JP2011159642A - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
JP2011159642A
JP2011159642A JP2010017524A JP2010017524A JP2011159642A JP 2011159642 A JP2011159642 A JP 2011159642A JP 2010017524 A JP2010017524 A JP 2010017524A JP 2010017524 A JP2010017524 A JP 2010017524A JP 2011159642 A JP2011159642 A JP 2011159642A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode plate
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010017524A
Other languages
Japanese (ja)
Inventor
Koji Maeda
光司 前田
Masako Oya
昌子 大家
Yukinori Hado
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010017524A priority Critical patent/JP2011159642A/en
Publication of JP2011159642A publication Critical patent/JP2011159642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device reducing material cost, causing no self-discharge failure, and having low DC resistance. <P>SOLUTION: The electrochemical device includes: an electrochemical element using a metal foil as a collector of a positive electrode plate and a negative electrode plate and including the positive electrode plate and the negative electrode plate laminated via a separator as well as electrolyte; a positive external terminal plate 2 and a negative external terminal plate 3 electrically connected to the positive electrode plate and the negative electrode plate, respectively; and an outer film sheet 4 incorporating the electrochemical element and sealing at its periphery, wherein each of a positive electrode active material electrode sheet and a negative electrode active material electrode sheet has at least one through hole, and an opening ratio to an area of the positive electrode plate and the negative electrode plate is 0.1-10%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオンキャパシタ、リチウムイオン二次電池などの電気化学デバイスに関するものである。   The present invention relates to electrochemical devices such as lithium ion capacitors and lithium ion secondary batteries.

ラミネートフィルムによる外装構造を有する充放電可能な電源機能を有する電気化学デバイスとしては、電気二重層キャパシタ、リチウムイオン二次電池などがあり、また近年は、電気二重層キャパシタの正極とリチウムイオン二次電池の負極とを組み合わせたハイブリッドタイプのキャパシタ(以下ハイブリッドキャパシタ)も知られている。   Electrochemical devices with a chargeable / dischargeable power supply function having an exterior structure made of a laminate film include electric double layer capacitors and lithium ion secondary batteries. Recently, positive electrodes and lithium ion secondary batteries of electric double layer capacitors are also included. A hybrid type capacitor (hereinafter referred to as a hybrid capacitor) in combination with a negative electrode of a battery is also known.

上述したような電気化学デバイスは、石油埋蔵量問題および地球温暖化等環境への配慮から、電気自動車などのモータ駆動用のエネルギー源、あるいはエネルギー回生システムのキーデバイスとして、さらには無停電電源装置、風力発電、太陽光発電への応用など、様々な新しい用途への適用が検討されており、次世代のデバイスとしてその期待度の高いデバイスである。   Electrochemical devices such as those mentioned above are used as an energy source for driving motors such as electric vehicles, or as a key device for energy regeneration systems, and also as an uninterruptible power supply due to environmental concerns such as oil reserves and global warming. Application to various new uses such as application to wind power generation and solar power generation is being studied, and it is a highly promising device as a next-generation device.

近年、エネルギー源、エネルギー回生用途への適用において電気化学デバイスへのさらなる高エネルギー密度化および低抵抗化が求められている。   In recent years, there has been a demand for higher energy density and lower resistance for electrochemical devices in applications for energy sources and energy regeneration.

電気二重層キャパシタは、一般に使用する電解液の種類により、水系電解液タイプと、非水系電解液タイプとに分類されるが、単一の電気二重層キャパシタの耐電圧は、水系電解液タイプの場合で1.2V程度、非水系電解液タイプの場合でも2.7V程度である。電気二重層キャパシタが蓄積可能なエネルギー容量を増加させるためには、この耐電圧をさらに高くすることが重要であるが、構成上困難である。   Electric double layer capacitors are generally classified into aqueous electrolyte type and non-aqueous electrolyte type depending on the type of electrolyte used. The withstand voltage of a single electric double layer capacitor is that of the aqueous electrolyte type. In some cases, it is about 1.2V, and even in the case of a non-aqueous electrolyte type, it is about 2.7V. In order to increase the energy capacity that can be stored in the electric double layer capacitor, it is important to further increase the withstand voltage, but it is difficult to construct.

一方、リチウムイオン二次電池は、リチウム含有遷移金属酸化物を主成分とする正極、リチウムイオンを吸蔵し、脱離しうる炭素材料を主成分とする負極、およびリチウム塩を含む有機系電解液とから構成されている。リチウムイオン二次電池を充電すると、正極からリチウムイオンが脱離して負極の炭素材料に吸蔵され、放電したときは逆に負極からリチウムイオンが脱離して正極の金属酸化物に吸蔵される。リチウムイオン二次電池は電気二重層キャパシタに比べて高電圧、高容量であるという性質を有するが、一方でその内部抵抗が高く、低抵抗化が困難であるという課題を持つ。   On the other hand, a lithium ion secondary battery includes a positive electrode mainly composed of a lithium-containing transition metal oxide, a negative electrode mainly composed of a carbon material that can occlude and desorb lithium ions, and an organic electrolyte containing a lithium salt. It is composed of When the lithium ion secondary battery is charged, lithium ions are desorbed from the positive electrode and occluded in the carbon material of the negative electrode. Conversely, when discharged, lithium ions are desorbed from the negative electrode and occluded in the metal oxide of the positive electrode. Lithium ion secondary batteries have the properties of higher voltage and higher capacity than electric double layer capacitors, but have a problem that their internal resistance is high and resistance reduction is difficult.

ハイブリッドタイプのキャパシタは、正極に活性炭を用い、負極にリチウムイオンを吸蔵・脱離しうる炭素材料を用いている。充放電時に負極においてリチウムイオンの吸蔵、脱離反応を伴うことから、キャパシタ内部で実際に生じる両電極間の電位差は、負極にリチウム金属を用いた場合により近い、より卑な値にて推移する。従って、従来の正極、負極に活性炭を用いた電気二重層キャパシタと比較してより高耐電圧化することができ、よって蓄積可能なエネルギー量を電気二重層キャパシタに比較して大きく増加させる(高エネルギー化)ことが可能であり、且つ低抵抗であることから、これらの課題を解決するデバイスとして有力である。   The hybrid type capacitor uses activated carbon for the positive electrode and a carbon material capable of inserting and extracting lithium ions for the negative electrode. The potential difference between the two electrodes that actually occurs inside the capacitor shifts to a more basic value that is closer to the case where lithium metal is used for the negative electrode because lithium ions are absorbed and desorbed in the negative electrode during charging and discharging. . Therefore, the withstand voltage can be further increased as compared with the conventional electric double layer capacitor using activated carbon for the positive electrode and the negative electrode, and the amount of energy that can be stored is greatly increased compared to the electric double layer capacitor (high Energy) and low resistance, it is promising as a device for solving these problems.

電気化学デバイスの高エネルギー化に関する解決策としては特許文献1〜3に記載の方法が提案されており、負極由来のリチウムを含有させる技術を応用することで、ハイブリッドキャパシタの作製及び高エネルギー化も可能となる。   As a solution for increasing the energy of electrochemical devices, the methods described in Patent Documents 1 to 3 have been proposed. By applying a technique that contains lithium derived from the negative electrode, a hybrid capacitor can be manufactured and increased in energy. It becomes possible.

特許文献1〜3には、以下のことが提案されている。特許文献1には、(1)正極が金属酸化物を含み、(2)負極が芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.5〜0.05であるポリアセン系骨格構造を有する不溶不融性基体(PAS)であり、(3)負極PASに対し、電池内に含まれる総リチウム量が500mAh/g以上であり、かつ負極由来のリチウムが100mAh/g以上であり、負極由来のリチウムとして、電池組立後リチウムを負極PASに担持せしめた事を特徴とする有機電解質電池が記載されている。特許文献2には、(1)正極が金属酸化物を含み(2)負極が芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.5〜0.05であるポリアセン系骨格構造を有する不溶不融性基体(PAS)であり、(3)負極PASに対し、電池内に含まれる総リチウム量が500mAh/g以上であり、かつ負極由来のリチウムが100mAh/g以上であり負極由来のリチウムが、負極板同一平面かつ外周部の全部あるいは一部に配置されたリチウムと負極PASあるいは負極集電体との少なくとも一部の直接な接触により担持された事を特徴とする有機電解質電池が記載されている。特許文献3には、(1)正極が金属酸化物を含み(2)負極が芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.5〜0.05であるポリアセン系骨格構造を有する不溶不融性基体(PAS)であり、(3)負極PASに対し、電池内に含まれる総リチウム量が500mAh/g以上であり、かつ負極由来のリチウムが100mAh/g以上であり負極由来のリチウムが、負極板の断面方向に配置されたリチウムと負極PASのリチウムに面する側の集電体もしくはPASとの直接的な接触により担持された事を特徴とする有機電解質電池が記載されている。   Patent Documents 1 to 3 propose the following. In Patent Document 1, (1) the positive electrode includes a metal oxide, (2) the negative electrode is a heat-treated product of an aromatic condensation polymer, and the atomic ratio of hydrogen atom / carbon atom is 0.5 to 0.05. An insoluble infusible substrate (PAS) having a certain polyacene skeleton structure; (3) the total amount of lithium contained in the battery is 500 mAh / g or more with respect to the negative electrode PAS, and the lithium derived from the negative electrode is 100 mAh / There is described an organic electrolyte battery characterized in that lithium is supported on the negative electrode PAS after assembling the battery as lithium derived from the negative electrode as lithium derived from the negative electrode. In Patent Document 2, (1) the positive electrode contains a metal oxide, (2) the negative electrode is a heat-treated product of an aromatic condensation polymer, and the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05. An insoluble infusible substrate (PAS) having a polyacene skeleton structure; (3) the total amount of lithium contained in the battery is 500 mAh / g or more with respect to the negative electrode PAS, and the lithium derived from the negative electrode is 100 mAh / g As described above, the lithium derived from the negative electrode is supported by direct contact of at least a part of the negative electrode PAS or the negative electrode current collector with lithium arranged on the same plane of the negative electrode plate and all or part of the outer peripheral portion. An organic electrolyte battery is described. In Patent Document 3, (1) the positive electrode contains a metal oxide, (2) the negative electrode is a heat-treated product of an aromatic condensation polymer, and the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05. An insoluble infusible substrate (PAS) having a polyacene skeleton structure; (3) the total amount of lithium contained in the battery is 500 mAh / g or more with respect to the negative electrode PAS, and the lithium derived from the negative electrode is 100 mAh / g An organic material characterized in that the lithium derived from the negative electrode is supported by direct contact between the lithium arranged in the cross-sectional direction of the negative electrode plate and the current collector or PAS of the negative electrode PAS facing the lithium. An electrolyte battery is described.

実用化されているリチウム二次電池は、グラファイト等の炭素材料を負極に、LiCoO,LiMn等のリチウム含有金属酸化物を正極に用い、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムを供給し、更に放電では負極リチウムを正極に戻すという、ロッキングチェア型である。また、予め電池内に正極由来、負極由来のリチウムを含有させ、該リチウムから正極または負極に挿入することによる高容量化により高エネルギー化が達成されている。具体的には負極上にリチウム金属を貼り合わせ、正極とセパレータとともに電池セル内に挿入し、電解液を注液することにより、電気的な接触により負極に予めリチウムを挿入する方法である。しかしながら、各負極にリチウム金属箔を貼り合わせしないといけないこと、またリチウム金属箔の厚み限界があるため負極電極の厚みが厚くなり設計上の制約が出てしまうことが課題である。 The lithium secondary battery in practical use uses a carbon material such as graphite as a negative electrode and a lithium-containing metal oxide such as LiCoO 2 or LiMn 2 O 4 as a positive electrode. It is a rocking chair type in which lithium is supplied from the contained metal oxide to the negative electrode, and further, the negative electrode lithium is returned to the positive electrode in discharging. Further, high energy is achieved by increasing the capacity by previously incorporating lithium derived from the positive electrode and the negative electrode into the battery and inserting the lithium into the positive electrode or the negative electrode. Specifically, lithium metal is bonded onto the negative electrode, inserted into the battery cell together with the positive electrode and the separator, and an electrolytic solution is injected to insert lithium in advance into the negative electrode by electrical contact. However, there is a problem that a lithium metal foil must be bonded to each negative electrode, and that the thickness of the negative electrode is increased due to the limit of the thickness of the lithium metal foil, resulting in design limitations.

