JP2011015580A - 燃料電池システムおよびその制御方法 - Google Patents

燃料電池システムおよびその制御方法 Download PDF

Info

Publication number
JP2011015580A
JP2011015580A JP2009159222A JP2009159222A JP2011015580A JP 2011015580 A JP2011015580 A JP 2011015580A JP 2009159222 A JP2009159222 A JP 2009159222A JP 2009159222 A JP2009159222 A JP 2009159222A JP 2011015580 A JP2011015580 A JP 2011015580A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
gas
mode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009159222A
Other languages
English (en)
Other versions
JP5359621B2 (ja
Inventor
Yutaka Tano
裕 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009159222A priority Critical patent/JP5359621B2/ja
Publication of JP2011015580A publication Critical patent/JP2011015580A/ja
Application granted granted Critical
Publication of JP5359621B2 publication Critical patent/JP5359621B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池の触媒劣化を抑制しつつ、間欠運転する燃料電池の応答性およびエネルギー効率を向上させる。
【解決手段】燃料電池システム10は、燃料電池12と、燃料電池12からの発電電力が供給される交流モータ78に対して燃料電池12と並列にコンバータ72を介して接続されるバッテリ74と、燃料電池12へのガス供給を制御するとともにコンバータ72を作動制御するECU90とを備える。ECU90は、燃料電池12に対する発電要求パワーP*と閾値Pthrとの比較に基づいて燃料電池12を通常発電モードおよび発電休止モードの間で切り替える間欠運転制御を実行し、発電休止モード中に高電位回避制御を実行しつつFC電流IFCの変化に応じて上記閾値Pthrを変更する制御を実行する。
【選択図】図4

