JP2011003795A - Electrode collector and method of manufacturing the same, electrode, and storage element - Google Patents

Electrode collector and method of manufacturing the same, electrode, and storage element Download PDF

Info

Publication number
JP2011003795A
JP2011003795A JP2009146737A JP2009146737A JP2011003795A JP 2011003795 A JP2011003795 A JP 2011003795A JP 2009146737 A JP2009146737 A JP 2009146737A JP 2009146737 A JP2009146737 A JP 2009146737A JP 2011003795 A JP2011003795 A JP 2011003795A
Authority
JP
Japan
Prior art keywords
current collector
electrode
hole
conductive layer
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146737A
Other languages
Japanese (ja)
Other versions
JP5681351B2 (en
Inventor
Hitoshi Morita
均 森田
Toshio Tsubata
敏男 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2009146737A priority Critical patent/JP5681351B2/en
Publication of JP2011003795A publication Critical patent/JP2011003795A/en
Application granted granted Critical
Publication of JP5681351B2 publication Critical patent/JP5681351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide an electrode collector which has excellent adhesion to an electrode active material layer and exhibits high output characteristics and the high durability of a storage element, and a method of manufacturing the collector, an electrode using the electrode collector, and the storage element using the electrode.SOLUTION: The electrode collector has metal foil having a plurality of through holes penetrating it along a thickness and a conductive layer formed in contact with the metal foil where the conductive layer comprises coating conductive layers formed on both surfaces of the metal foil and in-hole conductor layers formed in the respective through holes, and both surfaces of the electrode collector are concave at least at parts of respective through hole formation parts by forming the in-hole conductive layers to fill only parts of the respective through holes.

Description

本発明は、電極集電体及びその製造方法、電極並びに蓄電素子に関する。   The present invention relates to an electrode current collector, a method for producing the same, an electrode, and a storage element.

近年、地球環境の保全及び省資源を目指したエネルギーの有効利用の観点から、電気自動車用の蓄電システム、太陽光発電技術に基づく家庭用分散型蓄電システム、風力発電の電力平滑化システム、深夜電力貯蔵システムなどが注目を集めている。   In recent years, from the viewpoint of the effective use of energy aimed at conservation of the global environment and resource saving, a power storage system for electric vehicles, a distributed power storage system for home based on solar power generation technology, a power smoothing system for wind power generation, midnight power Storage systems are attracting attention.

これらの蓄電システムにおいて、第一の要求事項は、用いられる電池のエネルギー密度が高いことである。この要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン二次電池の開発が精力的に進められている。   In these power storage systems, the first requirement is that the energy density of the battery used is high. As a promising candidate for a high energy density battery capable of meeting this demand, development of a lithium ion secondary battery has been vigorously advanced.

第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。また、風力発電の電力平滑化システムでも、風力発電の急激な電位変動を相殺するため、高い入出力特性が必要である。   The second requirement is high output characteristics. For example, a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle) requires high output discharge characteristics in the power storage system during acceleration. ing. In addition, even in a wind power generation smoothing system, high input / output characteristics are required to cancel out sudden potential fluctuations in wind power generation.

現在、高出力蓄電素子としては、電極に活性炭を用いた電気二重層キャパシタが開発されている。この電気二重層キャパシタは耐久性(サイクル特性及び高温保存特性)が高く、0.5〜1kW/L程度の出力特性を有する。この電気二重層キャパシタは、上記高出力が要求される分野で最適の蓄電素子と考えられてきたが、そのエネルギー密度は、1〜5Wh/L程度に過ぎず、実用化には出力持続時間が足枷となっている。   At present, an electric double layer capacitor using activated carbon as an electrode has been developed as a high power storage element. This electric double layer capacitor has high durability (cycle characteristics and high temperature storage characteristics), and has an output characteristic of about 0.5 to 1 kW / L. Although this electric double layer capacitor has been considered as an optimum power storage element in the field where the high output is required, its energy density is only about 1 to 5 Wh / L, and the output duration time for practical use is low. It is a footpad.

一方、ニッケル水素電池及びリチウムイオン二次電池も、高入出力特性、高エネルギー密度、高信頼性のすべてを満足できるものではないため、これらの特性をすべて兼ね備えた蓄電素子の実用化が強く求められている。   On the other hand, nickel-metal hydride batteries and lithium-ion secondary batteries do not satisfy all of the high input / output characteristics, high energy density, and high reliability, so there is a strong demand for the practical use of energy storage devices that have all these characteristics. It has been.

高出力蓄電素子を作製するためには、材料やセル構成などを高入出力性が得られる設計にしなければならない。例えば、電極の面積あたりの電子伝導性を向上させるため、電極活物質層の目付けを小さくすることが挙げられる。また、電極活物質として、イオンの出入りが容易なメソ孔容量の大きな複合炭素材料を使用する例も挙げられる。   In order to manufacture a high-output power storage element, the material and cell configuration must be designed so as to obtain high input / output characteristics. For example, in order to improve the electron conductivity per area of the electrode, it is possible to reduce the basis weight of the electrode active material layer. Moreover, the example which uses the composite carbon material with a large mesopore capacity | capacitance with easy ion in / out as an electrode active material is also mentioned.

しかし、上記のような高出力特性を実現するためには、このような材料や電極構成の改善とは別に、電極の物理的強度も必要となってくる。すなわち、電極活物質層と電極集電体(以下、単に「集電体」ともいう。)との接着強度が強くなければならない。なぜならば、電極活物質層と集電体との接着強度が弱いと、蓄電素子の充放電により電極活物質層の剥離が起きてしまい、集電性の低下から蓄電素子の内部抵抗が増大し、出力特性が劇的に悪化してしまうからである。   However, in order to realize the high output characteristics as described above, the physical strength of the electrode is required in addition to the improvement of the material and the electrode configuration. That is, the adhesive strength between the electrode active material layer and the electrode current collector (hereinafter also simply referred to as “current collector”) must be strong. This is because, if the adhesive strength between the electrode active material layer and the current collector is weak, the electrode active material layer is peeled off due to charge / discharge of the power storage element, and the internal resistance of the power storage element increases due to the decrease in current collection performance. This is because the output characteristics deteriorate dramatically.

電極活物質層と集電体との接着強度の改善に向け、さまざまなアプローチが行われている。例えば、特許文献1においては、金属箔に、粒径が0.01〜50μmのグラファイトやカーボンブラックなどのカーボン粒を金属箔表面に露出するように埋め込んだ集電体を作製し、その表面上に電極活物質層を形成することで、集電体と電極活物質層との界面での接着性を向上させることが提案されている。   Various approaches have been taken to improve the adhesive strength between the electrode active material layer and the current collector. For example, in Patent Document 1, a current collector in which carbon particles such as graphite or carbon black having a particle diameter of 0.01 to 50 μm are embedded in a metal foil so as to be exposed on the surface of the metal foil is prepared, It has been proposed to improve the adhesion at the interface between the current collector and the electrode active material layer by forming an electrode active material layer on the surface.

また、特許文献2においては、金属箔からなる集電体の表面に、その厚みの40%以下の深さをもつくぼみを設けることで、その上に形成させる電極活物質層との接着性を向上させることが提案されている。   In Patent Document 2, the surface of a current collector made of a metal foil is provided with a recess having a depth of 40% or less of its thickness, thereby providing adhesion to an electrode active material layer formed thereon. It has been proposed to improve.

他にも、特許文献3においては、貫通孔を有する金属箔からなる集電体の両面に電極活物質層を形成させることで、表裏に形成した電極活物質層同士を、貫通孔を介して結合させ、金属箔からの電極活物質層のはがれを低減させることが提案されている。   In addition, in Patent Document 3, by forming electrode active material layers on both sides of a current collector made of a metal foil having a through hole, the electrode active material layers formed on the front and back sides are connected through the through hole. It has been proposed to reduce the peeling of the electrode active material layer from the metal foil by bonding.

しかし、これらの集電体は、1kW/Lを超える出力特性及び高い耐久性を達成するためには十分ではなく、集電性の更なる向上が必要である。   However, these current collectors are not sufficient to achieve output characteristics exceeding 1 kW / L and high durability, and further improvement in current collecting properties is necessary.

このように、蓄電素子の高出力及び高耐久性を達成するためには、電極の集電性の向上に向けた電極集電体の開発が強く求められている。   Thus, in order to achieve high output and high durability of the electricity storage device, development of an electrode current collector for improving the current collecting property of the electrode is strongly demanded.

特開平11−288849号公報JP-A-11-288849 特開平9−161769号公報JP-A-9-161769 特開平9−161805号公報JP-A-9-161805

本発明は、電極活物質層との接着性が良好で、蓄電素子の高出力性及び高耐久性を発現させることが可能な、電極集電体及びその製造方法、並びに該電極集電体を用いた電極及び該電極を用いた蓄電素子を提供することを目的とする。   The present invention provides an electrode current collector that has good adhesion to an electrode active material layer and can exhibit high output and high durability of a storage element, a method for manufacturing the same, and the electrode current collector. It is an object of the present invention to provide an electrode used and a power storage device using the electrode.

そこで本発明者らは、前記課題を解決するために検討を重ねた結果、貫通孔を有する金属箔に導電材料層を被覆してなる電極集電体を用いることによって、その上に接着させる電極活物質層と電極集電体との接着性を向上させることができること、及びこれにより蓄電素子の高耐久性及び高出力性を発現させることが可能であることを見出した。すなわち、本発明は以下の通りである。   Therefore, as a result of repeated investigations to solve the above problems, the present inventors have used an electrode current collector formed by coating a metal foil having a through-hole with a conductive material layer, whereby an electrode adhered on the electrode current collector is used. It has been found that the adhesion between the active material layer and the electrode current collector can be improved, and that it is possible to develop the high durability and high output performance of the electricity storage device. That is, the present invention is as follows.

(1)厚み方向に貫通する複数の貫通孔を有する金属箔と、該金属箔に接して形成された導電層とを有する電極集電体であって、
該導電層が、金属箔の両表面の上に形成された被覆導電層と、各々の貫通孔内に形成された孔内導電層とからなり、
該孔内導電層が各々の貫通孔の一部のみを埋めるように形成されていることによって、電極集電体の両表面が各々の貫通孔形成部の少なくとも一部において凹形状を有している、電極集電体。
(1) An electrode current collector having a metal foil having a plurality of through holes penetrating in the thickness direction, and a conductive layer formed in contact with the metal foil,
The conductive layer comprises a coated conductive layer formed on both surfaces of the metal foil, and an in-hole conductive layer formed in each through-hole,
By forming the in-hole conductive layer so as to fill only a part of each through hole, both surfaces of the electrode current collector have a concave shape in at least a part of each through hole forming portion. An electrode current collector.