特許文献1〜3の改善策として特許文献4には、正極、負極並びに電解液としてリチウム塩の非プロトン性有機溶媒溶液を備えた有機電解質電池であって、正極集電体及び負極集電体が、それぞれ表裏面を貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムとの電気化学的接触により担持され、かつ該リチウムの対向面積が負極面積の40%以下である有機電解質電池が記載されている。   As an improvement measure of Patent Documents 1 to 3, Patent Document 4 discloses an organic electrolyte battery including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, the positive electrode current collector and the negative electrode current collector However, each has a hole penetrating the front and back surfaces, the negative electrode active material can reversibly support lithium, and the negative electrode-derived lithium is supported by electrochemical contact with the negative electrode or lithium disposed opposite to the positive electrode In addition, an organic electrolyte battery is described in which the lithium facing area is 40% or less of the negative electrode area.

積層型、捲回型構造をとる電池において、正極集電体及び負極集電体に表裏面を貫通する孔を備えたパンチングメタルやエキスパンドメタルを用いることで、負極あるいは正極と対向して配置されたリチウムとの電気化学的接触により複数枚の活物質にリチウムイオンが積層方向に移動し挿入される。このことにより、リチウム金属箔の厚みによる設計の制約や各電極に貼り合わせをしなくてもいいというように改善がなされた構成となっている。   In a battery having a laminated type and a wound type structure, the positive electrode current collector and the negative electrode current collector are disposed opposite to the negative electrode or the positive electrode by using punching metal or expanded metal having holes penetrating the front and back surfaces. The lithium ions are moved and inserted in the stacking direction into the plurality of active materials by electrochemical contact with lithium. As a result, the configuration is improved such that the design constraint due to the thickness of the lithium metal foil and the bonding to each electrode are not required.

特開平8−162159号公報JP-A-8-162159 特開平8−162160号公報JP-A-8-162160 特開平8―162161号公報JP-A-8-162161 特許第3485935号公報Japanese Patent No. 3485935

特許文献4記載の正極および負極の集電体に貫通孔を有するエキスパンドメタルやパンチングメタルを用いる工法は、積層した電極、捲回し複数枚重なりあった電極間も貫通孔を介してリチウムイオンが移動し各電極由来リチウムから各電極へ挿入が可能となるため高エネルギー化に有用な方法であるが、集電性悪化による内部抵抗増加が課題である。最も今後期待される電気自動車などのモータ駆動用のエネルギー源、あるいはエネルギー回生システムにおいては高エネルギーが求められる上に高出力が必須であるため、電池の内部抵抗増加は大きな課題である。集電体に貫通孔を有するエキスパンドメタル、パンチングメタルを用いるため集電性悪化による電池の内部抵抗の増加が課題となる。またエキスパンドメタル、パンチングメタルの資材コストは箔集電体に対して約10倍であり、製品コスト高となる。金型で成形する開孔径は大きく、塗工時片面塗工では電極スラリーが抜け落ちるためマルチコーターによる両面同時塗工が必須となるが、両面同時塗工は片面塗工と比較し、塗工厚みが難しくバラツキも大きくなる。また塗工前の状態で集電体に孔を有するため集電体の強度が箔集電体と比較し著しく劣る為、塗工時の加工スピードの調整等配慮が必要となるなど、電極製造工程も煩雑化し、製造コスト高となることも否定できない。   In the method using an expanded metal or a punching metal having through holes in the positive and negative electrode current collectors described in Patent Document 4, lithium ions move between the stacked electrodes and the wound and overlapped electrodes through the through holes. However, since it can be inserted from each electrode-derived lithium into each electrode, it is a useful method for increasing the energy. In an energy source for driving a motor such as an electric vehicle that is expected most in the future, or an energy regeneration system, high energy is required and high output is essential, so increasing the internal resistance of the battery is a big problem. Since the expanded metal and punching metal which have a through-hole are used for an electrical power collector, the increase in the internal resistance of a battery by current collection deterioration becomes a subject. In addition, the material cost of expanded metal and punching metal is about 10 times that of the foil current collector, which increases the product cost. The diameter of the hole to be molded by the mold is large, and in case of single-sided coating during coating, electrode slurry falls out, so simultaneous double-sided coating with a multi-coater is essential, but double-sided simultaneous coating is compared to single-sided coating, coating thickness Difficult to increase. In addition, since the current collector has holes before coating, the strength of the current collector is significantly inferior to that of the foil current collector, making it necessary to consider the processing speed during coating, etc. It cannot be denied that the process is complicated and the manufacturing cost is high.

すなわち、本発明の技術的課題は、資材費が低減でき、自己放電不良がなく直流抵抗が低い電気化学デバイスを提供することにある。   That is, the technical problem of the present invention is to provide an electrochemical device that can reduce material costs, has no self-discharge failure, and has low DC resistance.

本発明の電気化学デバイスは、正極電極板および負極電極板の集電体に金属箔を用い、セパレータを介して積層する前記正極電極板および前記負極電極板ならびに電解液を含む電気化学素子と、前記正極電極板および前記負極電極板にそれぞれ電気的に接続される正極外部端子板および負極外部端子板と、前記電気化学素子を内蔵し周縁部にて密閉する外装フィルムシートとを備える電気化学デバイスであって、それぞれの前記正極活物質電極シートおよび前記負極活物質電極シートに少なくとも1つの貫通孔を有し、前記正極電極板および前記負極電極板の面積に対して開孔率が0.1%以上10%以下であることを特徴とする。   The electrochemical device of the present invention uses a metal foil as a current collector of a positive electrode plate and a negative electrode plate, and an electrochemical element including the positive electrode plate, the negative electrode plate, and an electrolyte solution laminated via a separator; Electrochemical device comprising a positive external terminal plate and a negative external terminal plate electrically connected to the positive electrode plate and the negative electrode plate, respectively, and an exterior film sheet containing the electrochemical element and sealed at a peripheral edge Each of the positive electrode active material electrode sheet and the negative electrode active material electrode sheet has at least one through-hole, and the hole area ratio is 0.1 with respect to the areas of the positive electrode plate and the negative electrode plate. % Or more and 10% or less.

さらに、本発明の電気化学デバイスは、前記貫通孔の孔径は、0.01mm以上2mm以下であることを特徴とする。   Furthermore, the electrochemical device of the present invention is characterized in that a diameter of the through hole is 0.01 mm or more and 2 mm or less.

さらに、本発明の電気化学デバイスは、前記貫通孔が、レーザ加工または金型によるプレス加工により形成されることを特徴とする。   Furthermore, the electrochemical device of the present invention is characterized in that the through hole is formed by laser processing or press working with a mold.

さらに、本発明の電気化学デバイスは、前記電気化学デバイスが、リチウムイオン二次電池またはハイブリッドキャパシタであることを特徴とする。   Furthermore, the electrochemical device of the present invention is characterized in that the electrochemical device is a lithium ion secondary battery or a hybrid capacitor.

本発明により、資材費が低減でき、自己放電不良がなく直流抵抗が低い電気化学デバイスの提供が可能となる。   According to the present invention, it is possible to provide an electrochemical device that can reduce material costs, has no self-discharge failure, and has low DC resistance.

本発明のハイブリッドキャパシタの形状および内部構成を示す図で、図1(a)は平面図、図1(b)は側面図、図1(c)は図1(a)のAーA断面図。FIG. 1A is a plan view, FIG. 1B is a side view, and FIG. 1C is a cross-sectional view taken along line AA in FIG. 1A. . 本発明のハイブリッドキャパシタの内部の電極体の構成を示す図で、図2(a)は正極電極板の平面図、図2(b)はセパレータの平面図、図2(c)は負極電極板の平面図。FIG. 2A is a plan view of a positive electrode plate, FIG. 2B is a plan view of a separator, and FIG. 2C is a negative electrode plate. FIG. 本発明のハイブリッドキャパシタの電極体の斜視図。The perspective view of the electrode body of the hybrid capacitor of this invention. 外部端子板を取り付けた本発明のハイブリッドキャパシタの電極体の斜視図。The perspective view of the electrode body of the hybrid capacitor of this invention which attached the external terminal board. 本発明のハイブリッドキャパシタの負極にリチウムを挿入するリチウム挿入用電極板とリチウム挿入用外部端子の平面図。The top view of the electrode plate for lithium insertion which inserts lithium in the negative electrode of the hybrid capacitor of this invention, and the external terminal for lithium insertion. 本発明のハイブリッドキャパシタの電極体にリチウム挿入用電極板をセットした斜視図。The perspective view which set the electrode plate for lithium insertion to the electrode body of the hybrid capacitor of this invention. 本発明のリチウム挿入用電極板を内蔵したハイブリッドキャパシタの平面図。The top view of the hybrid capacitor which incorporated the electrode plate for lithium insertion of this invention. 本発明のハイブリッドキャパシタのレーザ加工により貫通孔を形成した電極板の平面図。The top view of the electrode plate in which the through-hole was formed by the laser processing of the hybrid capacitor of this invention. 従来のハイブリッドキャパシタの円状パンチングメタルに活物質電極シートを形成した電極板の平面図。The top view of the electrode plate which formed the active material electrode sheet in the circular punching metal of the conventional hybrid capacitor. 従来のハイブリッドキャパシタのエキスパンドメタルに活物質電極シートを形成した電極板の平面図。The top view of the electrode plate which formed the active material electrode sheet in the expanded metal of the conventional hybrid capacitor.

以下に、本発明の電気化学デバイスの実施の形態について、図面を参照して説明する。   Embodiments of the electrochemical device of the present invention will be described below with reference to the drawings.

本発明の電気化学デバイスは、セパレータを介して対向する正極活物質電極シートと集電体を備える正極電極板と、リチウムを可逆的に吸蔵・脱離可能な負極活物質電極シートと集電体を備える負極電極板と、リチウム塩含有の有機電解液を含む電気化学素子ならびに、正極電極板および負極電極板にそれぞれ電気的に接続される正極外部端子板および負極外部端子板ならびに、電気化学素子を内蔵し、周縁部にて密閉する外装フィルムシートを有している。リチウムを可逆的に吸蔵・脱離可能な負極活物質電極シートには、負極電極板に対して積層方向に配置するリチウムから電気化学的手法によりリチウムが挿入される。それぞれの正極電極板および負極電極板の活物質が塗工されている部分に、少なくとも1つの貫通孔を有し、正極電極板および負極電極板の面積に対して空孔率が0.1%以上10%以下の貫通孔を形成し、その貫通孔を介し負極活物質電極シートにリチウムが挿入される。   The electrochemical device of the present invention includes a positive electrode active material electrode sheet and a current collector that are opposed to each other with a separator interposed therebetween, a negative electrode active material electrode sheet that can reversibly store and desorb lithium, and a current collector. A positive electrode terminal plate, a negative electrode external terminal plate, and an electrochemical element electrically connected to the positive electrode plate and the negative electrode plate, respectively, And has an exterior film sheet sealed at the peripheral edge. Lithium is inserted into the negative electrode active material electrode sheet capable of reversibly inserting and extracting lithium from the lithium arranged in the stacking direction with respect to the negative electrode plate by an electrochemical method. Each of the positive electrode plate and the negative electrode plate is coated with the active material and has at least one through hole, and the porosity is 0.1% with respect to the area of the positive electrode plate and the negative electrode plate. A through hole of 10% or less is formed, and lithium is inserted into the negative electrode active material electrode sheet through the through hole.

さらに、本発明の電気化学デバイスは、貫通孔が、予めアルミニウム、ステンレス等の集電体上に正極活物質電極シートが塗工された正極電極板の正極活物質電極シートおよび、予め銅、ニッケル、ステンレス等の集電体上に負極活物質電極シートが塗工された負極電極板の負極活物質電極シートに、レーザマーカによるレーザ加工、又は金型によるプレス加工等で形成されている。   Furthermore, the electrochemical device of the present invention includes a positive electrode active material electrode sheet of a positive electrode plate in which a positive electrode active material electrode sheet is previously coated on a current collector such as aluminum or stainless steel, and a copper, nickel The negative electrode active material electrode sheet of the negative electrode plate coated with a negative electrode active material electrode sheet on a current collector such as stainless steel is formed by laser processing using a laser marker, press processing using a mold, or the like.

