで150℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子(P-1-2)の水分散液を得た。このとき、シリカ系微粒子(P-1-2)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々6ppm、1200ppmであった。
ついで、再び、シリカ系微粒子(P-1-2)分散液を150℃にて11時間水熱処理した後、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ系微粒子(P-1-3)の水分散液を得た。このとき、シリカ系微粒子(P-1-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.5ppm、600ppmであった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-1)のアルコール分散液を調製した。
このシリカ系微粒子(P-1)の平均粒子径、MOx/SiO2(モル比)、および屈折率を、調製条件と共に表1に示す。ここで、平均粒子径は動的光散乱法により測定し、屈折率は標準屈折液としてCARGILL製のSeriesA、AAを用い、以下の方法で測定した。
Next, aqueous ammonia is added to the dispersion of silica-based fine particles (P-1-1) to adjust the pH of the dispersion to 10.5, then aging at 150 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Then, using 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), it was ion-exchanged at 80 ° C. for 3 hours for washing to obtain silica-based fine particles (P- An aqueous dispersion of 1-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-1-2) were 6 ppm and 1200 ppm, respectively, per silica-based fine particle.
Next, the silica-based fine particle (P-1-2) dispersion was again hydrothermally treated at 150 ° C. for 11 hours, washed with an ultrafiltration membrane while adding 5 L of pure water, and a silica having a solid content concentration of 20% by weight. An aqueous dispersion of the system fine particles (P-1-3) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-1-3) were 0.5 ppm and 600 ppm, respectively, per silica-based fine particle.
Next, an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Table 1 shows the average particle size, MO x / SiO 2 (molar ratio), and refractive index of the silica-based fine particles (P-1) together with the preparation conditions. Here, the average particle diameter was measured by a dynamic light scattering method, and the refractive index was measured by the following method using Series A and AA manufactured by CARGILL as a standard refractive liquid.

粒子の屈折率の測定方法
(1)シリカ系微粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
Method for Measuring Refractive Index of Particle (1) The silica-based fine particle dispersion is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the fine particles.

透明被膜付基材(A-1)の製造
シリカ系微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して塗布液を調製した。
この塗布液をPETフィルムにバーコーター法で塗布し、80℃で、1分間乾燥させて、透明被膜の膜厚が100nmの透明被膜付基材(A-1)を得た。この透明被膜付基材(A-1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、および鉛筆硬度を表2に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2. 0%、波長550nmの光線の反射率が7. 0%であった。鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
Production of substrate with transparent coating (A-1) 50 g of an alcohol dispersion of silica-based fine particles (P-1) diluted with ethanol to a solid concentration of 5% by weight, acrylic resin (Hitaroid 1007, Hitachi Chemical ( 3 g) and isopropanol and n-butanol 1/1 (weight ratio) mixed solvent 47 g were sufficiently mixed to prepare a coating solution.
This coating solution was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a substrate with transparent coating (A-1) having a transparent coating thickness of 100 nm. Table 2 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the film, and pencil hardness of the substrate with a transparent film (A-1). The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%. The pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the coating surface, a predetermined load was applied, and the film was pulled at a constant speed to observe the presence or absence of scratches.

また、透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表2に示す。
残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
In addition, 11 parallel scratches were made on the surface of the substrate (A-1) with a transparent coating at intervals of 1 mm in length and width with a knife to make 100 squares, cellophane tape was adhered to this, and then cellophane tape was attached. Adhesion was evaluated by classifying the number of cells remaining without peeling off when the film was peeled into the following three stages. The results are shown in Table 2.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △

透明被膜付基材(B-1)の製造
エチルシリケート(SiO2濃度28重量%)20g、エタノール45gおよび純水5.33gの混合溶液に少量の塩酸を添加して、エチルシリケートの部分加水分解物を含有したマトリックス分散液を得た。このマトリックス分散液に、シリカ系微粒子(P-1)のアルコール分散液(固形分濃度18重量%)16.7gを混合して塗布液を調製した。
この塗布液を透明ガラス板の表面に500rpm、10秒の条件でスピナー法により塗布した後、160℃で30分間、加熱処理して透明被膜の膜厚が200nmの透明被膜付基材(B-1)を得た。この透明被膜付基材(B-1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率および鉛筆硬度を表3に示す。なお、未塗布のガラス基板は、全光線透過率が92.0%、ヘイズが0. 1%、波長550nmの光線の反射率が4. 5%であった。
Production of substrate with transparent coating (B-1) Partial hydrolysis of ethyl silicate by adding a small amount of hydrochloric acid to a mixed solution of 20 g of ethyl silicate (SiO 2 concentration 28 wt%), 45 g of ethanol and 5.33 g of pure water A matrix dispersion containing the product was obtained. The matrix dispersion was mixed with 16.7 g of an alcohol dispersion (solid content concentration: 18% by weight) of silica-based fine particles (P-1) to prepare a coating solution.
This coating solution was applied on the surface of a transparent glass plate by a spinner method at 500 rpm for 10 seconds, and then heat-treated at 160 ° C. for 30 minutes to form a transparent film-coated substrate (B- 1) got. Table 3 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the film, and pencil hardness of the substrate with transparent film (B-1). The uncoated glass substrate had a total light transmittance of 92.0%, a haze of 0.1%, and a reflectance of light having a wavelength of 550 nm was 4.5%.

[実施例2]
シリカ系微粒子(P-2)の調製
実施例1と同様にして調製した固形分濃度20重量%のシリカ系微粒子(P-1-1)の水分散液1500gと、純水500g、エタノール1,750gおよび28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2濃度28重量%)104gを添加してシリカ被膜を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ系微粒子(P-2-1)の水分散液を得た。
つぎに、シリカ系微粒子(P-2-1)分散液を200℃にて1時間熟成した後、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ系微粒子(P-2-2)の水分散液を得た。このとき、シリカ系微粒子(P-2-2)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々1ppm、2500ppmであった。
ついで、再び、シリカ系微粒子(P-2-2)分散液を150℃にて11時間水熱処理した後、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ系微粒子(P-2-3)の水分散液を得た。このとき、シリカ系微粒子(P-2-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.5ppm、900ppmであった。
ついで限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(P-2)のアルコール分散液を調製した。
透明被膜付基材(A-2)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-2)を得た。
透明被膜付基材(B-2)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-2)を得た。
[Example 2]
Preparation of silica-based fine particles (P-2) 1500 g of an aqueous dispersion of silica-based fine particles (P-1-1) having a solid content concentration of 20% by weight prepared in the same manner as in Example 1, 500 g of pure water, ethanol 1, A mixture of 750 g and 28% aqueous ammonia 626 g was heated to 35 ° C., then 104 g of ethyl silicate (SiO 2 concentration 28 wt%) was added to form a silica film, and ultrafiltration was performed while adding 5 L of pure water. The membrane was washed to obtain an aqueous dispersion of silica-based fine particles (P-2-1) having a solid content concentration of 20% by weight.
Next, the silica-based fine particle (P-2-1) dispersion was aged at 200 ° C. for 1 hour, and then washed with an ultrafiltration membrane while adding 5 L of pure water to obtain a silica-based fine particle having a solid content concentration of 20% by weight. An aqueous dispersion of (P-2-2) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-2-2) were 1 ppm and 2500 ppm, respectively, per silica-based fine particle.
Next, the silica-based fine particle (P-2-2) dispersion was again hydrothermally treated at 150 ° C. for 11 hours, washed with an ultrafiltration membrane while adding 5 L of pure water, and a silica having a solid content concentration of 20% by weight. An aqueous dispersion of the system fine particles (P-2-3) was obtained. At this time, the Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-2-3) were 0.5 ppm and 900 ppm, respectively, per silica-based fine particle.
Next, an alcohol dispersion of silica-based fine particles (P-2) having a solid content concentration of 20% by weight was prepared by replacing the dispersion medium with ethanol using an ultrafiltration membrane.
Production of substrate with transparent coating (A-2) In Example 1, except that an alcohol dispersion of silica-based fine particles (P-2) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (A-2) was obtained.
Production of substrate with transparent coating (B-2) In Example 1 except that an alcohol dispersion of silica particles (P-2) was used instead of an alcohol dispersion of silica particles (P-1) Thus, a substrate with a transparent coating (B-2) was obtained.

[実施例3]
シリカ系微粒子(P-3)の調製
実施例2において、濃度0.5重量%の硫酸ナトリウム50,400gの代わりに濃度0.5重量%の硝酸カリウム30,000gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-3)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-3-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.4ppm、800ppmであった。
透明被膜付基材(A-3)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-3)を得た。
透明被膜付基材(B-3)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-3)を得た。
[Example 3]
Preparation of silica-based fine particles (P-3) In Example 2, the same procedure was followed except that 30,000 g of 0.5 wt% potassium nitrate was used instead of 50,400 g of 0.5 wt% sodium sulfate. An alcohol dispersion of silica-based fine particles (P-3) having a partial concentration of 20% by weight was prepared.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-3-3) were 0.4 ppm and 800 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-3) In Example 1 except that an alcohol dispersion of silica fine particles (P-3) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (A-3) was obtained.
Production of substrate with transparent coating (B-3) In Example 1 except that an alcohol dispersion of silica fine particles (P-3) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (B-3) was obtained.

[実施例4]
シリカ系微粒子(P-4)の調製
実施例2において、濃度0.5重量%の硫酸ナトリウム50,400gの代わりに濃度0.5重量%の硫酸アンモニウム53,200gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-4)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-4-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.5ppm、800ppmであった。
透明被膜付基材(A-4)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-4)を得た。
透明被膜付基材(B-4)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-4)を得た。
[Example 4]
Preparation of silica-based fine particles (P-4) In Example 2, a solid was obtained in the same manner except that 53,200 g of 0.5 wt% ammonium sulfate was used instead of 50,400 g of 0.5 wt% sodium sulfate. An alcohol dispersion of silica-based fine particles (P-4) having a partial concentration of 20% by weight was prepared.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-4-3) were 0.5 ppm and 800 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-4) In Example 1, except that an alcohol dispersion of silica-based fine particles (P-4) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (A-4) was obtained.
Production of substrate with transparent coating (B-4) In Example 1 except that the silica fine particle (P-4) alcohol dispersion was used instead of the silica fine particle (P-1) alcohol dispersion. Thus, a substrate with a transparent coating (B-4) was obtained.

[実施例5]
シリカ系微粒子(P-5)の調製
実施例2において、濃度0.5重量%の硫酸ナトリウム50,400gの代わりに濃度0.5重量%の硝酸アンモニウム41,100gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-5)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-5-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.8ppm、700ppmであった。
透明被膜付基材(A-5)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-5)を得た。
透明被膜付基材(B-5)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-5)を得た。
[Example 5]
Preparation of silica-based fine particles (P-5) In Example 2, solids were similarly prepared except that 41,100 g of ammonium nitrate having a concentration of 0.5 wt% was used instead of 50,400 g of sodium sulfate having a concentration of 0.5 wt%. An alcohol dispersion of silica-based fine particles (P-5) having a partial concentration of 20% by weight was prepared.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-5-3) were 0.8 ppm and 700 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-5) In Example 1 except that an alcohol dispersion of silica-based fine particles (P-5) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (A-5) was obtained.
Production of substrate with transparent coating (B-5) In Example 1 except that an alcohol dispersion of silica-based fine particles (P-5) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (B-5) was obtained.

[実施例6]
シリカ系微粒子(P-6)の調製
実施例2において、エチルシリケート(SiO2濃度28重量%)104gの代わりにビニルシラン(信越化学(株)製:KBE−1003、濃度62.7重量%)46.4gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-6)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-6-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々1ppm、900ppmであった。
透明被膜付基材(A-6)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-6)を得た。
透明被膜付基材(B-6)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-6)を得た。
[Example 6]
Preparation of silica-based fine particles (P-6) In Example 2, vinylsilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-1003, concentration 62.7% by weight) 46 instead of 104 g of ethyl silicate (SiO 2 concentration 28% by weight) 46 An alcohol dispersion of silica-based fine particles (P-6) having a solid concentration of 20% by weight was prepared in the same manner except that 0.4 g was used.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-6-3) were 1 ppm and 900 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-6) In Example 1 except that an alcohol dispersion of silica fine particles (P-6) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent film (A-6) was obtained.
Production of substrate with transparent coating (B-6) In Example 1 except that an alcohol dispersion of silica fine particles (P-6) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (B-6) was obtained.

[実施例7]
シリカ系微粒子(P-7)の調製
実施例2において、濃度0.5重量%の硫酸ナトリウム50,400gの代わりに濃度0.2重量%の硫酸ナトリウム50,400gを用い、エチルシリケート(SiO2濃度28重量%)104gの代わりにエポキシシラン(信越化学(株)製:KMB−403、濃度84.9重量%)34.3gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-7)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-7-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.8ppm、800ppmであった。
透明被膜付基材(A-7)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-7)を得た。
透明被膜付基材(B-7)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-7)を得た。
[Example 7]
Preparation of silica-based fine particles (P-7) In Example 2, 50,400 g of sodium sulfate having a concentration of 0.2% by weight was used instead of 50,400 g of sodium sulfate having a concentration of 0.5% by weight, and ethyl silicate (SiO 2 Silica system having a solid content concentration of 20% by weight, except that 34.3 g of epoxy silane (manufactured by Shin-Etsu Chemical Co., Ltd .: KMB-403, concentration of 84.9% by weight) was used instead of 104 g. An alcohol dispersion of fine particles (P-7) was prepared.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-7-3) were 0.8 ppm and 800 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-7) In Example 1 except that an alcohol dispersion of silica-based fine particles (P-7) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (A-7) was obtained.
Production of substrate with transparent coating (B-7) In Example 1 except that an alcohol dispersion of silica-based fine particles (P-7) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (B-7) was obtained.

[実施例8]
シリカ系微粒子(P-8)の調製
実施例2において、エチルシリケート(SiO2濃度28重量%)104gの代わりにフッ素系アルキルシラン(信越化学(株)製:KBM−7803、濃度83.8重量%)34.75gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-8)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-8-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々0.9ppm、800ppmであった。
透明被膜付基材(A-8)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-8)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-8)を得た。
透明被膜付基材(B-8)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-8)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-8)を得た。
[Example 8]
Preparation of silica-based fine particles (P-8) In Example 2, instead of 104 g of ethyl silicate (SiO 2 concentration 28 wt%), fluorine-based alkylsilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803, concentration 83.8 wt. %) An alcohol dispersion of silica-based fine particles (P-8) having a solid concentration of 20% by weight was prepared in the same manner except that 34.75 g was used.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-8-3) were 0.9 ppm and 800 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent film (A-8) In Example 1 except that an alcohol dispersion of silica fine particles (P-8) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (A-8) was obtained.
Production of substrate with transparent coating (B-8) In Example 1 except that an alcohol dispersion of silica fine particles (P-8) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (B-8) was obtained.

[実施例9]
シリカ系微粒子(P-9)の調製
実施例2の工程(a)において、SiO2として0.76重量%の珪酸ナトリウム水溶液9000gとAl23として1.25重量%のアルミン酸ナトリウム水溶液9000gとを同時に添加し、濃度0.5重量%の硫酸ナトリウム50,400gの代わりに濃度2.0重量%の硫酸ナトリウム50,400gを用いた以外は同様にして固形分濃度20重量%のシリカ系微粒子(P-9)のアルコール分散液を調製した。
なお、シリカ系微粒子(P-9-3)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々1ppm、800ppmであった。
透明被膜付基材(A-9)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-9)のアルコール分散液を用いた以外は同様にして透明被膜付基材(A-9)を得た。
透明被膜付基材(B-9)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(P-9)のアルコール分散液を用いた以外は同様にして透明被膜付基材(B-9)を得た。
[Example 9]
Preparation of silica-based fine particles (P-9) In step (a) of Example 2, 9000 g of 0.76 wt% sodium silicate aqueous solution as SiO 2 and 9000 g of 1.25 wt% sodium aluminate aqueous solution as Al 2 O 3 were used. In the same manner except that 50,400 g of sodium sulfate having a concentration of 2.0% by weight was used instead of 50,400 g of sodium sulfate having a concentration of 0.5% by weight. An alcohol dispersion of fine particles (P-9) was prepared.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-9-3) were 1 ppm and 800 ppm, respectively, per silica-based fine particle.
Production of substrate with transparent coating (A-9) In Example 1 except that an alcohol dispersion of silica fine particles (P-9) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (A-9) was obtained.
Production of substrate with transparent coating (B-9) In Example 1 except that an alcohol dispersion of silica fine particles (P-9) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (B-9) was obtained.

[比較例1]
シリカ系微粒子(RP-1)の調製
実施例1と同様にして固形分濃度20重量%のシリカ系微粒子(P-1-1)の水分散液を調製した。なお、シリカ系微粒子(P-1-1)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々1000ppm、10ppm未満であった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-1)のアルコール分散液を調製した。
透明被膜付基材(RA-1)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-1)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RA-1)を得た。
透明被膜付基材(RB-1)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-1) のアルコール分散液を用いた以外は同様にして透明被膜付基材(RB-1)を得た。
[Comparative Example 1]
Preparation of silica-based fine particles (RP-1) In the same manner as in Example 1, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid concentration of 20% by weight was prepared. The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-1-1) were 1000 ppm and less than 10 ppm, respectively, per silica-based fine particle.
Next, an alcohol dispersion of silica-based fine particles (RP-1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Production of substrate with transparent coating (RA-1) In Example 1 except that an alcohol dispersion of silica-based fine particles (RP-1) was used instead of an alcohol dispersion of silica-based fine particles (P-1) As a result, a substrate with transparent coating (RA-1) was obtained.
Production of transparent coated substrate (RB-1) In Example 1, except that silica-based fine particle (RP-1) alcohol dispersion was used instead of silica-based fine particle (P-1) alcohol dispersion Thus, a substrate with a transparent coating (RB-1) was obtained.

[比較例2]
シリカ系微粒子(RP-2)の調製
実施例1と同様にして固形分濃度20重量%のシリカ系微粒子(P-1-2)の水分散液を調製し、ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系微粒子(RP-2)のアルコール分散液を調製した。なお、シリカ系微粒子(P-1-2)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々6ppm、1200ppmであった。
透明被膜付基材(RA-2)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RA-2)を得た。
透明被膜付基材(RB-2)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-2) のアルコール分散液を用いた以外は同様にして透明被膜付基材(RB-2)を得た。
[Comparative Example 2]
Preparation of silica-based fine particles (RP-2) An aqueous dispersion of silica-based fine particles (P-1-2) having a solid content of 20% by weight was prepared in the same manner as in Example 1, and then using an ultrafiltration membrane. An alcohol dispersion of silica-based fine particles (RP-2) having a solid content concentration of 20% by weight in which the solvent was replaced with ethanol was prepared. The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (P-1-2) were 6 ppm and 1200 ppm, respectively, per silica-based fine particle.
Production of transparent-coated substrate (RA-2) In Example 1, except that silica-based fine particle (RP-2) alcohol dispersion was used instead of silica-based fine particle (P-1) alcohol dispersion In this way, a transparent coated substrate (RA-2) was obtained.
Production of transparent coated substrate (RB-2) In Example 1, except that silica-based fine particle (RP-2) alcohol dispersion was used instead of silica-based fine particle (P-1) alcohol dispersion Thus, a substrate with a transparent coating (RB-2) was obtained.

[比較例3]
シリカ系微粒子(RP-3)の調製
比較例1の工程(a) において、SiO2として1.5重量%の珪酸ナトリウム水溶液と、Al23として0.5重量%のアルミン酸ナトリウム水溶液とを使用した以外は同様にして固形分濃度20重量%のシリカ系微粒子(RP-3) のアルコール分散液を調製した。
なお、シリカ系微粒子(RP-1-1)の水分散液のNa2O含有量およびNH3含有量はシリカ系微粒子当たり各々1200ppm、10ppm未満であった。
明被膜付基材(RA-3)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RA-3)を得た。
透明被膜付基材(RB-3)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RB-3)を得た。
[Comparative Example 3]
Preparation of silica-based fine particles (RP-3) In the step (a) of Comparative Example 1, 1.5 wt% sodium silicate aqueous solution as SiO 2 and 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 An alcohol dispersion of silica-based fine particles (RP-3) having a solid concentration of 20% by weight was prepared in the same manner except that was used.
The Na 2 O content and NH 3 content of the aqueous dispersion of silica-based fine particles (RP-1-1) were 1200 ppm and less than 10 ppm, respectively, per silica-based fine particle.
Production of substrate with bright film (RA-3) In Example 1 except that an alcohol dispersion of silica-based fine particles (RP-3) was used instead of an alcohol dispersion of silica-based fine particles (P-1) Thus, a substrate with a transparent coating (RA-3) was obtained.
Production of substrate with transparent coating (RB-3) In Example 1, except that an alcohol dispersion of silica fine particles (RP-3) was used instead of an alcohol dispersion of silica fine particles (P-1) Thus, a substrate with a transparent coating (RB-3) was obtained.

[比較例4]
シリカ系微粒子(RP-4)
シリカ系微粒子としてシリカゾル(触媒化成工業(株)製:SI-45P、平均粒子径45nm、SiO2濃度:20重量%)を用い、これを限外濾過膜にてエタノールに分散媒を置換し、固形分濃度20重量%のシリカ系微粒子(RP-4)のアルコール分散液として用いた。
なお、シリカゾルのNa2O含有量およびNH3含有量はシリカ粒子当たり各々20500ppm、100ppmであった。
透明被膜付基材(RA-4)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RA-4)を得た。
透明被膜付基材(RB-2)の製造
実施例1において、シリカ系微粒子(P-1)のアルコール分散液の代わりにシリカ系微粒子(RP-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材(RB-2)を得た。
[Comparative Example 4]
Silica-based fine particles (RP-4)
Silica sol (Catalyst Kasei Kogyo Co., Ltd. product: SI-45P, average particle diameter 45 nm, SiO 2 concentration: 20% by weight) was used as silica-based fine particles, and this was replaced with ethanol by an ultrafiltration membrane, It was used as an alcohol dispersion of silica-based fine particles (RP-4) having a solid content concentration of 20% by weight.
The Na 2 O content and NH 3 content of the silica sol were 20500 ppm and 100 ppm, respectively, per silica particle.
Production of transparent-coated substrate (RA-4) In Example 1, except that silica-based fine particle (RP-4) alcohol dispersion was used instead of silica-based fine particle (P-1) alcohol dispersion In this way, a transparent coated substrate (RA-4) was obtained.
Production of transparent coated substrate (RB-2) In Example 1, except that silica-based fine particle (RP-2) alcohol dispersion was used instead of silica-based fine particle (P-1) alcohol dispersion Thus, a substrate with a transparent coating (RB-2) was obtained.

[比較例5]
シリカ系微粒子(RP-5)の調製
実施例1と同様にして固形分濃度20重量%のSiO2・Al23一次粒子分散液を調製した。
この一次粒子分散液500gに純水1,700gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.17重量%の珪酸ナトリウム水溶液3,000gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液9,000gを添加して複合酸化物微粒子(RP-5)の分散液を得た。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(RP-5)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子(RP-5)の水分散液を得た。
シリカ系微粒子(RP-5)について平均粒子径を測定したところ、約5nmであり、屈折率は1.43であった。また、透過型電子顕微鏡写真(TEM)を撮影して観察したところ、殆どが微小粒子であり、中空粒子は殆ど存在しなかった。
[Comparative Example 5]
Preparation of silica-based fine particles (RP-5) In the same manner as in Example 1, a SiO 2 .Al 2 O 3 primary particle dispersion having a solid content concentration of 20% by weight was prepared.
1,700 g of pure water was added to 500 g of this primary particle dispersion and heated to 98 ° C., and while maintaining this temperature, 3,000 g of an aqueous sodium silicate solution having a concentration of 1.17 wt% as SiO 2 and Al 2 O 3 As a result, 9,000 g of a sodium aluminate aqueous solution having a concentration of 0.5 wt% was added to obtain a dispersion of composite oxide fine particles (RP-5).
Next, 1,125 g of pure water was added to 500 g of the dispersion of composite oxide fine particles (RP-5) which had been washed with an ultrafiltration membrane to a solid content concentration of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt. %) Was added dropwise to adjust the pH to 1.0, and dealumination was performed. Next, an aqueous dispersion of silica-based fine particles (RP-5) having a solid content concentration of 20% by weight is obtained by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. It was.
The average particle diameter of the silica-based fine particles (RP-5) was measured and found to be about 5 nm and the refractive index was 1.43. Further, when a transmission electron micrograph (TEM) was taken and observed, most were fine particles, and there were almost no hollow particles.

[表1]
一次粒子 電解質塩 シリカ被覆 シリカ系微粒子 微量成分
符号 のモル比 種類 M E /M S 種類 層厚 モル比 平均粒径 屈折率 Na 2 O NH 3
(MOX/SiO2) (nm) (MOX/SiO2) (nm) (ppm)(ppm)
P-1 0.35 Na2SO4 1.09 - - 0.0097 40 1.30 0.5 600
P-2 0.35 Na2SO4 1.09 ET 8 0.0019 46 1.28 0.5 900
P-3 0.35 KNO3 0.91 ET 8 0.0019 46 1.27 0.4 800
P-4 0.35 (NH4)2SO4 1.24 ET 8 0.0019 46 1.28 0.5 800
P-5 0.35 NH4NO3 1.58 ET 8 0.0017 47 1.30 0.8 700
P-6 0.35 Na2SO4 1.09 V 8 0.0017 47 1.27 1.0 900
P-7 0.35 Na2SO4 0.44 EP 8 0.0017 47 1.27 0.8 800
P-8 0.35 Na2SO4 1.09 F 8 0.0012 53 1.25 0.9 800
P-9 0.75 Na2SO4 5.39 ET 8 0.0023 60 1.30 1.0 800
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
RP-1 0.35 Na2SO4 1.09 - - 0.0097 40 1.30 1000 10>
RP-2 0.35 Na2SO4 1.09 - - 0.0097 40 1.30 6 1200
RP-3 0.171 Na2SO4 0.94 - - 0.0005 30 1.42 1200 10>
RP-4 0.000 - - - - 0.000 45 1.46 20500 100
RP-5 0.35 - - - - 0.0097 5 1.43 - -
[Table 1]
Primary particle electrolyte salt silica-coated silica fine particle minor component
The molar ratio of the code type M E / M S type thickness molar ratio average particle size refractive index Na 2 O NH 3
(MO X / SiO 2 ) (nm) (MO X / SiO 2 ) (nm) (ppm) (ppm)
P-1 0.35 Na 2 SO 4 1.09--0.0097 40 1.30 0.5 600
P-2 0.35 Na 2 SO 4 1.09 ET 8 0.0019 46 1.28 0.5 900
P-3 0.35 KNO 3 0.91 ET 8 0.0019 46 1.27 0.4 800
P-4 0.35 (NH 4 ) 2 SO 4 1.24 ET 8 0.0019 46 1.28 0.5 800
P-5 0.35 NH 4 NO 3 1.58 ET 8 0.0017 47 1.30 0.8 700
P-6 0.35 Na 2 SO 4 1.09 V 8 0.0017 47 1.27 1.0 900
P-7 0.35 Na 2 SO 4 0.44 EP 8 0.0017 47 1.27 0.8 800
P-8 0.35 Na 2 SO 4 1.09 F 8 0.0012 53 1.25 0.9 800
P-9 0.75 Na 2 SO 4 5.39 ET 8 0.0023 60 1.30 1.0 800
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
RP-1 0.35 Na 2 SO 4 1.09--0.0097 40 1.30 1000 10>
RP-2 0.35 Na 2 SO 4 1.09--0.0097 40 1.30 6 1200
RP-3 0.171 Na 2 SO 4 0.94--0.0005 30 1.42 1200 10>
RP-4 0.000----0.000 45 1.46 20 500 100
RP-5 0.35----0.0097 5 1.43--

[表2]
透明被膜付基材有機樹脂マトリックス
符号 全光線 ヘイズ 反射率 被膜 密着性 鉛筆硬度
透過率 屈折率
(%) (%) (%)
A-1 96.5 0.3 0.5 1.35 ◎ 4H
A-2 95.5 0.3 0.4 1.33 ◎ 3H
A-3 96.1 0.2 0.3 1.32 ◎ 3H
A-4 96.2 0.2 0.4 1.33 ◎ 3H
A-5 95.9 0.3 0.5 1.34 ◎ 3H
A-6 96.8 0.1 0.3 1.32 ◎ 3H
A-7 96.5 0.1 0.4 1.31 ◎ 3H
A-8 96.7 0.1 0.2 1.31 ◎ 3H
A-9 96.7 0.1 0.3 1.34 ◎ 3H
・・・・・・・・・・・・・・・・・・・・・・・・・・・
RA-1 96.5 0.3 0.5 1.35 △ H
RA-2 95.4 0.3 0.5 1.33 △ H
RA-3 94.3 1.8 1.0 1.45 ○ H
RA-4 94.3 0.3 1.5 1.46 ○ H
[Table 2]
Transparent coated substrate ( organic resin matrix )
Code total light haze reflectivity film adhesion pencil hardness
Transmittance refractive index (%) (%) (%)
A-1 96.5 0.3 0.5 1.35 ◎ 4H
A-2 95.5 0.3 0.4 1.33 ◎ 3H
A-3 96.1 0.2 0.3 1.32 ◎ 3H
A-4 96.2 0.2 0.4 1.33 ◎ 3H
A-5 95.9 0.3 0.5 1.34 ◎ 3H
A-6 96.8 0.1 0.3 1.32 ◎ 3H
A-7 96.5 0.1 0.4 1.31 ◎ 3H
A-8 96.7 0.1 0.2 1.31 ◎ 3H
A-9 96.7 0.1 0.3 1.34 ◎ 3H
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
RA-1 96.5 0.3 0.5 1.35 △ H
RA-2 95.4 0.3 0.5 1.33 △ H
RA-3 94.3 1.8 1.0 1.45 ○ H
RA-4 94.3 0.3 1.5 1.46 ○ H

[表3]
透明被膜付基材シリコン樹脂マトリックス
符号 全光線 ヘイズ 反射率 被膜 鉛筆硬度
透過率 屈折率
(%) (%) (%)
B-1 96.1 0.3 0.5 1.35 8H
B-2 96.4 0.3 0.2 1.31 7H
B-3 96.2 0.2 0.3 1.33 7H
B-4 96.2 0.2 0.3 1.33 7H
B-5 96.5 0.1 0.4 1.34 7H
B-6 96.7 0.1 0.2 1.31 7H
B-7 96.0 0.1 0.3 1.31 7H
B-8 97.0 0.1 0.3 1.32 7H
B-9 96.5 0.1 0.1 1.34 7H
・・・・・・・・・・・・・・・・・・・・・・・
RB-1 96.2 0.3 0.5 1.35 5H
RB-2 96.1 0.3 0.5 1.35 5H
RB-3 94.8 0.8 1.2 1.41 5H
RB-4 94.0 0.2 1.3 1.43 5H
[Table 3]
Transparent coated substrate ( silicone resin matrix )
Code total light haze reflectance coating pencil hardness
Transmittance refractive index (%) (%) (%)
B-1 96.1 0.3 0.5 1.35 8H
B-2 96.4 0.3 0.2 1.31 7H
B-3 96.2 0.2 0.3 1.33 7H
B-4 96.2 0.2 0.3 1.33 7H
B-5 96.5 0.1 0.4 1.34 7H
B-6 96.7 0.1 0.2 1.31 7H
B-7 96.0 0.1 0.3 1.31 7H
B-8 97.0 0.1 0.3 1.32 7H
B-9 96.5 0.1 0.1 1.34 7H
...
RB-1 96.2 0.3 0.5 1.35 5H
RB-2 96.1 0.3 0.5 1.35 5H
RB-3 94.8 0.8 1.2 1.41 5H
RB-4 94.0 0.2 1.3 1.43 5H

Claims (4)

平均粒子径が5〜500nmの範囲にあり、屈折率が1.15〜1.38の範囲にあり、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.0001〜0.2の範囲にあり、アルカリ金属酸化物の含有量がA2O(A:アルカリ金属元素)として5ppm以下であることを特徴とする外殻内部に空洞を有するシリカ系微粒子。 Molar ratio when the average particle diameter is in the range of 5 to 500 nm, the refractive index is in the range of 1.15 to 1.38, silica expressed as SiO 2, showing the inorganic oxide other than silica MO X MO X / SiO 2 is in the range of 0.0001 to 0.2, and the content of alkali metal oxide is 5 ppm or less as A 2 O (A: alkali metal element). Silica-based fine particles having cavities. 前記シリカ系微粒子におけるアンモニアおよび/またはアンモニウムイオンの含有量がNH3として1500ppm以下である請求項2に記載のシリカ系微粒子。 The silica-based fine particles according to claim 2, wherein the content of ammonia and / or ammonium ions in the silica-based fine particles is 1500 ppm or less as NH 3 . 請求項1または2に記載のシリカ系微粒子と、被膜形成用マトリックスとを含んでなる被膜形成用塗料。   A paint for forming a film comprising the silica-based fine particles according to claim 1 and a matrix for forming a film. 請求項1または2に記載のシリカ系微粒子と被膜形成用マトリックスとを含んでなる被膜が、単独でまたは他の被膜とともに基材表面上に形成された被膜付基材。   A coated substrate in which a coating comprising the silica-based fine particles according to claim 1 or 2 and a coating-forming matrix is formed on the substrate surface alone or together with another coating.
JP2010211073A 2010-09-21 2010-09-21 Silica-based fine particles, coating material for coating formation and substrate with coating Active JP5404568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211073A JP5404568B2 (en) 2010-09-21 2010-09-21 Silica-based fine particles, coating material for coating formation and substrate with coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211073A JP5404568B2 (en) 2010-09-21 2010-09-21 Silica-based fine particles, coating material for coating formation and substrate with coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004199756A Division JP4731137B2 (en) 2004-07-06 2004-07-06 Method for producing silica-based fine particles

Publications (2)

Publication Number Publication Date
JP2011046606A true JP2011046606A (en) 2011-03-10
JP5404568B2 JP5404568B2 (en) 2014-02-05

Family

ID=43833338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211073A Active JP5404568B2 (en) 2010-09-21 2010-09-21 Silica-based fine particles, coating material for coating formation and substrate with coating

Country Status (1)

Country Link
JP (1) JP5404568B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160390A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Heat-ray shielding laminate and heat-ray shielding structure
JP2021042122A (en) * 2017-04-06 2021-03-18 株式会社日本触媒 Silica particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2002079616A (en) * 2000-06-23 2002-03-19 Toshiba Corp Transparent film-applied base material, coating solution for forming transparent film and display device
JP2002093796A (en) * 2000-09-19 2002-03-29 Catalysts & Chem Ind Co Ltd Semiconductor substrate with low-permittivity silica film, and method for forming the low-permittivity silica film
JP2003026417A (en) * 2001-07-13 2003-01-29 Catalysts & Chem Ind Co Ltd Method of manufacturing silica sol and silica-base multiple oxide sol
JP2003089786A (en) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd High-purity colloidal silica for polishing agent
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2002079616A (en) * 2000-06-23 2002-03-19 Toshiba Corp Transparent film-applied base material, coating solution for forming transparent film and display device
JP2002093796A (en) * 2000-09-19 2002-03-29 Catalysts & Chem Ind Co Ltd Semiconductor substrate with low-permittivity silica film, and method for forming the low-permittivity silica film
JP2003026417A (en) * 2001-07-13 2003-01-29 Catalysts & Chem Ind Co Ltd Method of manufacturing silica sol and silica-base multiple oxide sol
JP2003089786A (en) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd High-purity colloidal silica for polishing agent
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160390A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Heat-ray shielding laminate and heat-ray shielding structure
JP2021042122A (en) * 2017-04-06 2021-03-18 株式会社日本触媒 Silica particles
US11214492B2 (en) 2017-04-06 2022-01-04 Nippon Shokubai Co., Ltd. Silica particles
JP7128250B2 (en) 2017-04-06 2022-08-30 株式会社日本触媒 Method for producing silica particle dispersion and silica particle-containing resin composition

Also Published As

Publication number Publication date
JP5404568B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP4046921B2 (en) Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP4592274B2 (en) Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP2003202406A (en) Antireflection film and display device
KR101102115B1 (en) Process for producing fine silica-based particle, coating composition for coating film formation, and base with coating film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP3955971B2 (en) Base material with antireflection film
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250