(2)上記貫通孔の開口部短径を通る電極集電体厚み方向断面において、孔内導電層の断面積をS1とし、金属箔と金属箔両面上の被覆導電層との合計厚みに該開口部短径の長さを乗じた値として規定される貫通孔断面積をS2としたときに、S1がS2の30%以上80%以下である、上記(1)に記載の電極集電体。   (2) In the cross section of the electrode current collector in the thickness direction passing through the minor axis of the opening of the through hole, the cross-sectional area of the conductive layer in the hole is S1, and the total thickness of the metal foil and the coated conductive layer on both surfaces of the metal foil is The electrode current collector according to (1), wherein S1 is 30% or more and 80% or less of S2 when S2 is a through-hole cross-sectional area defined as a value obtained by multiplying the length of the minor axis of the opening. .

(3)上記孔内導電層が、電極集電体の厚み方向に貫通する空隙を有するように形成されている、上記(1)又は(2)に記載の電極集電体。   (3) The electrode current collector according to (1) or (2), wherein the in-hole conductive layer is formed so as to have a void penetrating in the thickness direction of the electrode current collector.

(4)電極集電体の両表面において上記貫通孔の開口部が占める面積比率が10%以上80%以下である、上記(1)〜(3)のいずれかに記載の電極集電体。   (4) The electrode current collector according to any one of the above (1) to (3), wherein an area ratio occupied by openings of the through holes on both surfaces of the electrode current collector is 10% or more and 80% or less.

(5)上記貫通孔の開口部短径が0.01mm以上5mm以下である、上記(1)〜(4)のいずれかに記載の電極集電体。   (5) The electrode current collector according to any one of (1) to (4), wherein a short axis of the opening of the through hole is 0.01 mm to 5 mm.

(6)上記被覆導電層が、上記金属箔の両表面にそれぞれ厚み0.5μm以上15μm以下で形成されている、上記(1)〜(5)のいずれかに記載の電極集電体。   (6) The electrode current collector according to any one of (1) to (5), wherein the coated conductive layer is formed on both surfaces of the metal foil with a thickness of 0.5 μm or more and 15 μm or less.

(7)上記被覆導電層と上記孔内導電層とが同じ材料から形成されている、上記(1)〜(6)のいずれか1項に記載の電極集電体。   (7) The electrode collector according to any one of (1) to (6), wherein the coated conductive layer and the in-hole conductive layer are formed of the same material.

(8)上記(1)〜(7)のいずれかに記載の電極集電体を製造する方法であって、
上記金属箔に導電材料含有スラリーを湿式塗工することによって、上記被覆導電層及び上記孔内導電層を同時に形成することを含む、電極集電体の製造方法。
(8) A method for producing the electrode current collector according to any one of (1) to (7) above,
The manufacturing method of an electrode electrical power collector including forming the said coating conductive layer and the said electroconductive layer in a hole simultaneously by wet-coating the slurry containing a conductive material to the said metal foil.

(9)上記(1)〜(7)のいずれかに記載の電極集電体と、該電極集電体の片面又は両面に形成された、電極活物質を含む電極層とを有する電極。   (9) An electrode comprising the electrode current collector according to any one of (1) to (7) above and an electrode layer containing an electrode active material, formed on one or both surfaces of the electrode current collector.

(10)上記(9)に記載の電極と、セパレータと、電解液とを有する蓄電素子。   (10) A power storage device comprising the electrode according to (9), a separator, and an electrolytic solution.

本発明の電極集電体は、電極活物質層との接着性が良好であり、該電極集電体を備える電極を用いることにより、高出力性及び高耐久性を兼ね備えた蓄電素子を作製することが可能となる。   The electrode current collector of the present invention has good adhesion to the electrode active material layer, and an electrode including the electrode current collector is used to produce a power storage element having both high output and high durability. It becomes possible.

本発明の電極集電体に用いる、貫通孔を有する金属箔について説明する模式図であり、図1(A)は金属箔の上面及び下面について説明する平面模式図であり、図1(B)は図1(A)中のI−I断面に係る断面模式図である。It is a schematic diagram explaining the metal foil which has a through-hole used for the electrode electrical power collector of this invention, FIG. 1 (A) is a plane schematic diagram explaining the upper surface and lower surface of metal foil, FIG.1 (B) These are the cross-sectional schematic diagrams which concern on the II cross section in FIG. 1 (A). 貫通孔の開口部短径について説明する平面模式図である。It is a plane schematic diagram explaining the opening part short axis of a through-hole. 導電層の例示的な形成態様について説明する断面模式図である。It is a cross-sectional schematic diagram explaining the exemplary formation aspect of a conductive layer. 孔内導電層による貫通孔の占有率の算出方法について説明する断面模式図である。It is a cross-sectional schematic diagram explaining the calculation method of the occupation rate of the through-hole by the electroconductive layer in a hole. 4mmφ剥離試験の方法について説明する模式図である。It is a schematic diagram explaining the method of a 4 mm (phi) peeling test.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

<電極集電体>
本発明は、厚み方向に貫通する複数の貫通孔を有する金属箔と、該金属箔に接して形成された導電層とを有する電極集電体であって、該導電層が、金属箔の両表面(すなわち2つの主面)の上に形成された被覆導電層と、各々の貫通孔内に形成された孔内導電層とからなり、該孔内導電層が各々の貫通孔の一部のみを埋めるように形成されていることによって、電極集電体の両表面(すなわち2つの主面)が各々の貫通孔形成部の少なくとも一部において凹形状を有している、電極集電体を提供する。通常、この電極集電体の片面又は両面に塗布法などによって電極活物質層を積層することで電極を構成し、該電極を用いて蓄電素子を作製することができる。
<Electrode current collector>
The present invention is an electrode current collector having a metal foil having a plurality of through-holes penetrating in the thickness direction, and a conductive layer formed in contact with the metal foil, the conductive layer comprising both metal foils. It consists of a covering conductive layer formed on the surface (that is, two main surfaces) and an in-hole conductive layer formed in each through hole, and the in-hole conductive layer is only a part of each through hole. By forming the electrode current collector so that both surfaces (that is, two main surfaces) of the electrode current collector have a concave shape in at least a part of each through hole forming portion. provide. Usually, an electrode is constituted by laminating an electrode active material layer on one side or both sides of the electrode current collector by a coating method or the like, and a power storage device can be manufactured using the electrode.

本発明の電極集電体(以下、単に集電体ともいう)において形成される被覆導電層は、電極集電体と電極活物質層との接着性を向上させ、さらに両者の界面における導電性を向上させることを目的とした層である。なお電極活物質層は、電気化学的に電気量を充電、放電させることを目的とした層である。本発明において形成される孔内導電層は、貫通孔の形成部分と電極活物質層との接着強度を向上させ、また、電極集電体の面方向(すなわち電極集電体の厚みに対して垂直の方向)への導電性を向上させることを目的とした層である。   The coated conductive layer formed in the electrode current collector of the present invention (hereinafter also simply referred to as a current collector) improves the adhesion between the electrode current collector and the electrode active material layer, and further provides conductivity at the interface between the two. It is a layer intended to improve. The electrode active material layer is a layer intended to electrochemically charge and discharge an amount of electricity. The in-hole conductive layer formed in the present invention improves the adhesive strength between the through-hole forming portion and the electrode active material layer, and also the surface direction of the electrode current collector (that is, with respect to the thickness of the electrode current collector). It is a layer intended to improve conductivity in the vertical direction).

図1は、本発明の電極集電体に用いる、貫通孔を有する金属箔について説明する模式図であり、図1(A)は金属箔の上面及び下面(すなわち両表面)について説明する平面模式図であり、図1(B)は図1(A)中のI−I断面に係る断面模式図である。図1を参照し、金属箔1は、厚み方向に貫通する貫通孔2を有する。金属箔の材質としては、電子伝導性の高い金属が好適に用いられ、例えば、アルミニウム、銅、ニッケル、SUS、チタンなどの金属が挙げられる。本発明の電極集電体は正極及び負極のいずれにも使用でき、正極集電体として用いる場合には、金属箔としてはアルミニウム箔が好ましく、負極集電体として用いる場合には、金属箔としては銅箔が好ましい。更に、正極集電体においては厚みが1〜100μmのアルミニウム箔、負極集電体においては厚みが1〜100μmの銅箔がそれぞれ好ましい。   FIG. 1 is a schematic diagram for explaining a metal foil having a through-hole used in the electrode current collector of the present invention, and FIG. 1 (A) is a schematic plan view for explaining an upper surface and a lower surface (that is, both surfaces) of the metal foil. FIG. 1B is a schematic cross-sectional view of the II cross section in FIG. Referring to FIG. 1, a metal foil 1 has a through hole 2 that penetrates in the thickness direction. As the material of the metal foil, a metal having high electron conductivity is preferably used, and examples thereof include metals such as aluminum, copper, nickel, SUS, and titanium. The electrode current collector of the present invention can be used for both positive and negative electrodes. When used as a positive electrode current collector, an aluminum foil is preferable as the metal foil, and when used as a negative electrode current collector, Is preferably a copper foil. Further, an aluminum foil having a thickness of 1 to 100 μm is preferable for the positive electrode current collector, and a copper foil having a thickness of 1 to 100 μm is preferable for the negative electrode current collector.

本発明は、例えば、負極活物質としてリチウムイオン吸蔵脱離可能な炭素材料を用い、正極活物質としてアニオンの吸脱着が可能な活性炭材料を用いた、いわゆるリチウムイオンキャパシタに好適に適用される。リチウムイオンキャパシタの製造工程においては、負極活物質にリチウムイオンをプリドープすることが特性向上のために好ましく、リチウムイオンプリドープのためには電極集電体が貫通孔を有するものであることが好ましい。リチウムイオンキャパシタでは、負極電位の作動領域を下げるため、作製段階でリチウムイオンを負極にドープすることが好ましい。この工程において、リチウムイオンを含む非水系電解液中で、負極とリチウム金属箔とを短絡させ、リチウムイオンをドープする方法が好ましく使用される。この時に負極集電体が貫通孔を有するものであれば、負極の片面のみにリチウム金属箔を接触させることによって負極の両面の電極活物質層にリチウムイオンを効率的にプリドープすることが可能となる。   The present invention is suitably applied to, for example, a so-called lithium ion capacitor using a carbon material capable of occluding and desorbing lithium ions as a negative electrode active material and an activated carbon material capable of adsorbing and desorbing anions as a positive electrode active material. In the manufacturing process of the lithium ion capacitor, it is preferable to pre-dope lithium ion into the negative electrode active material for improving the characteristics, and for the lithium ion pre-doping, the electrode current collector preferably has a through hole. . In a lithium ion capacitor, it is preferable to dope lithium ions into the negative electrode in the production stage in order to lower the operating range of the negative electrode potential. In this step, a method in which the negative electrode and the lithium metal foil are short-circuited and doped with lithium ions in a non-aqueous electrolyte containing lithium ions is preferably used. If the negative electrode current collector has a through hole at this time, it is possible to efficiently pre-dope lithium ions to the electrode active material layers on both sides of the negative electrode by contacting the lithium metal foil only on one side of the negative electrode Become.