本発明の電気化学デバイスでは、正極活物質電極シート及び負極活物質電極シートに貫通孔を形成し、その貫通孔を介し、予めリチウム挿入用電極板から負極活物質電極シートにリチウムを挿入することで、高容量化が可能となる。また活物質電極シートにのみ貫通孔を形成することで、集電性、接触抵抗が改善されるため電気化学デバイスの低抵抗化が図れる。さらに貫通孔を有する高価なエキスパンドメタルやパンチングメタル等を集電体に用いず、金属箔を用いることで資材費の低減、電極塗工の製造コスト低減が出来る。本発明により従来の課題を解決し、高容量、低抵抗、低コスト化が図られた電気化学デバイスを提供出来る。   In the electrochemical device of the present invention, a through hole is formed in the positive electrode active material electrode sheet and the negative electrode active material electrode sheet, and lithium is previously inserted into the negative electrode active material electrode sheet from the lithium insertion electrode plate through the through hole. Thus, the capacity can be increased. Further, by forming the through hole only in the active material electrode sheet, the current collecting property and the contact resistance are improved, so that the resistance of the electrochemical device can be reduced. Furthermore, by using a metal foil without using an expensive expanded metal or punching metal having a through hole as a current collector, material costs can be reduced and manufacturing costs for electrode coating can be reduced. The present invention solves the conventional problems and can provide an electrochemical device with high capacity, low resistance, and low cost.

図8は、本発明のハイブリッドキャパシタのレーザ加工により貫通孔を形成した電極板の平面図である。これは本発明の実施の形態に係る電気化学デバイスの構成の例を図示したもので、特にハイブリッドキャパシタの場合について示したものである。しかし、それ以外の電気化学デバイスであるリチウムイオン二次電池の場合であっても、用いられる正極活物質電極シート、負極活物質電極シートの配置や外部端子板に設けた構成、金属箔を内蔵した外装フィルムシートの構成には特段の相違はなく、いずれの場合であっても適用できる。   FIG. 8 is a plan view of an electrode plate having through holes formed by laser processing of the hybrid capacitor of the present invention. This shows an example of the configuration of the electrochemical device according to the embodiment of the present invention, and particularly shows the case of a hybrid capacitor. However, even in the case of lithium ion secondary batteries that are other electrochemical devices, the arrangement of the positive electrode active material electrode sheet, the arrangement of the negative electrode active material electrode sheet, the configuration provided on the external terminal plate, and the built-in metal foil There is no particular difference in the configuration of the exterior film sheet, which can be applied in any case.

図1は、本発明のハイブリッドキャパシタの形状および内部構成を示す図で、図1(a)は平面図、図1(b)は側面図、図1(c)は図1(a)のAーA断面図である。ハイブリッドキャパシタ1の上側および下側は外装フィルムシート4によって被覆されており、一方の短辺から正極外部端子板2および負極外部端子板3がそれぞれ延出していて、図1(b)に示す通り、この正極外部端子板2と負極外部端子板3は上側および下側の外装フィルムシート4の間からそれぞれ外部に導出している。また、図1(c)に示す通りハイブリッドキャパシタ1の内部には、後述する電極体5が内蔵されている。正極電極板は、正極集電体に正極活物質電極シートが塗工されている。負極電極板は、負極集電体に負極活物質電極シートが塗工されている。正極電極板と負極電極板には、それぞれ正極外部端子板2と負極外部端子板3が接続されている。上側と下側の外装フィルムシート4の間には電解液が充填されており、電極体5は電解液に浸漬された状態となっている。   FIG. 1 is a diagram showing the shape and internal configuration of a hybrid capacitor of the present invention, in which FIG. 1 (a) is a plan view, FIG. 1 (b) is a side view, and FIG. 1 (c) is A in FIG. FIG. The upper and lower sides of the hybrid capacitor 1 are covered with an exterior film sheet 4, and the positive external terminal plate 2 and the negative external terminal plate 3 extend from one short side, respectively, as shown in FIG. The positive external terminal plate 2 and the negative external terminal plate 3 are led out from between the upper and lower exterior film sheets 4, respectively. Further, as shown in FIG. 1C, an electrode body 5 described later is built in the hybrid capacitor 1. In the positive electrode plate, a positive electrode active material electrode sheet is coated on a positive electrode current collector. In the negative electrode plate, a negative electrode active material electrode sheet is coated on a negative electrode current collector. A positive electrode external terminal plate 2 and a negative electrode external terminal plate 3 are connected to the positive electrode plate and the negative electrode plate, respectively. An electrolyte solution is filled between the upper and lower exterior film sheets 4, and the electrode body 5 is immersed in the electrolyte solution.

外装フィルムシート4は、上側および下側より電極体5を内蔵しているが、周縁部では上側と下側の外装フィルムシート4同士が互いに接着して電解液を含む内容物を密封し、その漏出を防ぐ構成となっている。また、正極外部端子板2および負極外部端子板3が外部に導出する位置(接合部)では、各外部端子板の周囲を被覆して封止する構成となっている。従って、ハイブリッドキャパシタ1は、外装フィルムシート4同士の接着、および外装フィルムシート4による正極外部端子板2と負極外部端子板3の接合部の周囲の被覆によって完全に密封されている。   The exterior film sheet 4 incorporates the electrode body 5 from the upper side and the lower side, but at the peripheral part, the upper and lower exterior film sheets 4 are bonded to each other to seal the contents containing the electrolyte, It is configured to prevent leakage. In addition, at the position where the positive electrode external terminal plate 2 and the negative electrode external terminal plate 3 lead out to the outside (joining portion), the periphery of each external terminal plate is covered and sealed. Therefore, the hybrid capacitor 1 is completely sealed by adhesion between the exterior film sheets 4 and covering around the joint between the positive external terminal plate 2 and the negative external terminal plate 3 by the external film sheet 4.

図2は、本発明のハイブリッドキャパシタの内部の電極体の構成を示す図で、図2(a)は正極電極板の平面図、図2(b)はセパレータの平面図、図2(c)は負極電極板の平面図である。図2(a)に示す正極電極板6は正極活物質電極シート8と正極集電体からなり、このうち正極活物質電極シート8は、一般的にはアルミニウムやアルミニウム合金などの金属箔からなる集電体の片面もしくは両面に、炭素材料を主成分とする活物質を多量に含む電極合剤層であって、バインダおよび導電剤を含むことが多い。正極集電体は一般には正極活物質電極シート8を塗工する集電体の一部を延出させたものであるが、何らかの薄い金属体を正極集電体に溶接や圧着などの方法により固定したものでもよい。そして、正極活物質電極シート8の面にレーザ加工により両面が貫通するレーザ加工貫通孔11が形成されている。   FIG. 2 is a diagram showing the configuration of the electrode body inside the hybrid capacitor of the present invention, FIG. 2 (a) is a plan view of a positive electrode plate, FIG. 2 (b) is a plan view of a separator, and FIG. FIG. 3 is a plan view of a negative electrode plate. The positive electrode plate 6 shown in FIG. 2A is composed of a positive electrode active material electrode sheet 8 and a positive electrode current collector, and the positive electrode active material electrode sheet 8 is generally composed of a metal foil such as aluminum or aluminum alloy. An electrode mixture layer containing a large amount of an active material mainly composed of a carbon material on one side or both sides of a current collector, and often contains a binder and a conductive agent. In general, the positive electrode current collector is obtained by extending a part of the current collector on which the positive electrode active material electrode sheet 8 is applied. A thin metal body is welded to the positive electrode current collector by a method such as welding or pressure bonding. It may be fixed. And the laser processing through-hole 11 with which both surfaces penetrate by laser processing is formed in the surface of the positive electrode active material electrode sheet 8.

図2(b)に示すセパレータ10は絶縁性の薄板であり、一般には正極活物質電極シート8、負極活物質電極シート9よりもやや大きく構成され、電解液が浸透しやすい素材であることが必要である。   The separator 10 shown in FIG. 2 (b) is an insulating thin plate, and is generally configured to be slightly larger than the positive electrode active material electrode sheet 8 and the negative electrode active material electrode sheet 9, and is a material that easily penetrates the electrolytic solution. is necessary.

図2(c)に示す負極電極板は負極活物質電極シート9と負極集電体からなり、このうち負極活物質電極シート9は、一般的には銅や銅合金などの金属箔からなる集電体の片面もしくは両面に、炭素材料を主成分とする活物質を多量に含む電極合剤層であって、バインダおよび導電剤を含むことが多い。負極集電体は一般には負極活物質電極シート9を塗工する集電体の一部を延出させたものであるが、何らかの薄い金属体を負極集電体に溶接や圧着などの方法により固定したものでもよい。そして、負極活物質電極シート9の面にレーザ加工により両面が貫通するレーザ加工貫通孔11が形成されている。なお図2(c)では正極活物質電極シート8と同一形状とした場合を示しているが、両者の面積や形状は同一でなくても構わない。   The negative electrode plate shown in FIG. 2C is composed of a negative electrode active material electrode sheet 9 and a negative electrode current collector. Of these, the negative electrode active material electrode sheet 9 is generally a current collector made of metal foil such as copper or copper alloy. An electrode mixture layer containing a large amount of an active material mainly composed of a carbon material on one or both surfaces of an electric body, and often includes a binder and a conductive agent. The negative electrode current collector is generally formed by extending a part of the current collector on which the negative electrode active material electrode sheet 9 is applied, but a thin metal body is attached to the negative electrode current collector by a method such as welding or pressure bonding. It may be fixed. And the laser processing through-hole 11 which both surfaces penetrate by the laser processing on the surface of the negative electrode active material electrode sheet 9 is formed. In addition, although the case where it is set as the same shape as the positive electrode active material electrode sheet 8 is shown in FIG.2 (c), the area and shape of both may not be the same.

電極体は、上から図2(b)に示すセパレータ、図2(c)に示す負極電極板、図2(b)に示すセパレータ、図2(a)に示す正極電極板の順で積層したものである。上側の外装フィルムシートの内部の接着層と最上部の負極電極板の間、正極電極板と負極電極板の間および最下部の負極電極板と下側の外装フィルムシートの内部の接着層の間には、必ずセパレータが1枚ずつ挿入されている。すなわち、外装フィルムシート内において電極体の構成は、セパレータ/負極電極板/セパレータ/正極電極板/セパレータ/・・/セパレータ/正極電極板/セパレータ/負極電極板/セパレータ、となっている。   The electrode body was laminated in the order of the separator shown in FIG. 2 (b), the negative electrode plate shown in FIG. 2 (c), the separator shown in FIG. 2 (b), and the positive electrode plate shown in FIG. Is. Between the adhesive layer inside the upper exterior film sheet and the uppermost negative electrode plate, between the positive electrode plate and the negative electrode plate, and between the lowermost negative electrode plate and the inner adhesive layer of the lower exterior film sheet, be sure to One separator is inserted at a time. That is, the structure of the electrode body in the exterior film sheet is separator / negative electrode plate / separator / positive electrode plate / separator /../ separator / positive electrode plate / separator / negative electrode plate / separator.

図3は、本発明のハイブリッドキャパシタの電極体の斜視図である。電極体5は、セパレータを介して正極電極板と負極電極板を積層して構成されている。この正極電極板と負極電極板の一方の短辺から、正極延出部および負極延出部がそれぞれ引き出されている。   FIG. 3 is a perspective view of the electrode body of the hybrid capacitor of the present invention. The electrode body 5 is configured by laminating a positive electrode plate and a negative electrode plate via a separator. From one short side of the positive electrode plate and the negative electrode plate, a positive electrode extension portion and a negative electrode extension portion are respectively drawn out.

図4は、外部端子板を取り付けた本発明のハイブリッドキャパシタの電極体の斜視図である。電極体5に、正極外部端子板2と負極外部端子板3とを取り付けた構成となっている。電極体5の一方の短辺から延出している複数枚の正極延出部と正極外部端子板2が、また同じく延出している複数枚の負極延出部と負極外部端子板3が超音波溶接により接合されている。接合方法は、超音波溶接に限られるものではなく、抵抗溶接、レーザ溶接などでもよい。   FIG. 4 is a perspective view of the electrode body of the hybrid capacitor of the present invention to which an external terminal plate is attached. The positive electrode external terminal plate 2 and the negative electrode external terminal plate 3 are attached to the electrode body 5. The plurality of positive electrode extending portions and the positive external terminal plate 2 extending from one short side of the electrode body 5 and the plurality of negative electrode extending portions and the negative external terminal plate 3 extending in the same manner are ultrasonic waves. They are joined by welding. The joining method is not limited to ultrasonic welding, but may be resistance welding, laser welding, or the like.

