JPS61132516A - Extraction process - Google Patents

Extraction process

Info

Publication number
JPS61132516A
JPS61132516A JP59252498A JP25249884A JPS61132516A JP S61132516 A JPS61132516 A JP S61132516A JP 59252498 A JP59252498 A JP 59252498A JP 25249884 A JP25249884 A JP 25249884A JP S61132516 A JPS61132516 A JP S61132516A
Authority
JP
Japan
Prior art keywords
extraction
acid
agent
extractant
extracting agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252498A
Other languages
Japanese (ja)
Inventor
Yoshihiro Eto
良弘 恵藤
Yoshio Taniguchi
良雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP59252498A priority Critical patent/JPS61132516A/en
Publication of JPS61132516A publication Critical patent/JPS61132516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:The acid is recovered from water containing acid and metal salt and the resultant water containing the metal salt is brought into contact with an extractant through a solid membrane to enable economical and useful recovery of metal. CONSTITUTION:Water containing acid and metal salt is fed to the acid separation process where diffusion dialysis, electrodialysis or the like is applied to recover the acid to prepare the substrate to be extracted consisting of water and metal salt. Then, the substrate is adjusted for pH and introduced from inlet 14 through chambers 22 formed with partition plates 11, 12 into pipes of solid membrane 20 where the substrate is brought into contact with an extractant sent from the inlet 15 into the outside space 24 of the membrane through the membrane 20 where the metal salt is reversely extracted into the reverse extractant. The extraction residue is excluded from the outlet 17, the extractant is allowed to return from the outlet 16 through pump 2 to the inlet 16, while the resultant reverse extract is introduced into the crystallization chamber 5 where it is recovered in the form of crystals.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は抽出方法に係り、詳しくは酸と金属塩とを含む
被処理液から金属塩を抽出する抽出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an extraction method, and more particularly to an extraction method for extracting a metal salt from a liquid to be treated containing an acid and a metal salt.

[従来の技術] 金属材料及び金属製品の酸洗浄工程等からは、酸及び金
属を多量に含有する酸洗廃水が排出される。
[Prior Art] Pickling wastewater containing large amounts of acids and metals is discharged from pickling processes for metal materials and metal products.

従来、このような金属塩含有酸性廃水の処理方法として
は、これを中和して金属水酸化物を析出沈殿させた後、
固液分離する方法(例えば特公昭59−29675)が
一般的である。その他、金属塩含有酸性廃水から酸を抽
出した後、抽残液を中和して金属水酸化物を得る方法(
特開昭48−83097)、あるいは、金属塩含有酸性
廃水から金属を抽出した後、更に酸を抽出する方法(特
開昭5l−108695)も提案されている。
Conventionally, the method for treating acidic wastewater containing metal salts is to neutralize it and precipitate metal hydroxides, and then
A method of solid-liquid separation (for example, Japanese Patent Publication No. 59-29675) is common. Other methods include extracting acids from acidic wastewater containing metal salts and then neutralizing the raffinate to obtain metal hydroxides (
JP-A-48-83097) or a method of extracting metals from acidic wastewater containing metal salts and then further extracting acids (JP-A-51-108695) has also been proposed.

[発明が解決しようとする問題点] しかしながら、中和のみにより処理する方法(特公昭5
9−29675)では、中和に多量の中和剤が必要であ
り、難脱水性の汚泥が発生し、汚泥処理が困難であると
いう欠点があった。また酸抽出後中和により処理する方
法(特開昭48−83097)においても、難脱水性の
汚泥が発生し、汚泥処理が困難で、処理費が高価となる
欠点を有している。
[Problems to be solved by the invention] However, a method of processing only by neutralization (Tokukō Kokō 5)
No. 9-29675) required a large amount of neutralizing agent for neutralization, resulting in generation of sludge that was difficult to dewater, making sludge treatment difficult. Furthermore, the method of acid extraction followed by neutralization (Japanese Unexamined Patent Publication No. 48-83097) has the disadvantage that sludge that is difficult to dewater is generated, making sludge treatment difficult and expensive.

更に、金属を抽出後、更に酸を抽出する方法(特開昭5
l−108695)では、逆抽出剤からの金属の回収は
、逆抽出剤から重金属を再度抽出し真空蒸発後加熱分解
することにより行なわれているため、工程数も多く経済
的にも極めて不利である。
Furthermore, after extracting the metal, there is a method of further extracting the acid (Japanese Unexamined Patent Publication No. 5
1-108695), the recovery of metals from the back-extracting agent is carried out by extracting the heavy metals from the back-extracting agent again, evaporating them in vacuum, and then thermally decomposing them, which requires a large number of steps and is economically disadvantageous. be.

また、従来、逆抽出剤で金属を抽出した場合には、金属
は濃縮されるもののその濃縮液の組成は原液組成と大差
なく、原液が単に濃縮されたにすぎない、このため、逆
抽出剤から電解等で金属を析出させて回収する必要があ
るが、電解を採用する場合には逆抽出剤中の酸濃度を高
くすることができず、逆抽出速度が遅くなるという欠点
を有する。また、更に電解装置を必要とし、設備費、電
力費、メンテナンス等の面から有利なことではないとい
う問題点を有している。
Conventionally, when metals are extracted using a back-extracting agent, although the metals are concentrated, the composition of the concentrated solution is not much different from that of the undiluted solution, and the undiluted solution is simply concentrated. It is necessary to precipitate and recover the metal by electrolysis or the like, but when electrolysis is used, the acid concentration in the back-extracting agent cannot be increased and the back-extraction rate is slow. Furthermore, this method requires an electrolyzer, which is not advantageous in terms of equipment costs, power costs, maintenance, etc.

[問題点を解決するための手段] 本発明は、上記従来の問題点を解消し、経済的、工業的
に有利な金属塩含有酸性廃水の処理方法を提供するべく
なされたものであり、醸と金属塩とを含む水から酸を分
離して回収す、ると共に、得られる金属塩を含む液を抽
料とし、この抽料を抽剤と接触させ、次いでこの油剤を
逆抽出剤と接触させて金属塩を逆抽出剤中に回収する方
法において、前記抽料と油剤との接触及び/又は油剤と
逆抽出剤との接触は固体膜を介して行なうと共に、逆抽
出剤を循環使用して被抽出物を逆抽出剤から晶出させる
ことを特徴とする抽出方法、 を要旨とするものである・ 以下に本発明を図面を参照して詳細に説明する。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned conventional problems and provide an economically and industrially advantageous method for treating acidic wastewater containing metal salts. The acid is separated and recovered from the water containing the metal salts, and the resulting liquid containing the metal salts is used as an extractant, and the extractant is brought into contact with an extraction agent, and then this oil solution is contacted with a back-extraction agent. In the method for recovering metal salts in a back-extracting agent, the contact between the extraction material and the oil agent and/or the contact between the oil agent and the back-extracting agent is carried out through a solid membrane, and the back-extracting agent is recycled. The present invention will be described in detail below with reference to the drawings.

第1図は本発明の抽出方法の一例を示す系統図である0
図に示す如く、本発明の処理対象水である金属塩含有酸
性水溶液は、まず酸の分離回収工程31へ送給される。
FIG. 1 is a system diagram showing an example of the extraction method of the present invention.
As shown in the figure, the metal salt-containing acidic aqueous solution, which is the water to be treated in the present invention, is first sent to an acid separation and recovery step 31.

そして、この分離回収工程で、金属塩含有酸性水溶液中
から酸が分離されて回収される。
In this separation and recovery step, the acid is separated and recovered from the metal salt-containing acidic aqueous solution.

酸の分離方法としては、特に制限はないが、抽出、拡散
透析又は電気透析による方法が好ましい、拡散透析の場
合には、室内をアニオン交換膜、カチオン交換膜及びポ
リテトラフルオロエチレン隔膜等の膜で隔室し、一方に
処理対象水、他方に水を入れて拡散させる。また電気透
析の場合には、このようにして隔室された各室の両端に
電極を挿入して通電することにより行なう。
There are no particular restrictions on the method for separating acids, but extraction, diffusion dialysis, or electrodialysis are preferred. In the case of diffusion dialysis, the room is covered with membranes such as anion exchange membranes, cation exchange membranes, and polytetrafluoroethylene diaphragms. Separate the chambers, put the water to be treated in one and the water in the other, and let them spread. Further, in the case of electrodialysis, electrodes are inserted into both ends of each of the thus separated chambers and electricity is applied thereto.

酸を分離することにより得られた金属塩を含有する渣(
抽料)は、必要に応じて、アルカリ等でPH調整を行な
った後、抽出工程32へ送給する。アルカリ等によるP
H調整は前段の酸の分離回収工程31の処理条件や含有
される金属の種類等により適宜性なわれる。
The residue containing the metal salt obtained by separating the acid (
The extracted material is sent to the extraction step 32 after adjusting the pH using an alkali or the like as necessary. P due to alkali etc.
The H adjustment is made as appropriate depending on the processing conditions of the preceding acid separation and recovery step 31, the type of metal contained, etc.

抽出工程32においては、まず、抽料と油剤とを接触さ
せ、次いで油剤と逆抽出剤とを接触させる。そして、油
剤から金属塩を抽出した逆抽出剤は、これを循環使用し
てその金属塩濃度を高め、金属塩を逆抽出剤から晶出さ
せる。
In the extraction step 32, first, the extraction material is brought into contact with an oil agent, and then the oil agent is brought into contact with a back-extracting agent. Then, the back-extracting agent that has extracted the metal salts from the oil agent is recycled and used to increase the concentration of the metal salts, and the metal salts are crystallized from the back-extracting agent.

逆抽出剤としては、後述するように酸を用いることが多
いのであるが、この場合、酸としては、前段の酸分離回
収工程31で回収された酸をそのまま、あるいは必要に
応じて濃縮して、抽出工程32へ送給して用いることが
できる。また、次に説明する濃縮工程33で濃縮された
抽残液中の酸を用いることもできる。
As a back-extracting agent, an acid is often used as described later. In this case, the acid recovered in the previous acid separation and recovery step 31 may be used as it is, or if necessary, it may be concentrated. , and can be sent to the extraction step 32 for use. Furthermore, the acid in the raffinate concentrated in the concentration step 33 described below can also be used.

本発明の一態様においては、抽出工程32において金属
塩が抽出された残りの液(抽残液)は。
In one embodiment of the present invention, the remaining liquid (raffinate liquid) from which metal salts have been extracted in the extraction step 32 is.

濃縮工程33へ送給され、酸と、酸を含まない(又は酸
濃度の低い)処理水とに分離される。そして、この酸を
抽出工程32へ返送し、逆抽出剤のpHl1整又は補給
用の酸として再利用することが可能である。また、処理
水は酸分離回収工程31へ送給し、透析用水あるいは抽
出の逆抽出用水として有効に再利用することができる。
The water is sent to the concentration step 33 and separated into acid and treated water that does not contain acid (or has a low acid concentration). Then, this acid can be returned to the extraction step 32 and reused as an acid for adjusting the pH of the back extractant or for replenishing it. Furthermore, the treated water can be sent to the acid separation and recovery step 31 and effectively reused as water for dialysis or water for back extraction.

第2図は、本発明方法の抽出工程32に用いるに好適な
装置の一例を示すものであり、チューブラ−あるいはホ
ロファイバー型の固体膜を装着した抽出装置の断面図で
ある。
FIG. 2 shows an example of an apparatus suitable for use in the extraction step 32 of the method of the present invention, and is a sectional view of an extraction apparatus equipped with a tubular or holofiber type solid membrane.

1は円筒状の装置ケーシングであって、その上部には仕
切板11.12によって逆抽出側導入室21、抽料導入
室22が画成され、また下部には仕切板13によって、
抽残液排出室23と晶析室5が画成されている。そして
抽料導入室22と抽料排出室23とを連通ずるように、
パイプ状の固体膜20が多数設けられている。
Reference numeral 1 denotes a cylindrical device casing, in the upper part of which a back extraction side introduction chamber 21 and extraction material introduction chamber 22 are defined by partition plates 11 and 12, and in the lower part by a partition plate 13,
A raffinate discharge chamber 23 and a crystallization chamber 5 are defined. Then, so that the extraction chamber 22 and the extraction chamber 23 are communicated with each other,
A large number of pipe-shaped solid membranes 20 are provided.

上部の仕切板12と下部の仕切板23との間であって、
かつ、パイプ状固体膜20の外側の部分24は、逆抽出
側導入室21及び晶析室5にそれぞれ連通しており、か
つケーシング1に開設された油剤供給口15及び油剤排
出口18を通して油剤の供給、排出が行なわれるよう構
成されている。なお、油剤排出口1Bと油剤供給口15
とは、途中にポンプ2が設置された管路25によって連
絡されている。
Between the upper partition plate 12 and the lower partition plate 23,
The outer portion 24 of the pipe-like solid membrane 20 communicates with the reverse extraction side introduction chamber 21 and the crystallization chamber 5, respectively, and the oil is supplied through the oil supply port 15 and the oil discharge port 18 provided in the casing 1. It is configured so that the supply and discharge of In addition, the oil discharge port 1B and the oil supply port 15
and are connected by a conduit 25 in which a pump 2 is installed.

また、逆抽出側導入室21と晶析室5にはそれぞれ逆抽
出剤の供給口16と排出口19が設けられており、供給
口16と排出口19は管路26によって連絡されている
。この管路26の途中にはポンプ3が設置されていると
共に、逆抽出剤を補充するための配管4が接続されてい
る。
Further, the back extraction side introduction chamber 21 and the crystallization chamber 5 are provided with a back extraction agent supply port 16 and a discharge port 19, respectively, and the supply port 16 and the discharge port 19 are connected by a pipe line 26. A pump 3 is installed in the middle of this pipe line 26, and a pipe 4 for replenishing the back extractant is connected.

図中17は、抽料排出室23から抽料(抽残液)を排出
するための排出口であり、27は晶析室5からの析出結
晶の取出口である。
In the figure, 17 is an outlet for discharging the extract (raffinate liquid) from the extract discharge chamber 23, and 27 is an outlet for taking out the precipitated crystals from the crystallization chamber 5.

このように構成された第2図の抽出装置において、供給
口14から供給された金属塩を含有する抽料は、導入室
22からパイプ状固体膜20の内部へ流れ込み、流下す
る(図中矢印A)、そして、供給口15から導入され固
体膜lOの外側の部分24を上昇する油剤(第1図にお
いて、斜線の部分が油剤の上昇域である。)と固体膜2
0を介して接触し、抽料中の金属塩が油剤に抽出される
In the extractor shown in FIG. 2 configured in this manner, the extract containing metal salts supplied from the supply port 14 flows from the introduction chamber 22 into the pipe-shaped solid membrane 20 and flows downward (as indicated by the arrow in the figure). A), and the oil agent introduced from the supply port 15 and rising up the outer part 24 of the solid membrane 1O (in FIG. 1, the shaded area is the rising area of the oil agent) and the solid membrane 2
0, and the metal salts in the extract are extracted into the oil agent.

一方、供給口16から供給された逆抽出剤は導入室21
から、固体膜20の外側の部分24(第2図の斜線部)
内の油剤中を液柱あるいは液滴の形で降下しく図中矢印
B)、油剤と直接に接触して金属塩の逆抽出を行なう。
On the other hand, the back extractant supplied from the supply port 16 is transferred to the introduction chamber 21.
From the outer part 24 of the solid membrane 20 (hatched area in FIG. 2)
The metal salts are extracted directly from the oil by descending in the form of a liquid column or droplets (arrow B in the figure) and coming into direct contact with the oil.

なお、抽残液は排出口17より排出され、例えば第1図
で説明した様に、濃縮工程33へ送給され、必要に応じ
て電気透析等により濃縮される。
The raffinate is discharged from the discharge port 17, and is sent to the concentration step 33, as explained in FIG. 1, for example, where it is concentrated by electrodialysis or the like, if necessary.

油剤は排出口18より排出されてポンプ2により供給口
15へ戻され、循環使用される。また、逆抽出剤は、排
出口19より排出され、ポンプ3により供給口16へ戻
され、循環使用される。また、必要に応じ、配管4から
逆抽出剤が補給される。
The oil is discharged from the discharge port 18, returned to the supply port 15 by the pump 2, and used for circulation. Further, the back extractant is discharged from the discharge port 19, returned to the supply port 16 by the pump 3, and used for circulation. In addition, a back-extractant is replenished from the pipe 4 as necessary.

而して、固体[20の外側の部分24を降下し、金属塩
を逆抽出した逆抽出剤は、晶析室5に入るのであるが、
逆抽出操作を継続すると、逆抽出剤中の金属塩濃度が次
第に高まり、逆抽出剤中に金属塩の結晶が析出するよう
になる。このようにして逆抽出剤中で晶出した金属塩結
晶は晶析室でフロック化して沈殿し、取出口27から排
出される。
Thus, the strip extracting agent that descends from the outer portion 24 of the solid [20 and strips the metal salts] enters the crystallization chamber 5.
As the back-extraction operation continues, the metal salt concentration in the back-extracting agent gradually increases, and metal salt crystals begin to precipitate in the back-extracting agent. The metal salt crystals thus crystallized in the back-extracting agent become flocs and precipitate in the crystallization chamber, and are discharged from the outlet 27.

なお、第2図の装置においては、抽料と油剤とを固体膜
を介して接触させているが、固体膜を介さず直接接触さ
せても良い、また装置下部の逆抽出側排出側か晶析室5
とされているが、晶析室をケーシング1とは別体に設け
、この中で晶出させても良い、但し、第2図の如く、抽
出装置の最下部に晶析室5を設けるようにすれば、装置
がコンパクトになるため好ましい。
In the apparatus shown in Figure 2, the extraction material and the oil agent are brought into contact with each other through a solid membrane, but they may also be brought into direct contact without intervening the solid membrane. Analysis room 5
However, it is also possible to provide a crystallization chamber separately from the casing 1 and perform crystallization therein.However, as shown in Fig. This is preferable because the device becomes more compact.

第2図の如き装置により、キレート系油剤を用いて金属
の抽出を行なった場合、抽料の金属濃度と逆抽出剤の金
属濃度との比は下記(1)式で表わされるものとなる。
When metals are extracted using a chelate oil using the apparatus shown in FIG. 2, the ratio of the metal concentration in the extracted material to the metal concentration in the back-extracting agent is expressed by the following equation (1).

例えば、金属がCu2+の場合、抽料のPHを4、逆抽
出剤のpHt−1以下とすると100万倍以上にも濃縮
でき、晶析が可能となる。
For example, when the metal is Cu2+, if the pH of the extraction material is 4 and the pH of the back-extracting agent is t-1 or less, it can be concentrated more than 1 million times and crystallization becomes possible.

逆抽出剤を循環使用して、逆抽出剤中から金属基を晶析
で回収する方法によれば、逆抽出される金属と当量の酸
を添加するのみで、系に外部からエネルギーを加える必
要がなく、低コストで金属が回収できる。
According to the method of recycling the back-extracting agent and recovering the metal groups from the back-extracting agent by crystallization, it is only necessary to add an acid equivalent to the metal to be back-extracted, and there is no need to add external energy to the system. metals can be recovered at low cost.

ただし、この際に、下記(2)式に示すような反応で逆
抽出剤中のH+が消費されるため、逆抽出剤への酸の定
量的な補給又はPR開制御必要となる。
However, at this time, H+ in the back-extracting agent is consumed by the reaction shown in equation (2) below, so it is necessary to quantitatively replenish acid to the back-extracting agent or to control PR opening.

(CuR)油剤+(H2SO,)逆抽出剤、(2HR)
油剤+(Cu S O4)逆抽出剤−(2)(HR:キ
レート系抽剤) 本発明において、抽料と油剤とは固体膜を介して接触さ
せるが、油剤と逆抽出剤との接触は、固体膜を介して、
あるいは、固体膜を介さず直接、接触させても良い、一
般に、固体膜を介さずに接触させる方が逆抽出速度が速
く、固体膜への結晶付着の可能性もないところから好ま
しい、しかしながら、固体膜としてテフロン膜のような
極めて疎水性のものを用いる場合は、固体膜面は油剤で
覆われるため結晶付着はほとんどない、このため、抽出
速度は遅くなる反面、結晶純度が良くなると考えられる
。従って1回収物に高純度が要求される場合には、固体
膜を介して行なうのが良く、固体膜を介するかどうかは
目的に応じて適宜選定される。
(CuR) oil + (H2SO,) back extractant, (2HR)
Oil agent + (Cu S O4) back extractant - (2) (HR: chelate extractant) In the present invention, the extraction agent and the oil agent are brought into contact through a solid film, but the contact between the oil agent and the back extractant is , through a solid membrane,
Alternatively, contact may be made directly without intervening a solid membrane. In general, contact without intervening a solid membrane is preferable because the back extraction speed is faster and there is no possibility of crystals adhering to the solid membrane. However, When using an extremely hydrophobic solid membrane such as a Teflon membrane, the surface of the solid membrane is covered with an oil agent, so there is almost no crystal adhesion.For this reason, although the extraction rate is slow, it is thought that the crystal purity is improved. . Therefore, when high purity is required for one recovered product, it is preferable to conduct the treatment through a solid membrane, and whether or not to use a solid membrane is appropriately selected depending on the purpose.

本発明において、固体膜の形態としては、平膜型、チュ
ーブラ−型、ホローファイバー型等、各種のものが用い
られる。
In the present invention, various forms of the solid membrane are used, such as a flat membrane type, a tubular type, and a hollow fiber type.

固体膜は多孔質のものであれば良く、例えばポリテトラ
フルオロエチレン(以下1”PTFEJという)、酢酸
セルロース、ポリスルホン、ポリ塩化ビニル、ポリプロ
ピレン、ポリアミド等の半透膜が挙げられるが、特にP
TFEが好ましい。
The solid membrane may be porous, and examples thereof include semipermeable membranes made of polytetrafluoroethylene (hereinafter referred to as 1" PTFEJ), cellulose acetate, polysulfone, polyvinyl chloride, polypropylene, polyamide, etc.
TFE is preferred.

一般にPTFEはテフロン(商品名)として市販されて
いる。PTFEは耐薬品性、iA水性に優れ、また抽出
速度も極めて高く、固体膜として採用するに好適な性質
を備える。多孔質PTFE膜は、使用する油剤等によっ
て、その膜厚、孔径等を選定する。
Generally, PTFE is commercially available as Teflon (trade name). PTFE has excellent chemical resistance and iA water resistance, and has an extremely high extraction rate, making it suitable for use as a solid membrane. The thickness, pore diameter, etc. of the porous PTFE membrane are selected depending on the oil agent used.

なお、PTFE固体膜の抽出速度が速い理由は明らかで
ないが、その網目状構造や極端な疎水性(親油性)によ
り、抽料又は逆抽出剤と油剤との接触部が孔だけではな
く、膜面全体にわたることとなり、111内における拡
散も速いためと推定される。
The reason why the extraction rate of the PTFE solid membrane is so fast is not clear, but due to its network structure and extreme hydrophobicity (lipophilicity), the contact area between the extraction material or back-extracting agent and the oil agent is not only the pores but also the membrane. It is presumed that this is because it spreads over the entire surface and the diffusion within 111 is also fast.

本発明において1Mi料と油剤とを固体膜を介して接触
させる場合、固体膜として、PTFE膜を用いると共に
、抽料(油剤と逆抽出剤とを固体膜を介して接触させる
場合には抽料及び逆抽出剤)側(以下、「水側」という
ことがある、)の圧力を油剤側の圧力よりも高くして抽
出を行なうことにより、水(抽料、逆抽出剤)の油剤側
へのリークがなく、また油剤が水側ヘリークすることも
なく、効率良く抽出を行なうことが可能となる。
In the present invention, when the 1Mi material and the oil agent are brought into contact with each other through a solid membrane, a PTFE membrane is used as the solid membrane. By performing extraction with the pressure on the side (hereinafter sometimes referred to as "water side") higher than the pressure on the oil side, the water (extractant, back extractant) is transferred to the oil side. There is no leakage of water, and there is no leakage of oil to the water side, making it possible to perform extraction efficiently.

抽料又は逆抽出側側(水側)の圧力を油剤側の圧力と同
一あるいはそれよりも低くすると、油剤が水側へリーク
し抽出が不可能となる0反対に水側の圧力を高くすると
、油剤の水側へのリークがなくなる。かつ、PTFEの
顕著な疎水性により、水側の圧力を高くしても、油剤側
への水のリークは(過大な圧をかけない限り)生じない
If the pressure on the extraction or back-extraction side (water side) is the same as or lower than the pressure on the oil side, the oil will leak to the water side, making extraction impossible.On the contrary, if the pressure on the water side is increased , leakage of oil to the water side is eliminated. Furthermore, due to the remarkable hydrophobicity of PTFE, even if the pressure on the water side is increased, water will not leak to the oil side (unless excessive pressure is applied).

水側と油剤側との圧力差は、0.OIKg/crrI′
以上であれば良いが、3Kg/cm’よりも大きくなる
と、水のリークが生じ得るところから、0.01〜3 
K g / c rn’程度とするのが好ましい、この
圧力差は、抽出装置又は逆抽出装置の出口圧力調整弁で
調整する等の方法により容易に調節可能である。
The pressure difference between the water side and the oil side is 0. OIKg/crrI'
It is fine if it is above 3Kg/cm', but if it is larger than 3Kg/cm', water leakage may occur, so 0.01~3Kg/cm'
This pressure difference, which is preferably on the order of K g/c rn', can be easily adjusted, such as by adjusting the outlet pressure regulating valve of the extractor or back-extractor.

本発明の抽出方法は、酸と金属塩を含有する被処理液の
抽出に採用され、金属の酸洗浄廃水の処理等に好適であ
る。被処理液に含有される酸としては、例えば、塩酸、
硝酸、硫酸、リン酸、クエン酸、酢酸等の各種の有機酸
、無機酸が挙げられ、また、金属塩としては、Ag、A
見、Co。
The extraction method of the present invention is employed to extract a liquid to be treated containing an acid and a metal salt, and is suitable for the treatment of metal acid cleaning wastewater. Examples of acids contained in the liquid to be treated include hydrochloric acid,
Examples include various organic acids and inorganic acids such as nitric acid, sulfuric acid, phosphoric acid, citric acid, and acetic acid, and examples of metal salts include Ag, A
Look, Co.

Cd、Cu、Ni、Fe、Hg、Zn等の塩が挙げられ
る。
Examples include salts of Cd, Cu, Ni, Fe, Hg, Zn, and the like.

金属塩の抽出工程で使用される油剤は上記の被抽出物質
に応じて適宜選択されるが、一般的な具体例としては、
■〜■が挙げられる。
The oil agent used in the metal salt extraction process is appropriately selected depending on the above-mentioned substance to be extracted, but general specific examples include:
■~■ can be mentioned.

■下記a−d等のキレート系抽剤: a、R−CH−OH 式中 ”−C12H25 式中 R;−C,H。■Chelate extractants such as the following a-d: a, R-CH-OH In the formula “-C12H25 In the formula R; -C,H.

■下記a−c等の有機リン酸: a、ジー2−エチルへキシルリン酸等の酸性有機リン酸
エステル。
■Organic phosphoric acids such as the following a-c: a, acidic organic phosphoric acid esters such as di-2-ethylhexyl phosphoric acid;

b、)リブチルホスフェート等の中性リン酸エステル。b.) Neutral phosphate esters such as butyl phosphate.

c、トリオクチルホスフィンオキサイド等の酸化ホスフ
ィン。
c, phosphine oxides such as trioctylphosphine oxide;

■下記の如きアミン類: P  r  i  m  e  n    J  MT
  (Rohm&Haas製)Amberlite  
LA2(//   )A l ami ne  336
 (Henkel製)Aliquat  336(tt
   )等の1〜4級アミン類。
■Amines such as the following: P r i m e n J MT
(Manufactured by Rohm & Haas) Amberlite
LA2(//)Alamine 336
(Made by Henkel) Aliquat 336 (tt
) and other primary to quaternary amines.

■ナフテン酸、versatic酸(shell製)等
のカルボン酸類。
■Carboxylic acids such as naphthenic acid and versatic acid (manufactured by Shell).

■クラウンエーテル類。■Crown ethers.

金属塩を抽出する場合、通常、油剤を希釈剤に溶解して
用いるが、この場合には、例えばヘプタン、ノナン、デ
カン、クロロホルム、四塩化炭素、ケロシン、キシレン
、ベンゼン等の有機系溶媒を用いることができる。
When extracting metal salts, an oil agent is usually used by dissolving it in a diluent, but in this case, an organic solvent such as heptane, nonane, decane, chloroform, carbon tetrachloride, kerosene, xylene, or benzene is used. be able to.

また高級アルコール等の改質剤あるいは酸、アルカリ等
のpH調整剤を抽出系に添加しても良い。
Further, a modifier such as a higher alcohol or a pH adjuster such as an acid or alkali may be added to the extraction system.

逆抽出剤としてはHe見、H2SO,等の斌酸が用いら
れることが多いが、ジー2−エチルへキシルホスフェー
ト(02EHPA)を油剤とする場合には、NaOH等
のアルカリ剤も採用可能である。いずれの場合において
も、逆抽出剤の循環使用に際しては、適宜、醸、アルカ
リ等を補給するのが好ましい。
As a back-extracting agent, bolic acids such as He, H2SO, etc. are often used, but when di-2-ethylhexyl phosphate (02EHPA) is used as an oil agent, an alkaline agent such as NaOH can also be used. . In any case, it is preferable to replenish acid, alkali, etc. as appropriate when reusing the back-extracting agent.

抽料、油剤、逆抽出剤の具体的な組み合わせとしては1
例えば下記表1のものが挙げられる。
Specific combinations of extraction material, oil agent, and back extraction agent are 1.
Examples include those in Table 1 below.

表  1 木1ニトリブチルホスフェート 本2ニジー2−エチルへキシルホスフェート[作用] 被処理液からまず酸を回収した後、金属塩を含□む抽料
を抽出工程に送給することにより、多量の中和剤を必要
とすることもなく、また金属の抽出も極めて有利に行な
うことができる。この酸の回収において、抽出、拡散透
析、電気透析を用いることにより、再利用可能な酸を回
収することができる。
Table 1 Wood 1 Nitributyl phosphate Book 2 Nidi 2-ethylhexyl phosphate [Function] After first recovering acid from the liquid to be treated, a large amount of extract containing metal salts is sent to the extraction process. No neutralizing agent is required, and metal extraction can be carried out very advantageously. In recovering this acid, reusable acid can be recovered by using extraction, diffusion dialysis, and electrodialysis.

しかして金属の抽出工程において、逆抽出剤を循環使用
することにより逆抽出剤中に金属塩が蓄積され過飽和と
なり析出(晶出)する、析出したである。
In the metal extraction process, when the back-extracting agent is used repeatedly, metal salts accumulate in the back-extracting agent, become supersaturated, and precipitate (crystallize).

[実施例] 以下に本発明を実施例を挙げて更に具体的に説明するが
、本発明はその要旨を超えない限り以下の実施例に限定
されるものではない。
[Examples] The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例I Cuを4980ppm(CuSO4として溶解)、HS
O2を219g/見含有する水に、イソブチルアルコー
ルを5倍量(wafL、比)添加し、振盪して抽出した
。抽出後の抽残液にイソブチルアルコールに溶解した水
と同容量の水を添加した処理水のCuとH2SO,濃度
を測定したところ、Cu4990ppm、H50447
g/lであり、酸のみ抽出により回収されたことが認め
られた。
Example I 4980 ppm Cu (dissolved as CuSO4), HS
Five times the amount (wafL, ratio) of isobutyl alcohol was added to water containing 219 g/ml of O2, and the mixture was extracted by shaking. The Cu and H2SO concentrations of the treated water were added to the raffinate after extraction by adding the same volume of water as that dissolved in isobutyl alcohol, and the results were as follows: Cu4990ppm, H50447
g/l, and it was observed that only the acid was recovered by extraction.

固体膜として、面積75cゴのPTFEltl (孔径
0 、2 ILm)を内装した、第1図の如き抽出装置
に、固体膜を介して一方の側に前記処理水(以下「原液
」と記載する。) 1!;L(pH=3.9〜4.0に
m整)を1200 m l / m f n テ循環通
液し、もう一方の側にSME−529を40vai%及
びシェルゾールD−70を60vo見%(いずれもシェ
ル化学製)からなる抽剤500rnfLとloOg/i
HSO2の逆抽出剤1見とを、各々600m見/mi 
n、180m1/minで循環通液した。この通液中、
原液中のCu濃度がippm以下となった時点で新しい
原液と取り変えて、また、逆抽出剤のH2SO1濃度は
100 g/lとなるように適宜conc−H2SO6
を逆抽出剤に添加した。
The treated water (hereinafter referred to as "undiluted solution") was placed on one side of the extraction apparatus as shown in FIG. 1, which was equipped with a PTFEltl (pore size 0, 2 ILm) having an area of 75 cm as a solid membrane, and was placed on one side through the solid membrane. ) 1! ;L (pH adjusted to 3.9-4.0) was circulated at 1200ml/mfn, and on the other side, 40vai% of SME-529 and 60vo of Scherzol D-70 were added. % (both manufactured by Shell Chemical), extractant 500rnfL and loOg/i
600 m/mi of each HSO2 reverse extractant
The liquid was circulated at a rate of 180 ml/min. During this liquid passage,
When the Cu concentration in the stock solution becomes ippm or less, replace it with a new stock solution, and add conc-H2SO6 as appropriate so that the H2SO1 concentration of the back extractant is 100 g/l.
was added to the back extractant.

このような抽出及び逆抽出処理を継続して行なったとこ
ろ、逆抽出剤のCu濃度66000ppmになったとこ
ろで逆抽出剤中にCu S 04・5H20の結晶が析
出し始め、以降、順調に析出を続けた。その初期抽出速
度は、平均15.8g−Cu/rrl”hrテあった。
When such extraction and back-extraction processes were continued, Cu S 04.5H20 crystals began to precipitate in the back-extractant when the Cu concentration of the back-extractant reached 66,000 ppm, and the precipitation continued steadily from then on. continued. The initial extraction rate averaged 15.8 g-Cu/rrl''hr.

析出したC u S O4・5H20の結晶は容易に脱
水回収することが可能であった。
The precipitated C u S O 4 .5H20 crystals could be easily dehydrated and recovered.

[効果] 以上詳述した通り、本発明の抽出方法は、金属塩含有酸
性液から、まず酸を回収した後、金属塩を抽出するもの
であり、多量の中和剤を必要とすることがなく、また回
収した酸を再利用することができる。更に、逆抽出剤を
循環使用して、金属塩を析出させることにより、金属塩
を結晶として極めて容易かつ効率的に回収することがで
きる。
[Effects] As detailed above, the extraction method of the present invention first recovers the acid from the metal salt-containing acidic liquid and then extracts the metal salt, which may require a large amount of neutralizing agent. Moreover, the recovered acid can be reused. Furthermore, by recycling the back-extracting agent to precipitate the metal salt, the metal salt can be very easily and efficiently recovered in the form of crystals.

しかも抽出速度は従来の方法と同程度であり、回収され
た結晶はそのまま再利用可能である。従って、回収物の
処理費等が大幅に低減され、経済的、工業的に極めて有
利である。
Moreover, the extraction speed is comparable to that of conventional methods, and the recovered crystals can be reused as they are. Therefore, the cost of processing the recovered material is significantly reduced, which is extremely advantageous economically and industrially.

このような、本発明の方法は、従来困難であった金属イ
オン回収時の汚泥処理を解消するものである。
Such a method of the present invention solves the conventionally difficult sludge treatment during metal ion recovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の抽出方法の一例を説明する系統図、第
2図は本発明の実施に好適な抽出装置の構成を示す図で
ある。 l・・・・・・装置ケーシング、 5・・・・・・晶析室、 20・・・・・・固体膜、 31・・・・・・酸分離回収工程。 32・・・・・・抽出工程、 33・・・・・・濃縮工程。
FIG. 1 is a system diagram illustrating an example of the extraction method of the present invention, and FIG. 2 is a diagram showing the configuration of an extraction device suitable for implementing the present invention. 1...Device casing, 5...Crystallization chamber, 20...Solid membrane, 31...Acid separation and recovery step. 32...extraction step, 33...concentration step.

Claims (1)

【特許請求の範囲】 (1)酸と金属塩とを含む水から酸を分離して回収する
と共に、得られる金属塩を含む液を抽料とし、この抽料
を抽剤と接触させ、次いでこの抽剤を逆抽出剤と接触さ
せて金属塩を逆抽出剤中に回収する方法において、前記
抽料と抽剤との接触及び/又は抽剤と逆抽出剤との接触
は固体膜を介して行なうと共に、逆抽出剤を循環使用し
て被抽出物を逆抽出剤から晶出させることを特徴とする
抽出方法。 (2)酸の分離は、抽出、拡散透析又は電気透析により
行なわれるものであることを特徴とする特許請求の範囲
第1項に記載の抽出方法。 (3)回収した酸を逆抽出剤として用いることを特徴と
する特許請求の範囲第1項又は第2項に記載の抽出方法
。 (4)固体膜が多孔質のポリテトラフルオロエチレンで
あることを特徴とする特許請求の範囲第1項ないし第3
項のいずれか1項に記載の抽出方法。 (5)抽料と抽剤とを固体膜を介して接触させることを
特徴とする特許請求の範囲第1項ないし第4項のいずれ
か1項に記載の抽出方法。 (6)抽料側の圧力を抽剤側の圧力よりも 0.01〜3Kg/cm^2高くすることを特徴とする
特許請求の範囲第5項に記載の抽出方法。 (7)抽剤と逆抽出剤とを固体膜を介して接触させるこ
とを特徴とする特許請求の範囲第1項ないし第6項のい
ずれか1項に記載の抽出方法。 (8)抽料及び逆抽出剤側の圧力を油剤側の圧力よりも
0.01〜3Kg/cm^2高くすることを特徴とする
特許請求の範囲第7項に記載の抽出方法。
[Scope of Claims] (1) Separate and recover the acid from water containing the acid and metal salts, use the obtained liquid containing the metal salts as an extraction material, bring this extraction material into contact with an extraction agent, and then In the method of recovering metal salts in the back-extracting agent by bringing the extractant into contact with a back-extracting agent, the contact between the extractant and the extracting agent and/or the contact between the extracting agent and the back-extracting agent is carried out through a solid membrane. At the same time, a back-extracting agent is used cyclically to crystallize the material to be extracted from the back-extracting agent. (2) The extraction method according to claim 1, wherein the acid separation is performed by extraction, diffusion dialysis, or electrodialysis. (3) The extraction method according to claim 1 or 2, characterized in that the recovered acid is used as a back-extraction agent. (4) Claims 1 to 3, characterized in that the solid membrane is porous polytetrafluoroethylene.
The extraction method described in any one of paragraphs. (5) The extraction method according to any one of claims 1 to 4, characterized in that the extraction material and the extraction agent are brought into contact with each other through a solid membrane. (6) The extraction method according to claim 5, characterized in that the pressure on the extraction material side is made higher by 0.01 to 3 kg/cm^2 than the pressure on the extraction agent side. (7) The extraction method according to any one of claims 1 to 6, characterized in that the extracting agent and the back-extracting agent are brought into contact with each other through a solid membrane. (8) The extraction method according to claim 7, characterized in that the pressure on the side of the extraction material and the back-extracting agent is made higher by 0.01 to 3 Kg/cm^2 than the pressure on the side of the oil agent.
JP59252498A 1984-11-29 1984-11-29 Extraction process Pending JPS61132516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252498A JPS61132516A (en) 1984-11-29 1984-11-29 Extraction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252498A JPS61132516A (en) 1984-11-29 1984-11-29 Extraction process

Publications (1)

Publication Number Publication Date
JPS61132516A true JPS61132516A (en) 1986-06-20

Family

ID=17238207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252498A Pending JPS61132516A (en) 1984-11-29 1984-11-29 Extraction process

Country Status (1)

Country Link
JP (1) JPS61132516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331608C (en) * 2005-08-02 2007-08-15 天津大学 Hollow membraned tubular micro-extraction analyzer and application method thereof
US7286321B2 (en) 2003-03-14 2007-10-23 Alps Electric Co., Ltd. Thin film magnetic head having toroidal coil and manufacturing method of the same
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286321B2 (en) 2003-03-14 2007-10-23 Alps Electric Co., Ltd. Thin film magnetic head having toroidal coil and manufacturing method of the same
CN1331608C (en) * 2005-08-02 2007-08-15 天津大学 Hollow membraned tubular micro-extraction analyzer and application method thereof
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material

Similar Documents

Publication Publication Date Title
US20230303401A1 (en) Preparation of lithium carbonate from lithium chloride containing brines
US5403490A (en) Process and apparatus for removing solutes from solutions
CN115052836A (en) Method for producing lithium hydroxide
US4113588A (en) Process for recovery of waste H2 SO4 and HCl
US4401531A (en) Process for the production of electrolytic zinc or high purity zinc salts from secondary zinc raw-materials
US5084180A (en) Method for treating zinc-containing sulfate solution
EP3061518B1 (en) Method for the electrolytic production of lithium hydroxide-containing aqueous solutions from contaminated aqueous diluates containing lithium
JP2021172536A (en) Method for producing lithium hydroxide
US5328616A (en) Methods and apparatus for treating electroless plating baths
JP2701284B2 (en) Treatment method for metal-containing water
CN109437444A (en) Deposition vanadium mother liquid and wash water processing equipment for recycling and its method
JPS61132516A (en) Extraction process
US9527753B1 (en) Production of zinc chloride and zinc sulfate from geothermal brines
RU2181303C2 (en) Method of separation of catalyst by electrodialysis through membrane
JPS61143527A (en) Treatment of metal-containing water
WO2011120093A1 (en) Recovering metals from pickle liquor
JPS6168102A (en) Extracting method
EP0189831A1 (en) Cobalt recovery method
Huang et al. Transport of chromium (VI) through a supported liquid membrane containing tri-n-octylphosphine oxide
US7217366B2 (en) Purification of ammonium metallate solutions
US6692628B2 (en) Process to remove ferric iron impurities from an acidic aqueous solution used in the electro-winning of copper
JPS6295103A (en) Extractor
RU2374343C1 (en) Method of vanadium extracting of water sodium-bearing solutions
JPH09887A (en) Method for regenerating acid waste liquid
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material