JP2011021846A - Pressurizing and cooling treatment method of high precision component - Google Patents

Pressurizing and cooling treatment method of high precision component Download PDF

Info

Publication number
JP2011021846A
JP2011021846A JP2009168553A JP2009168553A JP2011021846A JP 2011021846 A JP2011021846 A JP 2011021846A JP 2009168553 A JP2009168553 A JP 2009168553A JP 2009168553 A JP2009168553 A JP 2009168553A JP 2011021846 A JP2011021846 A JP 2011021846A
Authority
JP
Japan
Prior art keywords
pressure
processing chamber
gas
temperature
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009168553A
Other languages
Japanese (ja)
Inventor
Masaru Kawahara
勝 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoshin Engineering KK
Original Assignee
Kyoshin Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoshin Engineering KK filed Critical Kyoshin Engineering KK
Priority to JP2009168553A priority Critical patent/JP2011021846A/en
Publication of JP2011021846A publication Critical patent/JP2011021846A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressurizing and cooling treatment method capable of preventing generation of a defective product in view of the fact that when pressurizing or cooling gas supplied to a treated object after vacuum heating treatment has been completed contains moisture, the moisture adheres to the treated object, and a defect occurs in the treated object. <P>SOLUTION: A temperature and a steam pressure of the gas supplied from a gas supply source during pressurizing or cooling an inside of a treatment chamber 24 is adjusted by a dew point adjusting means 14, and the dew point in the treatment chamber 24 is adjusted to be equal to or at least slightly lower than the dew point of the gas in a dry clean room when the gas is introduced into the chamber 24. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、一般には、ガラス板、エポキシ樹脂板、液晶デイスプレイ素子、その他種々の高精度電子部品の表面を熱処理するための加圧冷却処理方法に関する。より詳細には、所定の圧力容器内に収容した複数の部品を加圧加熱し次いで当該容器内を真空状態にし、そこに収容した部品に蒸着又は焼成等の所定の熱処理を施しその後、低露点の気体を供給することにより品質が極めて高い熱処理を短時間に行なうことが出来る高精密物品の加圧冷却処理方法に関する。   The present invention generally relates to a pressure cooling treatment method for heat-treating the surface of a glass plate, an epoxy resin plate, a liquid crystal display element, and other various high-precision electronic components. More specifically, a plurality of parts accommodated in a predetermined pressure vessel are pressurized and heated, and then the inside of the container is evacuated, subjected to a predetermined heat treatment such as vapor deposition or firing, and then a low dew point. The present invention relates to a pressure-cooling treatment method for a high-precision article that can perform heat treatment with extremely high quality in a short time by supplying the gas.

この種の加熱加圧冷却処理作業においては、室内へ被処理部品としてのワークを配置すること、該室の周囲に設けた加熱手段を作動させると同時に当該室内の内部圧力を上昇すること、室内温度が所定の温度に達した後、当該室内温度を一定温度に保持すると共に当該室内圧力を高圧雰囲気に維持しながら部品を定圧定温状態に保持し所望の加熱処理を行なうこと、所定時間が経過後、室内温度を一定に保持しながら室内圧力を大気圧以下まで減圧し脱気処理を行なうこと、室内の圧力を再び大気圧以上まで上昇しかつ室内温度を徐々に降下しながら被処理部品に熟成処理を行なうこと、室内を更に上昇した圧力状態に維持しながら加熱手段を不作動とし被処理部品を急冷すること、室内の圧力を大気圧まで減圧すること、室から真空加熱処理済みの被処理部品を取り出すこと、の各工程によって所定の室内において高精密部品を加圧冷却処理する加圧冷却処理方法は知られている。   In this type of heating, pressurizing and cooling processing work, placing a work as a part to be processed in the room, operating a heating means provided around the room, and simultaneously increasing the internal pressure of the room, After the temperature reaches a predetermined temperature, the room temperature is maintained at a constant temperature and the part is maintained at a constant pressure and a constant temperature while maintaining the room pressure in a high-pressure atmosphere, and a predetermined heat treatment is performed. Then, depressurize the room pressure to below atmospheric pressure while keeping the room temperature constant, increase the room pressure to above atmospheric pressure again, and gradually reduce the room temperature to the part to be processed. Aging treatment is performed, the heating means is deactivated while the interior of the chamber is maintained at a further increased pressure, the parts to be treated are rapidly cooled, the pressure in the chamber is reduced to atmospheric pressure, and the vacuum heating treatment is performed from the chamber. Already taking out the processed part, the pressurized cooling processing method for pressurized cooling processing high precision parts at a given chamber by the steps of known.

更には、室内へ被処理部品を配置すること、該室の外周及び内周に配置した加熱手段を作動させること、加熱手段の作動と同時に当該室内の圧力を少なくとも2気圧以上の圧力まで上昇すること、室内温度が所定の温度に達した後、主に室の外周加熱手段によって当該室内温度を一定温度に保持すると共に当該室内圧力を約2気圧程度に維持しながら部品を加熱保持すること、所定時間が経過後、室内圧力を約1トールまで減圧すること、室の内周加熱手段によって室内温度を当該所定温度に保持すること、室内の圧力を再び少なくとも2気圧以上の圧力まで上昇しかつ室の内周加熱手段を不作動とすることにより室内温度を徐々に降下しながら被処理物品を熟成処理すること、室内圧力を更に上昇した圧力状態に維持しながら加熱手段を不作動としかつ加圧ガス導入弁とガス排気弁とを開放することにより被処理部品を急冷すること、室内の圧力を大気圧まで減圧すること、室から真空加熱処理済みの被処理部品を取り出すこと、の各工程によって所定の室内において高精密部品を加圧冷却処理する加圧冷却処理方法も知られている。   Furthermore, placing the parts to be processed in the room, operating the heating means arranged on the outer periphery and inner circumference of the chamber, and simultaneously increasing the pressure in the room to at least 2 atm simultaneously with the operation of the heating means. After the room temperature reaches a predetermined temperature, the part is heated and held while maintaining the room temperature at a constant temperature mainly by the outer periphery heating means of the room and maintaining the room pressure at about 2 atm. After a predetermined time has elapsed, the room pressure is reduced to about 1 Torr, the room temperature is maintained at the predetermined temperature by the inner circumferential heating means of the room, the room pressure is again increased to a pressure of at least 2 atmospheres and By activating the inner peripheral heating means of the chamber, the article to be processed is aged while gradually lowering the room temperature, and the heating means is disabled while maintaining the pressure inside the chamber further increased. The parts to be treated are rapidly cooled by opening the pressurized gas introduction valve and the gas exhaust valve, the pressure in the room is reduced to atmospheric pressure, and the parts to be treated that have been subjected to vacuum heat treatment are taken out from the room There is also known a pressure-cooling treatment method in which a high-precision component is pressure-cooled in a predetermined chamber by each of the above processes.

上述したこれらの方法はいずれも、本件出願人が特許第2622356号において開示している。図2は上記加圧冷却処理方法を実施する時のワーク処理室内の圧力と、ワーク処理室内のワーク各部の温度状態と、の関係を経時的示したグラフが示されている。このグラフから明らかなように、上記処理方法即ち焼成工程は、概括的には、初期処理工程、圧力温度調整工程、加熱処理工程、脱気工程、熟成工程、冷却工程、開放工程、の諸工程を経て実行されている。   All of the above-described methods are disclosed in Japanese Patent No. 2622356 by the present applicant. FIG. 2 is a graph showing the relationship between the pressure in the workpiece processing chamber when the pressure cooling processing method is performed and the temperature state of each part of the workpiece in the workpiece processing chamber over time. As is apparent from this graph, the processing method, that is, the firing step, generally includes various steps including an initial treatment step, a pressure temperature adjustment step, a heat treatment step, a deaeration step, an aging step, a cooling step, and an opening step. Has been run through.

これらの方法によれば、ワーク即ち被処理物の温度上昇が非常に早くまた、ワークの加熱を高圧力雰囲気下にて行なうことによりワークの配置位置によるワーク各部の温度分布に差がほとんど発生せず、均一化した温度分布が得られ、更に、熟成即ちアニール工程において室内加熱手段により室内温度を降下しないように維持することによりワーク全体にほぼ均一なアニール処理が施されるので、この方法によって処理されるワーク全体にわたり物理化学的に均質化した品質が得られる。このため歩留まりが極めてよい。更に、この方法によれば、所定の熱処理時間がこれまでの場合に比較して1〜2時間短縮出来、作業時間及び消費エネルギの減少が図れるという優れた効果を提供している。   According to these methods, the temperature of the workpiece, that is, the workpiece to be processed, is very fast. Also, when the workpiece is heated in a high pressure atmosphere, there is almost no difference in the temperature distribution of each part of the workpiece depending on the position of the workpiece. Thus, a uniform temperature distribution is obtained, and furthermore, the entire work is subjected to an almost uniform annealing process by maintaining the room temperature so as not to drop by the room heating means in the aging or annealing step. Physicochemically homogenized quality is obtained throughout the workpiece being processed. For this reason, the yield is very good. Furthermore, according to this method, the predetermined heat treatment time can be shortened by 1 to 2 hours as compared with the conventional case, and an excellent effect that the working time and energy consumption can be reduced is provided.

更にまた、正規の低温運転時にはドレン排出孔を閉じて該孔からの外気侵入による冷却器への結露や霜付きを抑制でき、それにより冷却能力の維持および低温連続運転時間の延長を図ることが出来る低温恒温器であって、ドレン排出孔からの排出の処理を、別途バット等を準備する必要がなく簡単に処理できる低温恒温器として、恒温槽の底部にドレン排出孔を設けると共に、該排出孔に、正規の低温運転時には閉じ、デフロスト運転時には開くような感温型自動開閉弁を設け、これにより排出孔からのドレン水を冷凍機の恒温槽外露受けに導くようにした低温恒温器が知られている(実開平5−26145)。この低温恒温器によれば、正規の低温運転時にはドレン排出孔を自動的に閉じて該孔からの外気侵入による冷却器への結露や霜付きを抑制でき、これにより冷却能力の維持および低温連続運転時間の延長を図ることが出来、またドレン水を冷凍機の霜受けに導くように配管してある時は、デフロスト運転時にドレン水は別途バット等を準備する必要なく簡単に処理しうるという効果がある。   Furthermore, during regular low-temperature operation, the drain discharge hole can be closed to prevent condensation and frost formation on the cooler due to intrusion of outside air from the hole, thereby maintaining the cooling capacity and extending the low-temperature continuous operation time. As a low temperature thermostat that can easily process the discharge from the drain discharge hole without the need to prepare a separate bat or the like, a drain discharge hole is provided at the bottom of the thermostatic bath and the discharge is performed. A temperature-controlled automatic open / close valve is provided in the hole that closes during normal low-temperature operation and opens during defrost operation, thereby providing a low-temperature incubator that guides drain water from the discharge hole to the dew-container outside the thermostatic chamber of the refrigerator. It is known (Japanese Utility Model Publication No. 5-26145). According to this low temperature incubator, the drain discharge hole is automatically closed during normal low temperature operation, and condensation and frost formation on the cooler due to intrusion of outside air from the hole can be suppressed, thereby maintaining the cooling capacity and maintaining the low temperature continuously. The operation time can be extended, and when drain water is piped to guide the frost receiver of the refrigerator, the drain water can be easily treated without the need for a separate bat during defrost operation. effective.

特許第2622356号Japanese Patent No. 2622356 実開平5−261455-26145

然しながら、特許第2622356号に開示してある方法において、室内での反応促進のために、初期処理領域時に当該室内へ加圧気体としての空気、窒素、その他の乾燥気体を供給したり、反応処理後の冷却領域時に同様に乾燥気体を導入することがある。しかし、しばしば、当該乾燥気体内に湿気が含まれていることがあるため、特に、ワークを加熱乾燥処理した後の室内へ乾燥気体を導入したときに、該乾燥気体内に残っている僅かな湿気がワーク表面へ付着し、このため、ワークの仕上がり品質に劣化が発生するという課題があった。このため、ワークを加熱乾燥処理した後の室内へ乾燥気体を導入することを行なわないという選択も可能であるが、そうすると、ワークの処理時間、更には処理済のワークを室内から取出すまでの時間を短縮することが出来ず、昨今の作業時間短縮の要請に応えることが出来ない。更にまた、実開平5−26145に係る低温恒温器において、ドレン排水孔から排水されるドレン水には多分の水分が包含されており、面状ヒータで加熱した露受けパンが必須であり、装置の価格上昇を免れない。そこで、本件発明はこれらの課題を解消することを目的としている。   However, in the method disclosed in Japanese Patent No. 2622356, in order to promote the reaction in the room, air, nitrogen, or other dry gas as a pressurized gas is supplied to the room in the initial treatment region, or the reaction process is performed. Similarly, a dry gas may be introduced during the subsequent cooling region. However, often the moisture is contained in the dry gas, and therefore, particularly when the dry gas is introduced into the room after the workpiece is heat-dried, a small amount of residual gas remains in the dry gas. Moisture adheres to the workpiece surface, which causes a problem that the quality of the finished workpiece is degraded. For this reason, it is possible to select not to introduce the dry gas into the room after the work has been heat-dried. However, in this case, the work processing time, and further, the time until the processed work is taken out from the room. Can not be shortened, and it is not possible to meet the recent demand for shortening the work time. Furthermore, in the low temperature thermostat according to Japanese Utility Model Publication No. 5-26145, the drain water drained from the drain drain hole contains a large amount of water, and a dew pan pan heated by a planar heater is essential. Inevitable price increases. Therefore, the present invention aims to solve these problems.

しかしながら、上記方法においては、真空加熱処理手段12の圧力容器20へ所定の気体を供給して当該圧力容器20内部の圧力を調整する際に、当該気体中に水分が含まれているときには当該水分を除去するために多少処理時間を長くするよう調整する必要があった。この調整は加熱処理領域の前段階においては加熱手段の作用温度を高めたりまたは作用時間を長くするなど、加熱手段を適切に調整することにより容易に解消できる。然るに加熱処理領域の後段階においては所望の真空加熱処理作用が終了した被処理物26へ対して湿気のある気体を供給する結果となり、このため、被処理物26に水分が付着することになり、このため、被処理物26に不良が発生する危険がある。この危険を防止するために、加熱処理領域の後段階においては、圧力容器20内への気体の供給を行なわないという選択が可能である。しかしそうすると、加熱処理作業の時間が長くなり、経済的面からは大きな課題となる。そこで、本件真空加熱処理方法においては、露点調整手段14を設置することによりこの課題を解消している。   However, in the above method, when a predetermined gas is supplied to the pressure vessel 20 of the vacuum heat treatment means 12 and the pressure inside the pressure vessel 20 is adjusted, the moisture is contained in the gas. It was necessary to adjust the processing time to be slightly longer in order to remove the above. This adjustment can be easily eliminated by appropriately adjusting the heating means such as increasing the operating temperature of the heating means or extending the operating time in the previous stage of the heat treatment region. However, in the latter stage of the heat treatment region, the result is that a gas having moisture is supplied to the object to be processed 26 for which the desired vacuum heat treatment operation has been completed, so that moisture adheres to the object to be processed 26. For this reason, there is a risk that a defect occurs in the workpiece 26. In order to prevent this danger, it is possible to select not to supply gas into the pressure vessel 20 at a later stage of the heat treatment region. However, if it does so, the time of heat processing work will become long and will become a big subject from an economical side. Therefore, in the present vacuum heat treatment method, this problem is solved by installing the dew point adjusting means 14.

本件発明は、高精密部品を加圧冷却処理する方法であって、処理室内へ被処理部品としてのワークを配置すること、該処理室の周囲に設けた加熱手段を作動させると同時に当該処理室内の内部圧力を上昇すること、処理室内温度が所定の温度に達した後、当該処理室内温度を一定温度に保持すると共に当該処理室内圧力を高圧雰囲気に維持しながら部品を定圧定温状態に保持し所望の加熱処理を行なうこと、所定時間が経過後、処理室内温度を一定に保持しながら処理室内圧力を大気圧以下まで減圧し脱気処理を行なうこと、処理室内の圧力を再び大気圧以上まで上昇しかつ処理室内温度を徐々に降下しながら被処理部品に熟成処理を行なうこと、処理室内を更に上昇した圧力状態に維持しながら加熱手段を不作動または目的の冷却曲線を得るための補助的手段とし被処理部品を急冷すること、処理室内の圧力を大気圧まで減圧すること、次いで処理室から真空加熱処理済みの被処理部品を取り出すこと、の諸工程よりなり、処理室内を加圧する際に気体供給源より送給される気体の温度及び蒸気圧を露点調整手段によって調整し、気体を室内に導入する時、当該処理室内の露点が少なくともドライ・クリーンルーム内における気体の露点と同じか少なくともそれより僅かに低い露点になるように調整されていることを特徴とする高精密部品の加圧冷却処理方法である。   The present invention is a method for pressurizing and cooling a high-precision component, in which a work as a component to be processed is placed in a processing chamber, and a heating means provided around the processing chamber is operated simultaneously with the processing chamber. After the processing chamber temperature reaches a predetermined temperature, the processing chamber temperature is maintained at a constant temperature, and the processing chamber pressure is maintained at a high pressure atmosphere, and the parts are maintained at a constant pressure and constant temperature. Perform a desired heat treatment, and after a predetermined time has passed, perform a deaeration process by reducing the pressure in the processing chamber to below atmospheric pressure while keeping the temperature in the processing chamber constant, and increase the pressure in the processing chamber to above atmospheric pressure again. Aging process is performed on the parts to be processed while the temperature rises and the temperature in the processing chamber is gradually lowered, and the heating means is not operated or a desired cooling curve is obtained while maintaining the pressure in the processing chamber at a further increased pressure. The process consists of the following steps: quenching the parts to be processed as auxiliary means, reducing the pressure in the processing chamber to atmospheric pressure, and then taking out the parts to be processed that have been vacuum-heated from the processing chamber. When the gas is introduced into the room by adjusting the temperature and vapor pressure of the gas supplied from the gas supply source when the gas is pressurized and the gas is introduced into the room, the dew point of the gas in the dry clean room is at least Is a pressure cooling treatment method for high-precision parts, characterized in that the dew point is adjusted to be the same as or at least slightly lower than the dew point.

ワークの温度上昇が非常に早くまた、ワークの加熱を高圧力雰囲気下にて行うことによりワークの配置位置によるワーク各部の温度分布に差がほとんど発生せず、均一化した温度分布が得られる。更に、熟成即ちアニール工程において室内加熱手段により室内温度を降下しないように維持することによりワーク全体にほぼ均一なアニール処理が施されるので、この装置によって処理されるワーク全体にわたり物理化学的に均質化した品質が得られる。このため歩留まりが極めてよい。更に、本発明装置によれば、所定の熱処理時間がこれまでの場合に比較して1〜2時間短縮出来、作業時間及び消費エネルギの減少が図れる。   The temperature of the workpiece rises very quickly, and by heating the workpiece in a high pressure atmosphere, there is almost no difference in the temperature distribution of each part of the workpiece depending on the position of the workpiece, and a uniform temperature distribution can be obtained. Further, since the entire workpiece is subjected to an almost uniform annealing process by keeping the room temperature from being lowered by the room heating means in the aging or annealing step, it is physicochemically homogeneous throughout the entire workpiece processed by this apparatus. Quality is obtained. For this reason, the yield is very good. Furthermore, according to the apparatus of the present invention, the predetermined heat treatment time can be shortened by 1 to 2 hours compared to the conventional case, and the working time and energy consumption can be reduced.

本件発明の方法を実施するために最適な装置の概略図である。FIG. 2 is a schematic view of an apparatus optimal for carrying out the method of the present invention. 処理室内の圧力と被処理物の温度状態とを、時間との関連で示したグラフである。It is the graph which showed the pressure in a process chamber, and the temperature state of a to-be-processed object in relation to time.

本件発明は、実質的に本件出願人が特許第2622356号において公開した方法を改良することによって、これまでの物品よりも一層高精密な部品、たとえばリチウム電池、燃料電池、太陽電池、更には液晶部品等に使用される各種の高精度基板に所望の加圧冷却処理を適用することが出来る方法を開示するものである。図1は本件発明の方法を好適に実施するために最適な高精密部品の加圧冷却処理装置10の概略図を示している。この装置10は、概括的には、加圧冷却処理手段12と、露点調整手段14と、から構成されている。実質的に加圧冷却処理作用を行なう機能を有している加圧冷却処理手段12は、本質的に上記特許において公開した公知の装置と類似した構成を有している。   The present invention is substantially improved by improving the method disclosed by the present applicant in Japanese Patent No. 2622356, so that parts with higher precision than conventional articles, such as lithium batteries, fuel cells, solar cells, and even liquid crystals. Disclosed is a method capable of applying a desired pressure cooling process to various high-precision substrates used for components and the like. FIG. 1 is a schematic view of a pressure-cooling treatment apparatus 10 for high-precision parts that is optimal for suitably carrying out the method of the present invention. The apparatus 10 generally includes a pressure / cooling processing means 12 and a dew point adjusting means 14. The pressurization / cooling processing means 12 having the function of substantially performing the pressurization / cooling processing operation has a configuration substantially similar to that of the known apparatus disclosed in the above patent.

加圧冷却処理手段12は、一端が開放の圧力容器20と、該圧力容器20の開放端部を開閉自在に密封封止可能な圧力容器扉22と、を有している。圧力容器20の断面形状は円形、楕円形又は矩形等を有することが出来、また、扉22はその断面形状の開放端部を適切に密封出来る形態を有している。圧力容器20の内部には処理室24が画定されている。処理室24内には上述した各種の高精度基板からなる被処理物26がそれ自体公知の手段により配設されている。なお、被処理物26を処理室24の内部へ送給したりそこから取り出すためには上記特許に開示したような公知の架台やワーク支持台等が使用され得る。なお、圧力容器20と圧力容器扉22とは隔壁28によって隔絶されており、隔壁28の一方(図において左方)はドライ・クリーンルーム16となっている。このため、圧力容器扉22はドライ・クリーンルーム内に存置している。   The pressure cooling processing means 12 includes a pressure vessel 20 having an open end, and a pressure vessel door 22 that can be hermetically sealed so that the open end of the pressure vessel 20 can be opened and closed. The cross-sectional shape of the pressure vessel 20 may have a circular shape, an oval shape, a rectangular shape, or the like, and the door 22 has a form that can appropriately seal the open end of the cross-sectional shape. A processing chamber 24 is defined inside the pressure vessel 20. In the processing chamber 24, an object to be processed 26 composed of the above-described various high-precision substrates is arranged by means known per se. In order to feed the workpiece 26 into or out of the processing chamber 24, a well-known frame or workpiece support as disclosed in the above patent can be used. The pressure vessel 20 and the pressure vessel door 22 are separated from each other by a partition wall 28, and one of the partition walls 28 (left side in the figure) is a dry / clean room 16. For this reason, the pressure vessel door 22 is placed in a dry / clean room.

更に、処理室24内には被処理物26の周辺部において処理室内部の圧力を感知するための圧力センサー30が配置されている。また、処理室24の閉鎖端部付近には処理室内部の気体を攪拌し、処理室内部の温度を均一にするための攪拌用ファン32が設置されている。このファン32は、例えば圧力容器20の閉鎖端外部に配置されたモーター34により、回転軸36及び軸シール手段38を介して、駆動される。また、圧力容器20の内部においてファン32の周辺部には処理室冷却用コイル40が配置されている。この冷却コイル40は圧力容器20の外部に設置した冷凍機42に接続されており、圧力容器20の内部を冷却する際に冷凍機42からの冷気が膨張弁44を介して供給される。膨張弁44を開閉することにより処理室24内の温度を適切に調節することが出来る。この処理室冷却用コイル40は、熱交換器であるので設置位置はファン32から離れている場合もある。形状もコイル状であったりプレート状であったり、最適の形状が選ばれる。更に、図示していないが、処理室24の内部であって被処理物26に対置する部分や閉鎖端部付近、更には処理室24の外周部分、ワーク支持台から立ち上がっている立上片のワークに面する部分等にはコイルヒータ又はパネルヒータ等の加熱手段が配置されている。   Further, a pressure sensor 30 for sensing the pressure inside the processing chamber is disposed in the processing chamber 24 at the periphery of the workpiece 26. Further, a stirring fan 32 is provided in the vicinity of the closed end of the processing chamber 24 to stir the gas in the processing chamber and make the temperature in the processing chamber uniform. The fan 32 is driven via a rotating shaft 36 and shaft sealing means 38 by a motor 34 disposed outside the closed end of the pressure vessel 20, for example. A processing chamber cooling coil 40 is disposed in the periphery of the fan 32 inside the pressure vessel 20. The cooling coil 40 is connected to a refrigerator 42 installed outside the pressure vessel 20, and cold air from the refrigerator 42 is supplied via an expansion valve 44 when the inside of the pressure vessel 20 is cooled. By opening and closing the expansion valve 44, the temperature in the processing chamber 24 can be adjusted appropriately. Since the processing chamber cooling coil 40 is a heat exchanger, the installation position may be away from the fan 32. The shape is also a coil shape or a plate shape, and an optimum shape is selected. Further, although not shown in the figure, the portion inside the processing chamber 24 facing the workpiece 26 and the vicinity of the closed end, the outer peripheral portion of the processing chamber 24, and the rising piece rising from the work support base A heating means such as a coil heater or a panel heater is disposed on a part facing the workpiece.

本件発明において特に留意されるべき点は、処理室24の内部の圧力を調整するために当該処理室24へ送給する気体の露点を予め調整するための露点調整手段14が設けてあることである。処理室24の内部へ気体を送給するのは、処理室内部の圧力を迅速に上昇させたり、処理室24の内部を迅速に冷却することにより当該加圧冷却処理に要する時間を短縮するためである。また、処理室24の内部へ送給する気体の露点を予め調整するのは、送給する気体中に過度の湿気が含まれていると、その湿気がワークへ付着してワークの品質を劣化するので、予めかかる危険を阻止するためである。ここで、使用される気体としては、空気、窒素ガス、アルゴン、その他の不活性ガスが好ましい。   The point to be particularly noted in the present invention is that dew point adjusting means 14 for adjusting in advance the dew point of the gas supplied to the processing chamber 24 in order to adjust the pressure inside the processing chamber 24 is provided. is there. The reason for supplying the gas to the inside of the processing chamber 24 is to quickly increase the pressure inside the processing chamber or to quickly cool the inside of the processing chamber 24 to shorten the time required for the pressure cooling process. It is. In addition, the dew point of the gas supplied to the inside of the processing chamber 24 is adjusted in advance if excessive moisture is contained in the supplied gas, and the moisture adheres to the workpiece and deteriorates the quality of the workpiece. This is to prevent such danger in advance. Here, the gas used is preferably air, nitrogen gas, argon, or other inert gas.

露点調整手段14は、圧力容器50を有している。この容器50の内部には前記気体の露点を予め所定の値に調節する気体露点調整室52が画定されている。当該調整室52の内部には調整室52内部を冷却するための冷却コイル54が配置されている。この冷却コイル54の一端部は、矢印で示すように、冷凍機42へ接続されている。冷却コイル54の他端部は冷凍機42へ接続されており、冷凍機42と冷却コイル54の他端部との間を結ぶ配管中には膨張弁58が設置されている。この膨張弁58を開閉することにより調整室52内部の温度を適切に調節することが出来る。更に調整室52には室内の圧力を感知するための圧力センサー56が設けてある。   The dew point adjusting means 14 has a pressure vessel 50. A gas dew point adjusting chamber 52 for adjusting the dew point of the gas to a predetermined value in advance is defined in the container 50. Inside the adjustment chamber 52, a cooling coil 54 for cooling the inside of the adjustment chamber 52 is disposed. One end of the cooling coil 54 is connected to the refrigerator 42 as indicated by an arrow. The other end of the cooling coil 54 is connected to the refrigerator 42, and an expansion valve 58 is installed in the pipe connecting the refrigerator 42 and the other end of the cooling coil 54. By opening and closing the expansion valve 58, the temperature inside the adjustment chamber 52 can be adjusted appropriately. Furthermore, the adjustment chamber 52 is provided with a pressure sensor 56 for sensing the pressure in the chamber.

更に気体露点調整室52には、当該調整室52へ所定の気体を供給するための気体供給源60が接続されている。この気体供給源60は実際には使用者が具備しているユーティリティが一般的であり、必要に応じて増圧器が付加されることもあるが、多くの場合は、エアーコンプレッサー等が使用され得る。なお、本件発明において使用される気体としては、空気、窒素ガス、アルゴン、その他の不活性ガスが好ましいことは前述の通りである。気体供給源60と圧力容器50との間には圧力調整のための減圧弁62が配置されている。更に、圧力容器50は、別の減圧弁64および気体供給弁66を介して、真空加熱処理手段12の圧力容器20へ接続されている。こうして圧力容器20へ送給される気体の圧力および量を調整可能としている。また、当該気体供給弁66から供給される気体を適切に排出して圧力容器20の内部圧力を適正圧力に調整するため、真空加熱処理手段12の圧力容器20には圧力開放弁68が設けてある。   Further, a gas supply source 60 for supplying a predetermined gas to the adjustment chamber 52 is connected to the gas dew point adjustment chamber 52. In practice, the gas supply source 60 is generally a utility provided by the user, and a pressure intensifier may be added as necessary. In many cases, an air compressor or the like can be used. . As described above, the gas used in the present invention is preferably air, nitrogen gas, argon, or other inert gas. A pressure reducing valve 62 for adjusting the pressure is disposed between the gas supply source 60 and the pressure vessel 50. Further, the pressure vessel 50 is connected to the pressure vessel 20 of the vacuum heat treatment means 12 via another pressure reducing valve 64 and a gas supply valve 66. In this way, the pressure and amount of the gas supplied to the pressure vessel 20 can be adjusted. Further, in order to properly discharge the gas supplied from the gas supply valve 66 and adjust the internal pressure of the pressure vessel 20 to an appropriate pressure, the pressure vessel 20 of the vacuum heating processing means 12 is provided with a pressure release valve 68. is there.

本件の真空加熱処理装置10において、真空加熱処理手段12は、上記特許において開示したものと同様の工程に基づき、気体供給弁66を介して圧力容器20内を加圧し、圧力開放弁68を介して圧力容器20内を減圧又は脱気し、更には圧力容器20の周辺に配置した図示していない加熱手段を介して圧力容器20内を加熱し、処理室冷却用コイル40を介して圧力容器20内を冷却することにより、被処理物26を適切に真空加熱処理することが出来る。   In the vacuum heat treatment apparatus 10 of the present case, the vacuum heat treatment means 12 pressurizes the inside of the pressure vessel 20 through the gas supply valve 66 and through the pressure release valve 68 based on the same process as disclosed in the above patent. The pressure vessel 20 is depressurized or degassed, and further, the pressure vessel 20 is heated via heating means (not shown) arranged around the pressure vessel 20, and the pressure vessel 20 is heated via the processing chamber cooling coil 40. By cooling the inside 20, the workpiece 26 can be appropriately vacuum-heated.

本件発明の方法では、露点調整手段14によって、真空加熱処理手段12の圧力容器20へ供給する気体の露点を予め所定の値になるように調整している。このため、圧力容器20内へ対する、加熱処理領域の前段階における加熱手段の作用時間または温度の調整を不要とし、さらに加熱処理領域の後段階における気体供給を可能とし、こうしてこれまでの課題を完全に解消したのである。即ち本件発明では、処理室24へ送給する気体の露点を、露点調整手段14により、処理室24内の露点以下に調整している。このため、露点を予め低くなるように調整された気体が処理室24へ送給されるので当該気体の送給によってワーク自体へ結露が発生するということが完全に防止出来るのである。更に、この露点をドライ・クリーンルーム16内の雰囲気での露点に接近した値に予め調整しておけば、圧力容器扉22を開放して処理済のワークを取り出すときにも、当該ドライ・クリーンルーム内の露点を上げてしまうことはない。   In the method of the present invention, the dew point of the gas supplied to the pressure vessel 20 of the vacuum heat treatment means 12 is adjusted in advance by the dew point adjustment means 14 to a predetermined value. For this reason, it is not necessary to adjust the operation time or temperature of the heating means in the previous stage of the heat treatment region to the inside of the pressure vessel 20, and further, it is possible to supply the gas in the later stage of the heat treatment region, thus solving the problems so far. It was completely eliminated. That is, in the present invention, the dew point of the gas supplied to the processing chamber 24 is adjusted to be equal to or lower than the dew point in the processing chamber 24 by the dew point adjusting means 14. For this reason, since the gas adjusted so as to lower the dew point in advance is fed to the processing chamber 24, it is possible to completely prevent dew condensation from occurring on the workpiece itself due to the feeding of the gas. Further, if this dew point is adjusted in advance to a value close to the dew point in the atmosphere in the dry / clean room 16, the pressure vessel door 22 is opened and the processed workpiece is taken out. Will not raise the dew point.

またワークの冷却温度をドライ・クリーンルーム内の温度より2℃以上高めにすることにより、当該ドライ・クリーンルーム内においてワークへ結露が発生する事を完全に防止し極めて高品質な処理が達成出来る。以下にその作用を述べる。   In addition, by raising the cooling temperature of the workpiece by 2 ° C. or more than the temperature in the dry / clean room, it is possible to completely prevent the dew condensation on the workpiece in the dry / clean room and achieve extremely high quality processing. The operation is described below.

図示の装置10において、露点調整手段14のユーティリティ即ち気体供給源60は、たとえば、これを窒素とすると、具体的には液化窒素、窒素ボンベ、窒素製造装置が考えられる。ここで、液化窒素は、設備も大きなものとなりかつ高額な設備投資も必要となる。可搬式液化窒素も存在するが、これは内部の窒素を使用しなくても時間の経過と共に消費してしまうので好ましくない。窒素ボンベは、多数の中型容器を枠組し、固定した供給装置を使用してガスを供給する集合設備であるカードル式や長尺容器を使用したセルフローダー式やトレーラー式があるがいずれの場合にも、当該ボンベを頻繁に交換する必要があり、また純度によって価格の差が著しい。たとえば純度99.5%の窒素の価格を5とすると、純度99.999%の窒素では28、純度99.9998%の窒素では31と言った具合である。そこで、一般的には無尽の空気を原料にした窒素製造装置が使用されている。   In the illustrated apparatus 10, the utility of the dew point adjusting means 14, that is, the gas supply source 60, for example, can be liquefied nitrogen, a nitrogen cylinder, and a nitrogen production apparatus, assuming that this is nitrogen. Here, liquefied nitrogen requires large equipment and requires high capital investment. Portable liquefied nitrogen also exists, but this is not preferable because it consumes over time without using internal nitrogen. Nitrogen cylinders have a large number of medium-sized containers, and there are a cardle type that is a collective facility that supplies gas using a fixed supply device, a self-loader type that uses a long container, and a trailer type. However, it is necessary to change the cylinder frequently, and the difference in price depends on the purity. For example, if the price of nitrogen with a purity of 99.5% is 5, it is 28 for nitrogen with a purity of 99.999% and 31 for nitrogen with a purity of 99.998%. Therefore, in general, a nitrogen production apparatus using infinite air as a raw material is used.

現在は取り出し圧力0.7MPaまたは0.88MPa、窒素ガス純度99.9%のものが比較的導入しやすい価格で市販されている。しかし、この窒素製造装置は、−60℃、−55℃、−38℃のような低露点のドライ・クリーンルームに使用することは想定していない。ましてや露点を調節しながら圧力容器に供給し圧力容器の中で低露点の加圧冷却を行なうことも全く想定されていない。   At present, a take-out pressure of 0.7 MPa or 0.88 MPa and a nitrogen gas purity of 99.9% are commercially available at a relatively easy price. However, this nitrogen production apparatus is not assumed to be used in dry clean rooms with low dew points such as -60 ° C, -55 ° C, and -38 ° C. Furthermore, it is not assumed at all that the dew point is supplied to the pressure vessel while adjusting the dew point, and the pressure vessel is cooled at a low dew point.

また、気体を空気とすると、冷凍式エアードライヤー内蔵型エアーコンプレッサーでも室温30℃において出口空気1.08MPaの露点は10℃程度であり、このときの水の蒸気圧は1.227KPaである。これを大気圧まで下げても[1227÷10.8=114Pa]であり、これは露点が約−19℃である。これではやはり低露点の加圧冷却には適さないことは明らかである。   When the gas is air, the dew point of the outlet air of 1.08 MPa is about 10 ° C. at room temperature of 30 ° C. even in a refrigeration air dryer built-in air compressor, and the vapor pressure of water at this time is 1.227 KPa. Even if this is reduced to atmospheric pressure, it is [1227 ÷ 10.8 = 114 Pa], and this has a dew point of about −19 ° C. This is obviously not suitable for pressure cooling with a low dew point.

そこで本件発明の方法では特に市販の窒素製造装置若しくは冷凍式エアードライヤー内蔵型エアーコンプレッサーを、必要であればこれらの装置の後にブースターポンプを追加設置して気体供給源60とすることが望ましい低露点気体を供給することにより加圧冷却作用を行なう真空加熱処理方法の具体例について開示する。   Therefore, in the method of the present invention, it is particularly desirable to use a commercially available nitrogen production device or a refrigeration air dryer built-in type air compressor, and if necessary, a booster pump is additionally installed after these devices to form the gas supply source 60. A specific example of a vacuum heat treatment method for performing a pressure cooling operation by supplying a gas will be disclosed.

気体供給源60の取り出し圧力を0.8MPaの窒素ガス発生装置とし、0.2MPa(ゲージ圧0.1MPa)の加圧雰囲気下で−55℃の露点で被処理物26を冷却する場合について述べる。まず取り出し圧力0.8MPaからの供給圧力を安定させるため減圧弁62を介して気体露点調節室52の圧力を正確に0.7MPaに維持し、この気体の温度を−45℃以下とすることにより、蒸気圧は7.2Pa以下となる。この気体は減圧弁64を介して0.2MPaに調整して処理室24に送ることにより処理室24の蒸気圧は[7.2×0.2÷0.7=2.057Pa]以下となり、このときの処理室24の露点は約−55℃以下が得られ、低露点での加圧冷却が可能となる。   A case will be described in which a nitrogen gas generator having a gas supply source 60 with a discharge pressure of 0.8 MPa is used, and the workpiece 26 is cooled at a dew point of −55 ° C. in a pressurized atmosphere of 0.2 MPa (gauge pressure 0.1 MPa). . First, in order to stabilize the supply pressure from the extraction pressure of 0.8 MPa, the pressure of the gas dew point adjusting chamber 52 is accurately maintained at 0.7 MPa via the pressure reducing valve 62, and the temperature of this gas is set to −45 ° C. or lower. The vapor pressure is 7.2 Pa or less. This gas is adjusted to 0.2 MPa through the pressure reducing valve 64 and sent to the processing chamber 24, whereby the vapor pressure in the processing chamber 24 becomes [7.2 × 0.2 ÷ 0.7 = 2.57 Pa] or less, At this time, the dew point of the processing chamber 24 is about −55 ° C. or less, and pressurized cooling at a low dew point is possible.

加圧冷却が完了したら、圧力開放弁68を介して処理室24の雰囲気を0.2MPaからドライ・クリーンルーム16内と同じ0.1MPaに減圧することにより処理室24の蒸気圧は[2.057×0.1÷0.2=1.028Pa]以下となり露点−60℃となり、ドライ・クリーンルーム16内の露点が−60℃までであれば、当該ドライ・クリーンルームの露点を上げてしまうことはない。   When the pressurized cooling is completed, the vapor pressure of the processing chamber 24 is reduced to [2.057 × by reducing the atmosphere of the processing chamber 24 from 0.2 MPa to the same 0.1 MPa as in the dry / clean room 16 via the pressure release valve 68. 0.1 ÷ 0.2 = 1.028 Pa] or less, and the dew point is −60 ° C. If the dew point in the dry clean room 16 is up to −60 ° C., the dew point of the dry clean room is not increased.

次に、例えば露点−10℃、圧力1.08MPaの冷凍式エアードライヤー内蔵型エアーコンプレッサーを、気体供給源60とし、0.4MPa(ゲージ圧0.3MPa)の加圧雰囲気下で−50℃の露点で被処理物26を冷却する場合について述べる。まず気体供給源60の取り出し圧力が1.18から1.47MPaと振れるエアーコンプレッサーの供給圧力を安定させるため減圧弁62を介して気体露点調節室52の圧力を正確に1MPaに維持し、この温度を−43℃以下にすることにより、蒸気圧は9.1Pa以下となり、この気体を減圧弁64を介して処理室24に送ることにより、処理室24の蒸気圧は[9.1×0.4÷1.0=3.64Pa]となり、このときの処理室24の露点は約−50℃以下が得られ、低露点での加圧冷却が可能となる。加圧冷却が完了したら、圧力開放弁68を介して処理室24の雰囲気を0.4MPaからドライ・クリーンルーム16内と同じ0.11MPaに減圧することにより処理室24の蒸気圧は[3.64×0.1÷0.4=0.91Pa]以下となり露点−61℃となり、ドライ・クリーンルーム16内の露点が−60℃までであれば、当該ドライ・クリーンルームの露点を上げてしまうことはない。   Next, for example, an air compressor with a built-in refrigeration air dryer having a dew point of −10 ° C. and a pressure of 1.08 MPa is used as the gas supply source 60, and the pressure is −50 ° C. in a pressurized atmosphere of 0.4 MPa (gauge pressure 0.3 MPa). A case where the workpiece 26 is cooled at the dew point will be described. First, in order to stabilize the supply pressure of the air compressor in which the extraction pressure of the gas supply source 60 swings from 1.18 to 1.47 MPa, the pressure of the gas dew point adjustment chamber 52 is accurately maintained at 1 MPa via the pressure reducing valve 62. Is set to −43 ° C. or lower, the vapor pressure becomes 9.1 Pa or lower. By sending this gas to the processing chamber 24 via the pressure reducing valve 64, the vapor pressure in the processing chamber 24 becomes [9.1 × 0. 4 ÷ 1.0 = 3.64 Pa], and the dew point of the processing chamber 24 at this time is about −50 ° C. or lower, and pressure cooling at a low dew point is possible. When the pressurized cooling is completed, the atmosphere in the processing chamber 24 is reduced from 0.4 MPa to 0.11 MPa, which is the same as that in the dry / clean room 16, via the pressure release valve 68, whereby the vapor pressure in the processing chamber 24 is set to [3.64. × 0.1 ÷ 0.4 = 0.91 Pa] or less, and the dew point is −61 ° C. If the dew point in the dry clean room 16 is up to −60 ° C., the dew point of the dry clean room will not be raised. .

更に比較的高圧の実施例として、例えば露点取り出し圧力7.0MPaのエアーコンプレッサーを、気体供給源60としてこの後にブースターポンプを追加設置して、0.6MPa(ゲージ圧0.5MPa)の加圧雰囲気下で−60℃の露点で被処理物26を冷却する場合について述べる。まず取り出し圧力が3.1MPa(ゲージ圧3.0MPa)のブースターポンプの供給圧力を安定させるため減圧弁62を介して気体露点調節室52の圧力を正確に3.0MPaに維持し、この温度を−48℃以下にすることにより、蒸気圧は5.03Pa以下となる。この気体を減圧弁64を介して処理室24へ送る。これにより処理室24の蒸気圧は[5.03×0.6÷3.0=1.006Pa]となり、このときの処理室24の露点は約−60℃以下が得られ、低露点で加圧冷却が可能となる。   Further, as an example of a relatively high pressure, for example, an air compressor having a dew point extraction pressure of 7.0 MPa, a booster pump as an additional gas supply source 60 is additionally installed, and a pressurized atmosphere of 0.6 MPa (gauge pressure 0.5 MPa) is provided. Below, the case where the to-be-processed object 26 is cooled by -60 degreeC dew point is described. First, in order to stabilize the supply pressure of the booster pump whose take-out pressure is 3.1 MPa (gauge pressure 3.0 MPa), the pressure in the gas dew point adjusting chamber 52 is accurately maintained at 3.0 MPa via the pressure reducing valve 62, and this temperature is adjusted. By setting it to −48 ° C. or less, the vapor pressure becomes 5.03 Pa or less. This gas is sent to the processing chamber 24 through the pressure reducing valve 64. As a result, the vapor pressure of the processing chamber 24 becomes [5.03 × 0.6 ÷ 3.0 = 1.006 Pa], and the dew point of the processing chamber 24 at this time is about −60 ° C. or less, and the low dew point is added. Pressure cooling is possible.

次に加熱処理、脱気処理、熟成処理を経て、更に上記時指令で述べたような加圧冷却処理を完了した後に被処理物26を圧力容器20から取り出す作業について述べる。被処理物26を冷却した後、圧力容器扉22を開けて被処理物26を圧力容器20から取り出すが、このときの取り出し温度は、本件処理装置が設置されたドライ・クリーンルームの室温より若干高い方が、被処理物へ再び水分が付着することを予防する効果が高いことは、水の性質または蒸気の性質から考えて当然である。よって、処理後の被処理物26の取り出しは、本件処理装置が設置されたドライ・クリーンルームの室温より2℃程度高く上限は、低温やけどの危険性のある44℃を避けるために40℃程度が望ましい。例えばドライ・クリーンルームの室温が23℃であれば、25℃から40℃程度が望ましい。   Next, an operation of taking out the object 26 from the pressure vessel 20 after the heat treatment, deaeration treatment, and aging treatment, and after completing the pressure cooling treatment as described in the above time command will be described. After the workpiece 26 is cooled, the pressure vessel door 22 is opened and the workpiece 26 is taken out from the pressure vessel 20. The take-out temperature at this time is slightly higher than the room temperature of the dry / clean room where the present processing apparatus is installed. It is natural that the effect of preventing moisture from adhering again to the object to be treated is higher in view of the properties of water or steam. Therefore, the removal of the processed object 26 after processing is about 2 ° C. higher than the room temperature of the dry / clean room in which the present processing apparatus is installed, and the upper limit is about 40 ° C. in order to avoid 44 ° C. where there is a risk of low temperature burns. desirable. For example, if the room temperature of the dry clean room is 23 ° C., about 25 ° C. to 40 ° C. is desirable.

一方、窒化、酸化に敏感な被処理物26に関しては、窒化、酸化に敏感でなくなる領域までアルゴン等の不活性ガスまたは300KPa程度の陰圧での冷却を行い、敏感でなくなる領域以下になったなら、低露点加圧冷却を行なうことも有効である。   On the other hand, the object to be processed 26 sensitive to nitridation and oxidation is cooled to an area insensitive to nitridation and oxidation by an inert gas such as argon or a negative pressure of about 300 KPa, and becomes less than the insensitive area. Then, it is also effective to perform low dew point pressure cooling.

上述した実施例では、特に図2において、加熱処理領域後の冷却領域における加圧冷却工程に関して述べているが、上述した内容は、当然、加熱処理領域前の初期処理領域における加圧加熱工程に関しても同様に適用出来るのである。   In the embodiment described above, particularly in FIG. 2, the pressure cooling process in the cooling area after the heat treatment area is described. However, the above description naturally relates to the pressure heating process in the initial process area before the heat treatment area. Is equally applicable.

なお、図1に示した装置10において、処理室24を冷却する工程は、処理室24内の冷却用コイル40へ冷凍機42からの冷気を付与しファン32を回転しながら、露点調整手段14の気体供給弁66を開放して冷気を処理室24へ供給することにより迅速に行うことができることは明らかである。なおこのとき圧力開放弁68を開放状態に保持し、露点調整手段14からの冷気が処理室24内を完全に貫通状態として冷却することが出来るが、圧力開放弁68を調時的に開閉することにより、前記冷気を効率よく経済的に使用することも出来る。   In the apparatus 10 shown in FIG. 1, the process of cooling the processing chamber 24 is performed by applying the cool air from the refrigerator 42 to the cooling coil 40 in the processing chamber 24 and rotating the fan 32 while the dew point adjusting means 14. It is obvious that this can be done quickly by opening the gas supply valve 66 and supplying cold air to the processing chamber 24. At this time, the pressure release valve 68 is held open, and the cool air from the dew point adjusting means 14 can be cooled while completely passing through the processing chamber 24, but the pressure release valve 68 is opened and closed in a timely manner. Thus, the cold air can be used efficiently and economically.

10 高精度部品の加圧冷却処理装置
12 加圧冷却処理手段
14 露点調整手段
16 ドライ・クリーンルーム
20 圧力容器
22 圧力容器扉
24 処理室
26 被処理物
28 隔壁
30 圧力センサー
32 攪拌用ファン
34 モーター
36 回転軸
38 軸シール手段
40 処理室冷却用コイル
42 冷凍機
44 膨張弁
50 圧力容器
52 気体露点調整室
54 冷却コイル
56 圧力センサー
58 膨張弁
60 気体供給源
62、64 減圧弁
66 気体供給弁
68 圧力開放弁
DESCRIPTION OF SYMBOLS 10 Pressurized cooling processing apparatus 12 of high precision parts Pressurized cooling processing means 14 Dew point adjustment means 16 Dry clean room 20 Pressure vessel 22 Pressure vessel door 24 Processing chamber 26 Processed object 28 Partition 30 Pressure sensor 32 Stirring fan 34 Motor 36 Rotating shaft 38 Shaft sealing means 40 Processing chamber cooling coil 42 Refrigerator 44 Expansion valve 50 Pressure vessel 52 Gas dew point adjustment chamber 54 Cooling coil 56 Pressure sensor 58 Expansion valve 60 Gas supply source 62, 64 Pressure reducing valve 66 Gas supply valve 68 Pressure Release valve

Claims (2)

高精密部品を加圧冷却処理する方法であって、処理室内へ被処理部品としてのワークを配置すること、該処理室の周囲に設けた加熱手段を作動させると同時に当該処理室内の内部圧力を上昇すること、処理室内温度が所定の温度に達した後、当該処理室内温度を一定温度に保持すると共に当該処理室内圧力を高圧雰囲気に維持しながら部品を定圧定温状態に保持し所望の加熱処理を行なうこと、所定時間が経過後、処理室内温度を一定に保持しながら処理室内圧力を大気圧以下まで減圧し脱気処理を行なうこと、処理室内の圧力を再び大気圧以上まで上昇しかつ処理室内温度を徐々に降下しながら被処理部品に熟成処理を行なうこと、処理室内を更に上昇した圧力状態に維持しながら加熱手段を不作動または目的の冷却曲線を得るための補助的手段とし被処理部品を急冷すること、処理室内の圧力を大気圧まで減圧すること、次いで処理室から真空加熱処理済みの被処理部品を取り出すこと、の諸工程よりなり、
処理室内を加圧する際に気体供給源より送給される気体の温度及び蒸気圧を露点調整手段によって調整し、気体を室内に導入する時、当該処理室内の露点が少なくともドライ・クリーンルーム内における気体の露点と同じか少なくともそれより僅かに低い露点になるように調整されていることを特徴とする高精密部品の加圧冷却処理方法。
A method for pressurizing and cooling high-precision parts, in which a work as a part to be processed is placed in a processing chamber, and a heating means provided around the processing chamber is operated and at the same time the internal pressure in the processing chamber is After the temperature in the processing chamber reaches a predetermined temperature, the temperature in the processing chamber is maintained at a constant temperature and the pressure in the processing chamber is maintained in a high pressure atmosphere, and the components are maintained at a constant pressure and a constant temperature to perform a desired heat treatment. Performing a deaeration process by reducing the pressure in the processing chamber to below atmospheric pressure while maintaining the processing chamber temperature constant after a predetermined time has elapsed, raising the pressure in the processing chamber to above atmospheric pressure again, and processing Aging process is performed on the parts to be processed while gradually lowering the room temperature, and the heating means is not operated or the target cooling curve is obtained while maintaining the pressure in the process chamber at a further increased pressure. Means and then rapidly cooling the part being processed, to reduce the pressure of the processing chamber to atmospheric pressure, and then taking out the vacuum heat treated part being processed from the processing chamber, consists of various steps,
When depressurizing the temperature and vapor pressure of the gas supplied from the gas supply source when pressurizing the processing chamber and introducing the gas into the chamber, the dew point in the processing chamber is at least the gas in the dry clean room A pressure cooling treatment method for high-precision parts, wherein the dew point is adjusted so as to be the same as or at least slightly lower than the dew point.
気体供給源より送給される気体が、空気、窒素ガス、アルゴン、その他の不活性ガスから選択される請求項1に記載の高精密部品の加圧冷却処理方法。   The method for pressurizing and cooling a high-precision component according to claim 1, wherein the gas supplied from the gas supply source is selected from air, nitrogen gas, argon, and other inert gases.
JP2009168553A 2009-07-17 2009-07-17 Pressurizing and cooling treatment method of high precision component Pending JP2011021846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168553A JP2011021846A (en) 2009-07-17 2009-07-17 Pressurizing and cooling treatment method of high precision component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168553A JP2011021846A (en) 2009-07-17 2009-07-17 Pressurizing and cooling treatment method of high precision component

Publications (1)

Publication Number Publication Date
JP2011021846A true JP2011021846A (en) 2011-02-03

Family

ID=43632078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168553A Pending JP2011021846A (en) 2009-07-17 2009-07-17 Pressurizing and cooling treatment method of high precision component

Country Status (1)

Country Link
JP (1) JP2011021846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220094276A (en) * 2020-12-28 2022-07-06 (주)일신오토클레이브 Hydrostatic pressure device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188908A (en) * 1993-12-27 1995-07-25 Kobe Steel Ltd Vacuum depositing method for metallic element
JPH08977A (en) * 1994-06-24 1996-01-09 Kyoshin Eng:Kk Method for vacuum heat treatment and apparatus
JPH0867910A (en) * 1994-08-25 1996-03-12 Daido Steel Co Ltd Method for preventing dew condensation in water-cooling type vacuum heat treatment furnace
JP2002256305A (en) * 2001-02-02 2002-09-11 Boc Group Inc:The Method and equipment for metal working

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188908A (en) * 1993-12-27 1995-07-25 Kobe Steel Ltd Vacuum depositing method for metallic element
JPH08977A (en) * 1994-06-24 1996-01-09 Kyoshin Eng:Kk Method for vacuum heat treatment and apparatus
JPH0867910A (en) * 1994-08-25 1996-03-12 Daido Steel Co Ltd Method for preventing dew condensation in water-cooling type vacuum heat treatment furnace
JP2002256305A (en) * 2001-02-02 2002-09-11 Boc Group Inc:The Method and equipment for metal working

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220094276A (en) * 2020-12-28 2022-07-06 (주)일신오토클레이브 Hydrostatic pressure device
KR102527374B1 (en) 2020-12-28 2023-05-02 (주)일신오토클레이브 Hydrostatic pressure device

Similar Documents

Publication Publication Date Title
US8652370B2 (en) Hot isostatic pressing method and apparatus
CN105296903B (en) A kind of ZrTiAlV alloys high pressure turn-knob electric field-assisted is heat-treated fine grain method
JP2016074983A (en) Device for individual quench hardening of equipment components
CN105039882B (en) A kind of equipment preparing precipitation strength type high-strength highly-conductive CuZr alloy
CN113638043A (en) Purging and cooling system, method and device for epitaxial furnace, electronic equipment and storage medium
TW200932965A (en) Apparatus for growing single crystal and process for growing single crystal
JP2011021846A (en) Pressurizing and cooling treatment method of high precision component
CN112475802A (en) Method for assembling aluminum target and aluminum alloy back plate
WO2009018721A1 (en) Equipment and method for manufacturing steel-plastic composite pipe
TW202244314A (en) Substrate processing apparatus
JP3664489B2 (en) Method for processing plant products for texture changes, equipment for implementing such methods and products realized in this way
CN106756549B (en) A kind of automotive high-performance damping spring strip production methods
CN103160662A (en) Roller cold-treatment technology
KR101348749B1 (en) Device and method for auto clave process
CN206204484U (en) Annealing device
CN106435742B (en) Annealing device and its annealing process
JP6631952B2 (en) Wood treatment method
CN210340996U (en) Annealing device for nut
WO2018181685A1 (en) Method and device for manufacturing steam-treated product
JP3395438B2 (en) Induction heating bonding method and apparatus
CN106637014A (en) Heat treatment method for reducing nonuniformity and dimensional instability of large-size TC4 forging
CN110438324A (en) A kind of vacuum annealing method for cold rolling titanium plate
RU2705186C1 (en) Method of workpiece cooling in vacuum heating chamber of vacuum furnace and vacuum furnace
CN111041190B (en) Martensitic stainless steel sheet and heat treatment plate shape control method thereof
CN220444309U (en) Electrode slice drying treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A131 Notification of reasons for refusal

Effective date: 20131010

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140219