図5は、本発明のハイブリッドキャパシタの負極にリチウムを挿入するリチウム挿入用電極板とリチウム挿入用外部端子の平面図である。リチウム挿入用電極板12とリチウム挿入用外部端子14とが超音波溶接により接合されている。接合方法は、超音波溶接に限られるものではなく、抵抗溶接、レーザ溶接などでもよい。またリチウム挿入用電極板12は、銅などの金属箔からなる集電体に金属リチウム13を貼り合わせ固定されている。負極活物質電極シートへのリチウム挿入後は、リチウム挿入用電極板を取り出すことが望ましいが、挿入量にあわせた金属リチウムを用い消費させればリチウム挿入用電極板から延伸している電極板部分で切断してもよい。   FIG. 5 is a plan view of a lithium insertion electrode plate for inserting lithium into the negative electrode of the hybrid capacitor of the present invention and an external terminal for lithium insertion. The lithium insertion electrode plate 12 and the lithium insertion external terminal 14 are joined by ultrasonic welding. The joining method is not limited to ultrasonic welding, but may be resistance welding, laser welding, or the like. In addition, the lithium insertion electrode plate 12 has a metal lithium 13 bonded and fixed to a current collector made of a metal foil such as copper. After inserting lithium into the negative electrode active material electrode sheet, it is desirable to take out the electrode plate for lithium insertion, but if the metal lithium is used in accordance with the amount of insertion, the electrode plate portion extended from the electrode plate for lithium insertion It may be cut with.

図6は、本発明のハイブリッドキャパシタの電極体にリチウム挿入用電極板をセットした斜視図である。リチウム挿入用外部端子14を取り付けたリチウム挿入用電極板12の金属リチウム13を貼り合わせした面と、電極体が対向するように配置した。リチウム挿入用電極板12の集電体として、貫通孔を有するパンチングメタルやエキスパンドメタル等をもちいれば金属リチウムを貼り合わせした面を必ずしも電極体と対向する方向にする必要はないが、電極体と対向する方がリチウムを挿入するうえで好ましい。   FIG. 6 is a perspective view in which a lithium insertion electrode plate is set on the electrode body of the hybrid capacitor of the present invention. It arrange | positioned so that the surface which bonded the metal lithium 13 of the electrode plate 12 for lithium insertion to which the external terminal 14 for lithium insertion was attached, and the electrode body may oppose. If a punching metal or an expanded metal having a through-hole is used as a current collector for the electrode plate 12 for inserting lithium, the surface on which the metal lithium is bonded does not necessarily have to face the electrode body. It is preferable to insert the lithium.

図7は、本発明のリチウム挿入用電極板を内蔵したハイブリッドキャパシタの平面図である。リチウム挿入用外部端子14を取り付けたリチウム挿入用電極板の金属リチウムを貼り合わせした面と、正極外部端子板2、負極外部端子板3を取り付けた電極体が対向するように配置し、電極体を外装フィルムシート4に内蔵し、電解液を注入して密閉している。外装フィルムシートは、金属箔とポリオレフィン系フィルムを貼り合わせたラミネートフィルムを使用できる。外装フィルムシートの内側には熱可塑性樹脂が形成され、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、酸変性プロピレン、エチレンーメタクリル酸共重合体等が使用できる。   FIG. 7 is a plan view of a hybrid capacitor incorporating the lithium insertion electrode plate of the present invention. The surface of the electrode plate for lithium insertion to which the external terminal for lithium insertion 14 is bonded is arranged so that the electrode body to which the positive electrode external terminal plate 2 and the negative electrode external terminal plate 3 are attached faces each other. Is embedded in the exterior film sheet 4 and sealed by injecting an electrolytic solution. As the exterior film sheet, a laminated film obtained by bonding a metal foil and a polyolefin film can be used. A thermoplastic resin is formed inside the exterior film sheet, and polyethylene, polypropylene, acid-modified propylene, an ethylene-methacrylic acid copolymer, and the like can be used as the thermoplastic resin.

ここで、本発明の実施の形態における、積層型のハイブリッドキャパシタの製造方法の例を以下に説明する。正極電極板は、アルミニウム箔またはステンレス箔等からなる金属箔の集電体に、炭素材料を主成分とする活物質とバインダ、および導電剤を混合してシート状にした正極活物質電極シートを、一体化させたものである。この活物質となる炭素原料としては、木材、鋸屑、椰子殻、パルプ廃液などの植物系物質、石炭、石油重質油、またはそれらを熱分解して得られる石炭系および石油系ピッチ、石油コークス、カーボンエアロゲル、タールピッチなどの化石燃料系物質、フェノール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの合成高分子系物質など各種のものが用いられる。これらの炭素原料を炭化した後に、ガス賦活法もしくは薬品賦活法によって賦活し、比表面積が700m/g〜3000m/gの炭素系活物質を得る。この活物質の比表面積はとくに1000m/g〜2000m/gの場合が好ましい。また、バインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー等の含フッ素系樹脂、スチレン−ブタジエンゴム等のゴム系バインダ、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などが用いられ、正極活物質電極シートの全体の3質量%〜20質量%程度のバインダを含んで作製させるのが好ましい。このバインダとしては、上記の物質の中では特にポリテトラフルオロエチレンが耐熱性、耐薬品性、作製されるシート状の分極性電極層の強度の観点から好ましい。また、導電剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維などから選択される物質を、正極活物質電極シートの全体の5質量%〜30質量%程度添加することが好ましい。 Here, an example of a manufacturing method of the multilayer hybrid capacitor in the embodiment of the present invention will be described below. The positive electrode plate is a positive electrode active material electrode sheet formed by mixing an active material mainly composed of a carbon material, a binder, and a conductive agent into a current collector made of metal foil made of aluminum foil or stainless steel foil. , Integrated. The carbon raw material used as the active material includes plant materials such as wood, sawdust, coconut husk and pulp waste liquid, coal, heavy petroleum oil, coal-based and petroleum-based pitch obtained by pyrolyzing them, and petroleum coke. Various materials such as fossil fuel materials such as carbon aerogel and tar pitch, and synthetic polymer materials such as phenol resin, polyvinyl chloride resin, and polyvinylidene chloride are used. These carbon material after carbonization, and activating the gas activation method or chemical activation method, the specific surface area to obtain a carbon-based active material of 700m 2 / g~3000m 2 / g. The specific surface area of the active material is particularly preferred if the 1000m 2 / g~2000m 2 / g. As the binder, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride and fluoroolefin copolymer cross-linked polymers, rubber binders such as styrene-butadiene rubber, thermoplastic resins such as polypropylene and polyethylene, etc. are used. It is preferable that the positive electrode active material electrode sheet is made to contain about 3% by mass to 20% by mass of the binder. Among these substances, polytetrafluoroethylene is particularly preferable as the binder from the viewpoint of heat resistance, chemical resistance, and strength of the sheet-like polarizable electrode layer to be produced. Further, as the conductive agent, a material selected from carbon black such as acetylene black and ketjen black, natural graphite, thermally expanded graphite carbon fiber, etc., is about 5% by mass to 30% by mass of the whole positive electrode active material electrode sheet. It is preferable to add.

負極電極板は、銅箔、ニッケル箔またはステンレス箔等からなる金属箔の集電体に、炭素材料を主成分とする活物質とバインダ、および導電剤を混合してシート状にした負極活物質電極シートを、一体化させたものである。炭素材料を主成分とする活物質としては、リチウムイオンのドープ、脱ドープが可能な、グラファイト、不定形炭素などの炭素系材料を用いることができる。導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、負極活物質電極シートの全体の5〜30重量%程度添加するのが好ましい。またバインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー等の含フッ素系樹脂、ポリブタジエンゴム、スチレン−ブタジエンゴム等のゴム系バインダ、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などが用いられ、特にポリフッ化ビニリデンが耐熱性、耐薬品性、シート強度の観点から好ましい。負極活物質電極シートの全体の3〜20重量%程度のバインダを含んで作製させるのが好ましい。   The negative electrode plate is a negative electrode active material obtained by mixing a metal foil current collector made of copper foil, nickel foil, stainless steel foil, or the like with a carbon material as a main component, a binder, and a conductive agent to form a sheet. An electrode sheet is integrated. As an active material mainly composed of a carbon material, a carbon-based material such as graphite or amorphous carbon that can be doped or dedoped with lithium ions can be used. As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is preferable to add about 5 to 30% by weight of the whole negative electrode active material electrode sheet. As binders, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride and fluoroolefin copolymer crosslinked polymers, rubber-based binders such as polybutadiene rubber and styrene-butadiene rubber, thermoplastic resins such as polypropylene and polyethylene, etc. In particular, polyvinylidene fluoride is preferable from the viewpoints of heat resistance, chemical resistance, and sheet strength. It is preferable that the negative electrode active material electrode sheet is produced by including about 3 to 20% by weight of the binder.

本発明に使用する正極集電体および負極集電体である金属箔は、従来使用していたパンチングメタルやエキスパンドメタルと価格を比べると、10分の1以下であり、資材費が低減するので好ましい。   The metal foil that is the positive electrode current collector and the negative electrode current collector used in the present invention is less than 1/10 of the price compared with the punching metal and the expanded metal that have been used conventionally, and the material cost is reduced. preferable.

次に、正極電極板を作製する方法の例について説明する。以下の例では活物質となる炭素原料としてフェノール樹脂を用い、バインダ物質としてポリテトラフルオロエチレン、また導電剤としてケッチェンブラックを選択している。まず、フェノール樹脂を炭化し、賦活して作製した活性炭粉末とポリテトラフルオロエチレンからなるバインダ、およびケッチェンブラックの三者を混練し、次いで圧延を行ってシート状の活物質電極層を成形する。こうして得られた正極活物質電極シートを、アルミニウムまたはステンレスの粗面化された集電体箔に導電性カーボンペーストを用いて接着する。さらに加熱乾燥することで一体化し、これを正極電極板とする。この際に集電体箔に予め延出部を1箇所形成しておき、そこには正極活物質電極シートを接着しないようにすれば、外部端子板に接続する正極電極板を形成することができる。   Next, an example of a method for producing a positive electrode plate will be described. In the following example, a phenol resin is used as a carbon raw material to be an active material, polytetrafluoroethylene is selected as a binder material, and ketjen black is selected as a conductive agent. First, the activated carbon powder obtained by carbonizing and activating the phenol resin, a binder made of polytetrafluoroethylene, and a ketjen black are kneaded and then rolled to form a sheet-like active material electrode layer . The positive electrode active material electrode sheet thus obtained is bonded to a roughened current collector foil of aluminum or stainless steel using a conductive carbon paste. Furthermore, it integrates by heating-drying and makes this a positive electrode plate. At this time, if one extension portion is formed in advance on the current collector foil and the positive electrode active material electrode sheet is not adhered thereto, a positive electrode plate connected to the external terminal plate can be formed. it can.

正極電極板は、上記の方法ではなく、正極活物質電極シートと集電体とを重ね合わせて圧延することにより、これらを互いに圧着させる方法で作製してもよい。またこの正極活物質電極シートは集電体の片面に接着してもよいし、両面に接着してもよい。さらに、メチルセルロースやポリフッ化ビニリデンなどのバインダを溶媒に溶解した溶液に、上記活物質や導電剤を混合、分散させてスラリーとし、このスラリーを集電体の片面あるいは両面に塗工する方法により、正極電極板を作製してもよい。   The positive electrode plate may be produced not by the above method, but by a method in which the positive electrode active material electrode sheet and the current collector are overlapped and rolled to bond them together. The positive electrode active material electrode sheet may be adhered to one side of the current collector or may be adhered to both sides. Furthermore, the above active material and conductive agent are mixed and dispersed in a solution in which a binder such as methylcellulose or polyvinylidene fluoride is dissolved in a solvent to form a slurry, and this slurry is applied to one or both sides of the current collector, A positive electrode plate may be produced.

次に、負極電極板を作製する方法の例について説明する。以下の例では活物質となる炭素原料として難黒鉛化炭素材料を用い、バインダ物質としてポリテトラフルオロエチレン、また導電剤としてケッチェンブラックを選択している。まず難黒鉛化炭素材粉末と上記ポリテトラフルオロエチレンからなるバインダ、およびケッチェンブラックの三者を混練し、次いで圧延を行ってシート状の活物質電極層を成形する。こうして得られた負極活物質電極シートを、銅、ニッケルまたはステンレス集電体箔に導電性カーボンペーストを用いて接着する。さらに加熱乾燥することで一体化し、これを負極電極板とする。この際に集電体箔に予め延出部を1箇所形成しておき、そこには負極活物質電極シートを接着しないようにすれば、外部端子板に接続する負極電極板を形成することができる。   Next, an example of a method for producing a negative electrode plate will be described. In the following example, a non-graphitizable carbon material is used as a carbon raw material as an active material, polytetrafluoroethylene is selected as a binder material, and ketjen black is selected as a conductive agent. First, the three components of the non-graphitizable carbon material powder, the binder made of the above polytetrafluoroethylene, and ketjen black are kneaded, and then rolled to form a sheet-like active material electrode layer. The negative electrode active material electrode sheet thus obtained is bonded to a copper, nickel or stainless steel current collector foil using a conductive carbon paste. Furthermore, it integrates by heating-drying and makes this a negative electrode plate. At this time, if one extension portion is formed in advance on the current collector foil and the negative electrode active material electrode sheet is not adhered thereto, a negative electrode plate connected to the external terminal plate can be formed. it can.

負極電極板は、上記の方法ではなく、負極活物質電極シートと集電体とを重ね合わせて圧延することにより、これらを互いに圧着させる方法で作製してもよい。またこの負極活物質電極シートは集電体の片面に接着してもよいし、両面に接着してもよい。さらに、メチルセルロースやポリフッ化ビニリデンなどのバインダを溶媒に溶解した溶液に、上記活物質や導電剤を混合、分散させてスラリーとし、このスラリーを集電体の片面あるいは両面に塗工する方法により、負極電極板を作製してもよい。   The negative electrode plate may be produced not by the above method but by a method in which the negative electrode active material electrode sheet and the current collector are overlapped and rolled to bond them together. The negative electrode active material electrode sheet may be adhered to one side of the current collector or may be adhered to both sides. Furthermore, the above active material and conductive agent are mixed and dispersed in a solution in which a binder such as methylcellulose or polyvinylidene fluoride is dissolved in a solvent to form a slurry, and this slurry is applied to one or both sides of the current collector, A negative electrode plate may be produced.

また、正極電極板と負極電極板の間や、外装フィルムシートと負極電極板の間に設置されるセパレータは、厚さが薄く、しかも電子絶縁性およびイオン透過性が高い材料が好ましい。セパレータの構成材料はとくに限定されるものではないが、たとえば、ポリエチレンやポリプロピレンなどの不織布、もしくはビスコースレイヨンや天然セルロースの抄紙などが好適に使用される。セパレータは作製する電気化学デバイスの種別に応じてその構成材料を選定することが好ましい。   Moreover, the separator installed between the positive electrode plate and the negative electrode plate or between the exterior film sheet and the negative electrode plate is preferably made of a material having a small thickness and high electronic insulation and ion permeability. Although the constituent material of a separator is not specifically limited, For example, the nonwoven fabrics, such as polyethylene and a polypropylene, or the papermaking of a viscose rayon or a natural cellulose is used suitably. The constituent material of the separator is preferably selected according to the type of electrochemical device to be produced.

次に、正極および、負極活物質電極シートへの貫通孔の作製方法の例を説明する。レーザによる加工は、市販のグリーンレーザマーカなどを用い、ドライルーム中で活物質電極シートに複数の貫通孔を形成した。レーザによる貫通孔形成の際には、基材が高温になるため、不活性ガス雰囲気やドライエアー環境下で加工することが望ましい。貫通孔の円心間距離に応じ、加工順序を調整することが好ましい。使用するレーザマーカは、波長1064nmのYAG・YVO4レーザでも加工が可能であるが、波長が短く(一例として532nm)、光レーザの吸収率が良いグリーンレーザを用いることが好ましい。プレスによる加工は、活物質電極シートに加工する形状に合わせて金型を作製し、油圧式のプレス機を用いて、作製された正極および、負極活物質電極シートに貫通孔の加工を施すのが好ましい。   Next, an example of a method for producing a through hole in the positive electrode and the negative electrode active material electrode sheet will be described. For processing by laser, a commercially available green laser marker or the like was used, and a plurality of through holes were formed in the active material electrode sheet in a dry room. When the through-hole is formed by laser, the base material becomes high temperature, so that it is desirable to process in an inert gas atmosphere or a dry air environment. It is preferable to adjust the processing order according to the distance between the centers of the through holes. The laser marker to be used can be processed by a YAG / YVO4 laser having a wavelength of 1064 nm, but it is preferable to use a green laser having a short wavelength (for example, 532 nm) and a good absorption rate of the optical laser. In the processing by pressing, a die is prepared in accordance with the shape to be processed into the active material electrode sheet, and through holes are processed in the manufactured positive electrode and negative electrode active material electrode sheet using a hydraulic press machine. Is preferred.

正極および負極の各活物質電極シートの寸法形状や枚数は、必ずしも同一である必要はない。   The dimensions and the number of active material electrode sheets of the positive electrode and the negative electrode are not necessarily the same.

以下、実施例および比較例について説明する。なお実施例1〜18および比較例1〜3は電気化学デバイスとしてハイブリッドキャパシタを、実施例19および比較例4はリチウムイオン二次電池をそれぞれ作製し、各種評価を行ったものである。   Hereinafter, examples and comparative examples will be described. In addition, Examples 1-18 and Comparative Examples 1-3 produced a hybrid capacitor as an electrochemical device, and Example 19 and Comparative Example 4 produced lithium ion secondary batteries, respectively, and performed various evaluations.

(実施例1)
正極活物質である比表面積が1500m/gのフェノール系活性炭の粉末92質量部と、導電剤として黒鉛8質量部混合した粉末に対し、バインダとしてスチレン−ブタジエンゴム3質量部、カルボキシルメチルセルロース3質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いでエッチング処理により両表面が粗面化された厚さ20μmのアルミニウム箔を集電体として、その両面に上記スラリーを均一に塗工し、その後乾燥させて圧延プレスし、分極性電極層の厚みが両側にそれぞれ30μmの正極活物質電極シートを得た。この正極電極板の厚みは80μmであった。また正極活物質電極シートの端面の一部は集電体がタブ状に延出して取り出せるように電極板を形成しており、その部分の集電体の両面には正極活物質電極シートが形成されておらず、アルミニウム箔が露出していた。作製した正極電極板の正極活物質電極シート面にレーザマーカにて、ドライエアー環境下で開孔径0.05mm、正極電極板の面積に対し、開孔率が1%になるように、貫通孔の配列は並列型とし加工を施し、正極活物質電極シートの両面を貫通する孔を形成した。このときの貫通孔の円心間距離は0.44mmであった。
Example 1
With respect to a powder obtained by mixing 92 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g as a positive electrode active material and 8 parts by mass of graphite as a conductive agent, 3 parts by mass of styrene-butadiene rubber as a binder and 3 parts by mass of carboxymethyl cellulose And 200 parts by mass of water as a solvent and kneaded to obtain a slurry. Next, using the aluminum foil having a thickness of 20 μm whose both surfaces are roughened by etching treatment as a current collector, the slurry is uniformly coated on both surfaces, then dried, rolled and pressed, and the thickness of the polarizable electrode layer Produced positive electrode active material electrode sheets of 30 μm on both sides. The thickness of this positive electrode plate was 80 μm. In addition, a part of the end face of the positive electrode active material electrode sheet is formed with an electrode plate so that the current collector can be taken out in a tab shape, and a positive electrode active material electrode sheet is formed on both sides of the current collector of that part. The aluminum foil was exposed. With a laser marker on the surface of the positive electrode active material electrode sheet of the produced positive electrode plate, the diameter of the through hole was adjusted to 1% with respect to the area of the positive electrode plate with a hole diameter of 0.05 mm in a dry air environment. The arrangement was parallel and processed to form holes penetrating both sides of the positive electrode active material electrode sheet. The distance between the circle centers of the through holes at this time was 0.44 mm.

負極活物質である難黒鉛化材料粉末88質量部と、導電剤としてアセチレンブラック6質量部混合した粉末に対し、バインダとしてスチレン−ブタジエンゴム5質量部、カルボキシルメチルセルロース4質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いで厚さ10μmの銅箔を集電体として、その両面に上記スラリーを均一に塗工し、その後乾燥させて圧延プレスし、分極性電極層の厚みが両側にそれぞれ20μmの負極活物質電極シートを得た。この負極電極板の厚みは50μmであった。また負極活物質電極シートの端面の一部は集電体がタブ状に延出して取り出せるように電極板を形成しており、その部分の集電体の両面には負極活物質電極シートが形成されておらず、銅箔が露出していた。正極電極板と同様にし、作製した負極電極板の負極活物質電極シート面にレーザマーカにて、ドライエアー環境下で開孔径0.05mm、負極電極板の面積に対し、開孔率が1%になるように、貫通孔の配列は並列型とし加工を施し、負極活物質電極シートの両面を貫通する孔を形成した。正極同様貫通孔の円心間距離は0.44mmであった。   With respect to the powder obtained by mixing 88 parts by mass of the non-graphitizable material powder as the negative electrode active material and 6 parts by mass of acetylene black as a conductive agent, 5 parts by mass of styrene-butadiene rubber, 4 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water as a solvent. And kneaded to obtain a slurry. Next, using a copper foil having a thickness of 10 μm as a current collector, the above slurry was uniformly coated on both sides thereof, then dried and rolled and pressed, and a negative electrode active material electrode sheet having polarizable electrode layers with thicknesses of 20 μm on both sides, respectively. Got. The thickness of this negative electrode plate was 50 μm. In addition, a part of the end face of the negative electrode active material electrode sheet is formed with an electrode plate so that the current collector can be taken out in a tab shape, and a negative electrode active material electrode sheet is formed on both sides of the current collector of that part The copper foil was not exposed. In the same manner as the positive electrode plate, the negative electrode active material electrode sheet surface of the prepared negative electrode plate was laser-marked with a hole diameter of 0.05 mm in a dry air environment, and the open area ratio was 1% with respect to the area of the negative electrode plate In this way, the through holes were arranged in parallel and processed to form holes penetrating both surfaces of the negative electrode active material electrode sheet. Similar to the positive electrode, the distance between the circle centers of the through holes was 0.44 mm.

セパレータとして、厚さ35μmの天然セルロース材の薄板を使用した。このセパレータの寸法形状は、上記電極板の延出部を除いた形状よりも少しだけ大きくなるように構成した。   As a separator, a thin plate of a natural cellulose material having a thickness of 35 μm was used. The size and shape of the separator was configured to be slightly larger than the shape excluding the extended portion of the electrode plate.

次いで、セパレータ、負極電極板、セパレータ、正極電極板、セパレータの順番でこれら三者を積層し、電極体を得た。この電極体の最上部と最下部にはそれぞれ必ずセパレータが1枚ずつ配置されるようにした。本実施例では、1試料あたりの積層した正極電極板は4枚、負極電極板は5枚、セパレータは10枚であり、延出部を除いたその寸法は、正極活物質電極シートが53mm×70mm、負極活物質電極シートが55mm×72mm、セパレータが57mm×74mmであった。また、電極板に形成した延出部は、それぞれの活物質電極シートの同一短辺から延出し、延出部の寸法は、それぞれ9mm×12mmであった。   Subsequently, these three members were laminated in the order of a separator, a negative electrode plate, a separator, a positive electrode plate, and a separator to obtain an electrode body. One separator was always arranged at the uppermost part and the lowermost part of the electrode body. In this example, 4 positive electrode plates, 5 negative electrode plates, and 10 separators were stacked per sample, and the dimensions of the positive electrode active material electrode sheet were 53 mm × excluding the extension. The negative electrode active material electrode sheet was 55 mm × 72 mm, and the separator was 57 mm × 74 mm. Moreover, the extension part formed in the electrode plate extended from the same short side of each active material electrode sheet, and the dimension of the extension part was 9 mm x 12 mm, respectively.

正極外部端子板は、長さ20mm、幅10mm、厚さ0.2mmのアルミニウム材を使用し、負極外部端子板は、長さ20mm、幅10mm、厚さ0.2mmのニッケル材を使用した。外装フィルムシートから導出している領域は、長さ10mm、幅10mmであった。外装フィルムシートと熱接着する面には、酸変性ポリオレフィン樹脂からなるシーラントが両面に施されているものを使用した。   The positive electrode external terminal plate was made of an aluminum material having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 mm, and the negative electrode external terminal plate was made of a nickel material having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 mm. The region derived from the exterior film sheet was 10 mm long and 10 mm wide. As the surface to be thermally bonded to the exterior film sheet, one having a sealant made of an acid-modified polyolefin resin on both sides was used.

次に、電極体から延出している正極延出部および負極延出部を各々束ね、一括して外部端子板の端部にそれぞれ超音波溶接により固定した。銅箔に金属リチウムを貼り合わせリチウム挿入用電極板を作製し、延出する銅箔にリチウム挿入用外部端子を超音波溶接により固定した。作製したリチウム挿入用電極板を、外部端子板を溶接させた電極体の上面に、金属リチウムが電極体と対向するように配置させた。2枚の外装フィルムシートで電極体を包み込み、正極・負極外部端子板およびリチウム挿入用外部端子を配置する2辺の短辺を含む3辺の周縁部を熱圧着し、内面に形成した酸変性ポリオレフィン樹脂からなる熱可塑性樹脂層を接合させて袋状とした。この外装フィルムシートの内面の熱可塑性樹脂層の厚みは40μmであった。   Next, the positive electrode extending portion and the negative electrode extending portion extending from the electrode body were bundled, and collectively fixed to the end portion of the external terminal plate by ultrasonic welding. Metal lithium was bonded to the copper foil to prepare an electrode plate for lithium insertion, and an external terminal for lithium insertion was fixed to the extending copper foil by ultrasonic welding. The produced lithium insertion electrode plate was placed on the upper surface of the electrode body to which the external terminal plate was welded so that the metallic lithium was opposed to the electrode body. The acid body is formed on the inner surface by wrapping the electrode body with two exterior film sheets and thermocompressing the three peripheral edges including the two short sides on which the positive and negative external terminal plates and the external terminals for inserting lithium are arranged. A thermoplastic resin layer made of a polyolefin resin was joined to form a bag. The thickness of the thermoplastic resin layer on the inner surface of this exterior film sheet was 40 μm.

袋状にした2枚の外装フィルムシートの内部に電極体を内蔵し、電解液を注入した。電解液は、六フッ化リン酸リチウムをプロピレンカーボネートとジエチルカーボネートを1:1の割合で混合させた混合溶媒に溶解させ、1.0mol/lの濃度に調製したものを使用した。電解液を注入した後に、2枚の外装フィルムシートの残る1辺を、真空雰囲気中にて熱圧着により封止した。電気化学的手法によりリチウム挿入用電極板から負極の活物質電極シートにリチウムを挿入した。挿入量は、負極活物質重量に対し400mAh/gとした。リチウム挿入完了後、ラミネート短辺を開封し、リチウム挿入用電極板を取り出した。開封したラミネート辺を真空雰囲気中にて再度熱圧着し封止した。   The electrode body was built in the two exterior film sheets made into the bag shape, and electrolyte solution was inject | poured. As the electrolytic solution, a solution prepared by dissolving lithium hexafluorophosphate in a mixed solvent in which propylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 and adjusted to a concentration of 1.0 mol / l was used. After injecting the electrolytic solution, the remaining one side of the two exterior film sheets was sealed by thermocompression bonding in a vacuum atmosphere. Lithium was inserted into the negative electrode active material electrode sheet from the electrode plate for lithium insertion by an electrochemical method. The amount of insertion was 400 mAh / g based on the weight of the negative electrode active material. After completing the lithium insertion, the short side of the laminate was opened, and the lithium insertion electrode plate was taken out. The opened laminate side was thermocompression-bonded again in a vacuum atmosphere and sealed.

以上の方法により、積層型のハイブリッドキャパシタを得た。この方法により作製したハイブリッドキャパシタは50個であった。   A multilayer hybrid capacitor was obtained by the above method. There were 50 hybrid capacitors produced by this method.

(比較例1〜3:従来技術による場合)
実施例1と同様の方法により、ハイブリッドキャパシタ50個を、以下に説明するそれぞれの条件ごとに作製した。作製したハイブリッドキャパシタの寸法形状は実施例1の場合と全く同一である。
(Comparative Examples 1-3: Case of conventional technology)
In the same manner as in Example 1, 50 hybrid capacitors were produced for each condition described below. The dimensions and shape of the fabricated hybrid capacitor are exactly the same as in the first embodiment.

比較例1〜3は、従来技術である特許文献4に記載の類似の構成を、ハイブリッドキャパシタの作製に適用したものである。図9は、従来のハイブリッドキャパシタの円状パンチングメタルに活物質電極シートを形成した電極板の平面図である。図10は、従来のハイブリッドキャパシタのエキスパンドメタルに活物質電極シートを形成した電極板の平面図である。比較例1、2は図9に示すように、プレス加工したパンチングメタルを用いた集電体に、そして比較例3は図10に示すように、箔を網目(菱型)状に機械加工したエキスパンドメタルを用いた集電体に、実施例1と同じ活物質含有スラリーを用い、マルチコーターにより塗工を施し、各電極板を得た。比較例1〜3において、正極集電体は厚み20μmのアルミニウムであり、正極活物質電極シートの厚みが両側にそれぞれ30μmで、この正極電極板の厚みは80μmであった。負極集電体は厚み10μmの銅であり、負極活物質電極シートの厚みが両側にそれぞれ20μmで、この負極電極板の厚みは50μmであった。   In Comparative Examples 1 to 3, a similar configuration described in Patent Document 4 as a prior art is applied to manufacture of a hybrid capacitor. FIG. 9 is a plan view of an electrode plate in which an active material electrode sheet is formed on a circular punching metal of a conventional hybrid capacitor. FIG. 10 is a plan view of an electrode plate in which an active material electrode sheet is formed on an expanded metal of a conventional hybrid capacitor. In Comparative Examples 1 and 2, as shown in FIG. 9, the foil was machined into a mesh (diamond shape) as shown in FIG. 10 and in Comparative Example 3 as shown in FIG. The same active material-containing slurry as in Example 1 was applied to a current collector using expanded metal, and coating was performed using a multicoater to obtain each electrode plate. In Comparative Examples 1 to 3, the positive electrode current collector was aluminum having a thickness of 20 μm, the thickness of the positive electrode active material electrode sheet was 30 μm on both sides, and the thickness of the positive electrode plate was 80 μm. The negative electrode current collector was copper having a thickness of 10 μm, the thickness of the negative electrode active material electrode sheet was 20 μm on each side, and the thickness of the negative electrode plate was 50 μm.

また、比較例1では開孔径1mm、開孔率10%、貫通孔配列を並列型としたこのときの円心間距離は2.80mmであった。比較例2では比較例1と同様開孔径1mmで、開孔率を30%とした。円心間距離は1.62mmであった。各活物質電極シート以外は、本発明と同様の条件で、ハイブリッドキャパシタ50個ずつ作製した。   In Comparative Example 1, the aperture diameter was 1 mm, the aperture ratio was 10%, and the distance between the circle centers was 2.80 mm when the through-hole arrangement was a parallel type. In Comparative Example 2, the aperture diameter was 1 mm and the aperture ratio was 30% as in Comparative Example 1. The distance between the circle centers was 1.62 mm. Except for each active material electrode sheet, 50 hybrid capacitors were produced under the same conditions as in the present invention.

比較例3は、比較例1、2とは異なり網目状の貫通孔を有するエキスパンドメタルを集電体として使用し、比較例2と同じ開孔率が30%のものを使用した。   In Comparative Example 3, unlike Comparative Examples 1 and 2, an expanded metal having a mesh-like through hole was used as a current collector, and the same open area ratio as that in Comparative Example 2 was 30%.

(実施例2〜6、比較例4〜6:開孔率)
実施例1と同様の方法により、ハイブリッドキャパシタ50個を、以下に説明するそれぞれの条件ごとに作製した。作製したハイブリッドキャパシタの寸法形状は実施例1の場合と全く同一であった。
(Examples 2-6, Comparative Examples 4-6: Opening ratio)
In the same manner as in Example 1, 50 hybrid capacitors were produced for each condition described below. The dimensions and shape of the fabricated hybrid capacitor were exactly the same as those in Example 1.

実施例1の試料と、実施例2〜6、比較例4〜6の試料の異なる点は、各活物質電極シートに形成された貫通孔の電極板の面積に対する開孔率だけであった。比較例4では0.05%、実施例2では0.1%、実施例3では0.5%、実施例4では2%、実施例5では5%、実施例6では10%、比較例5では20%、比較例6では30%であった。これらの試料によって、開孔率による違いの評価を行った。   The only difference between the sample of Example 1 and the samples of Examples 2 to 6 and Comparative Examples 4 to 6 was the hole area ratio with respect to the area of the electrode plate of the through hole formed in each active material electrode sheet. Comparative Example 4 0.05%, Example 2 0.1%, Example 3 0.5%, Example 4 2%, Example 5 5%, Example 6 10%, Comparative Example 5 was 20%, and Comparative Example 6 was 30%. With these samples, the difference due to the hole area ratio was evaluated.

(実施例7〜12、比較例7〜8:開孔径)
実施例1と同様の方法により、ハイブリッドキャパシタ50個を、以下に説明するそれぞれの条件ごとに作製した。作製したハイブリッドキャパシタの寸法形状は実施例1の場合と全く同一であった。
(Examples 7-12, Comparative Examples 7-8: Opening diameter)
In the same manner as in Example 1, 50 hybrid capacitors were produced for each condition described below. The dimensions and shape of the fabricated hybrid capacitor were exactly the same as those in Example 1.

実施例1の試料と、実施例7〜12、比較例7〜8の試料の異なる点は、各活物質電極シートに形成された開孔径だけであった。比較例7では0.005mm、実施例7では0.01mm、実施例8では0.03mm、実施例9では0.1mm、実施例10では0.2mm、実施例11では1mm、実施例12では2mm、比較例8では3mmであった。これらの試料によって、開孔径による違いの評価を行った。   The only difference between the sample of Example 1 and the samples of Examples 7 to 12 and Comparative Examples 7 to 8 was the hole diameter formed in each active material electrode sheet. Comparative Example 7 is 0.005 mm, Example 7 is 0.01 mm, Example 8 is 0.03 mm, Example 9 is 0.1 mm, Example 10 is 0.2 mm, Example 11 is 1 mm, Example 12 is 2 mm and 3 mm in Comparative Example 8. With these samples, the difference due to the hole diameter was evaluated.

(実施例13:加工方法)
実施例11と同様の方法により、ハイブリッドキャパシタ50個を、以下に説明するそれぞれの条件ごとに作製した。作製したハイブリッドキャパシタの寸法形状は実施例11の場合と全く同一である。
(Example 13: Processing method)
By the same method as in Example 11, 50 hybrid capacitors were produced for each condition described below. The dimensions and shape of the fabricated hybrid capacitor are exactly the same as those in Example 11.

実施例11の試料と、実施例13の試料の異なる点は、各活物質電極シートを形成された貫通孔の形成方法だけであった。実施例13では金型を使用したプレス加工であった。これらの試料によって、貫通孔の形成方法の異なりによる違いの評価を行った。   The difference between the sample of Example 11 and the sample of Example 13 was only the method of forming the through holes in which the active material electrode sheets were formed. In Example 13, the pressing process was performed using a mold. By these samples, the difference by the difference in the formation method of a through-hole was evaluated.

(実施例14、比較例9:電気化学デバイスの種類)
実施例1と同様の方法により、ハイブリッドキャパシタ50個を、以下に説明するそれぞれの条件ごとに作製した。実施例14における試料と、実施例1の試料の異なる点は、電気化学デバイスの種類であった。正極活物質に実施例1のフェノール系活性炭ではなくコバルト酸リチウム(LiCoO)を、セパレータに実施例1のセルロース系ではなくポリエチレン系セパレータを用いた。これら以外に関しては、実施例1と同じ材料を用い同様の工法でリチウムイオン二次電池を50個作製し、実施例14とした。比較例9は、図10に示すように、箔を網目(菱型)状に機械加工した比較例3と同じ集電体に実施例14と同じ活物質含有スラリーを用い、マルチコーターにより塗工を施し、各活物質電極シートを得た。比較例9において、正極集電体は厚み20μmのアルミニウムであり、正極活物質電極シートの厚みが両側にそれぞれ30μmで、この正極電極板の厚みは80μmであった。負極集電体は厚み10μmの銅であり、負極活物質電極シートの厚みが両側にそれぞれ20μmで、この負極電極板の厚みは50μmであった。各集電体以外は、実施例14と同様の条件でリチウムイオン二次電池を50個作製し、比較例9とした。
(Example 14, comparative example 9: kind of electrochemical device)
In the same manner as in Example 1, 50 hybrid capacitors were produced for each condition described below. The difference between the sample in Example 14 and the sample in Example 1 was the type of electrochemical device. Lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material instead of the phenol-based activated carbon of Example 1, and a polyethylene-based separator was used as the separator instead of the cellulose-based material of Example 1. Except for these, 50 lithium ion secondary batteries were produced in the same manner using the same materials as in Example 1, and Example 14 was obtained. In Comparative Example 9, as shown in FIG. 10, the same active material-containing slurry as in Example 14 was used for the same current collector as in Comparative Example 3 in which the foil was machined into a mesh (rhombus) shape, and coated with a multi coater. To obtain each active material electrode sheet. In Comparative Example 9, the positive electrode current collector was aluminum having a thickness of 20 μm, the thickness of the positive electrode active material electrode sheet was 30 μm on each side, and the thickness of the positive electrode plate was 80 μm. The negative electrode current collector was copper having a thickness of 10 μm, the thickness of the negative electrode active material electrode sheet was 20 μm on each side, and the thickness of the negative electrode plate was 50 μm. Except for each current collector, 50 lithium ion secondary batteries were produced under the same conditions as in Example 14 to obtain Comparative Example 9.

(評価方法)
実施例1〜14、および比較例1〜9において作製した電気化学デバイスは、それぞれ以下の評価を行った。つまり、絶縁抵抗測定評価、直流抵抗(以下DC−Rと呼ぶ)測定評価、容量測定評価、自己放電測定評価の4種類である。実施例1〜14および比較例1〜9では電気化学デバイスを各50個ずつ作製していた。
(Evaluation methods)
The electrochemical devices produced in Examples 1 to 14 and Comparative Examples 1 to 9 were evaluated as follows. That is, there are four types of insulation resistance measurement evaluation, direct current resistance (hereinafter referred to as DC-R) measurement evaluation, capacity measurement evaluation, and self-discharge measurement evaluation. In Examples 1 to 14 and Comparative Examples 1 to 9, 50 electrochemical devices were produced.

絶縁抵抗測定評価は、溶接により外部端子板取り付け済み電極体に、単位面積当たり1kg/cmの接圧を掛けた状態で、絶縁抵抗測定機を用い、正極外部端子板/負極外部端子板間に測定電圧100Vを印加し、絶縁抵抗を測定した。絶縁抵抗の合否判定は200MΩ以上を合格とした。評価数に対する不良数から不良率を算出した。 Insulation resistance measurement evaluation is performed between the positive external terminal plate and the negative external terminal plate using an insulation resistance measuring machine with a contact pressure of 1 kg / cm 2 per unit area applied to the electrode body to which the external terminal plate is attached by welding. A measurement voltage of 100 V was applied to the sample, and the insulation resistance was measured. The pass / fail judgment of the insulation resistance was determined to be 200 MΩ or higher. The defect rate was calculated from the number of defects relative to the number of evaluations.

直流抵抗測定評価は、電気化学デバイスを充放電装置にて所定の定電圧で1時間充電した後、電流値20Cで放電した際のDC−Rを測定した。DC−Rの選別規格は、比較例1から抜き取った20個について測定した直流抵抗値の平均値+3σの値以下とした。選別規格より大きいものは不良とし、評価数に対する不良数から不良率を算出した。実施例14および比較例9は、リチウムイオン二次電池であるため不良選別の対象外とした。   DC resistance measurement evaluation measured DC-R at the time of discharging with the electric current value 20C, after charging an electrochemical device with the predetermined constant voltage for 1 hour with the charging / discharging apparatus. The selection standard of DC-R was set to be equal to or less than the average value of DC resistance values measured for 20 pieces extracted from Comparative Example 1 + 3σ. Those larger than the screening standard were regarded as defective, and the defect rate was calculated from the number of defects relative to the evaluation number. Since Example 14 and Comparative Example 9 were lithium ion secondary batteries, they were excluded from defective screening.

容量測定評価は、電気化学デバイスを充放電装置にて所定の定電圧で1時間充電した後、電流値20Cで使用下限電圧まで放電した際の電流容量を測定した。容量の選別規格は、比較例1から抜き取った20個について測定した容量平均値の90%以上とした。選別規格より小さいものは不良とし、評価数に対する不良数から不良率を算出した。実施例14および比較例9は、リチウムイオン二次電池であるため不良選別の対象外とした。   In the capacity measurement evaluation, the electrochemical device was charged at a predetermined constant voltage for 1 hour with a charging / discharging device, and then the current capacity was measured at a current value of 20 C until it was discharged to the use lower limit voltage. The capacity selection standard was 90% or more of the average capacity value measured for 20 samples extracted from Comparative Example 1. Those smaller than the screening standard were regarded as defective, and the defect rate was calculated from the number of defects relative to the evaluation number. Since Example 14 and Comparative Example 9 were lithium ion secondary batteries, they were excluded from defective screening.

自己放電測定評価は、電気化学デバイスを充放電装置にて所定の定電圧で1時間充電した後、端子間を開回路にした状態で、高温槽にて60℃で72時間放置した後の端子間電圧を測定した。自己放電の選別規格は、比較例1から抜き取った10個について測定した電圧平均値−3σの値以上とした。選別規格より小さいものは不良とし、評価数に対する不良数から不良率を算出した。   Self-discharge measurement evaluation is performed after charging an electrochemical device at a predetermined constant voltage with a charging / discharging device for 1 hour, and then leaving the terminals open circuit, and leaving the terminals in a high-temperature bath at 60 ° C. for 72 hours. The inter-voltage was measured. The self-discharge selection standard was set to a value equal to or higher than the voltage average value −3σ measured for 10 samples extracted from Comparative Example 1. Those smaller than the screening standard were regarded as defective, and the defect rate was calculated from the number of defects relative to the evaluation number.

以上の方法により、実施例1〜14、比較例1〜9における各々の試料の条件ごとに、絶縁抵抗測定評価、DC−R測定評価、容量測定評価、自己放電測定評価の4種類の評価をそれぞれ行った。平均容量、平均DC−R、総合不良率、総合結果と容量不良、DC−R不良、絶縁不良、自己放電不良を表1に示す。   According to the above method, for each sample condition in Examples 1 to 14 and Comparative Examples 1 to 9, four types of evaluations of insulation resistance measurement evaluation, DC-R measurement evaluation, capacity measurement evaluation, and self-discharge measurement evaluation were performed. Each went. Table 1 shows the average capacity, average DC-R, overall failure rate, overall results and capacity failure, DC-R failure, insulation failure, and self-discharge failure.

Figure 2011159642
1)「−」は、その条件が対象外であることを示す。
2)総合結果欄には不良がない場合は「○」印を、不良発生の場合は「×」印を記し、その不良の内容を備考欄に記す。
3)容量不良、DC−R不良、絶縁不良、自己放電不良の各項目の数値は、各々の評価における不良の数を、%を単位として示したものである。
Figure 2011159642
1) “-” indicates that the condition is not applicable.
2) In the overall result column, mark “◯” if there is no defect, mark “X” if a defect occurs, and describe the content of the defect in the remarks column.
3) The numerical values of the respective items of capacity failure, DC-R failure, insulation failure, and self-discharge failure indicate the number of failures in each evaluation in units of%.

表1に示された、各々の試料の条件に対する4種類の試験の評価結果から、以下のことが分かった。即ち、電気化学デバイスでは、本発明のように、活物質電極シート面にレーザ加工を施し、その貫通孔を介しリチウム挿入用電極板から負極活物質電極シートにリチウムを挿入した場合に、絶縁抵抗測定、DC−R測定、容量測定、自己放電測定の評価において、いずれも良好な結果が得られた。特に実施例1の平均DC−Rは、比較例1に対し約20%の低抵抗化と良好な結果が得られた。これは、外部端子板と複数枚の延出部に貫通孔が無く、集電性、接触抵抗が比較例1より優れているためだと考えられる。また実施例1では、内部抵抗低減により放電時の電圧ドロップが改善されるため容量の減少量も比較的少なく、比較例1と同等の容量が得られた。比較例1〜3に関しては、複数枚の電極板部分(活物質電極シートが無い部分である延出部)に機械加工で形成した貫通孔のバリがセパレータを介して電極板間の絶縁不良が発生していることが分かった。またDC−Rのばらつきも大きく、DC−R不良が発生していることが分かった。(比較例1〜3)。   From the evaluation results of four types of tests for the conditions of each sample shown in Table 1, the following was found. That is, in the electrochemical device, as in the present invention, when the active material electrode sheet surface is subjected to laser processing and lithium is inserted from the lithium insertion electrode plate into the negative electrode active material electrode sheet through the through hole, the insulation resistance In the evaluation of measurement, DC-R measurement, capacity measurement, and self-discharge measurement, good results were obtained. In particular, the average DC-R of Example 1 was about 20% lower than that of Comparative Example 1, and good results were obtained. This is presumably because the external terminal plate and the plurality of extending portions have no through holes, and the current collecting property and contact resistance are superior to those of Comparative Example 1. In Example 1, since the voltage drop during discharge was improved by reducing the internal resistance, the amount of decrease in the capacity was relatively small, and a capacity equivalent to that in Comparative Example 1 was obtained. Regarding Comparative Examples 1 to 3, burrs of through holes formed by machining in a plurality of electrode plate portions (extension portions where there is no active material electrode sheet) have poor insulation between the electrode plates via the separator. It turns out that it has occurred. Moreover, the variation of DC-R was large, and it was found that a DC-R defect occurred. (Comparative Examples 1-3).

各活物質電極シートに設ける貫通孔の開孔率は、それぞれの電極板の面積に対して0.1%以上10%以下であると容量不良、DC−R不良、絶縁不良、自己放電不良が発生せず好適であることがわかった(実施例1〜6)。開孔率が0.1%より小さい場合には、リチウム挿入用電極板から負極活物質電極シートへのリチウム挿入の際、開孔率が低いことによりリチウム挿入が不均一となる恐れがあり、負極活物質電極シート表面上へのリチウムデンドライド形成によりセパレータを介して電極間の微細ショートによる自己放電不良が発生したと考えられる(比較例1〜4)。一方、10%よりも大きい場合には、加工による貫通孔形成で活物質が消失したため容量が大きく減少し、容量不良が多くなったと考えられる(比較例5、6)。   When the opening ratio of the through holes provided in each active material electrode sheet is 0.1% or more and 10% or less with respect to the area of each electrode plate, capacity failure, DC-R failure, insulation failure, and self-discharge failure occur. It turned out that it does not generate | occur | produce and is suitable (Examples 1-6). When the porosity is smaller than 0.1%, when lithium is inserted from the electrode plate for lithium insertion into the negative electrode active material electrode sheet, there is a possibility that the lithium insertion becomes non-uniform due to the low porosity. It is thought that self-discharge failure due to fine shorts between the electrodes occurred through the separator due to the formation of lithium dendride on the surface of the negative electrode active material electrode sheet (Comparative Examples 1 to 4). On the other hand, when it is larger than 10%, the active material disappears due to the formation of through-holes by processing, so that the capacity is greatly reduced and the capacity defects are increased (Comparative Examples 5 and 6).

また、この貫通孔の開孔径は、0.01mm以上2mm以下であると容量不良、DC−R不良、絶縁不良、自己放電不良が発生せず好適であることがわかった(実施例1、7〜12)。開孔径が0.01mmより小さい場合には、レーザ加工による活物質電極シートへの貫通孔形成においてレーザマーカ装置の印字加工分解能よりも小さくなるため制御が難しく電極への加工時の不良が発生した(比較例7)。したがって、印字加工分解能が上がれば、開孔径が0.01mmより小さい場合であっても好適である可能性がある。一方、2mmよりも大きい場合は、活物質電極シートへ加工した貫通孔の円心間距離が大きくなり、リチウム挿入用電極板から負極活物質電極シートへのリチウム挿入の際、リチウム挿入が不均一となる恐れがあり、負極活物質電極シート表面上へのリチウムデンドライド形成によりセパレータを介して電極間の微細ショートによる自己放電不良が発生したと考えられる(比較例8)。開孔径が3mmの場合でも、比較例8で実施した開孔率を上げることで円心間距離を短くすることは可能ではあるが、開孔率を上げることによる容量損失が発生すると考えられる。   Further, it was found that when the opening diameter of the through hole is 0.01 mm or more and 2 mm or less, capacity failure, DC-R failure, insulation failure, and self-discharge failure do not occur (Examples 1 and 7). ~ 12). When the hole diameter is smaller than 0.01 mm, the formation of the through-hole in the active material electrode sheet by laser processing is smaller than the printing processing resolution of the laser marker device, so that it is difficult to control and a defect in processing to the electrode occurs ( Comparative Example 7). Therefore, if the printing processing resolution is improved, it may be suitable even if the aperture diameter is smaller than 0.01 mm. On the other hand, if it is larger than 2 mm, the distance between the centers of the through holes processed into the active material electrode sheet becomes large, and the lithium insertion is uneven when inserting lithium from the lithium insertion electrode plate into the negative electrode active material electrode sheet. It is considered that a self-discharge failure due to a fine short between the electrodes occurred through the separator due to the formation of lithium dendride on the negative electrode active material electrode sheet surface (Comparative Example 8). Even when the hole diameter is 3 mm, it is possible to reduce the distance between the circle centers by increasing the hole area ratio performed in Comparative Example 8, but it is considered that a capacity loss is caused by increasing the hole area ratio.

なお、加工方法としては、金型を用いたプレス加工においても良好な結果が得られた(実施例13)。金型を用いたプレス加工は、今回結果は掲載していないが、開孔径0.5mm以下となる加工は困難であり、レーザマーカによる加工が好適であると考える。このように開孔径、開孔率に合わせ適切な加工方法を選択することが望ましい。   As a processing method, good results were obtained even in press processing using a mold (Example 13). The press working using a mold is not shown in this result, but it is difficult to work with a hole diameter of 0.5 mm or less, and it is considered that the processing with a laser marker is suitable. As described above, it is desirable to select an appropriate processing method in accordance with the hole diameter and the hole area ratio.

さらに、電気化学デバイスであればリチウムイオン二次電池、ハイブリッドキャパシタのいずれにも本発明を適用することが可能であり、ハイブリッドキャパシタと同様に容量不良、DC−R不良、絶縁不良、自己放電不良が発生せず好適であることがわかった。(実施例1、14)。平均DC−Rと自己放電不良に関して実施例1〜14と比較例1〜9を比べると、実施例1〜14の電気化学デバイスは、自己放電不良がなく平均DC−Rが低いことがわかった。   Furthermore, the present invention can be applied to both lithium ion secondary batteries and hybrid capacitors as long as they are electrochemical devices. As in the case of hybrid capacitors, capacity failure, DC-R failure, insulation failure, and self-discharge failure are possible. It has been found that this is preferable. (Examples 1 and 14). When comparing Examples 1-14 and Comparative Examples 1-9 with respect to average DC-R and self-discharge failure, it was found that the electrochemical devices of Examples 1-14 had no self-discharge failure and low average DC-R. .

これより、資材費が低減でき、自己放電不良がなく直流抵抗が低い電気化学デバイスの提供が可能できることが確認できた。   From this, it was confirmed that the material cost can be reduced, and it is possible to provide an electrochemical device having a low self-discharge failure and a low direct current resistance.

以上説明したように、本発明の電気化学デバイスでは、正極活物質電極シート及び負極活物質電極シートに、空孔率が0.1%以上10%以下の貫通孔を形成し、その貫通孔を介して、予めリチウム挿入用電極板から負極活物質電極シートにリチウムを挿入することで、集電性、接触抵抗の改善により電気化学デバイスの低抵抗化が出来た。また、上記の各実施例の説明は、本発明の実施の形態に係る場合の効果について説明するためのものであって、これによって特許請求の範囲に記載の発明を限定し、あるいは請求の範囲を減縮するものではない。また、本発明の各部構成は上記の実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   As described above, in the electrochemical device of the present invention, through holes having a porosity of 0.1% or more and 10% or less are formed in the positive electrode active material electrode sheet and the negative electrode active material electrode sheet, and the through holes are formed. Thus, by inserting lithium from the electrode plate for lithium insertion into the negative electrode active material electrode sheet in advance, the resistance of the electrochemical device could be reduced by improving the current collecting property and contact resistance. Further, the description of each of the above examples is for explaining the effect in the case of the embodiment of the present invention, thereby limiting the invention described in the scope of claims or the scope of claims. It does not reduce. Moreover, each part structure of this invention is not restricted to said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

1 ハイブリッドキャパシタ
2 正極外部端子板
3 負極外部端子板
4 外装フィルムシート
5 電極体
6 正極電極板
7 負極電極板
8 正極活物質電極シート
9 負極活物質電極シート
10 セパレータ
11 レーザ加工貫通孔
12 リチウム挿入用電極板
13 金属リチウム
14 リチウム挿入用外部端子
15 電極板
16 活物質電極シート
17 パンチングプレス貫通孔
18 エキスパンドメタル貫通孔
DESCRIPTION OF SYMBOLS 1 Hybrid capacitor 2 Positive electrode external terminal board 3 Negative electrode external terminal board 4 Exterior film sheet 5 Electrode body 6 Positive electrode board 7 Negative electrode board 8 Positive electrode active material electrode sheet 9 Negative electrode active material electrode sheet 10 Separator 11 Laser processing through-hole 12 Lithium insertion Electrode plate 13 Metallic lithium 14 External terminal for lithium insertion 15 Electrode plate 16 Active material electrode sheet 17 Punching press through hole 18 Expanded metal through hole

Claims (4)

正極電極板および負極電極板の集電体に金属箔を用い、セパレータを介して積層する前記正極電極板および前記負極電極板ならびに電解液を含む電気化学素子と、前記正極電極板および前記負極電極板にそれぞれ電気的に接続される正極外部端子板および負極外部端子板と、前記電気化学素子を内蔵し周縁部にて密閉する外装フィルムシートとを備える電気化学デバイスであって、それぞれの正極活物質電極シートおよび負極活物質電極シートに少なくとも1つの貫通孔を有し、前記正極電極板および前記負極電極板の面積に対して開孔率が0.1%以上10%以下であることを特徴とする電気化学デバイス。   The positive electrode plate and the negative electrode plate using a metal foil as a current collector, and the positive electrode plate, the negative electrode plate, and an electrochemical element containing an electrolyte solution laminated via a separator, the positive electrode plate and the negative electrode An electrochemical device comprising a positive external terminal plate and a negative external terminal plate electrically connected to each of the plates, and an exterior film sheet containing the electrochemical element and hermetically sealed at a peripheral edge, each positive electrode active The material electrode sheet and the negative electrode active material electrode sheet have at least one through-hole, and an open area ratio is 0.1% or more and 10% or less with respect to the areas of the positive electrode plate and the negative electrode plate. And electrochemical devices. 前記貫通孔の孔径は、0.01mm以上2mm以下であることを特徴とする請求項1に記載の電気化学デバイス。   2. The electrochemical device according to claim 1, wherein a diameter of the through hole is 0.01 mm or more and 2 mm or less. 前記貫通孔が、レーザ加工または金型によるプレス加工により形成されることを特徴とする請求項1または2に記載の電気化学デバイス。   The electrochemical device according to claim 1, wherein the through hole is formed by laser processing or press working with a mold. 前記電気化学デバイスが、リチウムイオン二次電池またはハイブリッドキャパシタであることを特徴とする請求項1〜3のいずれか1項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 3, wherein the electrochemical device is a lithium ion secondary battery or a hybrid capacitor.
JP2010017524A 2010-01-29 2010-01-29 Electrochemical device Pending JP2011159642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017524A JP2011159642A (en) 2010-01-29 2010-01-29 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017524A JP2011159642A (en) 2010-01-29 2010-01-29 Electrochemical device

Publications (1)

Publication Number Publication Date
JP2011159642A true JP2011159642A (en) 2011-08-18

Family

ID=44591381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017524A Pending JP2011159642A (en) 2010-01-29 2010-01-29 Electrochemical device

Country Status (1)

Country Link
JP (1) JP2011159642A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195144A (en) * 2014-03-31 2015-11-05 積水化学工業株式会社 Manufacturing method of electrode, manufacturing method of lithium ion secondary battery, and lithium ion secondary battery
JP2017084799A (en) * 2016-12-05 2017-05-18 日産自動車株式会社 electrode
JP2019091538A (en) * 2017-11-10 2019-06-13 住友ゴム工業株式会社 Method for manufacturing lithium ion storage device, and lithium ion storage device
WO2019163896A1 (en) * 2018-02-22 2019-08-29 Jsr株式会社 Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
JP2020091963A (en) * 2018-12-04 2020-06-11 プライムアースEvエナジー株式会社 Electrode for lithium ion secondary battery and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236945A (en) * 2000-02-21 2001-08-31 Furukawa Electric Co Ltd:The Lithium battery electrode, its manufacturing method, and battery using the same
JP2008283152A (en) * 2007-05-14 2008-11-20 Toyo Aluminium Kk Collector material, and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236945A (en) * 2000-02-21 2001-08-31 Furukawa Electric Co Ltd:The Lithium battery electrode, its manufacturing method, and battery using the same
JP2008283152A (en) * 2007-05-14 2008-11-20 Toyo Aluminium Kk Collector material, and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195144A (en) * 2014-03-31 2015-11-05 積水化学工業株式会社 Manufacturing method of electrode, manufacturing method of lithium ion secondary battery, and lithium ion secondary battery
JP2017084799A (en) * 2016-12-05 2017-05-18 日産自動車株式会社 electrode
JP2019091538A (en) * 2017-11-10 2019-06-13 住友ゴム工業株式会社 Method for manufacturing lithium ion storage device, and lithium ion storage device
JP7052304B2 (en) 2017-11-10 2022-04-12 住友ゴム工業株式会社 Manufacturing method of lithium-ion power storage device and lithium-ion power storage device
WO2019163896A1 (en) * 2018-02-22 2019-08-29 Jsr株式会社 Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
CN111742385A (en) * 2018-02-22 2020-10-02 Jm能源株式会社 Power storage device, negative electrode for power storage device, and methods for producing same
KR20200124253A (en) * 2018-02-22 2020-11-02 제이에무에나지 가부시키가이샤 Power storage device, negative electrode for power storage device, and manufacturing method thereof
JPWO2019163896A1 (en) * 2018-02-22 2021-03-04 武蔵エナジーソリューションズ株式会社 Power storage device, negative electrode for power storage device, and their manufacturing method
EP3758033A4 (en) * 2018-02-22 2021-12-08 Musashi Energy Solutions Co., Ltd. Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
KR102574080B1 (en) 2018-02-22 2023-09-07 무사시 에너지 솔루션즈 가부시키가이샤 Electrical storage device, negative electrode for electrical storage device, and manufacturing method thereof
JP2020091963A (en) * 2018-12-04 2020-06-11 プライムアースEvエナジー株式会社 Electrode for lithium ion secondary battery and manufacturing method therefor
JP7102326B2 (en) 2018-12-04 2022-07-19 プライムアースEvエナジー株式会社 Electrodes for lithium-ion secondary batteries and their manufacturing methods

Similar Documents

Publication Publication Date Title
JP5236765B2 (en) Organic electrolyte capacitor
JP4833065B2 (en) Lithium ion capacitor
JP4833064B2 (en) Lithium ion capacitor
JP5081214B2 (en) Organic electrolyte capacitor
JP5357276B2 (en) Power storage device cell, and manufacturing method and storage method thereof
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP4041044B2 (en) Method for manufacturing electrochemical device
JPWO2004059672A1 (en) Power storage device and method for manufacturing power storage device
JP2012169576A (en) Electrochemical device
JP2006286919A (en) Lithium ion capacitor
JP2007067105A (en) Wound type lithium ion capacitor
JPWO2004059760A1 (en) Power storage device
JP2004266091A (en) Film type storage device
JP5308646B2 (en) Lithium ion capacitor
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP2011159642A (en) Electrochemical device
JP4931239B2 (en) Power storage device
JP2012248556A (en) Electrochemical device and method for manufacturing the same
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2007201248A (en) Laminated electrochemical device
JP2007287724A (en) Laminated electrochemical device
JP2011258798A (en) Electrochemical device
JP2010114364A (en) Electrochemical device, and electrochemical device module
JP2011205016A (en) Lithium-ion capacitor, method of manufacturing positive electrode and negative electrode therefor, and occlusion method of lithium ion to negative electrode
JP2012043940A (en) Electrode, storage element, and lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130821