Description

本発明は、燃料電池システムおよびその制御方法に係り、特に、燃料電池について間欠運転を行う燃料電池システムおよびその制御方法に関する。
従来、例えば特許文献1に記載されるように、負荷であるモータに接続されるインバータに対し、燃料電池と二次電池とが並列に接続されて構成される燃料電池システムが知られている。このような燃料電池システムでは、モータを駆動するために必要となる要求パワーを、燃料電池に燃料ガスおよび酸化ガスを供給して発電運転させてその発電電力で賄うか、あるいは、燃料ガス等の供給を停止して燃料電池を発電休止状態として二次電池から出力させるかを、適宜に選択して、燃料電池の運転を制御している。以後、このような燃料電池の運転制御を「間欠運転」といい、発電休止状態にある運転状態を「発電休止モード」、通常の発電状態にある運転状態を「通常発電モード」ということとする。
特許文献1の燃料電池システムでは、要求パワーを閾値と比較して、要求パワーが前記閾値未満のときであって二次電池から前記要求パワーを出力可能であるときは発電休止モードが選択され、一方、要求パワーが前記閾値以上であるときは通常発電モードが選択されることが記載されている。そして、燃料電池の開放端電圧(OCV)に応じて、前記閾値を調整することが述べられている。
また、特許文献2には、モータ、インバータ、燃料電池およびバッテリを備え、燃料電池の間欠運転を行う燃料電池システムが開示されている。この燃料電池システムでは、発電休止モード中に、燃料電池のアノード側の燃料オフガス中の不純物濃度が所定値以上になったときに、発電休止モードから通常発電モードに切り替えることが記載されている。ここでは、燃料オフガス中の不純物濃度を不純物濃度センサから得られる水素濃度および水蒸気濃度の検出値に基づいて算出することが述べられている。
さらに、特許文献3に開示される間欠運転する燃料電池システムでは、燃料電池の発電休止モードを継続すると燃料電池の性能低下が起きると判定されると、燃料電池を発電休止モードから通常発電モードに移行することが記載されている。この燃料電池システムでは、燃料オフガス中の窒素濃度等に基づいて燃料電池の性能低下が起きるか否かが判定されることが述べられている。
特開2005−71797号公報 特開2006−318764号公報 特開2005−26054号公報
上記特許文献1の燃料電池システムでは、燃料電池を開放端電圧の状態で使用することが条件となるが、燃料電池では開放端電圧に上昇すると燃料電池内に用いられる触媒が溶出等して劣化し、燃料電池の性能が低下するという問題がある。
また、特許文献2,3の燃料電池システムでは、燃料電池の燃料オフガス中の不純物濃度を検出するために特別な検出手段を設ける必要があり、コスト高を招くことになる。
本発明は、燃料電池を間欠運転させる燃料電池システムにおいて、燃料電池の触媒劣化を抑制しつつ、間欠運転する燃料電池の応答性およびエネルギー効率を向上させることを目的とする。
本発明に係る燃料電池システムは、燃料ガスおよび酸化ガスの供給を受けて発電を行う燃料電池と、燃料電池から発電電力が供給される負荷装置に対して前記燃料電池と並列に電圧変換装置を介して接続される蓄電装置と、前記燃料電池へのガス供給を制御するとともに前記電圧変換装置を作動制御する制御装置と、を備える燃料電池システムであって、前記制御装置は、燃料電池に対する発電要求パワーと閾値との比較に基づいて燃料電池へのガス供給を制御することにより燃料電池の運転状態を通常発電モードおよび発電休止モードの間で切り替える間欠運転制御を実行し、燃料電池への燃料ガスおよび酸化ガスの供給が完全に又はほぼ停止される発電休止モード中に燃料電池の端子間電圧が開放端電圧よりも低い上限電圧を超えないようにする高電位回避制御を実行し、かつ、前記高電位回避制御されている発電休止モード中に燃料電池から流れ出る電流値の変化に応じて前記閾値を変更する制御を実行する、制御構成を有する。
ここで「発電休止」の文言は、通常発電状態ではないことを意味するものであって、発電を全く行っていない状態を指すものではない。
本発明に係る燃料電池システムにおいて、前記制御装置は、前記発電休止モード中に燃料電池から流れ出る電流値が低下するに従って前記閾値を小さくするのが好ましい。
また、本発明に係る燃料電池システムにおいて、前記制御装置は、前記発電休止モード中に燃料ガスまたは酸化ガスの補給があったことにより前記電流値が増加したときには、それに合わせて前記閾値を大きくするのが好ましい。
本発明に係る燃料電池システムの制御方法は、燃料ガスおよび酸化ガスの供給を受けて発電を行う燃料電池と、燃料電池から発電電力が供給される負荷装置に対して前記燃料電池と並列に電圧変換装置を介して接続される蓄電装置と、前記燃料電池へのガス供給を制御するとともに前記電圧変換装置を作動制御する制御装置と、を備える燃料電池システムの制御方法であって、燃料電池に対する発電要求パワーと閾値との比較に基づいて燃料電池へのガス供給を制御することにより燃料電池の運転状態を通常発電モードおよび発電休止モードの間で切り替える間欠運転を行い、燃料電池への燃料ガスおよび酸化ガスの供給が完全に又はほぼ停止される発電休止モード中に燃料電池の端子間電圧が開放端電圧よりも低い上限電圧を超えないようにする高電位回避制御を行い、前記高電位回避制御されている発電休止モード中に、燃料電池から流れ出る電流値の変化に応じて前記閾値を変更する。
本発明に係る燃料電池システムの制御方法において、前記発電休止モード中に燃料電池から流れ出る電流値が低下するに従って前記閾値を小さくするのが好ましい。
また、本発明に係る燃料電池システムの制御方法において、前記発電休止モード中に燃料ガスまたは酸化ガスの補給があったことにより前記電流値が増加したときには、それに合わせて前記閾値を大きくするのが好ましい。
本発明に係る燃料電池システムおよびその制御方法では、燃料電池への燃料ガスの供給が完全に又はほぼ停止される発電休止モード中に燃料電池の端子間電圧が開放端電圧よりも低い上限電圧を超えないようにする高電位回避制御を行い、かつ、前記高電位回避制御されている発電休止モード中に燃料電池から流れ出る電流値の変化に応じて前記閾値を変更する制御を行っている。
発電休止モード中の燃料電池内では、残存する燃料ガスと酸化ガスとの電気化学反応により発電が継続されて端子間電圧が開放端電圧に上昇する傾向にあるが、上記のように高電位回避制御を行うことにより端子間電圧が開放端電圧に到達しないようにすることで、触媒劣化を抑制することができる。
また、高電位回避制御されている発電休止モード中の燃料電池では、燃料電池への燃料ガス供給が基本的に停止されているため上記のように微弱発電が継続されて燃料が消費されることによって燃料電池内の燃料ガスに含まれる燃料濃度が次第に低下する一方で、カソード側から電解質膜を介して透過してくる窒素や水蒸気等の不純物濃度が高くなってくる。これに伴って、燃料電池から流れ出る電流値が次第に低下する傾向にある。このように不純物濃度が高くなってガス品質が相当低下した状態で燃料ガス等の供給を再開して発電休止モードから通常発電モードに移行すると、燃料電池内の燃料ガスのガス品質が改善されて所定の出力が出せる状態に復帰するまでに時間がかかり、この時間はガス品質が悪化するほど長くなって応答性が悪くなる。これに対し、本発明では、前記電流値に応じて前記閾値を変更する、例えば電流値が低下するに従って前記閾値を小さくすることで、発電休止モードから通常発電モードへの移行基準を下げて燃料ガスのガス品質が相当程度悪化する前に通常発電モードに移行させることにより、間欠運転する燃料電池の応答性を向上させることができる。
一方、前記閾値が一定である場合には、燃料電池内の燃料ガスのガス品質がそれほど悪化していない状態で燃料電池が発電休止モードから通常発電モードへと移行する事態が頻繁に起こり得、そうなると燃料ガスの無駄が大きくなりエネルギー効率(または燃費)が悪くなる。これに対し、本発明では、前記電流値に応じて前記閾値を変更する、例えば発電休止モード中の燃料ガスの補給によって電流値が増加した場合等には前記閾値を大きくすることで、上記のように燃料ガスのガス品質がそれほど悪化していない状態で燃料電池が発電休止モードから通常発電モードへと移行する事態を抑制して、間欠運転する燃料電池のエネルギー効率を向上させることができる。
さらには、本発明では、高電位回避制御されている発電休止モード中の燃料電池から流れ出る電流を検出し、それに応じて燃料電池の運転状態切り替えの参照基準である閾値の変更を行っている。燃料電池の出力状態を監視するために電流センサや電圧センサを設けるのは一般的であるから、発電休止モード中の燃料電池内の燃料ガスに含まれる不純物濃度を検出するための窒素濃度センサや水蒸気濃度センサ等の特別なセンサを必要とせずに、燃料ガスのガス品質低下に適切に対応して上記閾値を変更することができる。
図1は、本発明の一実施形態である燃料電池システムの概略構成図である。 図2は、燃料電池の間欠運転制御の処理手順を示すフローチャートである。 図3は、発電休止モード中に高電位回避制御下にある燃料電池から流れ出る電流と、発電休止モードから通常発電モードに移行した際に所定の発電パワーを出力できる状態になるまでに要する時間との関係を示すグラフである。 図4は、発電休止モード中に、燃料電池から流れ出る電流が低下するのに応じて、通常発電モードへの移行を判定するための閾値を小さくする様子を示す図である。 図5は、発電休止モード中に、燃料電池から流れ出る電流が上昇に転じたときに、通常発電モードへの移行を判定するための閾値も大きくする様子を示す図である。
以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。
図1は、本願の一実施形態である燃料電池システム10が燃料電池車両の車載電源システムとして用いられている例を示すシステム概略構成図である。燃料電池システム10は、燃料および酸化ガスの供給を受けて発電する燃料電池12と、酸化ガスとしての空気中の酸素を燃料電池12に供給するための空気供給系30と、燃料としての水素を燃料電池12に供給するための水素供給系50と、燃料電池12と負荷装置であるモータ78とを電気的に接続する電力系70と、システム全体を統括制御する制御装置であるECU(Electronic Control Unit)90とを備える。
燃料電池12は、多数の燃料電池セルを電気的に直列接続した状態で積層してなる固体高分子電解質膜型セルスタックである。燃料電池12では、燃料極(アノード極)においてH2 → 2H++2e-で表される酸化反応が生じ、空気極(カソード極)において(1/2)O2+2H++2e- → H2Oで表される還元反応が生じる。そして、燃料電池12全体としては、H2+(1/2)O2 → H2Oで表される電気化学反応が生じることになる。
燃料電池12は、正極母線13および負極母線14を介して電力系70に電気的に接続されている。正極母線13には、燃料電池12から出力される電流(以下、適宜に「FC電流」という。)IFCを検出する電流センサ18が設けられている。また、正極母線13および負極母線14間には、燃料電池12の端子間電圧(以下、適宜に「FC電圧」という。)VFCを検出する電圧センサ16が設けられている。これらのセンサ16,18の検出信号は、ECU90へ送信されて、燃料電池システム10の制御に利用される。
空気供給系30は、燃料電池12の空気極に供給される空気が流れる空気供給通路32と、燃料電池12から排出される空気が流れる空気排出通路34とを有している。空気供給通路32には、エアフィルタ36を介して大気中から空気を取り込むエアコンプレッサ38と、エアコンプレッサ38により圧縮加圧される空気を適度に加湿するための加湿器40と、燃料電池12への空気供給を遮断するための遮断弁42とが設けられている。一方、空気排出通路34には、燃料電池12からの空気の排出を遮断するための遮断弁44と、空気供給圧を調整するための調圧弁46とが設けられている。上記加湿器40は、空気排出通路34に燃料電池12から空気と一緒に排出された生成水が加湿器40内を通過する際に回収されて、空気供給通路32を介して供給される空気の加湿に利用されるように構成されている。
水素供給系50は、例えば高圧水素タンクなどからなる水素供給源52と、水素供給源52から燃料電池12の燃料極に供給される水素ガスが流れる水素供給通路54と、燃料電池12から排出される水素オフガスが流れる水素排出通路56と、水素排出通路56から分岐して水素供給通路54に接続される循環通路58と、燃料電池12から排出された水素オフガスを水素排出通路56から循環通路58を介して水素供給通路54へ循環供給するための循環ポンプ60と、を含んで構成されている。
水素供給源52から燃料電池12に接続する水素供給通路54には、水素ガス供給方向の上流側から順に、水素供給源52からの水素ガスの流出を遮断する遮断弁61、水素供給源52から噴出する水素ガスを適度に減圧する調圧弁62、燃料電池12への水素供給量を制御するインジェクタ63、燃料電池12への水素ガス供給を遮断するための遮断弁64、および、燃料電池12に供給される水素ガスの圧力を検出する圧力センサ65が設置されている。一方、水素排出通路56には、水素オフガス排出方向の上流側から順に、燃料電池12からの水素オフガス排出を遮断するための遮断弁66と、水素オフガスをシステム外に排出する際に開弁される水素オフガス排出用遮断弁67とが設置されている。
なお、本実施形態の水素供給系50では、水素供給源52に貯蔵された水素が燃料電池12に供給されるものとして説明するが、これに限定されず、天然ガス等の炭化水素系燃料を水蒸気により改質して生成される水素リッチガスを燃料電池12に供給するようにしてもよい。
上記空気供給系30および水素供給系50に含まれる遮断弁42,44,61,64,66,67には、ECU90からの指令を受けて開弁または閉弁する電磁弁などが好適に用いられる。また、調圧弁46,62は、その上流側の一次圧力を予め設定した二次圧に調圧する装置であり、例えば一次圧を減圧する機械式の減圧弁などが好適に用いられる。さらに、インジェクタ63は、電磁駆動力により開閉可能な弁体を有する電磁式の開閉弁などにより好適に構成され、弁体の開度または開弁時間が制御されることによって通過する水素ガス流量および水素ガス圧を調整できるようになっている。
電力系70は、DC/DCコンバータ(電圧変換装置)72、バッテリ(蓄電装置)74、インバータ76および交流モータ(負荷装置)78を含む。インバータ76は、正極母線13および負極母線14を介して燃料電池12に電気的に接続されており、燃料電池12から供給される直流電力を交流電力に変換して交流モータ78に印加する機能と、逆に、回生制動時に交流モータ78が発電機として機能するときには交流モータ78から出力される交流電力を直流電圧に変換する機能とを有する。インバータ76は、例えばそれぞれ複数のIGBTなどの電力用スイッチング素子およびダイオードによって構成されることができる既知の構成のものであり、上記電力用スイッチング素子がECU90によってオン・オフ制御されることによって、直流電圧を三相交流電圧に又はこの逆に変換することができる。
交流モータ78には、三相同期型交流モータを好適に用いることができる。交流モータ78は、インバータ76によって変換された三相交流電圧が印加されることによって駆動される。交流モータ78の駆動力は、車軸を介して車輪(いずれも図示せず。)に伝達され、これにより車両の走行力が得られる。
また、正極母線13および負極母線14には、交流モータ78に接続されるインバータ76に対して燃料電池12と並列に、DC/DCコンバータ72を介してバッテリ74が接続されている。DC/DCコンバータ72は、バッテリ74から供給される直流電力を昇圧してインバータ76に供給する昇圧機能と、交流モータ78からの回生電力および燃料電池12からの発電電力をバッテリ充電用に降圧する降圧機能とを有する双方向コンバータであり、例えばIGBTなどの電力用スイッチング素子、ダイオード、リアクトル等から構成されることができる既知の構成のものである。
また、DC/DCコンバータ72は、ECU90からの制御信号を受けて電力用スイッチング素子がオフ・オフ制御されることにより、上記のような昇圧および降圧機能を果たすことができる。さらに、DC/DCコンバータ72は、燃料電池12の発電休止モード中に、正極母線13および負極母線14との接続点を所定電位に保持することにより燃料電池12の電位がOCV(開放端電圧)へと上昇するのを抑制する高電位回避制御に用いられることができる。この高電位回避制御については、後に改めて説明する。
バッテリ74は、余剰電力の貯蔵源、回生制動時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ74としては、例えばニッケル水素電池やリチウム二次電池等の二次電池が好適に用いられる。ただし、バッテリに代えて、内部での化学反応を伴わずに蓄電可能なキャパシタが蓄電装置として用いられてもよい。バッテリ74には、SOC(State of charge)を検出するためのSOCセンサ(図示せず)が取り付けられている。具体的には、SOCセンサは、バッテリ電流を検出する電流センサで構成されることができ、ECU90はその電流センサの検出値を積算することによってバッテリ74の残容量を監視することで、必要に応じてバッテリ74に対して充放電制限をかけることができる。また、バッテリ74の温度および電圧を検出する温度センサおよび電圧センサが設けられてよく、これらのセンサの検出信号をECU90に入力してバッテリ74の状態管理に用いてもよい。
ECU90は、各種プログラムを実行するCPU、各種プログラム等を予め記憶するROM、検出データ等を一時記憶するRAM、及び、各種信号の入出力部である入出力インターフェース等を備えるコンピュータシステムであり、燃料電池システム10の各部を制御する。例えば、ECU90は、ユーザ操作によりイグニッションスイッチ(図示せず)から出力される起動信号IGを受信すると、燃料電池システム10の運転を開始し、アクセルセンサから出力されるアクセル開度信号ACCや車速センサから出力される車速信号Svcなどを基に、システム10全体の要求電力を算出する。
そして、ECU90は、燃料電池12とバッテリ74とのそれぞれの出力電力の配分を決定し、燃料電池12の発電パワーが目標電力に一致するように、空気供給系30及び水素供給系50を制御するとともに、DC/DCコンバータ72を制御して、燃料電池12の出力電圧を調整することにより、燃料電池12の運転ポイント(FC電圧、FC電流)を制御する。更に、ECU90は、アクセル開度に応じた目標トルクが得られるように、例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をインバータ76に出力し、交流モータ78の出力トルク及び回転数を制御する。
続いて、上記構成からなる燃料電池システム10における燃料電池12の間欠運転と高電位制御について図2ないし4を参照して説明する。図2は燃料電池12の間欠運転制御の処理手順を示すフローチャート、図3は、発電休止モード中に高電位回避制御下にある燃料電池12から流れ出る電流IFCと、発電休止モードから通常発電モードに移行した際に所定の発電パワーを出力できる状態になるまでに要する時間との関係を示すグラフ、図4は、発電休止モード中に、燃料電池12から流れ出る電流IFCが低下するのに応じて、通常発電モードへの移行を判定するための閾値Pthrを小さくする様子を示す図である。
燃料電池システム10では、運転負荷に応じて、燃料電池12の運転状態を通常発電モードと発電休止モードとの間で間欠的に切り替える間欠運転を行うことによりシステム10のエネルギー効率向上が図られている。燃料電池システム10は、発電効率の低い低負荷領域では、燃料電池12の発電要求パワーP*をゼロに設定して発電休止モードでの運転状態に制御され、車両走行に要する電力やシステム運用上必要な電力をバッテリ74からの電力によって賄う。一方、発電効率の高い高負荷領域では、アクセル開度ACCや車速Svcなどを基に燃料電池12の発電要求パワーP*を算出して通常発電モードでの運転状態とし、車両走行に要する電力やシステム運用上必要な電力を燃料電池12による発電電力のみによって賄う。ただし、燃料電池12が通常発電モードにあるときに、燃料電池12による発電電力とバッテリ74からの電力とを合わせて車両要求パワーを満たすようにしてもよい。
図2に示すフローチャートにしたがって、燃料電池12の間欠運転制御の処理手順について説明する。この制御フローは、燃料電池システム10が運転されている間、所定時間(例えば数ms)ごとにECU90において実行される。
まず、燃料電池12に対する発電要求パワーP*(kW)が所定の閾値Pthr(kW)よりも小さいか否かが判定される(ステップS10)。ここでの閾値Pthrは、燃料電池12の発電効率やシステム全体としてのエネルギー効率等を考慮して設定されるものである。
上記判定において発電要求パワーP*が閾値Pthrよりも小さいと判定されると(ステップS10でYES)、燃料電池12の運転状態が通常発電モードから発電休止モードに移行するか、または、発電休止モードが継続される(ステップS12)。発電休止モードでは、遮断弁42、44、61,64,66が閉弁されるとともにエアコンプレッサ38および循環ポンプ60が作動停止され、燃料電池12への空気および水素の供給が停止される(図1参照)。
一方、上記判定において発電要求パワーP*が閾値Pthr以上であると判定されると(ステップS10でNO)、燃料電池12は空気および水素の供給を受けて通常発電モードで運転される(ステップS14)。
燃料電池12が発電休止モードにあるとき、高電位回避制御が合わせて実行される(ステップS12)。この高電位回避制御では、ECU90から制御信号によってDC/DCコンバータ72を作動制御することにより、燃料電池12の端子間電圧VFCが開放端電圧OCVよりも低く設定される上限電圧を超えないように維持される。この上限電圧は、燃料電池12の各燃料電池セルに含まれる触媒、例えば白金触媒が溶出しない程度の電位であることが好ましく、1つの燃料電池セルあたりの電圧が最大出力電圧の90%程度になるように設定するのが好適である。
このように運転状態が発電休止モードにある燃料電池12について高電位回避制御を実行することにより、燃料電池12の触媒劣化を抑制することができる。ただし、このような高電位回避制御は、発電休止モード中に限らず、燃料電池12が通常発電モードで運転されるときにも行ってもよい。
燃料電池12が発電休止モードにあるとき、燃料電池12への空気および水素の供給が完全に停止されるが、燃料電池12内のマニホールドや燃料電池セルの流路に残存する酸素と水素との電気化学反応により微弱な発電が継続され、燃料電池12の端子間電圧VFCが上昇する傾向にあるが、上記のように高電位回避制御を行うことにより端子間電圧VFCが開放端電圧よりも低い上限電圧を超えないように一定に維持される。この様子が図4に示されている。図4において、横軸は時間であり、縦軸には上段から順に、FC電圧VFC、FC電流IFC、通常発電モードへの移行を判定する閾値Pthr、燃料電池12への発電要求パワー、および、FC運転状態が示されている。
図4に示すように、燃料電池12の運転状態が発電休止モードにあるとき、高電位回避制御によってFC電圧VFCがOCVよりも低電位の上限電圧で一定に維持されるが、このとき燃料電池12内では微弱な発電が継続されていることにより燃料電池12からFC電流IFCが流れ出ることになる。このFC電流IFCは、電流センサ18によって検出される。
上記のように高電位回避制御されている発電休止モード中の燃料電池12では、上記のように微弱発電が継続されて水素が消費されることによって燃料電池12内の水素濃度が次第に低下する一方で、各燃料電池セルのカソード(空気極)側から電解質膜を介してアノード(燃料極)側に透過してくる窒素や水蒸気等の不純物濃度が高くなってくる。これに伴って、燃料電池12から流れ出るFC電流IFCの電流値が次第に低下する傾向にある。このように燃料電池12のアノード側の不純物濃度が高くなってガス品質が相当低下した状態で水素および空気の供給を再開して発電休止モードから通常発電モードに移行すると、燃料電池12内のアノード側のガス品質が改善されて所定の発電パワーが出力できる状態に復帰するまでに時間がかかり、この時間はガス品質が悪化するほど長くなって応答性が悪くなる。その様子が図3のグラフに示される。図示されるように、発電休止モード中のFC電流IFCが小さくなるほど、燃料電池12が所定の発電パワーを出力できるまでに要する時間Trが長くなる、すなわち燃料電池12の応答性が悪化することが分かっている。
そこで、図2,4を再び参照すると、ECU90は、検出されるFC電流IFCに応じて、発電休止モードから通常発電モードへの移行基準となる上記閾値Pthrを変更する処理を実行する(ステップS16)。具体的には、FC電流IFCが低下するに従って、閾値Pthrを小さく設定する処理を行う。この処理での閾値Pthrは、ROMにマップまたはテーブルの形式で予め記憶されたFC電流IFCおよび閾値Pthrの関係から導かれる。
このようにFC電流IFCが低下するに従って閾値Pthrが小さく変更される様子が、図4中の上から2段目および3段目に示されている。ここでは、FC電流IFCが時間の経過に伴って直線的に低下し、これに伴って閾値Pthrも直線的に小さくなるように例示されているが、勿論、閾値Pthrの変更の仕方はこれに限定されるものでなない。例えば、FC電流IFCが曲線的に低下するに従って閾値Pthrも曲線的に小さくなるように設定されてもよいし、あるいは、FC電流IFCが曲線的に低下する場合でも閾値Pthrが直線的に小さくなるように設定されてもよいし、この逆であってもよい。
そして、燃料電池12に対する発電要求パワーP*が上記のようにFC電流IFCに伴って小さく設定される閾値Pthr以上であるか否かが判定される(ステップS18)。この判定で肯定されるまで、上記ステップS16およびS18が繰り返し処理され、発電要求パワーP*がFC電流IFC以上になったとき、燃料電池12への空気および水素の供給が再開されることにより燃料電池12の運転状態が発電休止モードから通常発電モードに移行し、これと同時に閾値Pthrが初期設定値に戻される(ステップS20)。
このように本実施形態の燃料電池システム10によれば、FC電流IFCが低下するのに従って閾値Pthrを小さく設定することで、発電休止モードから通常発電モードへの移行基準を下げて燃料電池12のアノード側のガス品質が相当程度悪化する前に通常発電モードに移行させることが可能になり、その結果、間欠運転する燃料電池12の応答性を向上させることができる。
その一方、間欠運転する燃料電池12における発電休止モードから通常発電モードへの移行時の応答性を確保するために閾値Pthrを比較的低い値で一定とした場合には、燃料電池12内の水素ガスのガス品質がそれほど悪化していない状態で燃料電池12が発電休止モードから通常発電モードへと移行する事態が頻繁に起こり得、そうなると水素ガスの無駄が大きくなりエネルギー効率(または燃費)が悪くなる。これに対し、本実施形態の燃料電池システム10では、閾値Pthrの初期値をある程度高く設定しておいてFC電流IFCの低下に応じて閾値Pthrを小さくすることで、間欠運転する燃料電池12の応答性向上を図りながら、上記のような水素ガスの無駄を抑制してエネルギー効率を向上させることができる。
次に、図5を参照して上記実施形態の変形例を示す。図5は、発電休止モード中に、FC電流IFCが上昇に転じたときに、通常発電モードへの移行を判定するための閾値Pthrも大きくする様子を示す、図4の2段目および3段目と同様の図である。
燃料電池12が発電休止モードにあるとき、ECU90は、燃料電池12内のアノード側のガス圧低下を抑制するために、圧力センサ65から入力される検出信号に基づいて遮断弁61,64を一時的に開弁して水素ガスを補給することがある。このような場合、燃料電池12内の水素濃度が少し高くなってガス品質が若干改善され、これに伴って発電性能が上がってFC電流IFCが一旦増加に転じる。このとき、FC電流IFCの一時的増加に合わせて上記閾値Pthrも大きくするように変更することが好ましい。このようにすることで、燃料電池12のアノード側のガス品質により適切に対応して閾値Pthrを変更することができ、上述した水素ガスの無駄抑制によるエネルギー効率向上をより効果的なものにできる。ここで、発電休止モード中に燃料電池12のカソード側に空気が補給されることもあり、このとき燃料電池12内の酸素濃度が少し高くなることによりFC電流IFCが増加する場合がある。このような場合にも上記と同様に対応するのが好ましい。
なお、上記実施形態では、燃料電池システムが車両の電源システムとして適用された例について説明したが、本発明に係る燃料電池システムは、例えば船舶、飛行機、ロボット等の車両以外に移動体の電源システムとして適用されてもよい。
10 燃料電池システム、12 燃料電池、13 正極母線、14 負極母線、16 電圧センサ、18 電流センサ、30 空気供給系、32 空気供給通路、34 空気排出通路、36 エアフィルタ、38 エアコンプレッサ、40 加湿器、42,44,61,64,66,67 遮断弁、46,62 調圧弁、50 水素供給系、52 水素供給源、54 水素供給通路、56 水素排出通路、58 循環通路、60 循環ポンプ、63 インジェクタ、65 圧力センサ、70 電力系、72 DC/DCコンバータ、74 バッテリ、76 インバータ、78 交流モータ、90 ECU。

