JPH02197533A - Separation of valuable metal - Google Patents

Separation of valuable metal

Info

Publication number
JPH02197533A
JPH02197533A JP1015899A JP1589989A JPH02197533A JP H02197533 A JPH02197533 A JP H02197533A JP 1015899 A JP1015899 A JP 1015899A JP 1589989 A JP1589989 A JP 1589989A JP H02197533 A JPH02197533 A JP H02197533A
Authority
JP
Japan
Prior art keywords
slurry
chlorine
copper
metals
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1015899A
Other languages
Japanese (ja)
Other versions
JPH0791599B2 (en
Inventor
Taku Sugiura
杉浦 卓
Kazuyuki Takaishi
和幸 高石
Iwao Fukui
福井 巌
Yuzo Fukuoka
福岡 勇三
Yukio Ishikawa
幸男 石川
Tomoyuki Inami
稲見 智之
Naoyuki Tsuchida
土田 直行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1589989A priority Critical patent/JPH0791599B2/en
Publication of JPH02197533A publication Critical patent/JPH02197533A/en
Publication of JPH0791599B2 publication Critical patent/JPH0791599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate valuable metals while preventing the oxidation of sulfur and the volatilization of chlorine by blowing chlorine into a slurry of granular raw material and chloride solution containing copper ions and then carrying out leaching treatment by two stages in which the oxidation-reduction potentials of the solution are changed. CONSTITUTION:Granular raw material containing Ni, Co, Cu, and S is fed into a slurry tank 4 and also a solution of chloride containing univalent copper ions by 10-50g/l is supplied to the slurry tank 4, by which a slurry is formed. This slurry is fed into a primary reactor 9 and, while agitating the slurry, chlorine is blown into the slurry so that the oxidation-reduction potential of the solution becomes 300-500mV, by which most of Ni, Co, Cu, metals baser than Cu are leached out. Subsequently, the slurry is allowed to flow into a secondary reactor 13 and chlorine is blown into the slurry so that the oxidation- reduction potential in the solution becomes 600-650mV, by which a leach liquor containing Ni, Co, Cu, and metals baser than Cu and a leaching residue containing the rest of the metals and capable of being dissolved and filtered can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニッケル、コバルト、鋼、及び硫黄を含むマッ
ト、硫化物精鉱、電解スライム等から酸化浸出により効
率よくニッケル、コバルト、銅及び銅より卑な金属と、
その他の金属を含む硫黄とを分離する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention efficiently produces nickel, cobalt, copper, and copper from nickel, cobalt, steel, and sulfur-containing matte, sulfide concentrate, electrolytic slime, etc. by oxidative leaching. baser metals,
The present invention relates to a method for separating sulfur containing other metals.

〔従来の技術〕[Conventional technology]

ニッケル、コバルト、銅、及び硫黄を含むマット、硫化
物精鉱、電解スライム等から金属ニッケルを回収する方
法として、マット或いは硫化物精鉱や電解スライムより
得たマットを溶解し、成型して得たアノードを用いて電
解精製を行なう方法や・マット、硫化物精鉱、電解スラ
イム等からニッケル等の有価金属を湿式浸出して、得た
浸出液より電解採取により金属ニッケルを回収する方法
がある。近年省エネルギーの要求が強くなるに従、い、
浸出−電解採取による方法が重要視されてさている。
As a method of recovering metallic nickel from matte containing nickel, cobalt, copper, and sulfur, sulfide concentrate, electrolytic slime, etc., the matte or the matte obtained from sulfide concentrate or electrolytic slime is melted and molded. There is a method of performing electrolytic refining using an anode, and a method of wet leaching valuable metals such as nickel from matte, sulfide concentrate, electrolytic slime, etc., and recovering metallic nickel from the obtained leachate by electrowinning. As the demand for energy conservation has become stronger in recent years,
Leaching-electrowinning methods are gaining importance.

湿式浸出法として、マット、硫化物精鉱、電解スライム
等に不足硫黄分を添加した後、オートクレーブを用いて
加圧下で酸素又は空気を吹込み酸化反応を行なわせ、有
価金属を硫酸塩とする方法や、塩化物溶液中で、塩素、
酸素、空気、塩酸、次亜塩素酸、塩化第二銅、塩化第二
鉄、塩化マンガン、塩化ナトリウム、塩化カルシウム及
びその他のアルカリ金属やアルカリ土類金属の塩化物等
を含む多くの浸出試薬を種々の組合せで用いて、はぼ全
ての卑金属を含む有価金属を回収する方法や、特定の金
属を選択的に回収する方法がある。
As a wet leaching method, after adding the deficient sulfur content to matte, sulfide concentrate, electrolytic slime, etc., oxygen or air is blown under pressure using an autoclave to perform an oxidation reaction and convert valuable metals into sulfates. method, in chloride solution, chlorine,
Many leaching reagents including oxygen, air, hydrochloric acid, hypochlorous acid, cupric chloride, ferric chloride, manganese chloride, sodium chloride, calcium chloride and other alkali metal and alkaline earth metal chlorides, etc. There are methods that use various combinations to recover valuable metals, including almost all base metals, and methods that selectively recover specific metals.

このような方法で得た浸出液よりニッケルを回収するに
際して、塩化浴では陽極で発生する塩素を浸出に利用で
き、且つオートクレーブ等の特殊な装置を要しないとい
う利点があるため、塩化物洛中で塩化物として浸出する
方法が主流となってさている。
When recovering nickel from the leachate obtained by this method, the chloride bath has the advantage that chlorine generated at the anode can be used for leaching, and special equipment such as an autoclave is not required. The method of leaching it as a substance has become mainstream.

塩化物溶液中でニッケル、コバルト、銅、及び硫黄を含
むマット、硫化物精鉱、電解スライム等から、塩化ニッ
ケル等の有価金属を塩化物として浸出する方法として、
例えば米国特許第2186293号明細書には、塩化第
二銅から塩化第一銅への還元反応を利用してニッケルマ
ットよりニッケルを溶出させる方法が開示されている。
As a method for leaching valuable metals such as nickel chloride as chlorides from matte, sulfide concentrate, electrolytic slime, etc. containing nickel, cobalt, copper, and sulfur in a chloride solution,
For example, US Pat. No. 2,186,293 discloses a method for eluting nickel from nickel matte using a reduction reaction from cupric chloride to cuprous chloride.

この方法では、処理能力を高めると共に、生成する塩化
第一銅が原料の表面に析出して反応率を低下させるのを
防止するために、始液中のニッケル濃度と塩化第二銅濃
度とを数百g/lにする必要がある。依って、この方法
で得られる浸出液中には多量の銅イオンが含まれ、ニッ
ケルを回収するための事前の脱銅工程に多大のコストを
必要とするという問題点がある。
In this method, the nickel concentration and cupric chloride concentration in the starting solution are adjusted in order to increase the processing capacity and to prevent the generated cuprous chloride from precipitating on the surface of the raw material and reducing the reaction rate. It is necessary to make it several hundred g/l. Therefore, there is a problem in that the leachate obtained by this method contains a large amount of copper ions, and the preliminary decopper removal step for recovering nickel requires a large amount of cost.

又、例えば、米国特許第1943337号明細書には二
価と三価の鉄イオン対と塩素とにより、硫化亜鉛等の硫
化鉱からの金属類を浸出する方法が開示されている。こ
れにより充分な浸出結果を得るためには、浸出過程でS
CI  が生成する必要があるとされているが、このS
CI  は水と反応して硫酸を生ずるものである。この
硫黄の酸化により発生した硫酸の増加は、電解採取時に
陽極での塩素発生効率を低下させるばかりでなく、使用
する塩素発生用不溶性陽極の損傷を引起こすという問題
点がある。更に、同明細書には未反応の塩素ガスが大気
中に揮散するため適当な回収装置を設けなければならな
いことも記載されており、多量の塩素のロスが余儀ない
ものとされている。
For example, US Pat. No. 1,943,337 discloses a method for leaching metals from sulfide ores, such as zinc sulfide, using divalent and trivalent iron ion pairs and chlorine. In order to obtain sufficient leaching results, it is necessary to
It is said that CI needs to be generated, but this S
CI reacts with water to produce sulfuric acid. This increase in sulfuric acid generated by oxidation of sulfur not only reduces the efficiency of chlorine generation at the anode during electrowinning, but also causes damage to the insoluble anode for chlorine generation used. Furthermore, the same specification also states that unreacted chlorine gas volatilizes into the atmosphere, so a suitable recovery device must be provided, and a large amount of chlorine is unavoidably lost.