また、電極体として、複数の正極と複数の負極とをセパレータをはさんで交互に積層させた電極体を使用する場合は、負極集電体に加えて正極集電体も貫通孔を有していることが好ましい。該貫通孔により、複数の負極に1枚のリチウム金属箔を外部短絡させることによって、電極体内の全負極活物質層にリチウムイオンを効率的にプリドープすることが可能となる。   In addition, when using an electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with separators interposed between them, the positive electrode current collector has a through hole in addition to the negative electrode current collector. It is preferable. Through the through holes, one lithium metal foil is externally short-circuited to a plurality of negative electrodes, whereby it becomes possible to efficiently pre-dope lithium ions into all the negative electrode active material layers in the electrode body.

上記に鑑み、貫通孔を有する金属箔は、リチウムイオンキャパシタなど、リチウムイオンのプリドープを必要とする蓄電素子のための集電体の部材として好適である。したがって、よりフレキシブルに蓄電素子を設計できるようにするため、集電体に貫通孔を有する金属箔を用いることは有用である。   In view of the above, a metal foil having a through hole is suitable as a current collector member for a power storage element that requires lithium ion pre-doping, such as a lithium ion capacitor. Therefore, it is useful to use a metal foil having a through-hole in the current collector so that the electricity storage element can be designed more flexibly.

金属箔に設ける貫通孔の開口部形状は、円、楕円、菱形、又は不規則な形状であることができる。   The shape of the opening of the through hole provided in the metal foil can be a circle, an ellipse, a rhombus, or an irregular shape.

本発明においては、貫通孔の開口部短径を通る電極集電体厚み方向断面において、孔内導電層の断面積をS1とし、金属箔と金属箔両面上の被覆導電層との合計厚みに該開口部短径の長さを乗じた値として規定される貫通孔断面積をS2としたときに、S1がS2の30%以上80%以下であることが好ましい。本明細書において、開口部短径とは、開口部形状を形成する図形の径(ここで径とは、該図形の重心を通り両端点が該図形外周上にある線分を意味する)のうち、端点が該重心から最も近い頂点(図形が頂点を有する場合)又は該重心から最も近い外周上の点(図形が頂点を有さない場合)を通るものを意味する。開口部短径が複数存在する場合は任意に1つを選択できる。以下、上記S2に対する上記S1の比率(S1/S2)を、導電層の占有率、又は単に占有率ともいう。   In the present invention, in the cross section of the electrode current collector in the thickness direction passing through the minor axis of the opening of the through hole, the cross-sectional area of the conductive layer in the hole is S1, and the total thickness of the metal foil and the coated conductive layer on both sides of the metal foil is When S2 is a through-hole cross-sectional area defined as a value obtained by multiplying the length of the minor axis of the opening, S1 is preferably 30% to 80% of S2. In this specification, the short axis of the opening means the diameter of the figure forming the shape of the opening (here, the diameter means a line segment passing through the center of gravity of the figure and having both end points on the outer periphery of the figure). This means that the end point passes through the vertex closest to the center of gravity (when the figure has a vertex) or the point on the outer circumference closest to the center of gravity (when the figure does not have a vertex). When there are a plurality of opening minor axes, one can be arbitrarily selected. Hereinafter, the ratio of S1 to S2 (S1 / S2) is also referred to as the occupation ratio of the conductive layer, or simply the occupation ratio.

より実際的には、上記占有率は、孔内導電層を構成する導電材料を、貫通孔の開口部短径断面像で確認したときの、貫通孔全体の断面積に対する、貫通孔内部を占有する導電材料の断面積の比率である。貫通孔の断面の観察はSEM(走査型電子顕微鏡)によって実施でき、占有率の計算もSEM断面像を使用して行うことができる。具体的には、少なくとも2つの貫通孔の断面像を観察し、その平均値を用いて占有率を算出する。導電層の占有率は、更に好ましくは40%以上60%以下である。   More practically, the occupation ratio occupies the inside of the through hole with respect to the cross-sectional area of the entire through hole when the conductive material constituting the conductive layer in the hole is confirmed by a cross-sectional image of the short diameter of the through hole. It is the ratio of the cross-sectional area of the conductive material. Observation of the cross-section of the through-hole can be performed by SEM (scanning electron microscope), and the occupation ratio can also be calculated using the SEM cross-sectional image. Specifically, a cross-sectional image of at least two through holes is observed, and the occupation ratio is calculated using the average value. The occupation ratio of the conductive layer is more preferably 40% or more and 60% or less.

導電層の占有率が30%以上であれば、導電性の高い層が貫通孔内部に存在し、金属箔の面方向の電子伝導性が向上し、蓄電素子の内部抵抗の低下に寄与する。また、電極活物質層を湿式で集電体の片面に塗工する場合に、活物質スラリーが集電体の裏側に抜けず、片面逐次での塗工が容易となるため好ましい。一方導電層の占有率が80%以下であれば、集電体表面に、貫通孔に由来する凹凸が良好に形成され、アンカー効果が増大することによって、集電体と電極活物質層との接着強度が増大するため好ましい。   If the occupation ratio of the conductive layer is 30% or more, a highly conductive layer is present in the through hole, the electron conductivity in the surface direction of the metal foil is improved, and the internal resistance of the electricity storage element is reduced. In addition, when the electrode active material layer is wet-coated on one side of the current collector, the active material slurry does not come out to the back side of the current collector, and it is preferable because the single-sided coating becomes easy. On the other hand, when the occupation ratio of the conductive layer is 80% or less, unevenness derived from the through-holes is satisfactorily formed on the current collector surface, and the anchor effect is increased, so that the current collector and the electrode active material layer This is preferable because the adhesive strength increases.

図2は、貫通孔の開口部短径について説明する平面模式図である。図2(A)は開口部が円形の場合を示し、図2(B)は開口部が楕円形の場合を示し、そして図2(C)は開口部が菱形の場合を示している。開口部短径Dは、例えば、貫通孔の開口部形状が円形であれば直径を、楕円であれば短軸径を意味する。   FIG. 2 is a schematic plan view for explaining the minor axis of the opening of the through hole. 2A shows a case where the opening is circular, FIG. 2B shows a case where the opening is elliptical, and FIG. 2C shows a case where the opening is rhombus. The short axis D of the opening means, for example, a diameter when the shape of the opening of the through hole is circular, and a short axis diameter when the shape is elliptical.

図3は、導電層の例示的な形成態様について説明する断面模式図であり、図4は、孔内導電層による貫通孔の占有率の算出方法について説明する断面模式図である。図3を参照し、被覆導電層3bは、金属箔の水平方向(すなわち面方向)に露出している金属表面に導電層が付着するように形成されている。すなわち本発明において、被覆導電層は、金属箔の両表面を被覆するように形成されている。また、孔内導電層3aは、金属箔が持つ貫通孔の内部に存在するように形成されている。被覆導電層を構成する導電材料と、孔内導電層を構成する導電材料とは、同じであっても異なっていてもよいが、製造が1工程ですむという観点からは、被覆導電層と孔内導電層とが同じ材料から形成されていることが好ましい。   FIG. 3 is a schematic cross-sectional view for explaining an exemplary formation mode of the conductive layer, and FIG. 4 is a schematic cross-sectional view for explaining a method for calculating the occupancy ratio of the through hole by the conductive layer in the hole. With reference to FIG. 3, the covering conductive layer 3b is formed such that the conductive layer adheres to the metal surface exposed in the horizontal direction (that is, the surface direction) of the metal foil. That is, in the present invention, the coated conductive layer is formed so as to cover both surfaces of the metal foil. In addition, the in-hole conductive layer 3a is formed so as to exist inside the through hole of the metal foil. The conductive material constituting the coated conductive layer and the conductive material constituting the in-hole conductive layer may be the same or different. However, from the viewpoint that the manufacturing process is one step, the coated conductive layer and the hole It is preferable that the inner conductive layer is made of the same material.

孔内導電層3aは、図4に示すように貫通孔を集電体厚み方向に遮断するように連続させて形成してもよく、図3(A)〜(C)に示すように集電体厚み方向に貫通する空隙を残して形成してもよい。孔内導電層の形状は種々可能であり、例えば、図3(A)に示すように一部とぎれていたり、図3(B)に示すように曲面を有していたり、図3(C)に示すように金属箔の側面を一部露出させるものであることができる。   The in-hole conductive layer 3a may be formed continuously so as to block the through-holes in the thickness direction of the current collector as shown in FIG. 4, and the current collection as shown in FIGS. 3 (A) to (C). You may form leaving the space | gap penetrated in a body thickness direction. The shape of the conductive layer in the hole can be various, for example, as shown in FIG. 3 (A), partially cut off, or as shown in FIG. As shown in FIG. 2, the side surface of the metal foil can be partially exposed.

電極集電体の両表面において貫通孔の開口部が占める面積比率である開孔率は、10%以上80%以下であることが好ましく、40%以上60%以下であることが更に好ましい。開孔率が10%以上であれば、貫通孔により金属箔表面に形成される凹凸のため、導電層及び電極活物質層の接着強度が増大し、電極の強度が良好である。また、開孔率が80%以下であれば、集電体における支持体として電子伝導性に寄与する金属材料としての金属箔の面積が大きく、電極の低抵抗化及び金属箔の高強度化が可能である。上記開孔率は、言い換えれば、金属箔両表面における金属部分の総面積と貫通孔開口部の総面積との和に対する貫通孔開口部の総面積の比率である。   The open area ratio, which is the area ratio occupied by the openings of the through holes on both surfaces of the electrode current collector, is preferably 10% or more and 80% or less, and more preferably 40% or more and 60% or less. If the open area ratio is 10% or more, due to the unevenness formed on the surface of the metal foil by the through holes, the adhesive strength between the conductive layer and the electrode active material layer is increased, and the strength of the electrode is good. Moreover, if the hole area ratio is 80% or less, the area of the metal foil as a metal material that contributes to electronic conductivity as a support in the current collector is large, and the resistance of the electrode and the strength of the metal foil are increased. Is possible. In other words, the above-mentioned hole area ratio is a ratio of the total area of the through-hole openings to the sum of the total area of the metal portions and the total area of the through-hole openings on both surfaces of the metal foil.

貫通孔の開口部短径は、0.01mm以上5mm以下の範囲内であることが好ましい。開口部短径が0.01mm以上であると、孔内導電層及び電極活物質層が貫通孔に食い込むことがより容易になり、接着強度の増大につながる。また、開口部短径が5mm以下であると、孔内導電層及び電極活物質層が貫通孔の内部で金属箔に容易に支持され、電極活物質層の電極集電体からの剥離が起こりにくくなる。上記開口部短径は、より好ましくは0.01mm以上3mm以下であり、更に好ましくは0.03mm以上2mm以下である。   The short axis of the opening of the through hole is preferably in the range of 0.01 mm to 5 mm. If the minor axis of the opening is 0.01 mm or more, it becomes easier for the in-hole conductive layer and the electrode active material layer to bite into the through-hole, leading to an increase in adhesive strength. Further, when the opening minor axis is 5 mm or less, the in-hole conductive layer and the electrode active material layer are easily supported by the metal foil inside the through hole, and the electrode active material layer is peeled off from the electrode current collector. It becomes difficult. The opening minor axis is more preferably 0.01 mm to 3 mm, and still more preferably 0.03 mm to 2 mm.