Claims (6)

  1. 燃料ガスおよび酸化ガスの供給を受けて発電を行う燃料電池と、燃料電池からの発電電力が供給される負荷装置に対して前記燃料電池と並列に電圧変換装置を介して接続される蓄電装置と、前記燃料電池へのガス供給を制御するとともに前記電圧変換装置を作動制御する制御装置と、を備える燃料電池システムであって、
    前記制御装置は、燃料電池に対する発電要求パワーと閾値との比較に基づいて燃料電池へのガス供給を制御することにより燃料電池の運転状態を通常発電モードおよび発電休止モードの間で切り替える間欠運転制御を実行し、燃料電池への燃料ガスおよび酸化ガスの供給が完全に又はほぼ停止される発電休止モード中に燃料電池の端子間電圧が開放端電圧よりも低い上限電圧を超えないようにする高電位回避制御を実行し、かつ、前記高電位回避制御されている発電休止モード中に燃料電池から流れ出る電流値の変化に応じて前記閾値を変更する制御を実行する、制御構成を有することを特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムにおいて、
    前記制御装置は、前記発電休止モード中に燃料電池から流れ出る電流値が低下するに従って前記閾値を小さくすることを特徴する燃料電池システム。
  3. 請求項1に記載の燃料電池システムにおいて、
    前記制御装置は、前記発電休止モード中に燃料ガスまたは酸化ガスの補給があったことにより前記電流値が増加したときには、それに合わせて前記閾値を大きくすることを特徴とする燃料電池システム。
  4. 燃料ガスおよび酸化ガスの供給を受けて発電を行う燃料電池と、燃料電池から発電電力が供給される負荷装置に対して前記燃料電池と並列に電圧変換装置を介して接続される蓄電装置と、前記燃料電池へのガス供給を制御するとともに前記電圧変換装置を作動制御する制御装置と、を備える燃料電池システムの制御方法であって、
    燃料電池に対する発電要求パワーと閾値との比較に基づいて燃料電池へのガス供給を制御することにより燃料電池の運転状態を通常発電モードおよび発電休止モードの間で切り替える間欠運転を行い、
    燃料電池への燃料ガスおよび酸化ガスの供給が完全に又はほぼ停止される発電休止モード中に燃料電池の端子間電圧が開放端電圧よりも低い上限電圧を超えないようにする高電位回避制御を行い、
    前記高電位回避制御されている発電休止モード中に、燃料電池から流れ出る電流値の変化に応じて前記閾値を変更する、
    ことを特徴とする燃料電池システムの制御方法。
  5. 請求項4に記載の燃料電池システムの制御方法において、
    前記発電休止モード中に燃料電池から流れ出る電流値が低下するに従って前記閾値を小さくすることを特徴する燃料電池システムの制御方法。
  6. 請求項5に記載の燃料電池システムの制御方法において、
    前記発電休止モード中に燃料ガスまたは酸化ガスの補給があったことにより前記電流値が増加したときには、それに合わせて前記閾値を大きくすることを特徴とする燃料電池システムの制御方法。
JP2009159222A 2009-07-03 2009-07-03 燃料電池システムおよびその制御方法 Expired - Fee Related JP5359621B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009159222A JP5359621B2 (ja) 2009-07-03 2009-07-03 燃料電池システムおよびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159222A JP5359621B2 (ja) 2009-07-03 2009-07-03 燃料電池システムおよびその制御方法