又、例えば、米国特許第2829966号明細書にはニ
ッケル、コバルト及び鉄を含育している砒化原鉱から金
を回収する方法として、鉱石を塩酸と塩素の混合溶液で
処理する方法が開示されているが、この方法は、まず溶
液のレドックス電位を600〜700 mVに維持しつ
つ塩素を吹き込み金以外の金属を溶解し、次いで金を溶
解するために酸化還元電位を1000 mV以上に維持
するように塩素を吹き込み金を溶解し、得た溶液から各
金属を分離回収するものであり、この目的を達成するた
めには全反応期間を通して多量の塩素を大気中に揮散さ
せざるを得ないばかりか、この方法をニッケルマットに
適用した場合には多量の硫黄の酸化を余儀なくされると
いう問題点がある。
For example, U.S. Pat. No. 2,829,966 discloses a method for recovering gold from arsenide ore containing nickel, cobalt, and iron, in which the ore is treated with a mixed solution of hydrochloric acid and chlorine. However, this method first dissolves metals other than gold by blowing chlorine while maintaining the redox potential of the solution at 600 to 700 mV, and then maintains the redox potential at 1000 mV or more to dissolve the gold. In this process, chlorine is blown into the metal to dissolve the gold, and each metal is separated and recovered from the resulting solution. However, when this method is applied to nickel matte, there is a problem in that a large amount of sulfur must be oxidized.

又、例えば、特公昭54−27295号公報には、第一
銅イオンを含む塩化物水溶液中で、溶液の酸化還元電位
が硫化物及び合金から選ばれた固体粒子中の1種の金属
を、他の金属に対して選択的に浸出される250〜55
0 m’Vの選択電位になるように、溶液への塩素の供
給速度を前記粒子の供給速度に関連させて制御し、一種
の金属を含む浸出溶液と残りの金属を含む浸出残渣とを
生成させる方法が開示されている。この方法をニッケル
マットに適用した場合には、酸化還元電位が500 m
Vを超える場合溶液中に吹込んだ塩素が完全に反応に用
いられず、大気中に揮散するばかりでなく、硫黄の酸化
が起こり溶液中の硫酸濃度が上昇するという問題点があ
る。又、酸化還元電位が低い場合には浸出が不完全とな
り、得られる残渣中のニッケル、銅等の有価金属品位は
高く硫黄品位は低いものとなる。そして、この残渣中の
ニッケル分を回収するために浸出工程に残渣を繰返すと
すれば、共存する多量の硫黄も共に繰返さざるを得ず、
硫黄の酸化による硫酸濃度の上昇が避けられないことに
なる。これを回避するためには残渣中の硫黄を別途回収
し、その後得た硫黄回収残渣を浸出工程に繰返すことが
望まれるが、前記残渣中の硫黄分が低いため、最も経済
的な硫黄回収方法である残渣を蒸気で加熱し融解して濾
過する、所謂融解濾過法を適用できないという問題点が
ある。
For example, Japanese Patent Publication No. 54-27295 discloses that in an aqueous chloride solution containing cuprous ions, the redox potential of the solution is such that one kind of metal in solid particles selected from sulfides and alloys is 250-55 leached selectively to other metals
The feed rate of chlorine to the solution is controlled in relation to the feed rate of said particles to a selected potential of 0 m'V, producing a leaching solution containing one metal and a leaching residue containing the remaining metal. A method is disclosed. When this method is applied to nickel matte, the redox potential is 500 m
If it exceeds V, there is a problem that the chlorine blown into the solution is not completely used in the reaction and not only volatilizes into the atmosphere, but also that oxidation of sulfur occurs and the concentration of sulfuric acid in the solution increases. Furthermore, if the redox potential is low, leaching will be incomplete, and the resulting residue will have a high grade of valuable metals such as nickel and copper, but a low sulfur grade. If the residue is repeatedly subjected to the leaching process in order to recover the nickel content in the residue, the large amount of sulfur that coexists must also be repeated.
An increase in sulfuric acid concentration due to sulfur oxidation is inevitable. In order to avoid this, it is desirable to separately recover the sulfur in the residue and then repeat the leaching process with the recovered sulfur residue, but since the sulfur content in the residue is low, this is the most economical sulfur recovery method. There is a problem in that the so-called melt filtration method, in which the residue is heated with steam, melted, and filtered, cannot be applied.

又、例えば、特開昭63−38537号公報には硫酸7
0 g/1以上、塩素イオン10 g/1以上を含む水
溶液中で、空気又は酸素を用いて酸化還元電位を550
mV以上になるようにしてニッケル硫化物よりニッケル
を回収する方法を開示し、更にその詳細な説明に硫酸を
用いず、塩酸を用いる場合には50〜220 g7’l
の遊離塩酸濃度が必要であることを記載している。この
方法では、酸化剤として塩素を用いないため硫黄の酸化
という問題は回避できるものの、空気又は酸素の吹込み
により酸化還元電位を550 mV以上にするためには
多量の遊離酸の共存を必要とし、且つこの方法では得ら
れる浸出率が80重景%前後と低いという問題点がある
For example, in Japanese Patent Application Laid-Open No. 63-38537, sulfuric acid 7
In an aqueous solution containing 0 g/1 or more and 10 g/1 or more of chlorine ions, the redox potential is raised to 550 using air or oxygen.
Discloses a method for recovering nickel from nickel sulfide so that the voltage is 50 to 220 g7'l when hydrochloric acid is used instead of sulfuric acid in the detailed explanation.
It states that a free hydrochloric acid concentration of . Although this method avoids the problem of sulfur oxidation because chlorine is not used as an oxidizing agent, it requires the coexistence of a large amount of free acid in order to raise the redox potential to 550 mV or more by blowing air or oxygen. In addition, this method has the problem that the leaching rate obtained is as low as around 80%.

又、例えば、特開昭63−38538号公報には上記特
開昭63−38537号公報記載の方法における低浸出
率を改良する方法として、反応を二段として、多量の酸
の共存下、第一段で特開昭63−38537号公報記載
の方法に従い浸出し、第二段で溶液の酸化還元電位が6
50〜750 mVになるように塩素を吹込む方法が開
示されている。この方法でば多量の遊離酸が共存するた
め吹込んだ塩素のかなりの量は大気中に揮散してしまい
、有効に利用されず、且つ硫黄の酸化も防止できないば
がりでなく浸出率は85重量%前後までしか上昇せず、
且つ特開昭63−38537号公報記載の方法と共に得
た浸出液よりニッケルを電解採取で回収するための液調
整において大量の中和剤の添加を必要とするという問題
点がある。尚、特開昭63−38537号、特開昭63
−38538号公報に記載の何れの方法にあっても、遊
離酸として最も経済的とされる硫酸を用いた場合には前
記したように電解採取法を採用することが困難となると
いう問題点がある。
For example, JP-A No. 63-38538 discloses a method for improving the low leaching rate in the method described in JP-A-63-38537, in which the reaction is carried out in two stages and the second stage is carried out in the coexistence of a large amount of acid. In the first stage, leaching is carried out according to the method described in JP-A No. 63-38537, and in the second stage, the oxidation-reduction potential of the solution is 6.
A method of blowing chlorine to a voltage of 50 to 750 mV is disclosed. In this method, since a large amount of free acid coexists, a considerable amount of the chlorine injected will volatilize into the atmosphere and will not be used effectively.In addition, it will not be possible to prevent sulfur oxidation, and the leaching rate will be 85%. It only increases to around % by weight,
Another problem is that it is necessary to add a large amount of neutralizing agent when preparing a solution for recovering nickel by electrowinning from the leachate obtained with the method described in JP-A-63-38537. In addition, JP-A-63-38537, JP-A-63
In any of the methods described in Publication No. 38538, if sulfuric acid, which is considered to be the most economical free acid, is used, the problem is that it becomes difficult to adopt the electrowinning method as described above. be.

以上述べたように、従来技術にはニッケル、コバルト、
銅及び硫黄を含む粒状物質より塩化第一銅と塩化第二銅
の酸化還元対と塩素とを用いてニッケル等の有価金属を
浸出するに際して、硫黄の酸化を防止し、酸化剤として
用いる塩素の大気中への揮散を防止すると共に、発生す
る残渣を融解濾過可能ならしめるほど高い浸出率を得る
酸化浸出方法については何等開示されていない。
As mentioned above, conventional technologies include nickel, cobalt,
When leaching valuable metals such as nickel from granular materials containing copper and sulfur using a redox couple of cuprous chloride and cupric chloride and chlorine, oxidation of sulfur is prevented and chlorine used as an oxidizing agent is There is no disclosure of an oxidative leaching method that prevents volatilization into the atmosphere and achieves a leaching rate so high that the resulting residue can be melt-filtered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は硫黄の酸化による硫酸の生成を防止すると共に
、酸化剤として用いる塩素の大気中への揮散を防止し、
発生する残渣を融解濾過可能ならしめるほど高い浸出率
の得られる酸化浸出方法を提供することを課題とする。
The present invention prevents the production of sulfuric acid due to the oxidation of sulfur, and also prevents the volatilization of chlorine used as an oxidizing agent into the atmosphere.
It is an object of the present invention to provide an oxidative leaching method that provides a leaching rate so high that the resulting residue can be melt-filtered.

〔課題を解決するための手段〕[Means to solve the problem]

本明細書において、酸化還元測定用電極及び酸化還元電
位は特に明記しない限り銀/塩化銀電極対、及びこれに
よる測定電位を意味するものである。
In this specification, unless otherwise specified, the redox measurement electrode and redox potential mean a silver/silver chloride electrode pair and the measurement potential thereof.

前記課題を解決するための本発明の第1の手段は、ニッ
ケル、コバルト、銅及び硫黄を含む粒状物質を、1ノ当
りlO〜50 gの一価の銅イオンを含む塩化物水溶液
中で攪拌されたスラリーとし、該スラリーに塩素を吹き
込むことにより有価金属を浸出する方法において、前記
塩化物水溶液に前記粒状物質と塩素との供給を該スラリ
ーの酸化還元電位が300〜500 mVとなるように
供給する第一工程と、第一工程を経たスラリーと塩素と
をスラリーの酸化還元電位が600〜650 mVとな
るように供給し、ニッケル、コバルト、銅及び銅ヨリ卑
な金属を含む浸出液と、残りの金属を含み、融解濾過可
能な浸出残渣を生成せしめる第二工程とからなる有価金
属の分離方法であり、第2の手段は、ニッケル、コバル
ト、銅及び硫黄を含む粒状物質を、1l当り10〜50
 gの一価の銅イオンを含む塩化物水溶液中で攪拌され
たスラリーとし、該スラリーに、塩酸を添加しつつ空気
又は酸素を吹き込むことにより有価今風を浸出する方法
において、前記塩化物水溶液に前記粒状物質と、塩酸と
、空気又は酸素とを、該スラリーのpHが2〜0.5と
なり、酸化還元電位が300〜500 mVとなるよう
に供給する第一工程と、第一工程を経たスラリーと塩素
とをスラリーの酸化還元電位が600〜650 mVと
なるように供給し、ニッケル、コバルト、銅及び銅より
卑な金属を含む浸出液と、残りの金属を含み、融解濾過
可能な浸出残渣を生成せしめる第二工程とからなる有価
金属の分離方法である。
A first means of the present invention for solving the above problem is to stir particulate material containing nickel, cobalt, copper and sulfur in an aqueous chloride solution containing 10 to 50 g of monovalent copper ions per 1 mol. In the method of leaching valuable metals by blowing chlorine into the slurry, the particulate matter and chlorine are supplied to the chloride aqueous solution so that the redox potential of the slurry is 300 to 500 mV. A first step of supplying the slurry and chlorine after the first step is supplied so that the redox potential of the slurry is 600 to 650 mV, and a leachate containing nickel, cobalt, copper, and metals baser than copper; and a second step of producing a leaching residue that contains the remaining metals and can be melted and filtered. 10-50
A slurry is stirred in an aqueous chloride solution containing g of monovalent copper ions, and a method of leaching valuable gas by blowing air or oxygen into the slurry while adding hydrochloric acid, wherein the aqueous chloride solution is A first step of supplying particulate matter, hydrochloric acid, and air or oxygen so that the pH of the slurry becomes 2 to 0.5 and the redox potential becomes 300 to 500 mV; and a slurry that has undergone the first step. and chlorine are supplied so that the redox potential of the slurry is 600 to 650 mV, and a leachate containing nickel, cobalt, copper, and metals less base than copper and a leachate residue containing the remaining metals and which can be melted and filtered are produced. This is a method for separating valuable metals, which comprises a second step of producing metals.

〔作用〕[Effect]

本発明において適用可能な原料は、ニッケル、コバルト
、銅の何れかもしくは複数と硫黄とを主成分とするニッ
ケルマット、硫化物精鉱、電解スライム等であるが、得
られる浸出残渣中の硫黄を融解濾過法によらず、例えば
、焙焼等によりSO2として回収するのであれば、これ
らの他多■のシリカ分を含む原料にも適用できる。
Raw materials that can be used in the present invention include nickel matte, sulfide concentrate, electrolytic slime, etc. whose main components are sulfur and one or more of nickel, cobalt, and copper. If the method is not based on the melt filtration method but is recovered as SO2 by roasting or the like, it can be applied to other raw materials containing silica.

以下、原料としてニッケルマットを用いた検討例を用い
て本発明を説明する。
The present invention will be explained below using a study example using nickel matte as a raw material.

まず第1の発明について説明する。First, the first invention will be explained.

第1図は本発明の検討に用いた装置の一例を示す図であ
り、この装置は第1工程としての、原料供給フィーダー
1と給液口2と抜出しポンプ3とを備えたスラリー槽4
と、前記抜出しポンプ3の排出端に設けられた、排気管
5と吹込管6と攪拌機7とオーバーフロー管8とを備え
た第1反応器9と、第二工程としての前記オーバーフロ
ー管8の排出端に設けられ、排気管10と吹込み管1l
とスラリー排出のためのオーバーフロー管12と攪拌機
7とを備えた第2反応器13とからなり、その使用に際
しては、第一工程では粒状原料を原料供給フィーダー1
よりスラリー槽4に供給すると共に、−価の銅イオンを
含む塩化物溶液を給液口2よりスラリー槽に供給し、所
定濃度のスラリーを形成し、該スラリーを抜出しポンプ
3により一定量ずつ第1反応器9に送液し攪拌しつつ、
溶液の酸化還元電位が300〜500 mVになるよう
に塩素を吹込み管6より吹込み、ニッケル、コバルト、
銅、及び銅より卑な金属の大部分を浸出した後、スラリ
ーをオーバーフロー管8より第2反応器13に流出させ
、該第2反応器13でスラリーを攪拌しつつ、溶液中の
酸化還元電位が600〜650 mVになるよう吹込み
管1lより塩素を吹込むことによりニッケル、コバルト
、銅及び銅より卑な金属を含む浸出液と残りの金属を含
む融解濾過可能な即ち、単体硫黄品位が80重量%以上
の浸出残渣とを得るものである。
FIG. 1 is a diagram showing an example of an apparatus used in the study of the present invention, and this apparatus includes a slurry tank 4 equipped with a raw material supply feeder 1, a liquid supply port 2, and a withdrawal pump 3, as a first step.
and a first reactor 9 provided at the discharge end of the extraction pump 3 and equipped with an exhaust pipe 5, a blowing pipe 6, an agitator 7, and an overflow pipe 8, and a second step of discharging the overflow pipe 8. Provided at the end, an exhaust pipe 10 and a blowing pipe 1l
and a second reactor 13 equipped with an overflow pipe 12 for discharging slurry and an agitator 7. When using the second reactor 13, in the first step, the granular raw material is transferred to the raw material supply feeder 1.
At the same time, a chloride solution containing -valent copper ions is supplied to the slurry tank from the liquid supply port 2 to form a slurry of a predetermined concentration. 1 While feeding the liquid to reactor 9 and stirring,
Chlorine was blown into the solution through the blowing tube 6 so that the oxidation-reduction potential of the solution was 300 to 500 mV, and nickel, cobalt,
After leaching out copper and most of the metals baser than copper, the slurry is flowed out from the overflow pipe 8 into the second reactor 13, and while stirring the slurry in the second reactor 13, the redox potential in the solution is reduced. By blowing chlorine through 1 liter of blowing pipe so that the voltage becomes 600 to 650 mV, the leachate containing nickel, cobalt, copper, and metals less base than copper and the remaining metals can be melted and filtered, that is, the elemental sulfur grade is 80. % or more of the leaching residue by weight.

本発明において、塩化物溶液中の銅濃度はあまりに低い
と浸出反応が進行せず、あまりに高いと銅イオンが塩化
第一銅として粒状原料の表面に沈着し、浸出率の低下を
もたらすために10〜50g/lとすることが必要であ
り、好ましくは15〜40 g/lとすることが望まし
い。この銅イオンを含む塩化物溶液は別途作成しても良
いが、通常、ニッケルを電解採取した後の鋼イオンを含
まない電解廃液と、第二工程より得られた浸出液とを混
合し、銅イオン濃度を調整した後使用する。
In the present invention, if the copper concentration in the chloride solution is too low, the leaching reaction will not proceed, and if it is too high, copper ions will deposit on the surface of the granular raw material as cuprous chloride, resulting in a decrease in the leaching rate. -50 g/l, preferably 15-40 g/l. Although this chloride solution containing copper ions may be prepared separately, it is usually made by mixing the electrolytic waste solution that does not contain steel ions after electrolytically winning nickel with the leachate obtained from the second step. Use after adjusting the concentration.

第一工程の目的は大気中に塩素を揮散させることなく、
又原料中の単体硫黄を酸化させることなく、原料中の銅
より卑なる金属の大部分を浸出することである。この工
程で生じるとされる反応は以下の反応式で示される。こ
\で、(1)式は気液反応であり、(2)式は固液反応
であり、(3)、(4)式は固気反応である。
The purpose of the first step is to prevent chlorine from volatilizing into the atmosphere.
Also, most of the metals baser than copper in the raw material are leached out without oxidizing elemental sulfur in the raw material. The reaction that is said to occur in this step is shown by the reaction formula below. Here, equation (1) is a gas-liquid reaction, equation (2) is a solid-liquid reaction, and equations (3) and (4) are solid-gas reactions.

(1)  2Cu +C1=20u2” +201(2
16(:!u” 十Ni S = 6Cu”+ 3Ni
2”+ 2S’(31Ni S +01 =2NiS+
Ni  +2(1l(4)  Ni +Cl =N士”
+2C1一般に、固気反応の反応速度は気液反応や固液
反応の反応速度より遅い。しかし、(4)式の反応はN
1  の溶解電位が低いことから比較的速い反応速度を
もつと思われるが、N1  の量がN1382として存
在しているNIJilより少ないことを考慮すると、こ
の工程における主反応は(1)式と(2)式となろう。
(1) 2Cu +C1=20u2” +201(2
16(:!u” 10Ni S = 6Cu”+ 3Ni
2"+ 2S' (31Ni S +01 = 2NiS+
Ni + 2 (1l (4) Ni + Cl = N”
+2C1 Generally, the reaction rate of a solid-gas reaction is slower than that of a gas-liquid reaction or a solid-liquid reaction. However, the reaction in equation (4) is N
It is thought that the reaction rate is relatively fast due to the low dissolution potential of 1, but considering that the amount of N1 is smaller than that of NIJil, which exists as N1382, the main reaction in this step is expressed by equation (1) and ( 2) It will be the formula.

即ち、Cu2+とCu  との酸化還元反応によりNi
 Sが溶解されることになる。尚、(3)式で生成する
NiSは第一工程の条件では浸出されない。
That is, due to the redox reaction between Cu2+ and Cu, Ni
S will be dissolved. Note that NiS produced by equation (3) is not leached out under the conditions of the first step.

塩素によるニッケルマットの浸出は上記のように、主と
して液中の銅イオンを媒体として進行するため、酸化還
元電位が高いと液中の二価の銅イオン濃度の割合が高く
なり一価の銅イオン濃度が減少し、(1)式で示される
反応に従い消費されるべき塩素の量が吹込まれた塩素の
量を下回り、過剰となった塩素は液中に完全に吸収され
ず、大気中に揮散されることになる。又、酸化還元電位
が低いと液中の二価の銅イオン濃度の割合は低く、吹込
まれた塩素は完全に吸収されるが、(2)式の反応は進
みにくくなり充分な浸出が得られない。
As mentioned above, the leaching of nickel matte by chlorine proceeds mainly using copper ions in the solution as a medium, so when the redox potential is high, the concentration of divalent copper ions in the solution increases and monovalent copper ions increase. The concentration decreases, and the amount of chlorine that should be consumed according to the reaction shown in equation (1) becomes less than the amount of chlorine injected, and the excess chlorine is not completely absorbed into the liquid and volatilizes into the atmosphere. will be done. In addition, when the redox potential is low, the concentration of divalent copper ions in the liquid is low, and the injected chlorine is completely absorbed, but the reaction in equation (2) is slow to proceed and sufficient leaching cannot be achieved. do not have.

第2図は反応温度97 C以上でNi37.8重量%、
(!u23.1重量%、Co0.55重量%、Fe0.
69重量%、S 25−7 重j1%のニッケルマット
を塩素で浸出することにより得た酸化還元電位と各余聞
と硫黄の浸出率を示したものである。第2図より、30
0 rnV以下では充分な浸出率が得られず500 m
Vを超えると硫黄の酸化が始まることが判る。
Figure 2 shows 37.8% by weight of Ni at a reaction temperature of 97 C or above.
(!U23.1% by weight, Co0.55% by weight, Fe0.
The figure shows the oxidation-reduction potential, each residue, and the leaching rate of sulfur obtained by leaching a nickel matte containing 69% by weight and 1% by weight of S25-7 with chlorine. From Figure 2, 30
At 0 rnV or less, sufficient leaching rate cannot be obtained and 500 m
It can be seen that when the temperature exceeds V, oxidation of sulfur begins.

依って、上記第一工程の目的を達成するためには、第一
工程では溶液中の酸化還元電位を300〜500 mV
に維持する必要がある。この具体的方法として本検討例
では第1反応器に供給するスラリーの供給速度を一定と
し、吹込む塩素の量を調節する方法を採用したが、この
方法にこだわるものではなく、例えば塩素の吹込み速度
を一定とし、スラリーやニッケルマットの供給速度を調
節することにより酸化還元電位を調節しても良い。尚、
第2図で450 mV付近でPeの浸出率が極小値を示
しているのはこの領域で水酸化鉄が発生することによる
ものと思われる。
Therefore, in order to achieve the purpose of the first step, the redox potential in the solution must be set at 300 to 500 mV in the first step.
need to be maintained. As a specific method for this, in this study example, we adopted a method in which the supply rate of the slurry supplied to the first reactor was kept constant and the amount of chlorine blown was adjusted. The oxidation-reduction potential may be adjusted by keeping the loading rate constant and adjusting the supply rate of the slurry or nickel matte. still,
The reason why the Pe leaching rate shows a minimum value near 450 mV in Figure 2 is thought to be due to the generation of iron hydroxide in this region.

第3図は第2図を求めるのに用いたニッケルマットと同
じニッケルマットを、酸化還元電位が350 mV s
反応温度が所定の値になるようにしつつ2時間塩素にて
浸出して得た反応温度とニッケルの浸出率との関係を示
したものである。第3図より反応温度は高ければ高いほ
ど良好な結果が得られることが判る。依って、反応温度
は出来るだけ高くすることが望ましいが、前記反応は何
れも発熱反応であり、反応の進行に伴ない溶液の温度は
沸点まで上昇するので反応を維持するための加熱は何ら
必要としない。
Figure 3 shows the same nickel matte used to obtain Figure 2 at a redox potential of 350 mV s.
This figure shows the relationship between the reaction temperature and the nickel leaching rate obtained by leaching with chlorine for 2 hours while keeping the reaction temperature at a predetermined value. It can be seen from FIG. 3 that the higher the reaction temperature, the better the results obtained. Therefore, it is desirable to raise the reaction temperature as high as possible, but all of the above reactions are exothermic reactions, and as the reaction progresses, the temperature of the solution rises to the boiling point, so no heating is necessary to maintain the reaction. I don't.

第二工程では第一工程で得られたスラリーに酸化剤とし
て塩素を吹込み、硫黄の酸化と塩素の大気中への揮散を
防止しつつ、ニッケルマツ)中のニッケル、コバルト、
銅及び銅より卑な金属とをほぼ完全に浸出し、浸出残渣
を融解濾過可能なものにすることを目的とする。この工
程で起るとされる反応は以下の反応式で示される。
In the second step, chlorine is injected as an oxidizing agent into the slurry obtained in the first step to prevent oxidation of sulfur and volatilization of chlorine into the atmosphere.
The purpose is to almost completely leached out copper and metals baser than copper, and to make the leaching residue into something that can be melted and filtered. The reaction that is said to occur in this step is shown by the reaction formula below.

(5)  NiS+Ou”=wNi”−)−CluS(
6)  Clus + Cu2” = 2 Cu ” 
+ S’(7)  Hls −1−20u” = Ni
” −1−20!u”−1−S’(8)  2 Cu”
+ Cl  = 2 Cu”+ 201(9130+3
C1+4H0=SO2−+607−+8H”又、25C
の塩酸−苛性ソーダ系溶液中の低pH領域での(9)式
の酸化還元電位と、pHと、硫酸根の活量との関係は0
0式で示される。
(5) NiS+Ou”=wNi”−)−CluS(
6) Clus + Cu2” = 2 Cu”
+ S'(7) Hls -1-20u" = Ni
"-1-20!u"-1-S'(8) 2 Cu"
+ Cl = 2 Cu" + 201 (9130 + 3
C1+4H0=SO2-+607-+8H"Also, 25C
The relationship between the oxidation-reduction potential of equation (9), pH, and activity of the sulfate group in the low pH region of the hydrochloric acid-caustic soda solution is 0.
It is shown by equation 0.

QOK−0,339−0,0689pH+0.0098
1og(H3O)こ\でEは水素!極で測定した酸化還
元電位(V)であり、(H3O)はH3Oイオンの活量
である。
QOK-0,339-0,0689pH+0.0098
E is hydrogen in 1og (H3O)! It is the redox potential (V) measured at the pole, and (H3O) is the activity of H3O ions.

el1式を変形すると1 、、  (Hso、 =10(K−0・339++14
06139pH)70,0098となる。
Transforming the el1 formula, we get 1,, (Hso, =10(K-0・339++14
06139pH) 70,0098.

この第二工程でニッケル、コバルト、銅及び銅より卑な
これ以外の金属をほぼ完全に溶解させるためには、第2
図で判るように、酸化還元電位を高くすることが必要で
ある。しかし、上記00式より判るように酸化還元電位
をあまり高くすると硫黄の酸化が急増するために酸化還
元電位は600〜650 mVに維持することが望まし
い。
In order to almost completely dissolve nickel, cobalt, copper, and other metals baser than copper in this second step, it is necessary to
As can be seen in the figure, it is necessary to increase the redox potential. However, as can be seen from the above equation 00, if the redox potential is too high, the oxidation of sulfur will rapidly increase, so it is desirable to maintain the redox potential at 600 to 650 mV.

尚、第二工程の制御をpHを用いて行なうことも考えら
れなくはないが、pHが減少すればするほどH8Oの活
量係数は大幅に減少し、021式より判るように浸出液
中の実硫酸濃度とpHとの値は大幅に離れてしまうため
、元素硫黄の酸化を低く押えつつ、ニッケルマット中の
ニッケル、コバルト、銅及び銅より卑な金属をほぼ完全
に浸出するためには、pHを用いた制御は有効ではない
Although it is possible to control the second step using pH, the activity coefficient of H8O decreases significantly as the pH decreases, and as can be seen from equation 021, the activity coefficient of H8O decreases significantly as the pH decreases. Since the values of sulfuric acid concentration and pH are significantly different, in order to keep the oxidation of elemental sulfur low while almost completely leaching out nickel, cobalt, copper, and metals baser than copper in the nickel matte, it is necessary to Control using is not effective.

02)  実硫酸濃度(mol/l) −(H3O)÷
活量係数ところで、吹込んだ塩素の大気中への揮散を防
止し、且つ反応速度が相対的に遅い固気反応である硫黄
の酸化を防止するためには塩素の吹込み速度を可能な限
り低下させ、且つ可能な限り短時間で反応を終結させる
ことが必要である。しかし、吹込み速度を遅くすること
は滞留時間の大幅な長期化をもたらすものであり、過度
の滞留時間の長期化は硫黄の酸化防止については必ずし
も有効な方法とはならない。よって、本発明の目的であ
る塩素の大気中への揮散の防止と硫黄の酸化防止とを共
に達成させる為には吹込み速度と滞留時間との最適化が
必要となる。
02) Actual sulfuric acid concentration (mol/l) - (H3O) ÷
Activity Coefficient By the way, in order to prevent the volatilization of the injected chlorine into the atmosphere and to prevent the oxidation of sulfur, which is a solid-gas reaction with a relatively slow reaction rate, the chlorine injection rate should be kept as low as possible. It is necessary to reduce the reaction rate and terminate the reaction in the shortest possible time. However, slowing down the blowing speed significantly lengthens the residence time, and excessively prolonging the residence time is not necessarily an effective method for preventing sulfur oxidation. Therefore, in order to achieve both the prevention of volatilization of chlorine into the atmosphere and the prevention of oxidation of sulfur, which are the objectives of the present invention, it is necessary to optimize the blowing rate and residence time.

第4図は実容量5001の反応容器に100メツシユ以
下に粉砕したNi56.4、Gu14.5、Co O,
01、Fe004、S1l.9各重量%の品位のニッケ
ルマットと、使用済みの電解廃液と浸出液の一部とで調
整したNi 1l0.’、0u14、C1l48、So
 10各gjlの組成の塩化物溶液とを用いて、スラリ
ー濃度が140 g/lとなるように作成したスラリー
を、61/m1nの速度で供給しつつ塩素を所定の吹込
み速度で吹込むことにより求めた浸出率と塩素の大気中
への放出を防止しうる吹込速度との関係を示したもので
あり、図中のA線より下の領域では大気中への塩素の放
出を防止しつつ浸出を行なうことが出来ることを示すも
のである。例えば、N1の浸出率95重量%を達成し、
且つ大気中への塩素の揮散を防止するためには500 
tの原料スラリーに13 ’9/hr以下の吹込み速度
で吹込むことが必要となる。
Figure 4 shows Ni56.4, Gu14.5, CoO, crushed to less than 100 mesh in a reaction vessel with an actual capacity of 5001.
01, Fe004, S1l. 9.Ni 1l0.9 prepared with nickel matte of various weight % grades, used electrolytic waste liquid and a part of leachate. ',0u14,C1l48,So
10 Using a chloride solution with a composition of each gjl, a slurry prepared so that the slurry concentration is 140 g/l is supplied at a rate of 61/ml, and chlorine is blown in at a predetermined blowing rate. This figure shows the relationship between the leaching rate determined by the leaching rate and the blowing speed that can prevent the release of chlorine into the atmosphere. This shows that leaching can be carried out. For example, achieving a leaching rate of 95% by weight of N1,
500 to prevent chlorine from volatilizing into the atmosphere.
It is necessary to blow into the raw material slurry of t at a blowing rate of 13'9/hr or less.

ところで、この第4図に示した関係は使用する装置の諸
元、攪拌効率、塩素と溶液との接触時間等により異なる
ために限定出来るものではなく、事前に用いる装置によ
り確認しておくことが望ましい。
By the way, the relationship shown in Figure 4 cannot be limited because it varies depending on the specifications of the equipment used, stirring efficiency, contact time of chlorine and solution, etc., and should be confirmed in advance depending on the equipment used. desirable.

第二工程でニッケル、コバルト、銅及び銅より卑な金属
がほぼ完全に浸出された残渣は固液分離された後、洗浄
され、付着している有価物が除去される。通常このよう
にして得られた残渣は、その硫黄品位が80重量%以上
ないと熱伝導性と粘性が高くなり通常の融解濾過法は適
用できないとされている。
In the second step, the residue from which nickel, cobalt, copper, and metals baser than copper have been almost completely leached out is separated into solid and liquid, and then washed to remove attached valuables. It is generally said that the residue obtained in this way has high thermal conductivity and viscosity and cannot be applied to the usual melt filtration method unless the sulfur content is 80% by weight or more.

本発明方法により得られた浸出残渣中の単体の硫黄品位
は通常85重量%以上であり、融解濾過法により単体の
硫黄を回収することが可能である。
The elemental sulfur content in the leaching residue obtained by the method of the present invention is usually 85% by weight or more, and it is possible to recover elemental sulfur by the melt filtration method.

又、得られた浸出液中の銅濃度は、原料としてニッケル
マットを使用する場合には通常数十g/l程度であり、
簡単且つ適当な脱銅処理をすることにより電解採取用電
解液、あるいはニッケル塩の製造用原液とすることが出
来る。
In addition, the copper concentration in the obtained leachate is usually about several tens of g/l when nickel matte is used as the raw material.
By carrying out a simple and appropriate copper removal treatment, it can be used as an electrolytic solution for electrowinning or as a stock solution for producing nickel salt.

次に本発明の第2の発明について説明する。Next, the second invention of the present invention will be explained.

第2の発明は、第一工程で、ニッケル、コバルト、銅及
び硫黄を含む粒状物質を、1l当り10〜50 gの一
価の銅イオンを含む塩化物水溶液中で攪拌されたスラリ
ーとし、該スラリーに塩酸を添加しつつ空気又は酸素を
吹込むことにより有価金属を浸出する方法において、前
記粒状物質の供給と溶液中への塩酸と空気又は酸素とを
、スラリーのpHが2〜0.5となり、酸化還元電位が
300〜500 mVになるよう供給する第一工程と、
該第−工程より得たスラリーと、塩素とを溶液の酸化還
元電位が600〜650 mVになるように供給し、ニ
ッケル、コバルト、銅及び銅より卑な金属を含む浸出液
と残りの金属を含み、融解濾過可能な浸出残渣を生成さ
せる第二工程とからなる有価金属の分離方法である。
In the second invention, in the first step, the particulate material containing nickel, cobalt, copper and sulfur is made into a slurry which is stirred in an aqueous chloride solution containing 10 to 50 g of monovalent copper ions per liter. In a method of leaching valuable metals by blowing air or oxygen into a slurry while adding hydrochloric acid, the supply of the particulate material and the addition of hydrochloric acid and air or oxygen into the solution are performed until the pH of the slurry is 2 to 0.5. A first step of supplying so that the redox potential is 300 to 500 mV,
The slurry obtained from the second step and chlorine are supplied so that the redox potential of the solution is 600 to 650 mV, and the leachate containing nickel, cobalt, copper and metals baser than copper and the remaining metals are added. , and a second step of producing a leaching residue that can be melt-filtered.

本第2の発明の第一工程で起さるとされる反応は以下の
式で示され、09式は気液反応であり、(2)式は固液
反応であり、C4)式は固気反応である。
The reaction that occurs in the first step of the second invention is shown by the following formula, where formula 09 is a gas-liquid reaction, formula (2) is a solid-liquid reaction, and formula C4 is a solid-gas liquid reaction. It is a reaction.

(2160u”+Ni S  =60u +3Ni”+
2S0(13JCu 十〇 +4HO1=4Cu”+2
HO+4(,1(14J  2Ni°+O+4HCl=
2Ni”+2HO+401これらの反応式から判るよう
に、塩酸性塩化物溶液中に空気又は酸素の吹込みによっ
て浸出される有価金属と当量以上の遊離塩酸が存在しな
い場合には、液中のpHが高くなり鋼イオンが酸化銅若
しくは金属鋼として析出し、(2)式は進行しなくなる
。依って、本第2の発明においては、浸出中の溶液のp
Hを銅が沈殿しない範囲以下に維持する必要がある。し
かし、pHをあまりに低くすることは、多くの酸の添加
が必要となり、電解採取の前工程で多量の中和剤を必要
とするばかりか、次工程での塩素の大気中への揮散量を
増加させることになり、経済性を失なわせるので、pH
を2.5〜0.5の範囲になるようにすることが必要で
ある。
(2160u"+Ni S =60u +3Ni"+
2S0(13JCu 10 +4HO1=4Cu”+2
HO+4(,1(14J 2Ni°+O+4HCl=
2Ni"+2HO+401As can be seen from these reaction equations, if there is no free hydrochloric acid in an amount equal to or more than the valuable metal leached out by blowing air or oxygen into the hydrochloric acid chloride solution, the pH of the solution will be high. Therefore, in the second invention, the p of the solution during leaching is
It is necessary to maintain H below a range in which copper does not precipitate. However, lowering the pH too low not only requires the addition of a large amount of acid and a large amount of neutralizing agent in the pre-electrowinning process, but also reduces the amount of chlorine volatilized into the atmosphere in the next process. pH increases, making it uneconomical.
It is necessary to set the value to be in the range of 2.5 to 0.5.

木簡2の発明の第一工程で空気を用いることが出来るの
は、空気を吹込むことにより溶液の酸化還元電位を30
0 mV以上に維持することが出来、且ついくら吹込ん
でも本発明の液条件では500 mVを超えることはな
く硫黄の酸化を防止できるからである。
Air can be used in the first step of the invention of Wooden Tablet 2 because the redox potential of the solution can be raised to 30 by blowing air into it.
This is because the voltage can be maintained at 0 mV or more, and no matter how much it is blown, the voltage does not exceed 500 mV under the liquid conditions of the present invention, and oxidation of sulfur can be prevented.

使用する酸化剤として空気又は酸素以外でも、溶液のp
Hを2.5〜0.5の範囲としたときに酸化還元電位を
300〜500 mVの範囲に維持でさる酸化剤であれ
ば使用可能であるが塩素イオン以外の陰イオンを増加さ
せることは好ましくなく、又ある程度の反応速度を確保
する必要があり、且つ安価なものであることが望ましい
The oxidant used as an oxidant other than air or oxygen can also reduce the p
Any oxidizing agent that maintains the redox potential in the range of 300 to 500 mV when H is in the range of 2.5 to 0.5 can be used, but it is not possible to increase the amount of anions other than chlorine ions. This is not preferable, and it is necessary to ensure a certain reaction rate, and it is desirable that it be inexpensive.

尚酸化剤として、オゾン、空気と塩素との混合気体を用
い、少なくとも03)、(141式より求められる量販
上の遊離塩酸を含む溶液を浸出液として用いる方法は本
発明の範囲で有ることは云うまでもない。
It should be noted that the scope of the present invention is to use a mixed gas of ozone, air, and chlorine as the oxidizing agent, and to use a solution containing mass-produced free hydrochloric acid obtained from at least 03) and (141) as the leachate. Not even.

又、吹込まれた塩素や酸素を有効に利用する為に、例え
ば、攪拌機の羽根をタービン型とし、塩素の吹出し位置
をタービン羽根の下とし、ニッケルマットを良好に分散
するために攪拌機を二段羽根にするなどの設備上の考慮
は当然のことである。
In addition, in order to effectively utilize the injected chlorine and oxygen, for example, the blades of the stirrer are made into a turbine type, the chlorine blowing position is placed below the turbine blades, and the stirrer is installed in two stages to better disperse the nickel matte. It goes without saying that consideration must be given to the equipment, such as the use of feathers.

〔実施例〕〔Example〕

実施例1 $1反応器の容量を1m”、第2反応器の容量を0.5
TR″とした第1図に示した装置を用い、100メツシ
ユ以下に粉砕したN162.0u13、Co0.9、F
eO,4、S 22 各R1ft%の品位のニッケルマ
ットと、使用済みの電解廃液と浸出液の一部とで調整し
たNi1lO1Cu14、C1l48、So 10各g
/lの組成の銅を−価の銅イオンとして含む塩化物溶液
とを、スラリー濃度が220 g/lとなるように混合
してスラリーを作成し、このスラリーを4.1l //
minの割合で第1反応器に供給した。塩素の供給は溶
液の酸化還元電位が400 +nVとなるように調節し
た。
Example 1 The capacity of the $1 reactor is 1 m'', the capacity of the second reactor is 0.5
N162.0u13, Co0.9, F crushed to 100 mesh or less using the equipment shown in Figure 1
eO, 4, S 22 Each of Ni1lO1Cu14, C1l48, So 10g each adjusted with R1ft% grade nickel matte and a part of used electrolytic waste solution and leachate
A slurry was prepared by mixing a chloride solution containing copper as a -valent copper ion with a composition of /l so that the slurry concentration was 220 g/l, and this slurry was added to 4.1 l //
was supplied to the first reactor at a rate of min. The supply of chlorine was adjusted so that the redox potential of the solution was 400 + nV.

反応温度は、反応開始と共に上昇し1l0Cとなった。The reaction temperature rose to 110C with the start of the reaction.

又、第2反応器内の溶液の酸化還元電位は600 mV
になるように塩素の吹込み遣を調節し、第2反応器の温
度は成行きとし2日間の連続試験を行なった。第2反応
器のオーバーフローは濾過により浸出液と残渣とに分離
した。該残渣を洗浄し、分析して各金属の浸出率と硫黄
の酸化率を求めた。この結果を残渣の品位と併せ第1表
に示した。又、各反応器の排気管より排出される排気中
の塩素を分析し、大気中への塩素の揮散量を求めたとこ
ろ、第1反応器の排気中には塩素は認められず、第2反
応器の排気中に僅かに認められ、ニッケルマット1を当
りの吹込み塩素量は899.7j19に対して、揮散量
4.5Tc9となり、吹込み量に対して0.5%が大気
中に揮散するのみであることが判った。
Also, the redox potential of the solution in the second reactor is 600 mV.
The chlorine injection rate was adjusted so that the temperature of the second reactor remained constant, and a continuous test was conducted for two days. The overflow of the second reactor was separated into leachate and residue by filtration. The residue was washed and analyzed to determine the leaching rate of each metal and the oxidation rate of sulfur. The results are shown in Table 1 together with the quality of the residue. In addition, when we analyzed the chlorine in the exhaust gas discharged from the exhaust pipe of each reactor and determined the amount of chlorine volatilized into the atmosphere, no chlorine was found in the exhaust gas from the first reactor, and no chlorine was found in the exhaust gas from the second reactor. A small amount of chlorine was observed in the reactor exhaust, and the amount of chlorine blown into each nickel matte was 899.7j19, but the amount of volatilization was 4.5Tc9, and 0.5% of the amount of chlorine blown into the atmosphere was It was found that it only volatilized.

第工表 〔比較例〕 第1反応器の容量を1 m1l第2反応器の容量を0.
5−とした第1図に示した装置を用い、100メツシ二
以下に粉砕したN162.0u13、Ooo、9、Fe
O,4、S22各重量%の品位のニッケルマツトド、使
用済みの電解廃液と浸出液の一部とで調整したNi 1
l0、C!u 14、Cノ148、So 10各v’l
の組成の銅を−価の鋼イオンとして含む塩化物溶液とを
、スラリー−度が220 g/lとなるように混合して
スラリーを作成し、このスラリーを4.1l l/mi
nの割合で第1反応器に供給した。塩素の供給は溶液の
酸化還元電位が550 mVとなるように調節した。
Table 1 [Comparative example] The capacity of the first reactor is 1 ml. The capacity of the second reactor is 0.
N162.0u13, Ooo, 9, Fe crushed to 100 mesh or less using the equipment shown in Figure 1.
Nickel matte with grades of O, 4, and S22 by weight, Ni 1 adjusted with used electrolytic waste solution and a part of leachate
l0, C! u 14, C no 148, So 10 each v'l
A slurry was prepared by mixing a chloride solution containing copper as -valent steel ions with a composition of 220 g/l.
was fed to the first reactor at a rate of n. The supply of chlorine was adjusted so that the redox potential of the solution was 550 mV.

反応温度は、反応開始と共に上昇し1l0Cとなった。The reaction temperature rose to 110C with the start of the reaction.

又、第2反応器内の溶液の酸化還元電位は600 mV
になるように塩素の吹込み量を調節し、第2反応器の温
度は成行きとし、2日間の連続操業を行なった。第2反
応器のオーバーフローを固液分離し、得られた残渣を洗
浄し分析して各金属の浸出率と硫黄の酸化率を求めた。
Also, the redox potential of the solution in the second reactor is 600 mV.
The amount of chlorine blown was adjusted so that the temperature of the second reactor remained constant, and continuous operation was performed for two days. The overflow from the second reactor was separated into solid and liquid, and the resulting residue was washed and analyzed to determine the leaching rate of each metal and the oxidation rate of sulfur.

この際、第1反応器、第2反応器の何れの排気管より排
出される排気中の塩素を定量し、大気中に放出された塩
素の量を求めたところ、ニッケルマット1を当りの塩素
吹込み量が953.31=9となり、大気中に揮散した
塩素量は実施例の3倍である吹込み塩素量の1.5%、
14.3に9となった。得られた残渣の品位と各有価金
属の浸出率と硫黄酸化率とを第2表に示したが、この方
法では硫黄酸化率も実施例の2.4倍である6%まで上
昇した。
At this time, the amount of chlorine in the exhaust gas discharged from the exhaust pipe of either the first reactor or the second reactor was determined to determine the amount of chlorine released into the atmosphere. The amount of blown chlorine was 953.31 = 9, and the amount of chlorine volatilized into the atmosphere was 1.5% of the amount of chlorine blown, which is three times that of the example.
It became 9 on 14.3. The quality of the obtained residue, the leaching rate of each valuable metal, and the sulfur oxidation rate are shown in Table 2. With this method, the sulfur oxidation rate also increased to 6%, which is 2.4 times that of the example.

第  2  表 本比較例は、塩素による酸化浸出を二工程に分離したも
のではなく、単に2段に分は滞留時間を確保したのみと
云える。しかし、実質的には第1反応器の酸化還元電位
が第2反応器の酸化還元電位より低いことから、実施例
1に近い効果が得られ、上記第2表の浸出率と硫黄酸化
率と塩素の揮散率とが得られるものである。もしも、第
1反応器の酸化還元電位を第2反応器の酸化還元電位と
同じとした場合には有価金属の浸出率は第2表の値を下
回ることは明らかであり、第2表並みの浸出率を得るた
めには単位時間当りの塩素の吹込み量を増加させざるを
得ず、その結果、硫黄の酸化率も塩素の大気中への揮散
率も更に高いものとなることは明らかである。
Table 2 This comparative example does not separate the oxidation leaching using chlorine into two steps, but it can be said that the residence time was simply secured for the two stages. However, since the redox potential of the first reactor is substantially lower than the redox potential of the second reactor, an effect close to that of Example 1 can be obtained, and the leaching rate and sulfur oxidation rate shown in Table 2 above can be compared. The volatilization rate of chlorine can be obtained. If the redox potential of the first reactor is the same as the redox potential of the second reactor, it is clear that the leaching rate of valuable metals will be lower than the values in Table 2. It is clear that in order to obtain the leaching rate, it is necessary to increase the amount of chlorine injected per unit time, and as a result, the oxidation rate of sulfur and the rate of volatilization of chlorine into the atmosphere become even higher. be.

実施例2 ニッケルマット電解より発生した電解スライム中の硫黄
を融解濾過して得た各品位がNi14.5、Oul、4
1、OoO,14、Fe0.96、S 70.7各重量
%の融解濾過残渣と、使用済みの電解廃液と浸出液の一
部とで調整したNi1lO1(1!u 14、C’y7
148、So 10各g/lの組成の銅を一価の鋼イオ
ンとして含む塩化物溶液とを、スラリー濃度が200 
g/lとなるように混合してスラリーを作成し、実施例
1【−用いた装置を使用し、第1反応器に5.56 l
/min (t〕4度で供給した。溶液の温度を95C
とした後、pHを1に維持するように塩酸を添加しつつ
、空気を原料1にg当り0.4tの割合で供給し、第2
反応器では、塩酸の添加は停止し、溶液の酸化還元電位
が600 mVとなるように塩素の吹込み量を調節しつ
つ2日間の連続操業を行なった。定期的に第1反応器の
オーバーフローをサンプリングし、又第2反応器のオー
バーフローを固液分離し残渣をサンプリングして浸出率
を求めた。得られた各有価物の浸出率と硫黄の酸化率を
第3表に示した。尚、この間、第1反応器中の酸化還元
電位は460 mVで安定した。又、第2反応器の排気
中に塩素臭は殆どなかった。
Example 2 The grades obtained by melting and filtering sulfur in the electrolytic slime generated from nickel matte electrolysis were Ni14.5, Oul, and 4.
1, OoO, 14, Fe0.96, S 70.7% by weight of the melted filtration residue, and Ni1lO1 (1!u 14, C'y7) prepared with a portion of the used electrolytic waste solution and leachate.
148, So 10 g/l of a chloride solution containing copper as a monovalent steel ion, at a slurry concentration of 200 g/l.
g/l to create a slurry, and using the equipment used in Example 1, 5.56 l was added to the first reactor.
/min (t) was supplied at 4 degrees.The temperature of the solution was set to 95C.
After that, while adding hydrochloric acid to maintain the pH at 1, air was supplied to the raw material 1 at a rate of 0.4 t per g, and the second
In the reactor, the addition of hydrochloric acid was stopped, and continuous operation was performed for two days while adjusting the amount of chlorine blown so that the redox potential of the solution was 600 mV. The overflow of the first reactor was periodically sampled, and the overflow of the second reactor was subjected to solid-liquid separation and the residue was sampled to determine the leaching rate. The leaching rate of each valuable substance and oxidation rate of sulfur obtained are shown in Table 3. During this time, the redox potential in the first reactor was stabilized at 460 mV. Furthermore, there was almost no chlorine odor in the exhaust gas from the second reactor.

第  3  表    (単位%) 次いで得られた残渣を蒸気により130Cで加熱融解し
、タンクフィルターを用いて濾過し、硫黄214779
と融解濾過残渣101l19を得た。得られた硫黄と融
解濾過残渣の品位を第4表に示した。
Table 3 (Unit: %) The obtained residue was then heated and melted with steam at 130C, filtered using a tank filter, and sulfur 214779
and 101 liters of melted filtration residue were obtained. Table 4 shows the quality of the obtained sulfur and melted filtration residue.

第  4  表 このようにして回収された硫黄は原料中の硫黄量の94
.9%になった。
Table 4 The sulfur thus recovered is 94% of the amount of sulfur in the raw material.
.. It became 9%.

上記融解濾過残渣は第1反応器に繰返して処理すること
が出来ることは云うまでもない。この場合、繰返すべき
硫黄の絶対量も大幅に減少できるため、繰返しによる硫
黄の酸化量の増加は無視できる。
It goes without saying that the melted filtration residue can be repeatedly processed into the first reactor. In this case, since the absolute amount of sulfur to be repeated can be significantly reduced, the increase in the amount of oxidized sulfur due to repetition can be ignored.

以上のことより、ニッケルマット中に含まれる有価金属
を完全に浸出し、回収することが可能であることが判る
From the above, it is clear that it is possible to completely leach and recover the valuable metals contained in the nickel matte.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法では反応を二工程と
し、第一工程でOu” −Ou+対を利用し、大部分の
ニッケル、コバルト、銅及び銅より卑な金属を浸出し、
第二工程で塩素により残分のニッケル、コバルト、銅及
び銅より卑な金属を浸出するために、硫黄の酸化を防止
しつつ、且つ大気中への塩素の揮散を防止しつつ、得ら
れる残渣中の硫黄を融解濾過法で回収可能なほど高浸出
率を得ることが出来る。
As explained above, in the method of the present invention, the reaction is carried out in two steps, and in the first step, most of the nickel, cobalt, copper, and metals baser than copper are leached out using the Ou''-Ou+ pair.
In the second step, the remaining nickel, cobalt, copper, and metals baser than copper are leached out using chlorine, thereby preventing the oxidation of sulfur and the volatilization of chlorine into the atmosphere. It is possible to obtain a high leaching rate such that the sulfur inside can be recovered by the melt filtration method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の検討に用いた装置の一例を示す図であ
り、第2図は酸化還元電位と各金属と硫黄の浸出率を示
したものであり、第3図は反応温度とニッケルの浸出率
との関係を示したものであり、第4図はN1浸出率と塩
素の大気中への放出を防止しつる吹込み速度との関係を
示したものである。 1・・原料供給フィーダー 2・・給液口     3・・抜出しポンプ4・・スラ
リー槽 6・・吹込み管 8・・オーバーフロー管 9・・第1反応器 1l・・吹込み管 13・・第2反応器 10・・排気管 12・・オーツぐ−フ 5・・排気管 7・・攪拌機 ロー管 浸出率 重量%
Figure 1 is a diagram showing an example of the apparatus used in the study of the present invention, Figure 2 is a diagram showing the oxidation-reduction potential and the leaching rate of each metal and sulfur, and Figure 3 is a diagram showing the reaction temperature and leaching rate of nickel. Figure 4 shows the relationship between the N1 leaching rate and the vine blowing rate that prevents chlorine from being released into the atmosphere. 1... Raw material supply feeder 2... Liquid supply port 3... Extraction pump 4... Slurry tank 6... Blowing pipe 8... Overflow pipe 9... First reactor 1l... Blowing pipe 13... No. 2 Reactor 10... Exhaust pipe 12... Oat grout 5... Exhaust pipe 7... Stirrer tube Leaching rate Weight %

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケル、コバルト、銅及び硫黄を含む粒状物質
を、1l当り10〜50gの一価の銅イオンを含む塩化
物水溶液中で攪拌されたスラリーとし、該スラリーに塩
素を吹き込むことにより有価金属を浸出する方法におい
て、前記塩化物水溶液に前記粒状物質と塩素との供給を
該スラリーの酸化還元電位が300〜500mVとなる
ように供給する第一工程と、第一工程を経たスラリーと
塩素とをスラリーの酸化還元電位が600〜650mV
となるように供給し、ニッケル、コバルト、銅及び銅よ
り卑な金属を含む浸出液と、残りの金属を含み、融解濾
過可能な浸出残渣を生成せしめる第二工程とからなる有
価金属の分離方法。
(1) Granular materials containing nickel, cobalt, copper and sulfur are stirred into a slurry in an aqueous chloride solution containing 10 to 50 g of monovalent copper ions per liter, and chlorine is blown into the slurry to remove valuable metals. A first step of supplying the particulate matter and chlorine to the chloride aqueous solution so that the redox potential of the slurry is 300 to 500 mV; The redox potential of the slurry is 600 to 650 mV.
A method for separating valuable metals comprising a leachate containing nickel, cobalt, copper, and metals baser than copper, and a second step of producing a leachate residue containing the remaining metals and capable of being melted and filtered.
(2)ニッケル、コバルト、銅及び硫黄を含む粒状物質
を、1l当り10〜50gの一価の銅イオンを含む塩化
物水溶液中で攪拌されたスラリーとし、該スラリーに、
塩酸を添加しつつ空気又は酸素を吹き込むことにより有
価金属を浸出する方法において、前記塩化物水溶液に前
記粒状物質と、塩酸と、空気又は酸素とを、該スラリー
のpHが2〜0.5となり、酸化還元電位が300〜5
00mVとなるように供給する第一工程と、第一工程を
経たスラリーと塩素とをスラリーの酸化還元電位が60
0〜650mVとなるように供給し、ニツケル、コバル
ト、銅及び銅より卑な金属を含む浸出液と、残りの金属
を含み、融解濾過可能な浸出残渣を生成せしめる第二工
程とからなる有価金属の分離方法。
(2) Particulate material containing nickel, cobalt, copper and sulfur is stirred into a slurry in an aqueous chloride solution containing 10 to 50 g of monovalent copper ions per liter, and the slurry contains:
In the method of leaching valuable metals by blowing air or oxygen while adding hydrochloric acid, the particulate matter, hydrochloric acid, and air or oxygen are added to the chloride aqueous solution until the pH of the slurry is 2 to 0.5. , redox potential is 300-5
The first step is to supply the slurry so that the voltage is 00 mV, and the slurry after the first step is supplied with chlorine until the oxidation-reduction potential of the slurry is 60 mV.
A leachate containing nickel, cobalt, copper, and a metal less base than copper, and a second step containing the remaining metals and producing a leach residue that can be melted and filtered. Separation method.
JP1589989A 1989-01-25 1989-01-25 Valuable metal separation method Expired - Fee Related JPH0791599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1589989A JPH0791599B2 (en) 1989-01-25 1989-01-25 Valuable metal separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1589989A JPH0791599B2 (en) 1989-01-25 1989-01-25 Valuable metal separation method

Publications (2)

Publication Number Publication Date
JPH02197533A true JPH02197533A (en) 1990-08-06
JPH0791599B2 JPH0791599B2 (en) 1995-10-04

Family

ID=11901628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1589989A Expired - Fee Related JPH0791599B2 (en) 1989-01-25 1989-01-25 Valuable metal separation method

Country Status (1)

Country Link
JP (1) JPH0791599B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301043A (en) * 1991-03-28 1992-10-23 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JP2009046736A (en) * 2007-08-21 2009-03-05 Sumitomo Metal Mining Co Ltd Chlorine leaching method of nickel sulfide
JP2009242221A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating copper-arsenic compound
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material
JP2013129865A (en) * 2011-12-20 2013-07-04 Sumitomo Metal Mining Co Ltd Stirred reaction tank, stirred reaction device and method for controlling chlorine leaching reaction oxidation-reduction potential
WO2013161599A1 (en) * 2012-04-26 2013-10-31 住友金属鉱山株式会社 Method for adding starting material slurry and sulfuric acid to autoclave in high pressure acid leaching process and autoclave
JP2014057955A (en) * 2012-04-26 2014-04-03 Sumitomo Metal Mining Co Ltd Method for adding raw material slurry and sulfuric acid to autoclave in high-pressure acid leaching process and autoclave
JP2014113565A (en) * 2012-12-11 2014-06-26 Sumitomo Metal Mining Co Ltd Method and apparatus for treating barren solution including hydrogen sulfide
JP2015081371A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide
WO2016024470A1 (en) * 2014-08-13 2016-02-18 住友金属鉱山株式会社 Nickel recovery method
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
WO2020004285A1 (en) 2018-06-27 2020-01-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440070B2 (en) * 2008-09-29 2014-03-12 住友金属鉱山株式会社 Method for leaching nickel from mixed sulfides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427295A (en) * 1977-07-29 1979-03-01 Bayer Ag Internal prosthetic material
JPS5713132A (en) * 1980-06-03 1982-01-23 Int Metals Reclamation Co Recovery of chromium from superalloy scrap by selective chloring elusion
JPS6338538A (en) * 1986-07-31 1988-02-19 Sumitomo Metal Mining Co Ltd Recovering method for nickel from nickel sulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427295A (en) * 1977-07-29 1979-03-01 Bayer Ag Internal prosthetic material
JPS5713132A (en) * 1980-06-03 1982-01-23 Int Metals Reclamation Co Recovery of chromium from superalloy scrap by selective chloring elusion
JPS6338538A (en) * 1986-07-31 1988-02-19 Sumitomo Metal Mining Co Ltd Recovering method for nickel from nickel sulfide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301043A (en) * 1991-03-28 1992-10-23 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JP2009242221A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating copper-arsenic compound
JP2009046736A (en) * 2007-08-21 2009-03-05 Sumitomo Metal Mining Co Ltd Chlorine leaching method of nickel sulfide
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material
JP2013129865A (en) * 2011-12-20 2013-07-04 Sumitomo Metal Mining Co Ltd Stirred reaction tank, stirred reaction device and method for controlling chlorine leaching reaction oxidation-reduction potential
US9970077B2 (en) 2012-04-26 2018-05-15 Sumitomo Metal Mining Co., Ltd. Method for adding starting material slurry and sulfuric acid to autoclave in high pressure acid leaching process and autoclave
JP2014057955A (en) * 2012-04-26 2014-04-03 Sumitomo Metal Mining Co Ltd Method for adding raw material slurry and sulfuric acid to autoclave in high-pressure acid leaching process and autoclave
WO2013161599A1 (en) * 2012-04-26 2013-10-31 住友金属鉱山株式会社 Method for adding starting material slurry and sulfuric acid to autoclave in high pressure acid leaching process and autoclave
JP2014113565A (en) * 2012-12-11 2014-06-26 Sumitomo Metal Mining Co Ltd Method and apparatus for treating barren solution including hydrogen sulfide
JP2015081371A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide
WO2016024470A1 (en) * 2014-08-13 2016-02-18 住友金属鉱山株式会社 Nickel recovery method
JP2016040406A (en) * 2014-08-13 2016-03-24 住友金属鉱山株式会社 Nickel recovery method
US10344354B2 (en) 2014-08-13 2019-07-09 Sumitomo Metal Mining Co., Ltd. Nickel recovery process
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt
WO2020004285A1 (en) 2018-06-27 2020-01-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
KR20210011446A (en) 2018-06-27 2021-02-01 스미토모 긴조쿠 고잔 가부시키가이샤 Separation method of copper, nickel and cobalt
KR20230098930A (en) 2018-06-27 2023-07-04 스미토모 긴조쿠 고잔 가부시키가이샤 Method for separating copper from nickel and cobalt

Also Published As

Publication number Publication date
JPH0791599B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP4999108B2 (en) Gold leaching method
JP4180655B2 (en) Chloride assisted metallurgical metallurgical extraction method
JP3705815B2 (en) Mineral leaching process at atmospheric pressure
US7858056B2 (en) Recovering metals from sulfidic materials
JP4642796B2 (en) Gold leaching method
CA2639165C (en) Method for recovering metal from ore
CN102994747B (en) Technology for recovering metallic copper from high-lead copper matte
CA2454821C (en) Process for direct electrowinning of copper
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
EP0646185A1 (en) Production of metals from minerals
JPS622616B2 (en)
JP5439997B2 (en) Method for recovering copper from copper-containing iron
AU2002329630A1 (en) Process for direct electrowinning of copper
CN106460089A (en) Process for recovery of copper from arsenic-bearing and/or antimony-bearing copper sulphide concentrates
JPH02197533A (en) Separation of valuable metal
JP2010255118A (en) Process for multiple stage direct electrowinning of copper
US10662502B2 (en) Systems and methods for improved metal recovery using ammonia leaching
JPS583022B2 (en) Ryuukasei Kokaradou Ouruhouhou
FI64646C (en) HYDROMETALLURGICAL FOERFARANDE FOER UTVINNING AV VAERDEMETALLER UR METALLISKA LEGERINGAR
CN113278795A (en) Wet smelting method for high nickel matte
EP3395968A1 (en) Method for removing sulfidizing agent
EP1507878B1 (en) Chloride assisted hydrometallurgical extraction of metals
JPS6338538A (en) Recovering method for nickel from nickel sulfide
US9175366B2 (en) Systems and methods for improved metal recovery using ammonia leaching
JPH10140258A (en) Removing method of impurity from chlorine leaching liquid of nickel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14