本発明において形成される被覆導電層の厚みは、0.5μm以上15μm以下であることが好ましく、1μm以上10μm以下であることが更に好ましい。被覆導電層の厚みが0.5μm以上であれば、電極集電体と電極活物質層との結着強度が良好であるとともに集電性が良好であり好ましい。また上記厚みが15μm以下であれば、電極集電体と電極活物質層との結着強度を良好に維持しつつ、蓄電素子としたときの体積あたりのエネルギー密度及び出力密度が大きく好ましい。   The thickness of the coated conductive layer formed in the present invention is preferably 0.5 μm or more and 15 μm or less, and more preferably 1 μm or more and 10 μm or less. When the thickness of the coated conductive layer is 0.5 μm or more, it is preferable because the binding strength between the electrode current collector and the electrode active material layer is good and the current collecting property is good. Moreover, if the said thickness is 15 micrometers or less, the energy density per volume and output density when it is set as an electrical storage element are favorably large, maintaining the binding strength of an electrode electrical power collector and an electrode active material layer favorable.

本発明において形成される導電層(すなわち、被覆導電層及び孔内導電層)を構成する導電材料としては、電極の活物質よりも導電層の電子導電性を高くすることが可能な材料が好適である。   As the conductive material constituting the conductive layer (that is, the covering conductive layer and the in-hole conductive layer) formed in the present invention, a material capable of making the electronic conductivity of the conductive layer higher than the active material of the electrode is suitable. It is.

例えば、活物質が、コークス、難黒鉛化炭素材料、活性炭、複合多孔性炭素材料若しくはそれらの混合物である炭素材料である場合、及び、遷移金属酸化物、若しくはコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどの遷移金属とリチウムとの複合酸化物に代表されるリチウムイオンの挿入、脱離が可能な金属酸化物又はそれらの混合物である場合は、好ましい導電材料として、微粉末炭素材料、及び、該微粉末炭素材料が結着材又は熱硬化性樹脂によって支持されてなる複合材料が挙げられる。微粉末炭素材料としては、黒鉛に代表される結晶性炭素材料や、アセチレンブラック、ケッチェンブラックに代表されるカーボンブラックの1種又は2種以上の混合物が挙げられる。結着材としては、カルボキシメチルセルロース(CMC)ナトリウム塩、CMCリチウム塩、CMCアンモニウム塩、ポリフッ化ビニリデン(PVdF)、フッ素ゴム、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエン共重合ポリマーなどが挙げられる。熱硬化性樹脂としては、フェノール樹脂などが挙げられる。   For example, when the active material is a carbon material that is coke, non-graphitizable carbon material, activated carbon, composite porous carbon material or a mixture thereof, and transition metal oxide, or lithium cobaltate, lithium nickelate, manganese In the case of a metal oxide capable of inserting and desorbing lithium ions typified by a composite oxide of a transition metal such as lithium acid and lithium, or a mixture thereof, as a preferred conductive material, a fine powder carbon material, and And a composite material in which the fine powder carbon material is supported by a binder or a thermosetting resin. Examples of the fine powder carbon material include a crystalline carbon material typified by graphite, and one or a mixture of two or more carbon black typified by acetylene black and ketjen black. Examples of the binder include carboxymethylcellulose (CMC) sodium salt, CMC lithium salt, CMC ammonium salt, polyvinylidene fluoride (PVdF), fluororubber, polytetrafluoroethylene (PTFE), and styrene-butadiene copolymer. . Examples of the thermosetting resin include phenol resin.

また、活物質が黒鉛の場合は、活物質と導電材料との接着面積増大の観点から、該活物質よりも平均粒径が小さい導電材料を用いることが好ましい。特に、SEM(走査型電子顕微鏡)により観察される導電材料の数平均直径が0.01μm以上10μm以下であることが好ましく、0.01μm以上5μm以下であることがより好ましい。なお活物質が黒鉛の場合の好ましい導電材料としては、上述と同じものが挙げられる。すなわち、好ましい導電材料として、微粉末炭素材料、及び、該微粉末炭素材料が結着材又は熱硬化性樹脂によって支持されてなる複合材料が挙げられる。微粉末炭素材料としては、黒鉛に代表される結晶性炭素材料や、アセチレンブラック、ケッチェンブラックに代表されるカーボンブラックの1種又は2種以上の混合物が挙げられる。結着材としては、カルボキシメチルセルロース(CMC)ナトリウム塩、CMCリチウム塩、CMCアンモニウム塩、ポリフッ化ビニリデン(PVdF)、フッ素ゴム、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエン共重合ポリマーなどが挙げられる。熱硬化性樹脂としては、フェノール樹脂などが挙げられる。   In the case where the active material is graphite, it is preferable to use a conductive material having an average particle size smaller than that of the active material from the viewpoint of increasing the bonding area between the active material and the conductive material. In particular, the number average diameter of the conductive material observed with an SEM (scanning electron microscope) is preferably 0.01 μm or more and 10 μm or less, and more preferably 0.01 μm or more and 5 μm or less. In addition, the same thing as the above-mentioned is mentioned as a preferable electrically conductive material in case an active material is graphite. That is, as a preferable conductive material, a fine powder carbon material and a composite material in which the fine powder carbon material is supported by a binder or a thermosetting resin can be given. Examples of the fine powder carbon material include a crystalline carbon material typified by graphite, and one or a mixture of two or more carbon black typified by acetylene black and ketjen black. Examples of the binder include carboxymethylcellulose (CMC) sodium salt, CMC lithium salt, CMC ammonium salt, polyvinylidene fluoride (PVdF), fluororubber, polytetrafluoroethylene (PTFE), and styrene-butadiene copolymer. . Examples of the thermosetting resin include phenol resin.

導電材料としては、SEMにより観察される数平均直径が0.01μm以上10μm以下で、かつ上記結晶性炭素材料及びカーボンブラックの1種若しくは2種以上の混合物、又はこれらとCMCナトリウム塩若しくはフェノール樹脂との複合材料である導電材料が特に好ましい。更に好ましくは、上記数平均直径0.01μm以上10μm以下の、微粉末黒鉛とアセチレンブラック又はケッチェンブラックとの混合物がCMCナトリウム塩によって支持されてなる複合材料、又はカーボン微粉末とフェノール樹脂との複合材料である。   As the conductive material, the number average diameter observed by SEM is 0.01 μm or more and 10 μm or less, and one or a mixture of the above-mentioned crystalline carbon material and carbon black, or a CMC sodium salt or phenol resin A conductive material which is a composite material is particularly preferable. More preferably, a composite material in which a mixture of fine powder graphite and acetylene black or ketjen black having a number average diameter of 0.01 μm to 10 μm is supported by a CMC sodium salt, or carbon fine powder and phenol resin It is a composite material.

被覆導電層及び孔内導電層の組成は、用いる導電材料、結着材及び熱硬化性樹脂の種類に応じて適宜選択できる。例えば、導電材料として、微粉末炭素材料と結着材又は熱硬化性樹脂との複合材料を使用する場合、微粉末炭素材料50〜95質量部、結着材又は熱硬化性樹脂5〜50質量部の比率で両者を組合せることが好ましい。この場合高い導電性と接着性とを両立させることができる。   The composition of the covering conductive layer and the in-hole conductive layer can be appropriately selected according to the type of the conductive material, binder and thermosetting resin used. For example, when using a composite material of a finely powdered carbon material and a binder or a thermosetting resin as the conductive material, 50 to 95 parts by mass of the finely powdered carbon material, 5 to 50 masses of the binder or the thermosetting resin It is preferable to combine both in the ratio of parts. In this case, both high conductivity and adhesiveness can be achieved.

<電極集電体の製造方法>
本発明は、上述した本発明の電極集電体を製造する方法であって、金属箔に導電材料含有スラリーを湿式塗工することによって、被覆導電層及び孔内導電層を同時に形成することを含む電極集電体の製造方法も提供する。貫通孔を有する金属箔に被覆導電層及び孔内導電層を形成するために、導電層を構成する導電材料を溶剤中に分散させて形成したスラリーを塗工液として用いて塗布を行う湿式塗工が好ましい。
<Method for producing electrode current collector>
The present invention is a method for producing the above-described electrode current collector of the present invention, wherein a coated conductive layer and an in-hole conductive layer are simultaneously formed by wet-coating a conductive material-containing slurry on a metal foil. A method for producing an electrode current collector is also provided. In order to form a coated conductive layer and an in-hole conductive layer on a metal foil having a through hole, wet coating is performed using a slurry formed by dispersing a conductive material constituting the conductive layer in a solvent as a coating liquid. Work is preferred.

溶剤としては、水、アルコール、N−メチルピロリドン(NMP)、酢酸エチレングリコールモノブチルエーテル、酢酸ジエチレングリコールモノブチルエーテルなどの親水性の溶剤が挙げられる。   Examples of the solvent include hydrophilic solvents such as water, alcohol, N-methylpyrrolidone (NMP), ethylene glycol monobutyl ether, and diethylene glycol monobutyl ether.

また、スラリー中には、ポリビニルピロリドン(PVP)に代表される粘度調整剤などを含有させてもよい。   The slurry may contain a viscosity modifier represented by polyvinyl pyrrolidone (PVP).

貫通孔を有する金属箔への塗工液の塗布は、ダイコート法、コンマコート法、ディップコート法、マイクログラビアコート法など、従来公知のコーティング法によって行うことができる。例えば、コンマコート法を用いる場合は、固定ロールであるナイフロールと、回転不能に固定したコーティングロールとの間に金属箔を通箔し、その手前に塗工液溜めをつくり、液溜めとは反対方向に金属箔を搬送することで塗工液を金属箔へ塗布することが好ましい。このとき、上記コーティングロールを停止した状態で金属箔を搬送することにより、塗工液は、金属箔が有する貫通孔を通して裏面に移るため、一度の塗工で両面同時に導電層を塗布することができる。   The coating liquid can be applied to the metal foil having a through hole by a conventionally known coating method such as a die coating method, a comma coating method, a dip coating method, or a micro gravure coating method. For example, when using the comma coating method, a metal foil is passed between a knife roll, which is a fixed roll, and a coating roll, which is fixed in a non-rotatable manner, and a coating liquid reservoir is created in front of the metal roll. It is preferable to apply the coating liquid to the metal foil by conveying the metal foil in the opposite direction. At this time, since the coating liquid is transferred to the back surface through the through hole of the metal foil by conveying the metal foil while the coating roll is stopped, it is possible to apply the conductive layer on both sides simultaneously by one coating. it can.

コーティング時に使用する塗工液の固形分濃度により、金属箔への導電材料の塗布量を制御することができる。固形分濃度が高いと、導電材料が貫通孔を厚み方向に遮断するように埋めることができ、逆に固形分濃度が低いと、貫通孔は厚み方向に完全には埋められず、少し穴の空いた(すなわち厚み方向に貫通する空隙を有した)状態になる。塗工液の塗布は1回でも良いが、必要に応じて2回以上行ってもよい。   The amount of conductive material applied to the metal foil can be controlled by the solid content concentration of the coating solution used during coating. When the solid content concentration is high, the conductive material can fill the through hole so as to block the through hole in the thickness direction. Conversely, when the solid content concentration is low, the through hole is not completely filled in the thickness direction, and the hole is slightly filled. It becomes a vacant state (that is, having a void penetrating in the thickness direction). The application of the coating liquid may be performed once, but may be performed twice or more as necessary.

<電極>
本発明は、上述した本発明の電極集電体と、該電極集電体の片面又は両面に形成された、電極活物質を含む電極層(以下、電極活物質層ともいう)とを有する電極も提供する。上述した本発明の電極集電体の表面に、塗布などの方法で電極活物質層を形成することで、電極を作製することができる。電極活物質層を結着させる面は、集電体の片面であっても両面であってもよい。電極活物質層は、電極活物質、導電フィラー及び結着材から構成することが好ましい。本発明の電極は正極及び負極のいずれとしても使用できる。
<Electrode>
The present invention is an electrode having the electrode current collector of the present invention described above and an electrode layer containing an electrode active material (hereinafter also referred to as an electrode active material layer) formed on one or both surfaces of the electrode current collector. Also provide. An electrode can be produced by forming an electrode active material layer on the surface of the electrode current collector of the present invention described above by a method such as coating. The surface on which the electrode active material layer is bound may be one side or both sides of the current collector. The electrode active material layer is preferably composed of an electrode active material, a conductive filler, and a binder. The electrode of the present invention can be used as either a positive electrode or a negative electrode.

電極活物質としては、リチウムイオンを吸蔵放出することが可能であるか、又はイオンを吸着脱離することが可能な材料が好適に用いられる。例えば、黒鉛、コークス、難黒鉛化炭素材料、活性炭、複合多孔性炭素材料などの炭素材料及びそれらの混合物、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどの遷移金属3元系酸化物及びこれらとのリチウム化合物などに代表されるリチウムイオン挿入、脱離可能な遷移金属酸化物並びにそれらの混合物などが挙げられる。   As the electrode active material, a material that can occlude and release lithium ions or can adsorb and desorb ions is preferably used. For example, carbon materials such as graphite, coke, non-graphitizable carbon material, activated carbon, composite porous carbon material and mixtures thereof, transition metal ternary oxides such as lithium cobaltate, lithium nickelate, lithium manganate and the like And lithium ion insertion and detachable transition metal oxides represented by lithium compounds and the like, and mixtures thereof.

導電フィラーとしては、微粉末黒鉛、アセチレンブラック、ケッチェンブラック及びこれらの混合物に代表される、導電率の高い炭素材料が挙げられる。   Examples of the conductive filler include carbon materials having high conductivity, represented by fine powder graphite, acetylene black, ketjen black, and mixtures thereof.

結着材としては、PVdF、PTFE、フッ素ゴム、スチレン−ブタジエン共重合体、CMCナトリウム塩、CMCリチウム塩及びCMCアンモニウム塩並びにこれらの混合物が挙げられる。   Examples of the binder include PVdF, PTFE, fluororubber, styrene-butadiene copolymer, CMC sodium salt, CMC lithium salt, CMC ammonium salt, and mixtures thereof.

電極活物質層の組成としては、電極活物質70〜90質量部と、導電フィラー3〜20質量部と、結着材3〜20質量部との組合せを例示できる。この組成は集電体への接着力、導電性、及び容量又は出力特性のバランス上好ましい。   As a composition of an electrode active material layer, the combination of 70-90 mass parts of electrode active materials, 3-20 mass parts of conductive fillers, and 3-20 mass parts of binders can be illustrated. This composition is preferable in terms of the balance between the adhesive force to the current collector, conductivity, and capacity or output characteristics.

電極活物質層の厚みは、1μm以上200μm以下であることが好ましく、更に好ましくは30μm以上100μm以下である。上記厚みが1μm未満であると、蓄電素子セル全体に対する集電体の体積密度が大きくなり、セル体積あたりのエネルギー密度が低下する傾向がある。また、上記厚みが200μmを超えると、電極の電気抵抗が増大し、セルの出力密度が低くなる傾向がある。   The thickness of the electrode active material layer is preferably 1 μm or more and 200 μm or less, and more preferably 30 μm or more and 100 μm or less. When the thickness is less than 1 μm, the volume density of the current collector with respect to the entire storage element cell increases, and the energy density per cell volume tends to decrease. On the other hand, when the thickness exceeds 200 μm, the electrical resistance of the electrode increases, and the output density of the cell tends to decrease.

<蓄電素子>
本発明は、上述した本発明の電極と、セパレータと、電解液とを有する蓄電素子も提供する。本発明の電極集電体に電極活物質層を結着させてなる本発明の電極と該電極に対応する電極とをセパレータを介して対向させてなる電極体を外装体に収納し、電解液を注液することで、蓄電素子を作製することができる。すなわち、本発明の電極が、貫通孔を有し導電層を設けた集電体に正極活物質層を結着させて作製した正極であれば、これに負極を対向させればよく、逆に本発明の電極が負極であれば正極を対向させる。
<Storage element>
This invention also provides the electrical storage element which has the electrode of this invention mentioned above, a separator, and electrolyte solution. An electrode body in which an electrode of the present invention formed by binding an electrode active material layer to the electrode current collector of the present invention is opposed to an electrode corresponding to the electrode through a separator is housed in an exterior body, and an electrolytic solution The liquid crystal element can be manufactured by injecting liquid. That is, if the electrode of the present invention is a positive electrode prepared by binding a positive electrode active material layer to a current collector having a through hole and a conductive layer, the negative electrode may be opposed to the positive electrode. If the electrode of the present invention is a negative electrode, the positive electrode is opposed.

セパレータとしては、セルロース系セパレータに代表される紙系のセパレータ、及びオレフィン系のセパレータなどが挙げられる。セパレータの厚みは、10μm以上50μm以下であることが好ましい。セパレータの厚みが10μm以上であれば、内部のマイクロショートによる自己放電を抑制することができ、一方、厚みが50μm以下であれば、蓄電素子のエネルギー密度及び出力特性に優れる。   Examples of the separator include paper separators represented by cellulose separators, olefin separators, and the like. The thickness of the separator is preferably 10 μm or more and 50 μm or less. If the thickness of the separator is 10 μm or more, self-discharge due to an internal micro short circuit can be suppressed. On the other hand, if the thickness is 50 μm or less, the energy density and output characteristics of the energy storage device are excellent.

上記のようにして成型された正極及び負極は、セパレータを介して積層又は捲廻積層された電極体として、金属缶又はラミネートフィルムから形成された外装体に挿入される。   The positive electrode and the negative electrode molded as described above are inserted into an exterior body formed from a metal can or a laminate film as an electrode body laminated or wound around via a separator.

外装体に使用される金属缶としては、アルミニウム製のものが好ましい。また、外装体に使用されるラミネートフィルムとしては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内層樹脂フィルムからなる3層構成のものが例示される。外層樹脂フィルムは接触などにより金属箔が損傷を受けることを防止するためのものであり、ナイロンやポリエステルなどの樹脂が好適に使用できる。金属箔は水分やガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレスなどの箔が好適に使用できる。また、内層樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。   As a metal can used for an exterior body, the thing made from aluminum is preferable. Moreover, as a laminated film used for an exterior body, the film which laminated | stacked metal foil and the resin film is preferable, and the thing of the 3 layer structure which consists of an outer layer resin film / metal foil / inner layer resin film is illustrated. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing the permeation of moisture and gas, and foils of copper, aluminum, stainless steel, etc. can be suitably used. The inner layer resin film protects the metal foil from the electrolyte contained therein and melts and seals it at the time of heat sealing. Polyolefin and acid-modified polyolefin can be preferably used.

電解液は、電解質と溶媒とで構成される。電解質としては、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、LiN(SO2252(略して「LiBETI」ともいう。)、LiN(SO2CF3)(SO225)及びそれらの混合塩などに代表されるリチウムイオン系電解質が挙げられる。また、テトラフルオロホウ酸トリエチルメチルアンモニウム(TEMABF4)、テトラフルオロホウ酸テトラエチルアンモニウム(TEABF4)などに代表される非リチウムイオン系電解質が挙げられる。また、溶媒としては、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ−ブチロラクトン(γBL)などのラクトン類、及びこれらの混合溶媒などが挙げられる。 The electrolytic solution is composed of an electrolyte and a solvent. As the electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), LiN (SO 2 C 2 F 5 ) 2 (also referred to as “LiBETI” for short), LiN (SO 2 CF 3 ) Lithium ion electrolytes typified by (SO 2 C 2 F 5 ) and mixed salts thereof. Further, non-lithium ion electrolytes represented by triethylmethylammonium tetrafluoroborate (TEMABF 4 ), tetraethylammonium tetrafluoroborate (TEABF 4 ), and the like can be given. Examples of the solvent include cyclic carbonates represented by ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates represented by diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (MEC). Examples thereof include esters, lactones such as γ-butyrolactone (γBL), and mixed solvents thereof.

以下に、実施例及び比較例を示し、本発明をさらに説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〈実施例1〉
(電極集電体の作製)
カーボンブラック(平均粒径40nm)を15質量部、酢酸ジエチレングリコールモノブチルエーテルを35質量部、酢酸エチレングリコールモノブチルエーテルを100質量部、フェノール5質量部、ノルマルブチルアルコールを5質量部、ホルムアルデヒド1質量部を混合、分散することで、導電材料のスラリーを作製した。
<Example 1>
(Production of electrode current collector)
15 parts by mass of carbon black (average particle size 40 nm), 35 parts by mass of diethylene glycol monobutyl ether, 100 parts by mass of ethylene glycol monobutyl ether, 5 parts by mass of phenol, 5 parts by mass of normal butyl alcohol, and 1 part by mass of formaldehyde A slurry of conductive material was prepared by mixing and dispersing.

開口部が直径0.3mmの円形である貫通孔を有する厚み20μmのパンチング銅箔(幅150mm、開孔率50%)を小型コンマコーターに通箔し、上記導電材料のスラリーを用い、コーティングロールを固定した状態で塗布を行い、乾燥炉で乾燥することで導電層を形成した。   A punching copper foil with a thickness of 20 μm having a circular through hole with a diameter of 0.3 mm (width: 150 mm, opening ratio: 50%) is passed through a small comma coater, and a slurry of the above conductive material is used to form a coating roll Was applied in a fixed state and dried in a drying furnace to form a conductive layer.

導電層を形成した銅箔をリールごと真空乾燥器にて180℃で24h乾燥させ、導電層に含まれる樹脂を硬化させ、実施例1の電極集電体を得た。走査型電子顕微鏡にて500倍で開口部短径断面を観察した結果、銅箔の貫通孔部分は、塗布した孔内導電層により占有され、占有率は54%であった。被覆導電層の厚みは片面あたり7.1μmであった。   The copper foil on which the conductive layer was formed was dried for 24 hours at 180 ° C. in a vacuum dryer together with the reel, and the resin contained in the conductive layer was cured to obtain the electrode current collector of Example 1. As a result of observing a short axis cross section of the opening at 500 times with a scanning electron microscope, the through hole portion of the copper foil was occupied by the applied conductive layer in the hole, and the occupation ratio was 54%. The thickness of the coated conductive layer was 7.1 μm per side.

(電極の作製)
市販の活性炭(BET比表面積1955m2/g)150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ300gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱処理を行うことによって、該活性炭の表面に炭素質材料を被着させた複合多孔性炭素材料を作製した。熱処理は窒素雰囲気下で、670℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し232.7gの複合多孔性炭素材料を得た。
(Production of electrodes)
150 g of commercially available activated carbon (BET specific surface area 1955 m 2 / g) is placed in a stainless steel mesh basket and placed on a stainless steel bat containing 300 g of coal-based pitch, and an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm) The composite porous carbon material in which the carbonaceous material was deposited on the surface of the activated carbon was prepared by performing heat treatment. The heat treatment was performed in a nitrogen atmosphere by raising the temperature to 670 ° C. over 4 hours, holding the same temperature for 4 hours, and then cooling to 60 ° C. by natural cooling, and then taking out 232.7 g of the composite porous carbon material from the furnace. Obtained.

上記で得られた複合多孔性炭素材料を負極活物質として83.6質量部、PVdf8.3質量部、アセチレンブラック8.3質量部を、NMP300質量部で混合、分散させ、負極スラリーを作製した。この負極スラリーをコンマコーターにより片面逐次で、上記で作製した電極集電体の両面に塗布し、乾燥炉で乾燥することで負極活物質層を形成した負極を得た。このとき、コンマコーターのコーティングロールは回転させて塗布を行った。ここで得られた負極をプレスして実施例1の負極とした。これにより、導電層上に形成された負極活物質層の片面あたりの厚みは60μmとなった。   83.6 parts by mass, 8.3 parts by mass of PVdf, and 8.3 parts by mass of acetylene black were mixed and dispersed in 300 parts by mass of NMP as a negative electrode active material using the composite porous carbon material obtained above to prepare a negative electrode slurry. . The negative electrode slurry in which the negative electrode active material layer was formed was obtained by coating this negative electrode slurry on both sides of the electrode current collector prepared above in a single-sided manner with a comma coater and drying in a drying furnace. At this time, the coating was performed by rotating the coating roll of the comma coater. The negative electrode obtained here was pressed to obtain a negative electrode of Example 1. Thereby, the thickness per one side of the negative electrode active material layer formed on the conductive layer was 60 μm.

図5は、4mmφ剥離試験の方法について説明する模式図である。実施例1の負極を用いて4mmφ剥離試験を行った。図5に示すように、4mmφの角をもつ金属板4で電極5を反らせ、10cm/minの速度で矢印の方向に引っ張ることで、電極5の剥離強度を確認する剥離試験を行った。負極活物質層の集電体からの剥離は見られず、集電体と導電層、及び導電層と電極活物質層とがそれぞれ強固に結着していることが確認された。被覆導電層厚み、導電層の占有率、貫通孔の開孔率及び開口部短径、並びに4mmφ剥離試験の結果を表1に纏める。   FIG. 5 is a schematic diagram for explaining a method of a 4 mmφ peel test. A 4 mmφ peel test was performed using the negative electrode of Example 1. As shown in FIG. 5, the electrode 5 was warped with a metal plate 4 having a corner of 4 mmφ, and pulled in the direction of the arrow at a speed of 10 cm / min. Peeling of the negative electrode active material layer from the current collector was not observed, and it was confirmed that the current collector and the conductive layer and the conductive layer and the electrode active material layer were firmly bound to each other. Table 1 summarizes the results of the thickness of the coated conductive layer, the occupation ratio of the conductive layer, the opening ratio of the through holes, the short diameter of the opening, and the 4 mmφ peel test.

(蓄電素子の作製)
粉砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃で3時間炭化処理した。処理後の該炭化物を賦活炉内へ入れ、1kg/hの水蒸気を、予熱炉で加熱した状態で該賦活炉内へ投入し、900℃まで8時間かけて昇温した後に取り出し、窒素雰囲気下で冷却して活性炭を得た。得られた活性炭を10時間通水洗浄を行った後に水切りした。その後、115℃に保持された電気乾燥器内で10時間乾燥した後に、ボールミルで1時間粉砕を行い、正極活物質となる活性炭を得た。
(Production of electricity storage element)
The pulverized coconut shell carbide was carbonized at 500 ° C. for 3 hours in nitrogen in a small carbonization furnace. The treated carbide is put into an activation furnace, 1 kg / h of steam is put into the activation furnace in a state of being heated in a preheating furnace, is heated up to 900 ° C. over 8 hours, and is taken out under a nitrogen atmosphere. To obtain activated carbon. The obtained activated carbon was washed with water for 10 hours and then drained. Then, after drying for 10 hours in an electric dryer maintained at 115 ° C., pulverization was performed for 1 hour with a ball mill to obtain activated carbon as a positive electrode active material.

該活性炭80.8質量部、PVdF10質量部、ケッチェンブラック6.2質量部、ポリ−N−ビニル−2−ピロリドンK30(PVP)3質量部を、NMP513質量部と混合・分散させて正極スラリーを作製した。厚み15μmのアルミニウム箔(貫通孔なし)の集電体に、この正極スラリーを片面だけ塗布し、プレスを行うことで正極を作製した。正極活物質層の厚みは55μmであった。   80.8 parts by mass of activated carbon, 10 parts by mass of PVdF, 6.2 parts by mass of ketjen black, and 3 parts by mass of poly-N-vinyl-2-pyrrolidone K30 (PVP) are mixed and dispersed with 513 parts by mass of NMP to obtain a positive electrode slurry. Was made. This positive electrode slurry was applied to only one side of a current collector made of aluminum foil (no through-hole) having a thickness of 15 μm, and a positive electrode was produced by pressing. The thickness of the positive electrode active material layer was 55 μm.

この正極と実施例1の負極とを加熱真空乾燥した。この後、負極については、負極活物質の質量あたり760mAh/gの電気量のリチウムイオンを、電気化学的に吸蔵させた。上記作業により得られた正極及び負極を、市販のセルロース系セパレータを介して対向させて電極体とし、これをラミネートフィルムからなる外装体内に収納して、1MのLiBETIを溶解させた非水系電解液(体積比EC:MEC=1:4の混合溶媒を使用)の注液を行い電極体を含浸せしめ、外装体を封止することにより実施例1の蓄電素子(以下「セル」ともいう。)を作製した。   This positive electrode and the negative electrode of Example 1 were heated and vacuum-dried. Then, about the negative electrode, the lithium ion of the electric quantity of 760 mAh / g per mass of the negative electrode active material was electrochemically occluded. The positive electrode and the negative electrode obtained by the above operation are opposed to each other through a commercially available cellulose separator to form an electrode body, which is housed in an exterior body made of a laminate film, and a non-aqueous electrolyte solution in which 1M LiBETI is dissolved The power storage device of Example 1 (hereinafter also referred to as “cell”) is injected by injecting liquid (volume ratio EC: MEC = 1: 4 is used), impregnating the electrode body, and sealing the exterior body. Was made.

実施例1のセルについて、2Cのレートで定電流定電圧(以下「cccv」ともいう。)4V充電を行った。その後、0.1Hzでインピーダンス特性(抵抗)を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性(抵抗)を測定した。これらの測定結果を表2に記載する。表2に記載した抵抗比率とは、各実施例及び比較例の初期の0.1Hzのインピーダンスを実施例1の初期の0.1Hzのインピーダンスで割った値である。すなわち、実施例1の抵抗比率は1となる。また、抵抗倍率とは、フロート評価後の0.1Hzでのインピーダンスを、初期の0.1Hzでのインピーダンスで割った値である。   The cell of Example 1 was charged with a constant current and a constant voltage (hereinafter also referred to as “cccv”) 4 V at a rate of 2C. Thereafter, impedance characteristics (resistance) were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic (resistance) of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2. The resistance ratio described in Table 2 is a value obtained by dividing the initial 0.1 Hz impedance of each Example and Comparative Example by the initial 0.1 Hz impedance of Example 1. That is, the resistance ratio of Example 1 is 1. The resistance magnification is a value obtained by dividing the impedance at 0.1 Hz after the float evaluation by the initial impedance at 0.1 Hz.

〈実施例2〉
グラファイト(平均粒径10μm)を53質量部、カーボンブラック(平均粒径40nm)を47質量部、CMCナトリウムを20質量部、精製水740質量部を混合、分散することで、導電材料のスラリーを作製した。開口部がLW:1mm、SW:0.5mmの菱形形状である貫通孔を有する厚み30μmのエキスパンド銅箔(幅150mm、開孔率47%)を小型コンマコーターに通箔し、上記導電材料のスラリーの塗工を行い、乾燥炉で乾燥を行うことで導電層を形成し実施例2の電極集電体を得た。なお、LWは菱形形状の貫通孔の対角線の長軸側の長さであり、SWは短軸側の長さである。被覆導電層の片面あたりの厚みは7.7μmであった。銅箔の貫通孔部分は、塗布した導電材料により一部占有されており、孔内導電層による占有率は59%であった。
<Example 2>
By mixing and dispersing 53 parts by mass of graphite (average particle size 10 μm), 47 parts by mass of carbon black (average particle size 40 nm), 20 parts by mass of CMC sodium, and 740 parts by mass of purified water, a slurry of a conductive material is obtained. Produced. An expanded copper foil (width 150 mm, hole area ratio 47%) having a through-hole having a rhombus shape with an opening of LW: 1 mm and SW: 0.5 mm is passed through a small comma coater, and the conductive material The slurry was applied and dried in a drying furnace to form a conductive layer, whereby an electrode current collector of Example 2 was obtained. Note that LW is the length on the long axis side of the diagonal line of the rhomboid-shaped through hole, and SW is the length on the short axis side. The thickness of one side of the coated conductive layer was 7.7 μm. The through-hole portion of the copper foil was partially occupied by the applied conductive material, and the occupation ratio by the in-hole conductive layer was 59%.

実施例2の電極集電体に、実施例1と同様の方法で負極活物質層を形成し実施例2の負極を得た。実施例1と同様の剥離試験を行ったところ、負極活物質層の集電体からの剥離は見られず、集電体と導電層、及び導電層と電極活物質層とがそれぞれ強固に結着していることが確認された。   A negative electrode active material layer was formed on the electrode current collector of Example 2 in the same manner as in Example 1 to obtain a negative electrode of Example 2. When the same peel test as in Example 1 was performed, no peeling of the negative electrode active material layer from the current collector was observed, and the current collector and the conductive layer and the conductive layer and the electrode active material layer were firmly bonded to each other. It was confirmed that he was wearing.

実施例2の負極を用いて、実施例1と同様の方法で実施例2の蓄電素子を作製し、2Cのレートでcccv4V充電を行った。その後、0.1Hzでインピーダンス特性を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性を測定した。これらの測定結果を表2に記載する。   Using the negative electrode of Example 2, the electricity storage device of Example 2 was produced in the same manner as in Example 1, and cccv4V charging was performed at a rate of 2C. Thereafter, impedance characteristics were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2.

〈実施例3〉
実施例2と同様の方法で、グラファイト(平均粒径10μm)を45質量部、カーボンブラック(平均粒径40nm)を55質量部、CMCナトリウムを20質量部、精製水1200質量部を混合、分散することで、導電材料のスラリーを作製した。該導電材料のスラリーを用い、実施例2と同様の銅箔上に導電層を形成して実施例3の電極集電体を得た。被覆導電層の片面あたりの厚みは、7.0μmであった。銅箔の貫通孔部分は、塗布した導電材料により一部占有されており、孔内導電層による占有率は32%であった。
<Example 3>
In the same manner as in Example 2, 45 parts by mass of graphite (average particle size 10 μm), 55 parts by mass of carbon black (average particle size 40 nm), 20 parts by mass of CMC sodium, and 1200 parts by mass of purified water were mixed and dispersed. Thus, a slurry of the conductive material was produced. Using the slurry of the conductive material, a conductive layer was formed on the same copper foil as in Example 2 to obtain an electrode current collector of Example 3. The thickness of one side of the coated conductive layer was 7.0 μm. The through hole portion of the copper foil was partially occupied by the applied conductive material, and the occupation ratio by the in-hole conductive layer was 32%.

実施例3の電極集電体に、実施例1と同様の方法で負極活物質層を形成し、実施例3の負極を得た。実施例1と同様の剥離試験を行ったところ、負極活物質層の集電体からの剥離は見られず、集電体と導電層、及び導電層と電極活物質層とがそれぞれ強固に結着していることが確認された。   A negative electrode active material layer was formed on the electrode current collector of Example 3 in the same manner as in Example 1 to obtain a negative electrode of Example 3. When the same peel test as in Example 1 was performed, no peeling of the negative electrode active material layer from the current collector was observed, and the current collector and the conductive layer and the conductive layer and the electrode active material layer were firmly bonded to each other. It was confirmed that he was wearing.

実施例3の負極を用いて、実施例1と同様の方法で実施例3の蓄電素子を作製し、2Cのレートでcccv4V充電を行った。その後、0.1Hzでインピーダンス特性を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性を測定した。これらの測定結果を表2に記載する。   Using the negative electrode of Example 3, the electricity storage device of Example 3 was produced in the same manner as in Example 1, and cccv4V charging was performed at a rate of 2C. Thereafter, impedance characteristics were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2.

〈実施例4〉
実施例2と同様の方法で、グラファイト(平均粒径10μm)を45質量部、カーボンブラック(平均粒径40nm)を55質量部、CMCナトリウムを20質量部、精製水680質量部を混合、分散することで、導電材料のスラリーを作製した。また、開口部がLW:1.5mm、SW:1.0mmの菱形形状である貫通孔を有する厚み47μmのエキスパンド銅箔(幅220mm、開孔率68%)を小型コンマコーターに通箔し、上記導電材料のスラリーの塗工、乾燥を行うことで、金属箔上に導電層を形成して実施例4の電極集電体を得た。被覆導電層の片面あたりの厚みは、8.9μmであった。銅箔の貫通孔部分は、塗布した導電材料により一部占有されており、孔内導電層による占有率は43%であった。
<Example 4>
In the same manner as in Example 2, 45 parts by mass of graphite (average particle size 10 μm), 55 parts by mass of carbon black (average particle size 40 nm), 20 parts by mass of CMC sodium, and 680 parts by mass of purified water were mixed and dispersed. Thus, a slurry of the conductive material was produced. In addition, an expanded copper foil (width: 220 mm, opening ratio: 68%) having a through-hole having a rhombus shape with LW: 1.5 mm and SW: 1.0 mm is passed through a small comma coater, By applying the slurry of the conductive material and drying, a conductive layer was formed on the metal foil to obtain an electrode current collector of Example 4. The thickness of one side of the coated conductive layer was 8.9 μm. The through hole portion of the copper foil was partially occupied by the applied conductive material, and the occupation ratio by the conductive layer in the hole was 43%.

実施例4の電極集電体に実施例1と同様の方法で負極活物質層を形成し、実施例4の負極を得た。実施例1と同様の剥離試験を行ったところ、負極活物質層の集電体からの剥離は見られず、集電体と導電層、及び導電層と電極活物質層とがそれぞれ強固に結着していることが確認された。   A negative electrode active material layer was formed on the electrode current collector of Example 4 in the same manner as in Example 1 to obtain a negative electrode of Example 4. When the same peel test as in Example 1 was performed, no peeling of the negative electrode active material layer from the current collector was observed, and the current collector and the conductive layer and the conductive layer and the electrode active material layer were firmly bonded to each other. It was confirmed that he was wearing.

実施例4の負極を用いて、実施例1と同様の方法で実施例4の蓄電素子を作製し、2Cのレートでcccv4V充電を行った。その後、0.1Hzでインピーダンス特性を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性を測定した。これらの測定結果を表2に記載する。   Using the negative electrode of Example 4, the electricity storage device of Example 4 was produced in the same manner as in Example 1, and cccv4V charging was performed at a rate of 2C. Thereafter, impedance characteristics were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2.

〈実施例5〉
実施例2と同様の方法で、グラファイト(平均粒径10μm)を33質量部、カーボンブラック(平均粒径40nm)を67質量部、CMCナトリウムを20質量部、精製水680質量部を混合、分散することで、導電材料のスラリーを作製した。該導電材料のスラリーを用い、実施例2と同様の銅箔上に導電層を形成して実施例5の電極集電体を得た。被覆導電層の片面あたりの厚みは、15.3μmであった。銅箔の貫通孔部分は、塗布した導電材料により一部占有されており、孔内導電層による占有率は75%であった。
<Example 5>
In the same manner as in Example 2, 33 parts by mass of graphite (average particle size 10 μm), 67 parts by mass of carbon black (average particle size 40 nm), 20 parts by mass of CMC sodium, and 680 parts by mass of purified water were mixed and dispersed. Thus, a slurry of the conductive material was produced. Using the slurry of the conductive material, a conductive layer was formed on the same copper foil as in Example 2 to obtain an electrode current collector of Example 5. The thickness of one side of the coated conductive layer was 15.3 μm. The through hole portion of the copper foil was partially occupied by the applied conductive material, and the occupation ratio by the conductive layer in the hole was 75%.

実施例5の電極集電体に、実施例1と同様の方法で負極活物質層を形成し、実施例5の負極を得た。剥離試験を行ったところ、負極活物質層の集電体からの剥離がエッジ部分でわずかに確認されたに過ぎず、導電層と電極活物質層との結着が十分強固であることが確認された。   A negative electrode active material layer was formed on the electrode current collector of Example 5 in the same manner as in Example 1 to obtain a negative electrode of Example 5. When the peel test was performed, it was confirmed that the peeling of the negative electrode active material layer from the current collector was only slightly confirmed at the edge portion, and the binding between the conductive layer and the electrode active material layer was sufficiently strong. It was done.

実施例5の負極を用いて、実施例1と同様の方法で実施例5の蓄電素子を作製し、2Cのレートでcccv4V充電を行った。その後、0.1Hzでインピーダンス特性を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性を測定した。これらの測定結果を表2に記載する。   Using the negative electrode of Example 5, the electricity storage device of Example 5 was produced in the same manner as in Example 1, and cccv4V charging was performed at a rate of 2C. Thereafter, impedance characteristics were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2.

〈比較例1〉
開口部が直径0.3mmの円形である貫通孔を有する厚み20μmのパンチング銅箔(幅150mm、開孔率50%)を比較例1の電極集電体として小型コンマコーターに通箔し、実施例1において用いたのと同じ負極スラリーを用い、実施例1と同様の方法でコンマコーターにより両面に塗布、乾燥を行い、120μmのクリアランスで3回プレスを行った。これにより、導電層上に形成された負極活物質層の片面あたりの厚みが60μmである比較例1の負極を得た。
<Comparative example 1>
A punching copper foil with a thickness of 20 μm having a circular through hole with a diameter of 0.3 mm (width 150 mm, opening rate 50%) was passed through a small comma coater as an electrode current collector of Comparative Example 1 The same negative electrode slurry as used in Example 1 was used, applied to both sides with a comma coater in the same manner as in Example 1, dried, and pressed three times with a clearance of 120 μm. This obtained the negative electrode of the comparative example 1 whose thickness per single side | surface of the negative electrode active material layer formed on the conductive layer is 60 micrometers.

比較例1の負極につき、実施例1と同様に剥離試験を行って剥離強度を確認したところ、全ての負極活物質層が集電体から剥離し、導電層と電極活物質層との結着が弱いことが確認された。   When the peel strength of the negative electrode of Comparative Example 1 was confirmed by performing a peel test in the same manner as in Example 1, all the negative electrode active material layers were peeled from the current collector, and the conductive layer and the electrode active material layer were bound. Was confirmed to be weak.

比較例1の負極を用いて、実施例1と同様の方法で比較例1の蓄電素子を作製し、2Cのレートでcccv4V充電を行った。その後、0.1Hzでインピーダンス特性を測定した。また、このセルについて、60℃、3.8Vのフロート評価を行い、1000h後の0.1Hzのインピーダンス特性を測定した。これらの測定結果を表2に記載する。   Using the negative electrode of Comparative Example 1, the electricity storage device of Comparative Example 1 was produced in the same manner as in Example 1, and cccv4V charging was performed at a rate of 2C. Thereafter, impedance characteristics were measured at 0.1 Hz. Moreover, about this cell, the float evaluation of 60 degreeC and 3.8V was performed, and the impedance characteristic of 0.1 Hz after 1000 h was measured. These measurement results are listed in Table 2.

比較例1では、集電体上に結着効果のある導電層が存在しないため、4mmφでの剥離試験で剥離した。このことから、比較例1の電極では金属箔と電極活物質層との接触が悪くなりやすいことが示唆される。また、比較例1のセルでは、抵抗比率及び抵抗倍率が実施例1〜5のセルに比べ大きく、セルの抵抗が大きく耐久性も劣ることがわかる。このことから、比較例1では実施例1〜5と比べ、負極活物質層と集電体との接着が十分でなく、これらの界面での抵抗が大きくなったことが示唆された。   In Comparative Example 1, since there was no conductive layer having a binding effect on the current collector, peeling was performed in a peeling test at 4 mmφ. This suggests that in the electrode of Comparative Example 1, the contact between the metal foil and the electrode active material layer tends to deteriorate. Moreover, in the cell of the comparative example 1, resistance ratio and resistance magnification are large compared with the cell of Examples 1-5, and it turns out that resistance of a cell is large and durability is also inferior. From this, it was suggested in Comparative Example 1 that the adhesion between the negative electrode active material layer and the current collector was not sufficient as compared with Examples 1 to 5, and the resistance at these interfaces was increased.

Figure 2011003795
Figure 2011003795

表1中、4mmφ剥離試験の欄における記号の意味は下記の通りである。
○:活物質層の集電体からの剥離は観察されなかった。
△:電極のエッジ部分で活物質層の集電体からの剥離が僅かに観察されたのみである。
×:活物質層が集電体から完全に剥離した。
In Table 1, the meanings of symbols in the column of 4 mmφ peel test are as follows.
○: No peeling of the active material layer from the current collector was observed.
Δ: Only slight separation of the active material layer from the current collector was observed at the edge portion of the electrode.
X: The active material layer was completely peeled from the current collector.

Figure 2011003795
Figure 2011003795

本発明の電極集電体は、蓄電素子の集電体、特にリチウムイオンのプリドープを必要とする電極を有する蓄電素子、たとえばリチウムイオンキャパシタ用の集電体として好適に使用できる。   The electrode current collector of the present invention can be suitably used as a current collector for a power storage device, particularly a power storage device having an electrode that requires lithium ion pre-doping, for example, a current collector for a lithium ion capacitor.

1 金属箔
2 貫通孔
3a 孔内導電層
3b 被覆導電層
4 金属板
5 電極
DESCRIPTION OF SYMBOLS 1 Metal foil 2 Through-hole 3a In-hole conductive layer 3b Covering conductive layer 4 Metal plate 5 Electrode

Claims (10)

厚み方向に貫通する複数の貫通孔を有する金属箔と、該金属箔に接して形成された導電層とを有する電極集電体であって、
該導電層が、金属箔の両表面の上に形成された被覆導電層と、各々の貫通孔内に形成された孔内導電層とからなり、
該孔内導電層が各々の貫通孔の一部のみを埋めるように形成されていることによって、電極集電体の両表面が各々の貫通孔形成部の少なくとも一部において凹形状を有している、電極集電体。
An electrode current collector having a metal foil having a plurality of through holes penetrating in the thickness direction, and a conductive layer formed in contact with the metal foil,
The conductive layer comprises a coated conductive layer formed on both surfaces of the metal foil, and an in-hole conductive layer formed in each through-hole,
By forming the in-hole conductive layer so as to fill only a part of each through hole, both surfaces of the electrode current collector have a concave shape in at least a part of each through hole forming portion. An electrode current collector.
前記貫通孔の開口部短径を通る電極集電体厚み方向断面において、孔内導電層の断面積をS1とし、金属箔と金属箔両面上の被覆導電層との合計厚みに該開口部短径の長さを乗じた値として規定される貫通孔断面積をS2としたときに、S1がS2の30%以上80%以下である、請求項1に記載の電極集電体。   In the cross section of the electrode current collector in the thickness direction passing through the short axis of the opening of the through hole, the cross-sectional area of the conductive layer in the hole is S1, and the short of the opening is equal to the total thickness of the metal foil and the coated conductive layer on both surfaces of the metal foil. The electrode current collector according to claim 1, wherein S1 is 30% to 80% of S2, where S2 is a through-hole cross-sectional area defined as a value obtained by multiplying the length of the diameter. 前記孔内導電層が、電極集電体の厚み方向に貫通する空隙を有するように形成されている、請求項1又は2に記載の電極集電体。   The electrode current collector according to claim 1, wherein the in-hole conductive layer is formed so as to have a gap penetrating in the thickness direction of the electrode current collector. 電極集電体の両表面において前記貫通孔の開口部が占める面積比率が10%以上80%以下である、請求項1〜3のいずれか1項に記載の電極集電体。   The electrode current collector according to any one of claims 1 to 3, wherein an area ratio occupied by openings of the through holes on both surfaces of the electrode current collector is 10% or more and 80% or less. 前記貫通孔の開口部短径が0.01mm以上5mm以下である、請求項1〜4のいずれか1項に記載の電極集電体。   The electrode current collector according to any one of claims 1 to 4, wherein an opening minor axis of the through hole is 0.01 mm or more and 5 mm or less. 前記被覆導電層が、前記金属箔の両表面にそれぞれ厚み0.5μm以上15μm以下で形成されている、請求項1〜5のいずれか1項に記載の電極集電体。   The electrode collector according to claim 1, wherein the coated conductive layer is formed on both surfaces of the metal foil with a thickness of 0.5 μm or more and 15 μm or less. 前記被覆導電層と前記孔内導電層とが同じ材料から形成されている、請求項1〜6のいずれか1項に記載の電極集電体。   The electrode current collector according to claim 1, wherein the covering conductive layer and the in-hole conductive layer are formed of the same material. 請求項1〜7のいずれか1項に記載の電極集電体を製造する方法であって、
前記金属箔に導電材料含有スラリーを湿式塗工することによって、前記被覆導電層及び前記孔内導電層を同時に形成することを含む、電極集電体の製造方法。
A method for producing the electrode current collector according to any one of claims 1 to 7,
The manufacturing method of an electrode electrical power collector including forming the said coating conductive layer and the said electroconductive layer in a hole simultaneously by wet-coating a conductive material containing slurry to the said metal foil.
請求項1〜7のいずれか1項に記載の電極集電体と、該電極集電体の片面又は両面に形成された、電極活物質を含む電極層とを有する電極。   An electrode comprising: the electrode current collector according to any one of claims 1 to 7; and an electrode layer including an electrode active material formed on one or both surfaces of the electrode current collector. 請求項9に記載の電極と、セパレータと、電解液とを有する蓄電素子。   A power storage device comprising the electrode according to claim 9, a separator, and an electrolytic solution.
JP2009146737A 2009-06-19 2009-06-19 Electrode current collector and method for producing the same, electrode and power storage device Expired - Fee Related JP5681351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146737A JP5681351B2 (en) 2009-06-19 2009-06-19 Electrode current collector and method for producing the same, electrode and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146737A JP5681351B2 (en) 2009-06-19 2009-06-19 Electrode current collector and method for producing the same, electrode and power storage device

Publications (2)

Publication Number Publication Date
JP2011003795A true JP2011003795A (en) 2011-01-06
JP5681351B2 JP5681351B2 (en) 2015-03-04

Family

ID=43561501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146737A Expired - Fee Related JP5681351B2 (en) 2009-06-19 2009-06-19 Electrode current collector and method for producing the same, electrode and power storage device

Country Status (1)

Country Link
JP (1) JP5681351B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121950A1 (en) * 2010-03-29 2011-10-06 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2013506299A (en) * 2009-09-24 2013-02-21 コーニング インコーポレイテッド Current collector with satin coating
KR20130112310A (en) * 2012-04-03 2013-10-14 삼성전자주식회사 Flexible secondary battery
JP2018073803A (en) * 2016-07-06 2018-05-10 リンダ・チョンLinda Zhong Electrode with lithium and manufacturing method thereof
JPWO2018211916A1 (en) * 2017-05-18 2020-03-12 富士フイルム株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery and positive electrode for secondary battery
WO2022188894A1 (en) * 2021-03-08 2022-09-15 沈晞 Current collector and lithium-ion battery
WO2023032702A1 (en) * 2021-09-03 2023-03-09 ルビコン株式会社 Power storage device, and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JP2004303751A (en) * 2003-03-28 2004-10-28 Nissan Diesel Motor Co Ltd Electric double layer capacitor and its manufacturing method
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
WO2005096333A1 (en) * 2004-03-31 2005-10-13 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using mesoporous carbon material as negative electrode
JP2010118330A (en) * 2008-10-15 2010-05-27 Furukawa Electric Co Ltd:The Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JP2004303751A (en) * 2003-03-28 2004-10-28 Nissan Diesel Motor Co Ltd Electric double layer capacitor and its manufacturing method
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
WO2005096333A1 (en) * 2004-03-31 2005-10-13 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using mesoporous carbon material as negative electrode
JP2010118330A (en) * 2008-10-15 2010-05-27 Furukawa Electric Co Ltd:The Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506299A (en) * 2009-09-24 2013-02-21 コーニング インコーポレイテッド Current collector with satin coating
US9209464B2 (en) 2009-09-24 2015-12-08 Corning Incorporated Current collectors having textured coating
WO2011121950A1 (en) * 2010-03-29 2011-10-06 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
KR20130112310A (en) * 2012-04-03 2013-10-14 삼성전자주식회사 Flexible secondary battery
KR101968640B1 (en) * 2012-04-03 2019-04-12 삼성전자주식회사 Flexible secondary battery
JP2018073803A (en) * 2016-07-06 2018-05-10 リンダ・チョンLinda Zhong Electrode with lithium and manufacturing method thereof
JP7169740B2 (en) 2016-07-06 2022-11-11 リキャップ テクノロジーズ、インコーポレイテッド LITHIUM ELECTRODE AND METHOD FOR MANUFACTURING SAME
JPWO2018211916A1 (en) * 2017-05-18 2020-03-12 富士フイルム株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery and positive electrode for secondary battery
WO2022188894A1 (en) * 2021-03-08 2022-09-15 沈晞 Current collector and lithium-ion battery
WO2023032702A1 (en) * 2021-09-03 2023-03-09 ルビコン株式会社 Power storage device, and manufacturing method therefor

Also Published As

Publication number Publication date
JP5681351B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP4535334B2 (en) Organic electrolyte capacitor
JP5008637B2 (en) Method for producing non-aqueous lithium secondary battery
JP4751199B2 (en) Organic electrolyte capacitor
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP5341470B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT, NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT AND METHOD FOR PRODUCING ELECTRODE BODY FOR STORAGE ELEMENT
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2007280803A (en) Hybrid laminated electrode and hybrid secondary power source using the same
JP2011097036A (en) Capacitor
WO2013054710A1 (en) Lithium ion capacitor, power storage device, power storage system
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP2012004491A (en) Power storage device
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
JP2010109080A (en) Method for manufacturing electrode for storage element, electrode for storage element, and nonaqueous lithium type electricity storage element
US20140315084A1 (en) Method and apparatus for energy storage
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same
JP2013077734A (en) Electrode and method of manufacturing the same
JP4731974B2 (en) Lithium ion capacitor
JP2011159642A (en) Electrochemical device
JP6498423B2 (en) Method for manufacturing power storage device
JP2012028366A (en) Power storage device
US20230360863A1 (en) Advanced lithium-ion energy storage device
WO2015005294A1 (en) Power storage device
JP2012043940A (en) Electrode, storage element, and lithium ion capacitor
JP2011205016A (en) Lithium-ion capacitor, method of manufacturing positive electrode and negative electrode therefor, and occlusion method of lithium ion to negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees