JP2011023228A - 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム - Google Patents

流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム Download PDF

Info

Publication number
JP2011023228A
JP2011023228A JP2009167720A JP2009167720A JP2011023228A JP 2011023228 A JP2011023228 A JP 2011023228A JP 2009167720 A JP2009167720 A JP 2009167720A JP 2009167720 A JP2009167720 A JP 2009167720A JP 2011023228 A JP2011023228 A JP 2011023228A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
flow rate
check valve
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009167720A
Other languages
English (en)
Inventor
Masatoshi Uno
将年 鵜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009167720A priority Critical patent/JP2011023228A/ja
Publication of JP2011023228A publication Critical patent/JP2011023228A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】高効率かつ簡素なガス循環式燃料電池システムを構築することができる技術を提供する。
【解決手段】燃料電池8の出力電流を電流検出回路16を用いて検出し、その検出結果に基づいて流量調節器14を用いて燃料電池8に供給する燃料の流量を燃料電池入口6における燃料の圧力が上昇するよう制御することにより、循環経路10,11に第1逆止弁2経由で燃料を貯蔵し、燃料電池入口6における燃料の圧力が任意の上限設定値に達した時に流量調節器14を介した燃料供給を停止もしくは燃料電池8が消費する流量以下に制御し、循環経路10,11に貯蔵された燃料を、第2逆止弁3経由で燃料電池8に循環させ、循環経路10,11に貯蔵された燃料が消費されていくにつれて低下する燃料電池入口6における燃料の圧力が任意の下限設定値に達した時に、燃料電池8への燃料供給を流量調節器14を用いて再開させる。
【選択図】図2

Description

本発明は、燃料電池システムに関し、特に、燃料電池出口から排出される未反応分の燃料および酸化剤ガスを燃料電池入口に再供給、つまりガスを循環させる循環式燃料電池システムに関する。
燃料電池は、水素と酸素から水を生成する電気化学反応を利用したエネルギー変換デバイスである。燃料電池から電気を取り出すために水素と酸素(空気)がそれぞれ供給されるが、一般的に、水素および酸素は燃料電池が消費する量よりも過剰に供給されている。これは、燃料電池反応により生成される水の除去、供給ガス量不足による燃料電池の損傷ならびに電力の出力低下を防止するためである。しかしながら、未反応分のガスをそのまま系外に排気してしまうと、その排気分のガスが持つエネルギーを有効に活用できなくなってしまう。そのため、燃料電池システムのエネルギー効率は低下してしまう。未反応分のガスのエネルギーを有効に活用するために、ポンプやエジェクタなどを用いて燃料電池出口から排出されるガスを燃料電池入口に再供給する、つまりガスを循環させる循環式燃料電池システムが多数考案されている。
特開2004−095528号公報 特開2003−178779号公報
しかしながら、ポンプを用いて循環を行う場合、ガスを循環するためにポンプ自体が燃料電池の発電電力の一部を消費してしまうため、システムとしての効率は低下してしまう。また、ポンプは可動部を有するため、振動ならびに騒音の発生源となる。従来の熱機関による発電装置と比較した場合の燃料電池の利点として、高効率、静寂、可動部を有しない、等が挙げられるが、ポンプを燃料電池システムのコンポーネントの一つとして採用することは、燃料電池の利点を定性的に相殺することになってしまう。
エジェクタは、電力を消費することなくガスを循環することが可能であるが、主な短所として動作範囲が比較的狭いことが挙げられる。可動ニードルを具備することにより広範囲で動作可能なエジェクタや、複数個のエジェクタを用いることでシステムとしての動作範囲を拡大する方式などが提案されている(例えば、特許文献1〜2等)。しかし、これらの方法は、エジェクタ本来の狭範囲の特性を制御やシステム構成でカバーしているものであるため、制御やシステムが複雑化してしまう。
以上のように、高効率かつ簡素な燃料電池システムを構築するには、従来とは異なる循環システムが望まれる。
例えば、ポンプやエジェクタを用いることなく、燃料電池のガス消費による負圧発生を利用した図1に示すような循環システムが提案されている(例えば、本出願人による特許出願:特願2009−049201号)。図1に示すように、燃料電池システムは、燃料ガスが貯蔵される水素ボンベ7と、水素ボンベ7の高圧水素を減圧して燃料電池8に供給する圧力調整器1と、燃料電池8の圧力を検出する圧力センサ5と、圧力センサ5の検出結果に基づいて燃料電池8の圧力を圧力調整器1を用いて制御する制御装置9と、燃料電池出口から排出されるガスが通過する第1逆止弁2と、燃料電池出口から排出されたガスが燃料電池入口6へ循環されるための循環経路10および循環経路11と、燃料電池出口から排出されたガスと水分を分離するための気液分離器4と、循環経路11を経由したガスが通過する第2逆止弁3により構成されている。ここで、循環経路10と循環経路11は、ある内容積を有する配管である。以上は燃料極側の構成について示したものであるが、酸素極側についても同様の構成を用いることが可能である。
しかし、このシステムでは燃料電池の運転圧力を圧力調整器を用いて制御することにより循環を実現しており、電気的に制御可能な圧力調整器が必要であった。一方、燃料電池システムにおける供給ガスの制御は流量調節器で行われることが多く、前記図1の燃料電池システムにおいても圧力調整器でなく流量調節器でも制御可能なシステムである方が望ましい。
そこで、本発明の1つの目的は、高効率かつ簡素なガス循環式燃料電池システムを構築することができる技術を提供することにある。本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される実施例のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本発明の循環式燃料電池システムの第1の実施形態は、燃料電池の出力電流を電流検出回路を用いて検出し、その検出結果に基づいて流量調節器を用いて燃料電池に供給する燃料の流量を燃料電池入口における燃料の圧力が上昇するよう制御することにより、燃料電池下流に位置する循環経路に第1逆止弁経由で燃料を貯蔵し、燃料電池入口における燃料の圧力が任意の上限設定値に達した時に流量調節器を介した燃料供給を停止もしくは燃料電池が消費する流量以下に制御し、循環経路に貯蔵された燃料を、第2逆止弁経由で燃料電池に循環させ、循環経路に貯蔵された燃料が消費されていくにつれて低下する燃料電池入口における燃料の圧力が任意の下限設定値に達した時に、燃料電池への燃料供給を流量調節器を用いて再開させるように機能することを特徴とする。
本発明の循環式燃料電池システムの第2の実施形態は、流量調節器を用いて燃料電池に供給する燃料の流量を燃料電池入口における燃料の圧力が上昇するよう制御することにより、燃料電池下流に位置する循環経路に第1逆止弁経由で燃料を貯蔵し、燃料電池入口における燃料の圧力が任意の上限設定値に達した時に流量調節器を介した燃料供給を停止もしくは燃料電池が消費する流量以下に制御し、循環経路に貯蔵された燃料を、第2逆止弁経由で燃料電池に循環させ、循環経路に貯蔵された燃料が消費されていくにつれて低下する燃料電池入口における燃料の圧力が任意の下限設定値に達した時に、燃料電池への燃料供給を流量調節器を用いて再開させるように機能することを特徴とする。
本発明の循環式燃料電池システムの第3の実施形態は、燃料電池の出力電流を電流検出回路を用いて検出し、その検出結果に基づいて流量調節器を用いて燃料電池に供給する酸化剤の流量を燃料電池入口における酸化剤の圧力が上昇するよう制御することにより、燃料電池下流に位置する循環経路に第1逆止弁経由で酸化剤を貯蔵し、燃料電池入口における酸化剤の圧力が任意の上限設定値に達した時に流量調節器を介した酸化剤の供給を停止もしくは燃料電池が消費する流量以下に制御し、循環経路に貯蔵された酸化剤を、第2逆止弁経由で燃料電池に循環させ、循環経路に貯蔵された酸化剤が消費されていくにつれて低下する燃料電池入口における酸化剤の圧力が任意の下限設定値に達した時に、燃料電池への酸化剤供給を流量調節器を用いて再開させるように機能することを特徴とする。
本発明の循環式燃料電池システムの第4の実施形態は、流量調節器を用いて燃料電池に供給する酸化剤の流量を燃料電池入口における酸化剤の圧力が上昇するよう制御することにより、燃料電池下流に位置する循環経路に第1逆止弁経由で酸化剤を貯蔵し、燃料電池入口における酸化剤の圧力が任意の上限設定値に達した時に流量調節器を介した酸化剤の供給を停止もしくは燃料電池が消費する流量以下に制御し、循環経路に貯蔵された酸化剤を、第2逆止弁経由で燃料電池に循環させ、循環経路に貯蔵された酸化剤が消費されていくにつれて低下する燃料電池入口における酸化剤の圧力が任意の下限設定値に達した時に、燃料電池への酸化剤供給を流量調節器を用いて再開させるように機能することを特徴とする。
本発明の循環式燃料電池システムの第5の実施形態は、前記いずれかの燃料循環システム(前記第1及び第2の実施形態)と、前記いずれかの酸化剤循環システム(前記第3及び第4の実施形態)を用い、燃料と酸化剤をともに循環させることを特徴とする。
本発明によれば、ポンプやエジェクタを用いることなくガスを循環させることが可能であるため、高効率かつ簡素な燃料電池システムを構築できると同時に、圧力調整器の代わりに流量調節器を用いることが可能なため、柔軟なシステム設計が可能となる。
本発明の前提として検討した、ポンプやエジェクタを必要としない燃料電池システムの構成例を示す図である。 本発明の一実施形態による、流量調節器を用いた燃料電池システムの構成例を示す図である。 図2に示した燃料電池システムにおいて、期間IIにてガス供給を停止した際における、流量調節器制御信号、燃料電池圧力、流量調節器流量、第1逆止弁流量、第2逆止弁流量の時間的変化を示す図である。 図3の期間Iにおけるガスの流れを示す図である。 図3の期間IIにおけるガスの流れを示す図である。 図2に示した燃料電池システムにおいて、期間IIにてガス供給量を燃料電池の消費量以下に設定した際における、流量調節器制御信号、燃料電池圧力、流量調節器流量、第1逆止弁流量、第2逆止弁流量の時間的変化を示す図である。 図6の期間IIにおけるガスの流れを示す図である。 本発明の他の実施形態による、電流検出回路を用いずに、圧力センサの検出結果のみに基づき流量調節器を制御し、ガスを循環させる燃料電池システムの構成例を示す図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
図2は本発明の一実施の形態による燃料電池システムの構成例を示す図である。まず、図2により、本実施の形態による燃料電池システムの構成の一例を説明する。
なお、本実施の形態において、燃料電池は、水素、メタンガスなどの燃料が供給される水素極と、酸素、空気などの酸化剤が供給される酸素極とから構成されるが、図2では水素極側のみについて示している。したがって、酸素極側にも、図2と同様な構成をとることが可能である。その場合、水素の代わりに酸素又は空気が供給される。
図2に示すように、本実施の形態による燃料電池システムは、例えば、水素と酸素の電気化学反応により発電する燃料電池8と、燃料電池8から電力が供給される負荷15と、燃料電池の出力電流(又は電源電流)を検出する電流検出回路16と、燃料ガスが貯蔵される水素ボンベ7と、水素ボンベ7の水素を燃料電池8に調節して供給する流量調節器14と、燃料電池8の入口(燃料電池入口6)の圧力を検出する圧力センサ5と、電流検出回路16と圧力センサ5の検出結果に基づいて流量調節器14を制御する制御装置9と、燃料電池8の出口(燃料電池出口12)から排出されるガス(未反応分の燃料ガス)が通過する第1逆止弁2と、燃料電池出口12から排出されたガスが燃料電池入口6へ循環されるための循環経路10および循環経路11と、燃料電池出口12から排出されたガスと水分を分離するための気液分離器4と、循環経路11を経由したガスが通過する第2逆止弁3などから構成されている。ここで、循環経路10と循環経路11は、ある内容積を有する配管である。
流量調節器14は水素ボンベ7と燃料電池入口6との間に接続され、圧力センサ5は燃料電池入口6に接続され、第1逆止弁2は燃料電池出口12と循環経路10との間に接続され、気液分離器4は循環経路10と循環経路11との間に接続され、第2逆止弁3は循環経路11と燃料電池入口6との間に接続されている。また、第1逆止弁2は、逆流防止用の弁であり、燃料電池出口12から循環経路10の方向へのみガスが流れるようになっている。また、第2逆止弁3も同様に、逆流防止用の弁であり、循環経路11から燃料電池入口6の方向へのみガスが流れるようになっている。燃料電池8は負荷15に対して電力を供給し、燃料電池8が出力する電流は電流検出回路16によって計測される。電流検出回路16はシャント抵抗や電流センサ等を用いて電流を計測する。
なお、図2では、燃料用のガスとして水素の例を説明したが、水素ボンベ7の代わりに、メタンガスなどの他の燃料ガスを用いてもよい。
図3に、図2の燃料電池システムの動作時における制御装置9から出力される流量調節器14用の制御信号(流量制御信号)、燃料電池圧力、流量調節器14を介したガスの流量(流量調節器流量)、第1逆止弁2を通過するガスの流量(第1逆止弁流量)、第2逆止弁3を通過するガスの流量(第2逆止弁流量)の時間的変化をそれぞれ示す。なお、図3において、燃料電池圧力は、圧力センサ5で検出される燃料電池8の入口における圧力であるが、燃料電池内の燃料ガスの圧力とほぼ等しい。
図3に示すように、本実施の形態による燃料電池システムが動作して燃料電池8が発電している時は、期間Iと期間IIが交互に繰り返される。図4に期間Iにおけるガスの流れ方を示し、図5に期間IIにおけるガスの流れ方を示す。
期間Iにおいて、制御装置9からの信号に応じた量の燃料が流量調節器14経由で燃料電池8へと供給される。一般的に、燃料電池が消費するガス量は燃料電池が出力する電流と比例するため、出力電流相当よりも過剰量の燃料を供給した場合、未反応分の燃料は燃料電池の出口から排出されることになる。期間Iにおいて、燃料電池8の燃料消費量よりも過剰量の燃料を供給するよう、電流検出回路16の検出結果をもとに制御装置9が流量調節器14に制御信号を出力し、流量調節器14経由で燃料を燃料電池8に供給する。例えば、電流検出回路16で検出された出力電流が高い場合、制御装置9から出力される流量制御信号のレベルを上げることにより、流量調節器14を介したガス供給流量を増やす。また逆に、電流検出回路16で検出された出力電流が低い場合、制御装置9から出力される流量制御信号のレベルを下げることにより、流量調節器14を介したガス供給流量を減らす。このとき図4に示すように、ガスの流れ方は、流量調節器14→燃料電池入口6→燃料電池8→燃料電池出口12→第1逆止弁2→循環経路10→気液分離器4→循環経路11、となる。燃料電池8の燃料消費量(すなわち、出力電流に対応)、ならびに流量調節器14を介した供給燃料流量が一定の場合、図3に示すように第1逆止弁2に流れるガス流量も一定となり、燃料電池8の圧力は直線的に増加する。循環経路11における圧力は、燃料電池8や第1逆止弁2や気液分離器4や配管の圧力損失分だけ燃料電池入口6の圧力よりも低いため、第2逆止弁3は閉の状態となる。その結果、ガスは第2逆止弁3を流れない。流量調節器14を介した燃料供給により燃料電池8の圧力が上昇していき、圧力センサ5により検知される燃料電池圧力が、あらかじめ設定された上限圧力に到達すると、制御装置9は制御信号の出力を完全に停止する、もしくは燃料電池8の消費燃料量相当よりも低い信号レベルにすることで、期間IIへと移行する。
期間IIの動作について、まず、制御装置9からの制御信号(流量制御信号)の出力を完全に停止する場合について述べる。制御装置9からの制御信号の出力が停止される(すなわち、ゼロ・レベルになる)と流量調節器14を経由したガス供給は止まるが、燃料電池8はガスを消費し続けるため、燃料電池8の圧力は循環経路10や循環経路11に対して負圧となる。その場合、燃料電池システムにおけるガスの流れ方は図5(図3における期間II)のように変化する。循環経路10と循環経路11は内容積を有しているため、期間IIの間は、循環経路10と循環経路11に蓄えられたガスが、循環経路10→気液分離器4→循環経路11→第2逆止弁3→燃料電池入口6→燃料電池8、の順に流れることになる。このとき、燃料電池8におけるガス消費量が一定であれば、第2逆止弁3に流れるガス流量は一定となる。燃料電池出口12における圧力は、気液分離器4や第2逆止弁3や燃料電池8や配管の圧力損失分だけ循環経路10の圧力よりも低いため、第1逆止弁2は閉の状態となる。その結果、ガスは第1逆止弁2を流れない。そして、流量調節器14を経由したガス供給が止まっているため、燃料電池8の圧力が低下していき、圧力センサ5により検知される燃料電池圧力が、あらかじめ設定した下限圧力に到達すると、制御装置9は制御信号の出力を再開する。
次に、期間IIの動作について、制御装置9からの制御信号の出力を完全に停止しない場合について述べる。図6に、期間IIにおいて、制御装置9からの制御信号が燃料電池8の消費燃料量相当よりも低い信号レベルに設定される場合における、制御装置9から出力される流量調節器14用の制御信号(流量制御信号)、燃料電池圧力、流量調節器14を介したガスの流量(流量調節器流量)、第1逆止弁2を通過するガスの流量(第1逆止弁流量)、第2逆止弁3を通過するガスの流量(第2逆止弁流量)の時間的変化をそれぞれ示す。また、このときの期間IIにおけるガスの流れ方を図7に示す。循環経路10,11を介したガスの流れは図5の場合と同様であるが、流量調節器14を介したガス供給が継続されている点が異なる。しかし、流量調節器14を介したガス供給量は燃料電池8が消費する量よりも少ないため、燃料電池は循環経路10と循環経路11に蓄えられたガスを消費して圧力は低下してゆく。ただし、図5の場合と比べて流量調節器14を介したガス供給が存在する分、図6に示すように圧力低下の勾配は緩やかである。圧力が低下し、圧力センサ5により検知される燃料電池圧力が、あらかじめ設定した下限圧力に到達すると、制御装置9は制御信号の出力を燃料電池8の消費燃料量相当よりも高い信号レベルに増加させる(期間I)。
期間Iにおいて循環経路10と循環経路11に蓄えられていたガスは燃料電池8から排気されたガスに相当し、期間IIにおいてはそのガスが再び燃料電池に供給されるため、期間Iと期間IIを通じてガスは循環されたことになる。また、図4〜図7からも分かるように、循環経路を流れるガスの流れは一方通行であり、循環されるガスに含まれる水は気液分離器4にて除去される。
燃料電池圧力の上昇/下降速度、逆止弁に流れるガス流量、循環経路の内容積には相関がある(燃料電池入口6と燃料電池出口12の配管内容積は十分小さいものとする)。具体的には、期間Iにおいて、燃料電池8のガス消費量が一定の場合、燃料電池からの排出ガス流量つまり第1逆止弁2のガス流量が大きければ大きいほど、また循環経路10と循環経路11の内容積が小さければ小さいほど、圧力上昇の勾配は急になる。期間IIにおいて流量調節器14を介したガス供給を停止する図5の構成の場合、第2逆止弁3のガス流量は燃料電池8のガス消費量と同一であり、循環経路10と循環経路11の内容積が大きければ大きいほど、燃料電池圧力の低下速度は遅くなる。期間IIにおいて流量調節器を介したガス供給を消費燃料量相当よりも低く設定する図7の構成の場合、流量調節器14を介して供給されるガス流量と第2逆止弁3を流れるガス流量との和が燃料電池8のガス消費量と同一となる。図7の場合においても同様に、循環経路10と循環経路11の内容積が大きければ大きいほど、燃料電池圧力の低下速度は遅くなる。
期間Iの長さは、燃料電池8のガス消費量と、循環経路10,11の内容積と、流量調節器14を介したガス供給流量により決定されるので、燃料電池8のガス消費量、燃料電池圧力の上下限値が一定の場合、流量調節器14を介したガス供給流量を制御することにより燃料電池の圧力上昇勾配を変化させ、期間Iの長さを調節することが可能である。例えば、制御装置9から出力される流量制御信号のレベルを上げることにより、流量調節器14を介したガス供給流量を増やし、燃料電池の圧力上昇勾配を増加させ、期間Iの長さを短くすることが可能である。また、逆に、制御装置9から出力される流量制御信号のレベルを下げることにより、流量調節器14を介したガス供給流量を減らし、燃料電池の圧力上昇勾配を減少させ、期間Iの長さを長くすることが可能である。
期間IIの長さは、燃料電池8のガス消費量、流量調節器14を介したガス供給流量、循環経路10,11の内容積により決定され、流量調節器14を介したガス供給流量を制御することで調節可能である。ただし、期間IIが取り得る最短時間は流量調節器14を介したガス供給流量を完全に停止した場合、つまり図3に示すような動作時であり、それよりも短くすることはできない。また、燃料電池圧力の上下限値を調節することにより、期間Iと期間IIの長さをともに調節することも可能である。
以上、簡単のため、燃料電池のガス消費量が一定で第1逆止弁2の流量も一定であり、期間Iにおける圧力上昇は直線的であるとして説明を行ってきたが、燃料電池のガス消費量が変動するなどして第1逆止弁2の流量が一定でない場合においても本発明の燃料電池システムは動作可能である。ただし、その場合は燃料電池の圧力上昇の勾配は一定ではなくなる。
また、本実施の形態では、燃料電池の水素極側について説明を行ってきたが、空気や酸素等の酸化剤が供給される酸素極側に対しても同様の原理で構成して動作させることが可能である。
また、上記実施の形態では、圧力センサ5で検出された燃料電池圧力に基づいて、制御装置9が流量調節器14への制御信号出力を変化させる、いわゆるフィードバック制御の構成例を示した。しかし、あらかじめ燃料電池システムの特性を評価し、その特性に基づいて制御信号の波形やタイミングを設定し、流量調節器14への制御信号出力を変化させるようにしてもよい。この場合は、圧力センサ5を不要とすることができる。
また、上記実施の形態では、電流検出回路16で検出された電流値に基づいて、制御装置9が流量調節器14への制御信号出力を変化させる、いわゆるフィードバック制御の構成例を示した。しかし、図8に示すような構成において、検出された電流値を用いずに圧力センサ5で検出した圧力値のみに基づいて制御することも可能である。本発明のシステムが動作するためには期間Iの間に燃料電池圧力が上昇して循環経路10,11にガスを貯蔵する必要があるが、燃料電池の圧力が上昇するよう圧力センサ5の検出結果に基づいて流量調節器14を制御してガスを供給してやればよい。
最も単純な方法として、あらかじめ想定される最大消費ガス量よりも常に多くのガスを期間Iに供給するよう制御装置9を制御することが考えられる。すなわち、期間Iにおける流量調節器を介した供給ガス流量は消費ガス量よりも必ず多いため、燃料電池からは未反応分のガスが排出され、循環経路へと蓄積されることで燃料電池の圧力は上昇する。
その他、燃料電池圧力(P)が上昇する際の時間(T)微分であるΔP/ΔTを演算などで求めて、ΔP/ΔTが正の値となるよう流量調節器14を介したガス流量を制御する、等の方法もある。すなわち、ΔP/ΔTが正の値であるということは、循環経路10,11にガスが貯蔵されている過程であるということを意味している。
以上の場合、流量調節器14を介したガス供給流量は電流検出回路16の検出結果に基づいて制御されるわけではないので、電流検出回路16は不要となる(図8参照)。
したがって、本発明における燃料電池システムによれば、ポンプやエジェクタを用いることなくガスを循環させることが可能となるため、高効率かつ簡素な燃料電池システムを構築することができる。また、ポンプやエジェクタを用いないため、静寂・無振動である。また、可動部品を必要としないため(流量調節器を除く)、信頼性が高い。また、消費電力が少なく、燃料電池の発電電力を最大限に活用できる(高効率)。また、圧力調整器の代わりに、流量調節器を用いて燃料電池に供給するガス流量ならびに燃料電池の圧力を制御することでガス循環機構を実現できるため、構成機器の選定などの観点からシステムを柔軟に設計することが可能となる。また、流量調節器は、圧力調整器と比較して、汎用的、低価格であるため、低コスト化が可能となる。
以上、本発明における実施形態を具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明は、移動体用燃料電池システム、定置用燃料電池システムなど、ガスを循環させる必要性のある燃料電池システムに利用可能である。
1…圧力調整器、2…第1逆止弁、3…第2逆止弁、4…気液分離器、5…圧力センサ、6…燃料電池入口、7…水素ボンベ、8…燃料電池、9…制御装置、10,11…循環経路、12…燃料電池出口、14…流量調節器、15…負荷、16…電流検出回路。

Claims (6)

  1. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される燃料の流量を調節する流量調節器と、
    前記燃料電池の出口に接続された第1逆止弁と、
    前記燃料電池の入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた循環経路と、
    前記燃料電池の出力電流を検出する電流検出回路とを有し、
    前記電流検出回路を用いて前記燃料電池の出力電流を検出し、その検出結果に基づいて前記流量調節器を用いて前記燃料電池に供給する燃料の流量を前記燃料電池の入口における燃料の圧力が上昇するよう制御することにより、前記循環経路に前記第1逆止弁経由で燃料を貯蔵し、前記燃料電池の入口における燃料の圧力が任意の上限設定値に達した時に前記流量調節器を介した燃料供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記循環経路に貯蔵された燃料を、前記第2逆止弁経由で前記燃料電池に循環させ、前記循環経路に貯蔵された燃料が消費されていくにつれて低下する前記燃料電池の入口における燃料の圧力が任意の下限設定値に達した時に、前記流量調節器を用いて前記燃料電池への燃料供給を再開させるように機能することを特徴とする燃料電池システム。
  2. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される燃料の流量を調節する流量調節器と、
    前記燃料電池の出口に接続された第1逆止弁と、
    前記燃料電池の入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた循環経路とを有し、
    前記流量調節器を用いて前記燃料電池に供給する燃料の流量を前記燃料電池の入口における燃料の圧力が上昇するよう制御することにより、前記循環経路に前記第1逆止弁経由で燃料を貯蔵し、前記燃料電池の入口における燃料の圧力が任意の上限設定値に達した時に前記流量調節器を介した燃料供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記循環経路に貯蔵された燃料を、前記第2逆止弁経由で前記燃料電池に循環させ、前記循環経路に貯蔵された燃料が消費されていくにつれて低下する前記燃料電池の入口における燃料の圧力が任意の下限設定値に達した時に、前記流量調節器を用いて前記燃料電池への燃料供給を再開させるように機能することを特徴とする燃料電池システム。
  3. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される酸化剤の流量を調節する流量調節器と、
    前記燃料電池の出口に接続された第1逆止弁と、
    前記燃料電池の入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた循環経路と、
    前記燃料電池の出力電流を検出する電流検出回路とを有し、
    前記電流検出回路を用いて前記燃料電池の出力電流を検出し、その検出結果に基づいて前記流量調節器を用いて前記燃料電池に供給する酸化剤の流量を前記燃料電池の入口における酸化剤の圧力が上昇するよう制御することにより、前記循環経路に前記第1逆止弁経由で酸化剤を貯蔵し、前記燃料電池の入口における酸化剤の圧力が任意の上限設定値に達した時に前記流量調節器を介した酸化剤供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記循環経路に貯蔵された酸化剤を、前記第2逆止弁経由で前記燃料電池に循環させ、前記循環経路に貯蔵された酸化剤が消費されていくにつれて低下する前記燃料電池の入口における酸化剤の圧力が任意の下限設定値に達した時に、前記流量調節器を用いて前記燃料電池への酸化剤供給を再開させるように機能することを特徴とする燃料電池システム。
  4. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される酸化剤の流量を調節する流量調節器と、
    前記燃料電池の出口に接続された第1逆止弁と、
    前記燃料電池の入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた循環経路とを有し、
    前記流量調節器を用いて前記燃料電池に供給する酸化剤の流量を前記燃料電池の入口における酸化剤の圧力が上昇するよう制御することにより、前記循環経路に前記第1逆止弁経由で酸化剤を貯蔵し、前記燃料電池の入口における酸化剤の圧力が任意の上限設定値に達した時に前記流量調節器を介した酸化剤供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記循環経路に貯蔵された酸化剤を、前記第2逆止弁経由で前記燃料電池に循環させ、前記循環経路に貯蔵された酸化剤が消費されていくにつれて低下する前記燃料電池の入口における酸化剤の圧力が任意の下限設定値に達した時に、前記流量調節器を用いて前記燃料電池への酸化剤供給を再開させるように機能することを特徴とする燃料電池システム。
  5. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される燃料の流量を調節する第1流量調節器と、
    前記燃料電池の第1出口に接続された第1逆止弁と、
    前記燃料電池の第1入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた第1循環経路と、
    前記燃料電池に供給される酸化剤の流量を調節する第2流量調節器と、
    前記燃料電池の第2出口に接続された第3逆止弁と、
    前記燃料電池の第2入口に接続された第4逆止弁と、
    前記第3逆止弁と前記第4逆止弁との間に設けられた第2循環経路と、
    前記燃料電池の出力電流を検出する電流検出回路とを有し、
    前記電流検出回路を用いて前記燃料電池の出力電流を検出し、その検出結果に基づいて前記第1流量調節器を用いて前記燃料電池に供給する燃料の流量を前記燃料電池の第1入口における燃料の圧力が上昇するよう制御することにより、前記第1循環経路に前記第1逆止弁経由で燃料を貯蔵し、前記燃料電池の第1入口における燃料の圧力が任意の上限設定値に達した時に前記第1流量調節器を介した燃料供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記第1循環経路に貯蔵された燃料を、前記第2逆止弁経由で前記燃料電池に循環させ、前記第1循環経路に貯蔵された燃料が消費されていくにつれて低下する前記燃料電池の第1入口における燃料の圧力が任意の下限設定値に達した時に、前記第1流量調節器を用いて前記燃料電池への燃料供給を再開させ、
    前記電流検出回路を用いて前記燃料電池の出力電流を検出し、その検出結果に基づいて前記第2流量調節器を用いて前記燃料電池に供給する酸化剤の流量を前記燃料電池の第2入口における酸化剤の圧力が上昇するよう制御することにより、前記第2循環経路に前記第3逆止弁経由で酸化剤を貯蔵し、前記燃料電池の第2入口における酸化剤の圧力が任意の上限設定値に達した時に前記第2流量調節器を介した酸化剤供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記第2循環経路に貯蔵された酸化剤を、前記第4逆止弁経由で前記燃料電池に循環させ、前記第2循環経路に貯蔵された酸化剤が消費されていくにつれて低下する前記燃料電池の第2入口における酸化剤の圧力が任意の下限設定値に達した時に、前記第2流量調節器を用いて前記燃料電池への酸化剤供給を再開させるように機能することを特徴とする燃料電池システム。
  6. 燃料と酸化剤とが供給されて発電を行う燃料電池と、
    前記燃料電池に供給される燃料の流量を調節する第1流量調節器と、
    前記燃料電池の第1出口に接続された第1逆止弁と、
    前記燃料電池の第1入口に接続された第2逆止弁と、
    前記第1逆止弁と前記第2逆止弁との間に設けられた第1循環経路とを有し、
    前記燃料電池に供給される酸化剤の流量を調節する第1流量調節器と、
    前記燃料電池の第2出口に接続された第3逆止弁と、
    前記燃料電池の第2入口に接続された第4逆止弁と、
    前記第3逆止弁と前記第4逆止弁との間に設けられた第2循環経路とを有し、
    前記第1流量調節器を用いて前記燃料電池に供給する燃料の流量を前記燃料電池の第1入口における燃料の圧力が上昇するよう制御することにより、前記第1循環経路に前記第1逆止弁経由で燃料を貯蔵し、前記燃料電池の第1入口における燃料の圧力が任意の上限設定値に達した時に前記第1流量調節器を介した燃料供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記第1循環経路に貯蔵された燃料を、前記第2逆止弁経由で前記燃料電池に循環させ、前記第1循環経路に貯蔵された燃料が消費されていくにつれて低下する前記燃料電池の第1入口における燃料の圧力が任意の下限設定値に達した時に、前記第1流量調節器を用いて前記燃料電池への燃料供給を再開させ、
    前記第2流量調節器を用いて前記燃料電池に供給する酸化剤の流量を前記燃料電池の第2入口における酸化剤の圧力が上昇するよう制御することにより、前記第2循環経路に前記第3逆止弁経由で酸化剤を貯蔵し、前記燃料電池の第2入口における酸化剤の圧力が任意の上限設定値に達した時に前記第2流量調節器を介した酸化剤供給を停止もしくは前記燃料電池が消費する流量以下に制御し、前記第2循環経路に貯蔵された酸化剤を、前記第4逆止弁経由で前記燃料電池に循環させ、前記第2循環経路に貯蔵された酸化剤が消費されていくにつれて低下する前記燃料電池の第2入口における酸化剤の圧力が任意の下限設定値に達した時に、前記第2流量調節器を用いて前記燃料電池への酸化剤供給を再開させるように機能することを特徴とする燃料電池システム。
JP2009167720A 2009-07-16 2009-07-16 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム Pending JP2011023228A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167720A JP2011023228A (ja) 2009-07-16 2009-07-16 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167720A JP2011023228A (ja) 2009-07-16 2009-07-16 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム

Publications (1)

Publication Number Publication Date
JP2011023228A true JP2011023228A (ja) 2011-02-03

Family

ID=43633119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167720A Pending JP2011023228A (ja) 2009-07-16 2009-07-16 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム

Country Status (1)

Country Link
JP (1) JP2011023228A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118161A1 (fr) * 2014-02-10 2015-08-13 Symbiofcell Circuit de purge d'une pile a combustible
CN108317392A (zh) * 2017-01-16 2018-07-24 现代自动车株式会社 不具有供氢***的高压管线的燃料电池***及其控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118161A1 (fr) * 2014-02-10 2015-08-13 Symbiofcell Circuit de purge d'une pile a combustible
FR3017488A1 (fr) * 2014-02-10 2015-08-14 Symbiofcell Circuit de purge d'une pile a combustible
US10566635B2 (en) 2014-02-10 2020-02-18 Symbiofcell Purge circuit of a fuel cell
US11239477B2 (en) 2014-02-10 2022-02-01 Symbiofcell Purge circuit of a fuel cell
CN108317392A (zh) * 2017-01-16 2018-07-24 现代自动车株式会社 不具有供氢***的高压管线的燃料电池***及其控制方法

Similar Documents

Publication Publication Date Title
US8828612B2 (en) Fuel cell system
JP2005129312A (ja) 燃料電池の燃料供給装置
JP2006310000A (ja) 燃料電池システム
JP2011023228A (ja) 流量・圧力制御を用いた燃料及び酸化剤循環式燃料電池システム
JP2009123612A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5034160B2 (ja) 燃料電池システム
JP4810991B2 (ja) 燃料電池システム
JP5105926B2 (ja) 燃料電池装置
JP2010232167A (ja) 燃料電池システム
JP5017822B2 (ja) 燃料電池システム
JP2011113859A (ja) 電磁弁の開閉制御を用いた燃料及び酸化剤循環式燃料電池システム
JP2016110835A (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5444671B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP6582614B2 (ja) エア供給量の制御装置
JP2006302515A (ja) 燃料電池
JP2008159466A (ja) 液体供給装置及びその運転方法、燃料電池装置及びその運転方法
JP5875444B2 (ja) 燃料電池システム
KR101558288B1 (ko) 모바일 유압발생장치 및 이의 제어방법
JP2019160570A (ja) 燃料電池システム
JP2018139205A (ja) 燃料電池システム
JPWO2017043048A1 (ja) 燃料電池システム
JP2021180162A (ja) 燃料電池システム
JP2017016974A (ja) 燃料電池の制御装置
JP2006172724A (ja) 燃料電池用空気背圧調整バルブおよびそれを用いた燃料電池システム
JP5968008B2 (ja) 燃料電池システム