Publications (2)

Publication Number Publication Date
JP2011015580A true JP2011015580A (ja) 2011-01-20
JP5359621B2 JP5359621B2 (ja) 2013-12-04

Family

ID=43593894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159222A Expired - Fee Related JP5359621B2 (ja) 2009-07-03 2009-07-03 燃料電池システムおよびその制御方法

Country Status (1)

Country Link
JP (1) JP5359621B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226939A (ja) * 2011-04-19 2012-11-15 Toyota Motor Corp 燃料電池システムおよびその制御方法
CN102785584A (zh) * 2011-05-18 2012-11-21 本田技研工业株式会社 燃料电池车辆
JP2012252998A (ja) * 2011-05-12 2012-12-20 Honda Motor Co Ltd 燃料電池システム
CN102991368A (zh) * 2011-09-09 2013-03-27 本田技研工业株式会社 燃料电池车辆
JP2013062153A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 燃料電池車両
JP2013218789A (ja) * 2012-04-04 2013-10-24 Toyota Motor Corp 燃料電池システム
DE102015118114A1 (de) 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
DE102015119266A1 (de) 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
WO2018068595A1 (zh) * 2016-10-11 2018-04-19 浙江吉利新能源商用车有限公司 用于电动车辆的功率跟随器与动力电池的控制装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303605A (ja) * 2002-04-11 2003-10-24 Toyota Motor Corp 電源システムおよびその制御方法
JP2005026054A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp エネルギ出力装置およびエネルギ出力装置の制御方法
JP2005071797A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 燃料電池システム及び車両
JP2006278276A (ja) * 2005-03-30 2006-10-12 Toyota Motor Corp 燃料電池システム、その制御方法及びそれを搭載した車両
JP2006318764A (ja) * 2005-05-12 2006-11-24 Nissan Motor Co Ltd 燃料電池システム
JP2007250429A (ja) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd 燃料電池システム
JP2007258117A (ja) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
JP2009026736A (ja) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd 燃料電池システム
JP2009026496A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2009129639A (ja) * 2007-11-21 2009-06-11 Toyota Motor Corp 燃料電池システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303605A (ja) * 2002-04-11 2003-10-24 Toyota Motor Corp 電源システムおよびその制御方法
JP2005026054A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp エネルギ出力装置およびエネルギ出力装置の制御方法
JP2005071797A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 燃料電池システム及び車両
JP2006278276A (ja) * 2005-03-30 2006-10-12 Toyota Motor Corp 燃料電池システム、その制御方法及びそれを搭載した車両
JP2006318764A (ja) * 2005-05-12 2006-11-24 Nissan Motor Co Ltd 燃料電池システム
JP2007250429A (ja) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd 燃料電池システム
JP2007258117A (ja) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
JP2009026736A (ja) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd 燃料電池システム
JP2009026496A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2009129639A (ja) * 2007-11-21 2009-06-11 Toyota Motor Corp 燃料電池システム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226939A (ja) * 2011-04-19 2012-11-15 Toyota Motor Corp 燃料電池システムおよびその制御方法
JP2012252998A (ja) * 2011-05-12 2012-12-20 Honda Motor Co Ltd 燃料電池システム
DE102012207632A1 (de) 2011-05-12 2013-02-07 Honda Motor Co., Ltd. Brennstoffzellensystem
CN102785584B (zh) * 2011-05-18 2014-12-17 本田技研工业株式会社 燃料电池车辆
US9643517B2 (en) 2011-05-18 2017-05-09 Honda Motor Co., Ltd. Method of controlling fuel cell vehicle
JP2012244715A (ja) * 2011-05-18 2012-12-10 Honda Motor Co Ltd 燃料電池車両
CN102785584A (zh) * 2011-05-18 2012-11-21 本田技研工业株式会社 燃料电池车辆
CN102991368A (zh) * 2011-09-09 2013-03-27 本田技研工业株式会社 燃料电池车辆
JP2013062153A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 燃料電池車両
JP2013218789A (ja) * 2012-04-04 2013-10-24 Toyota Motor Corp 燃料電池システム
DE102015119266A1 (de) 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
DE102015119266B4 (de) * 2014-11-14 2017-03-09 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
DE102015119266B9 (de) * 2014-11-14 2017-05-04 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
DE102015118114A1 (de) 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
US9776526B2 (en) 2014-11-14 2017-10-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle, and method of controlling fuel cell system
US9873351B2 (en) 2014-11-14 2018-01-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle, and method of controlling fuel cell system
US10115990B2 (en) 2014-11-14 2018-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle, and method for controlling fuel cell system
DE102015118114B4 (de) 2014-11-14 2022-06-15 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
WO2018068595A1 (zh) * 2016-10-11 2018-04-19 浙江吉利新能源商用车有限公司 用于电动车辆的功率跟随器与动力电池的控制装置及方法

Also Published As

Publication number Publication date
JP5359621B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5359621B2 (ja) 燃料電池システムおよびその制御方法
US7939213B2 (en) Fuel cell system and electric vehicle including the fuel cell system
JP5622693B2 (ja) 燃料電池車両
JP5007665B2 (ja) 燃料電池システム
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
JP5456723B2 (ja) 燃料電池システム及び該システム搭載車両
US9299996B2 (en) Fuel cell system
JP4656539B2 (ja) 燃料電池システム
JP5146599B2 (ja) 燃料電池システムおよびその電力制御方法
EP2270910B1 (en) Method of controlling fuel cell vehicle and fuel cell system
KR101135654B1 (ko) 연료전지시스템 및 그 제어방법
US8795913B2 (en) Fuel cell system and control method thereof
WO2009096229A1 (ja) 燃料電池システム
JP5387180B2 (ja) 移動体用燃料電池システムおよびその制御方法
JP2010244937A (ja) 燃料電池システム
JP5812423B2 (ja) 燃料電池システム
JP5570508B2 (ja) 燃料電池システム
CN112086670B (zh) 燃料电池***
JP4831437B2 (ja) 燃料電池システム及びその制御方法
JP4337104B2 (ja) 燃料電池システム
JP2007335151A (ja) 燃料電池車両の電力制御装置
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
JP2013062085A (ja) 燃料電池システム
JP2005322454A (ja) 充電システム
JP7115679B2 (ja) 燃料電池システム及び電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees