JP2010536179A - 処理マージンの向上のための複式露光半導体処理 - Google Patents

処理マージンの向上のための複式露光半導体処理 Download PDF

Info

Publication number
JP2010536179A
JP2010536179A JP2010520263A JP2010520263A JP2010536179A JP 2010536179 A JP2010536179 A JP 2010536179A JP 2010520263 A JP2010520263 A JP 2010520263A JP 2010520263 A JP2010520263 A JP 2010520263A JP 2010536179 A JP2010536179 A JP 2010536179A
Authority
JP
Japan
Prior art keywords
photoresist
layer
interconnect structure
pattern
exposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010520263A
Other languages
English (en)
Other versions
JP5167563B2 (ja
Inventor
ホー,ジョナサン・ユン−チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xilinx Inc
Original Assignee
Xilinx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xilinx Inc filed Critical Xilinx Inc
Publication of JP2010536179A publication Critical patent/JP2010536179A/ja
Application granted granted Critical
Publication of JP5167563B2 publication Critical patent/JP5167563B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2024Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure of the already developed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

低減された構造サイズでの処理マージンの向上のために複式露光半導体処理が与えられる。第1の処理シーケンスの間、ポリシリコン相互接続構造の非限界寸法を規定する構造が形成され、その一方当該ポリシリコン層の他の部分は処理されないまま残される。第2の処理シーケンスの間、ポリシリコン相互接続構造の限界寸法を規定する構造が、フォトレジストトリミング処置を実行する必要なく形成される。したがって、1回のエッチング処理のみが実行され、これにより第2の処理シーケンスの間に必要とされる限界寸法を製造するためにより高い解像度処理が与えられる。

Description

発明の分野
本発明は一般的に、高度な半導体処理に関し、より詳細には、処理マージンの向上のためのマイクロリソグラフィ露光処理に関する。
発明の背景
半導体集積回路の分野における進歩により、より高レベルの集積がなされるようになった。したがって、半導体製造処理の進歩により、半導体装置の対応する形状寸法は次第に減少してより小さな値へとなっている。たとえば、1970年代には10マイクロメートル(μm)のゲート長が一般的であったが、半導体製造処理の継続的な進歩により、ゲート長は100ナノメートル(nm)をはるかに下回るまで低減された。
より高いレベルの集積を達成するような継続的な取組みは、隣り合う半導体構造間の分離距離の低減にもつながった。たとえば、65nmおよび45nmのゲート長を作り出すナノメートルの処理には、特定される処理マージン内で妥当な歩留まりを達成するために、たとえば120nmの装置間隔を必要とする。
半導体基板上に、ナノメートルの構造と関連する装置間隔とを規定するために、このような構造を規定する形状パターンがまず半導体基板の上に重ねられなければならない。いくつかの層の形状パターンがしばしば必要とされる。各パターンは、半導体基板の現像の間にそれ以前のパターンの各々の上に重ねられる。半導体基板上のさまざまな層を規定するよう用いられるこれらの形状パターンは、マイクロリソグラフィとして公知である処理により規定される。
一般的に言えば、マイクロリソグラフィ処理はいくつかのステップからなる。これらのステップにより、出発材料のさまざまな層がまず現像される。出発材料はまず、たとえば、ゲート酸化物と、その上に堆積される多結晶シリコン(ポリシリコン)とを有するシリコンまたはゲルマニウム基板からなってもよい。
次に、ハードマスク層が適用され、これによりあるマイクロリソグラフィ品質と、当該ハードマスク層の上にその後適用されるフォトレジスト層のエッチング抵抗とが向上される。フォトレジスト層の下にハードマスク層を用いることで、たとえばフォトレジスト層の厚みの低減が可能になる。これは、当該フォトレジストパターンによって規定される形状が100nmを下回る場合には非常に重要になる。
最後に、出発材料の全表面にわたってフォトレジストの単一層をスピンコーティングすることにより、フォトレジスト材料の層がハードマスク層の上に堆積される。フォトレジスト層は次いで、紫外線(UV)光といった、形状的に規定されたパターンの照射に選択的に晒され得、これにより照射されたエリアは、露光ツール、フォトマスク、および/またはコンピュータデータによって規定される。底面反射防止コーティング(bottom anti-reflective coating;BARC)がさらに、ハードマスク層とフォトレジスト層との間に堆積され得、これによりフォトレジストの線幅の変動といった、フォトレジスト露光処理によって引起される不利な干渉効果を最小限にする。
露光の後、フォトレジストは、フォトレジストにおける潜像を最終像に変換する現像処理に晒される。フォトレジスト現像処理が完了した後でも残る多量の必要とされないフォトレジストを取除くよう、酸素プラズマトリミング処理がさらに用いられ得る。最終像は、たとえばエッチングといった減ずるステップまたはたとえばイオン注入といった加えるステップにおいてマスクとして機能し、これにより出発材料から物質を選択的に取除くまたは出発材料に選択的に物質を堆積させて、ナノメートルの範囲においてある装置構造を作り出す。
65nmの構造サイズを作り出すことを目的とするナノメートルの処理は典型的には、たとえば約50nmの構造サイズを示す最終像を必要とする。しかしながら、50nmの構造サイズを従来の単一の露光処理を用いて得るのは難しい。したがって、まず露光および現像処理を用いて、フォトレジスト層の最終像の中に、たとえば80nmの大きなサイズの構造を作り出す。次いで、たとえば酸素プラズマトリミング処理を用いて水平方向および垂直方向の両方にフォトレジストがトリミングされ、最終像によって規定されるフォトレジスト構造を80nmから50nmへと低減する。
フォトレジストトリミング処理の利用により、トランジスタのゲート長といったある必須の構造パターンのサイズが低減され得るという利点がある。しかしながら、フォトレジストトリミング処理には、ポリ・ツー・コンタクト(poly-to-contact)の包囲部パターンおよびフィールドポリ幅といった他の必須の構造パターンの望ましくない低減を引起すという欠点がある。これにより、許容可能な処理マージンを超えて、ポリ・ツー・コンタクトおよびフィールドポリライン抵抗を増加させてしまう。したがって、ある必須のパターン寸法の選択的な低減を提供しつつ、他の必須のパターン寸法の低減を抑制するフォトレジスト露光、現像、およびトリミング処理を特定する試みが継続している。
発明の概要
先行技術における制限を解消するとともに、この明細書を読んで理解する際に明らかとなるであろう他の制限を乗り越えるよう、本発明のさまざまな実施例は、処理マージンの向上のための複式露光半導体処理を開示する。
この発明の一実施例によると、出発材料内に形状パターンを形成する方法は、出発材料のフォトレジスト層の第1の部分を第1の形状パターンへと露光することと、出発材料内に第1の形状パターンを生成するようフォトレジスト層を現像することと、第1の形状パターンを収縮するようフォトレジスト層をトリミングすることと、フォトレジスト層の第2の部分を第2の形状パターンへと露光することと、出発材料内に第2の形状パターンを生成するようフォトレジスト層を現像することと、第1および第2の形状パターンを出発材料のポリシリコン層に転写するよう出発材料をエッチングすることとを含む。第2の形状パターンは、フォトレジスト層の第2の部分を第2の形状パターンへと露光した後、フォトレジスト層をトリミングすることなしに生成される。
この発明の別の実施例によると、相互接続構造を形成する方法は、フォトレジストの第1の層を出発材料に適用することと、相互接続構造の第1の潜像をフォトレジストの第1の層の中に形成するようフォトレジストの第1の層を紫外線照射に晒すことと、相互接続構造の第1の潜像を相互接続構造の第1の最終像へと変換するようフォトレジストの第1の層を現像することと、第1のトリミングされた最終像を形成するよう相互接続構造の第1の最終像をトリミングすることと、フォトレジストの第1の層を取除くことと、フォトレジストの第2の層を出発材料に適用することと、相互接続構造の第2の潜像をフォトレジストの第2の層の中に形成するようフォトレジストの第2の層を紫外線照射に晒すことと、相互接続構造の第2の潜像を相互接続構造の第2の最終像に変換するようフォトレジストの第2の層を現像することと、相互接続構造の第2の最終像をトリミングすることなしに、相互接続構造の第1のトリミングされた最終像および第2の最終像を出発材料のポリシリコン層に転写することとを含む。
この発明の別の実施例によると、半導体ウェハ上の複数の装置のための相互接続構造を形成する方法は、半導体ウェハのフォトレジスト層を第1のマスクパターンへと露光することと、第1のマスクパターンを半導体ウェハ内に生成するようフォトレジスト層を現像することとを含み、第1のマスクパターンは半導体ウェハ上の複数の装置のための相互接続構造を規定する。当該方法はさらに、半導体ウェハ内に生成された第1のマスクパターンをトリミングすることと、フォトレジスト層を第2のマスクパターンへと露光することと、半導体ウェハ内に第2のマスクパターンを生成するようフォトレジスト層を現像することとを含み、第2のマスクパターンは半導体ウェハ上の複数の装置の間の分離距離を規定する。当該方法はさらに、第1および第2のマスクパターンを半導体ウェハのポリシリコン層に転写することを含む。第2のマスクパターンは、第2のマスクパターンをトリミングすることなしに、ポリシリコン層に転写される。
本発明のさまざまな局面および利点が、以下の詳細な説明の考慮および図面の参照により明らかになるであろう。
典型的な半導体装置の断面図を示す図である。 本発明の実施例に従って第1および第2の処理シーケンスが実行された後に形成される例示的な相互接続パターンを示す図である。 図2の相互接続パターンの形成の間に第1の処理シーケンスのために用いられる例示的な露光マスクパターンを示す図である。 図1の半導体装置の形成および図2の相互接続パターンの形成の間に用いられる例示的な出発材料の断面図を示す図である。 図2の相互接続パターンの部分を形成するよう用いられる第1の処理シーケンスの間に実行される処理ステップの例示的なフロー図を示す図である。 図2の相互接続パターンの部分を形成するよう用いられる第2の処理シーケンスの間に実行される処理ステップの例示的なフロー図を示す図である。 図2の相互接続パターンの形成の間に第2の処理シーケンスのために用いられる例示的な露光マスクパターンを示す図である。
詳細な説明
一般的に、本発明のさまざまな実施例は、ナノメートルの構造サイズにて、処理のマージンの向上のための複式露光半導体処理を提供する。本発明の一実施例では、シリコンまたはゲルマニウム基板、二酸化ケイ素、多結晶シリコン(ポリシリコン)、ハードマスク、および底面反射防止コーティング(bottom anti-reflective coating;BARC)といったさまざまな層を含む出発材料が半導体ウェハ(ウェハ)上に形成される。次いで、フォトレジスト層がウェハ上にスピンコーティングされ、ウェハ全体にわたって所望の厚みの、均一で、付着性があり、欠陥のない高分子フィルムが作り出される。
次いで、ウェハはソフトベークされ、これにより、スピンコーティングによるフォトレジストから溶媒を取除き、かつスピン処理によって直面したフォトレジストの膜応力を緩和する。次いで、第1の露光処理を用いて、フォトレジストにおいて露光像を作り出し、これにより当該フォトレジストにおけるある装置構造を規定する。次いで、その後のフォトレジスト現像およびトリミング処理が実行され、露光された装置構造が所定の限界寸法(critical dimension;CD)に準拠した最終のフォトレジスト像へと低減される。次いで、その後のハードマスクエッチング処理が実行され、これにより処理マージンの増加のための所定の公差に該当するハードマスク像の第1の組をウェハの上に形成し得る。
別の実施例では、ポリシリコンをエッチングするようハードマスクエッチング処理がさらに用いられ得、これにより処理マージンの増加のための所定の公差内に該当するポリシリコン像をウェハ上に作製する。代替的な実施例では、ポリシリコンエッチング処理は、第2の露光処理が完了する後まで延期され得る。さらに、残存するフォトレジストは、ハードマスクがエッチングされた後、取除かれ得る。または逆に、フォトレジストは、ウェハ上に残され、第2の処理シーケンスの間に用いられ得る。
フォトレジストの第1の層が第1の処理シーケンスの間に取除かれた場合に、ハードマスク像の第1の組がウェハ上に一たび形成されると、第2の処理シーケンスが実行され、これによりフォトレジストの別の層がウェハ上に随意にスピンコーティングおよびソフトベークされ得る。次いで第2の露光および現像処理が、フォトレジストにおいて装置構造を規定する第2の露光像を作り出すよう用いられる。しかしながら、第2の露光像はフォトレジストトリミング処理を必要としない。その代わりに、厳しい設計公差になるよう制御され得るハードマスクおよびポリシリコンエッチング処理を実施することにより、第2の露光の後に必要とされるポリシリコンの構造が作り出され得る。
したがって、ポリ・ツー・コンタクト包囲部パターンといった必須のパターンの構造サイズの望ましくない低減が除去される。なぜならば、ポリ・ツー・コンタクト包囲部パターンは、対応するフォトレジストをトリミングする必要なく形成されるからである。さらに、必須の装置間隔寸法がより厳しい公差に制御され得る。なぜならば、装置間隔を作り出すよう用いられるハードマスクおよびポリシリコンエッチング処理が、より厳しい設計公差となるよう制御され得るからである。
図1を参照して、電界効果トランジスタ(FET)100の例示的な断面図が示される。FET100は、集積回路(IC)を形成するよう半導体基板110内に作製され得る多くの装置構造の1つとして例示される。FET100は、プログラマブル・ロジック・デバイス(programmable logic device;PLD)といった、IC内の基本的なビルディングブロックとして広く用いられ得るということが理解される。したがって、FET100と関連する半導体装置とは、入力/出力ブロック(Input/Output Block;IOB)、コンフィギュラブル・ロジック・ブロック(Configurable Logic Block;CLB)、専用のランダムアクセスメモリブロック(Random Access Memory Block;BRAM)、乗算器、デジタル信号処理ブロック(Digital Signal Processing block;DSP)、プロセッサ、クロックマネージャ、遅延ロックループ(Delay Lock Loop;DLL)、およびマルチギガビット・トランシーバ(Multi-Gigabit Transceiver;MGT)などを含む、PLD内にプログラマブルタイルのアレイを作り出す基礎的なビルディングブロックとして用いられ得る。
半導体基板110(以下基板110と称する)は、単結晶シリコンまたはゲルマニウムといった、半導体装置の実現のためのベースプラットフォームとして機能する半導体材料から形成される。基板110の中には、たとえば典型的には、寸法がマイクロリソグラフィック処理によって規定され得る基板110の拡散領域にウェルドーパントを導入することによりウェル領域108が形成される。ウェル領域108は、高温度拡散ステップが後に続く浅いイオン注入処理によって、ウェル領域108が基板110の中に深く入れられる拡散ウェル構造として形成され得る。代替的には、ウェル領域108は、高エネルギイオン注入処理により、高温度拡散ステップを実施する必要なく基板110内に深い注入ピークを作り出すレトログレードウェル構造として形成され得る。
ウェル領域108は、FET100に求められる伝導タイプに依存して、n型またはp型でドーピングされ得る。n型FET(NFET)が必要とされる場合、たとえば、ウェル領域108は、p型ドーパントを用いて形成されることになるpウェル領域を示す。他方、p型FET(PFET)が必要とされるならば、ウェル領域108は、n型ドーパントを用いて形成されることになるnウェル領域を示す。
領域104,106は、FET100のソースおよびドレイン領域を形成し、同じまたは同様のドーピング材料で各々ドーピングされる。領域104,106は、FET100がNFETとして構成されることになる場合は、n型領域としてドーピングされる。逆に、FET100がPFETとして構成されることになる場合は、p型領域としてドーピングされる。領域104および106は、上で論じたように、拡散ウェルまたはレトログレードウェル構造として形成され得る。如何なる場合でも、ウェル領域108および領域104,106は集合的に、FET100の拡散領域と称され得る。
ゲート102は、典型的には、示されるように領域104,106の一部に重なるようにFET100の拡散領域の一部にわたって形成される。ゲート102を形成するためにポリシリコンを用いると、ゲート102が相互接続部としても用いられ得るように伝導特性が作られる。しかしながら、ゲート長114がある最小の長さ、たとえば1.25μm、を下回るまで低減されると、ゲート102の抵抗は大きくなり過ぎ、相互接続部として有効でなくなる。以下により詳細に論じるように、金属シリサイド層がポリシリコンのゲート102の表面を被覆するよう用いられ得、これによりいわゆる「ポリサイド構造」を形成する。ゲート102を形成するポリサイド構造の利用により、ゲート102の抵抗が低減され、これによりゲート102を相互接続部として利用することが可能になる。
ゲート102と領域104−108との間には、ゲート酸化物層120が存在し、領域104,106とチャネル領域116との間にゲート誘電体または絶縁体を形成する。ゲート酸化物層120は一般的には、二酸化珪素の熱成長層で作成され、その厚みは従来、ゲート長114の尺度を線形に辿るよう尺度決めされている。たとえば、ゲート酸化物の厚みに対するゲート長114の比は従来、約45に維持されている。したがって、ゲート長が65nmの場合、約14Åのゲート酸化物が必要とされる。
実施の際は、FET100は、ゲート102ならびに領域104および/または106の両端に電圧ディファレンシャルを加えることにより導通され、これによりチャネル領域116を形成する。たとえばFET100がNFETの場合、ゲート102およびソース領域、たとえば領域104、の両端のディファレンシャル電圧がFET100のしきい値電圧をひとたび超えると、キャリアをウェル領域108からチャネル領域116へと引込むことにより、チャネル領域116の中において領域104と106との間に電流伝導路が存在することになる。FET100が導通状態にある間に生成される電流はしばしば、FET100のドレイン電流と称される。
ゲート長114は、ある利点を得るよう時間に対して一定に尺度決めされるFET100の設計構造を示す。まず、上で論じたように電圧ディファレンシャルが印加されると、ゲート長の尺度によりFET100のドレイン電流の増加がもたらされる。これは通常、回路スピードの上昇を与える。第2に、ゲート長の尺度によりゲートの静電容量の減少がもたらされる。これも回路スピードを上昇させる。なぜならば、ゲートの静電容量は、論理レベルが切換えられると充電/放電されなければならないからである。第3に、ゲート長の尺度により、基板110上に製造され得る装置の密度の増加がもたらされる。以下により詳細に論じるように、ゲート102はさらに、基板110内にさらに形成され得る他の装置(図示せず)と相互接続され得る。
図2を参照して、基板110の上面図が基板110および拡散領域202,204上に位置するポリシリコンライン206,208のパターンを示す相互接続図が例示される。拡散領域202,204は、図1が示す実施例に関連して上で論じたように、基板110内において実現される複数の装置のウェル領域108およびソース/ドレイン領域104,106を含む複数の拡散領域を示し得る。
たとえば、ポリシリコンライン206は、拡散領域202にわたって形成される複数のFETのゲートがポリシリコン相互接続部206を介してコンタクト領域212に共通して接続され得る相互接続構造を形成し得る。同様に、ポリシリコンライン208は、拡散領域204にわたって形成される複数のFETのゲートがポリシリコン相互接続部208を介してコンタクト領域214に共通して接続され得る相互接続構造を形成し得る。しかしながら、図2の相互接続構造は純粋に例示的なものであり、任意の所与のIC上に存在し得る実質的に無限の数の相互接続構造を示し得る。
コンタクト領域212,214は、ポリシリコン包囲部216,218がある金属シリサイドと組合されてコンタクト領域212,214の抵抗を低下させるとともにそれらの熱伝導性を増加させるポリシリコンシリサイド(ポリサイド)領域を示す。したがって、当該ポリサイド領域によって与えられる利点により、局所的な相互接続構造としてのポリシリコンライン206,208およびコンタクト領域212,214の適用が向上される。
コンタクト領域212,214を形成するために、さまざまな耐熱性金属シリサイドが適用され得る。これらの金属シリサイドには、タングステンシリサイド(WSix)、タンタルシリサイド(TaSi2)、チタニウムシリサイド(TiSi2)、コバルトシリサイド(CoSi2)、ニッケルシリサイド(NiSi)、およびケイ化モリブデン(MoSi2)が含まれる。一実施例では、コンタクト領域212,214は、ポリシリコンライン206,208がパターニングされた後、形成される。このような例では、シリサイドは、ポリシリコン相互接続部206,208がパターニングされた後、自己整合シリサイド(サリサイド(salicide))として用いられ得る。ポリシリコン相互接続部206,208をパターニングした後サリサイドを用いることにより、シリサイドがポリシリコン相互接続パターニング処理の間に形成される場合にサリサイドを用いなかったならば必要となったであろうマスキングおよびエッチング処理を実施する必要性がなくなる。
一実施例では、しかしながら、コンタクト領域212,214の抵抗を最小限にするよう、処理マージンの向上のために第1の設計ルールが実行される。詳細には、ポリシリコン包囲部216,218の表面面積が、すべての処理ステップが完了した後でもコンタクト領域212,214の表面面積よりも大きいままであるということである。すなわち、言い換えると、コンタクト領域212,214とそれぞれのポリシリコン包囲部216,218との間のコンタクト抵抗は、ポリシリコン包囲部216,218の表面面積がコンタクト領域212,214の表面面積よりもそれぞれ大きい際に最小化される。
したがって、以下により詳細に論じられるように、ポリシリコン包囲部216,218の形成は、ポリシリコン相互接続部206,208の構造サイズを最終的に規定するフォトレジストトリミング処理が実行される後まで遅延される。したがって、フォトレジストトリミング処理は、ポリシリコン包囲部216,218の構造サイズを同様に低減するようにされ得ない。その代わり、ポリシリコン包囲部216,218の構造サイズは、フォトレジストトリミング処理の後に行なわれるハードマスクおよびポリシリコンエッチング処理によって作られる。このように、ポリシリコン包囲部216,218の表面面積は、ポリシリコン包囲部216,218を最終的に規定するフォトレジストがポリシリコン相互接続部206,208の構造サイズを規定するフォトレジストトリミング処理に晒されないので、コンタクト領域212,214の表面面積よりも大きくなるということが実質的に保証される。
装置間隔210が最小限にされる、第2の設計ルールが同様に実行され得る。詳細には、ポリシリコン包囲部216,218を形成するよう用いられるハードマスクおよびポリシリコントリミング処理がさらに装置間隔210を作り出すよう用いられる。装置間隔210を最小限にすることにより、基板110内に形成される装置の密度が増加され得る。逆に、装置間隔210の最小限化は、指定の数の装置を収納するのに必要とされる基板110のサイズを減少させる。したがって、基板110のより小さな部分上に均等な数の装置を形成することが促進される。
図3を参照して、第1の露光の後に出発材料に投影されるリソグラフィック層を規定する例示的な露光マスクパターンが示される。詳細には、図3の露光マスクパターンは、エリア302−306におけるポリシリコンの限界寸法(CD)を無視するマスクパターンを例示する。その代わり、装置間隔210およびポリシリコン包囲部216,218を最終的にそれぞれ規定するエリア302−306は、相互接続線206,208を形成する第1の処理シーケンスのトリミングおよびエッチング処理に対して溶解されないままである。したがって、エリア302−306におけるポリシリコンは、フォトレジストトリミング処置を用いない第2の処理シーケンスの間にその後形成されるよう、そのままの状態であり得る。
図4を参照して、図1および図2に例示されるように装置および相互接続構造を形成するようその後処理され得る出発材料のさまざまな層を例示する断面図が示される。層402は、単結晶シリコンまたはゲルマニウムといった半導体材料の層を例示し、当該層は、図1に例示されるようなFET100といったある半導体装置によって必要とされる際には、拡散領域の実現のためのベースプラットフォームとして機能する。層404は、二酸化珪素といった酸化物材料の層を例示し、当該層は半導体基板402内に形成されるさまざまな半導体装置の複数のゲートコンタクトとチャネル領域との間にゲート誘電体または絶縁体を形成するよう用いられ得る。
層406は、以下により詳細に論じられるように、図2に例示されるようなポリシリコン相互接続構造といったポリシリコン相互接続構造を最終的に形成し得るポリシリコンの層を例示する。層408は、フォトレジスト層412のある特性を増強するようポリシリコン層406上に堆積され得るハードマスク層を例示する。装置構造がより小さくなるにつれて、たとえば、より高解像度のマイクロリソグラフィック処理が必要となり、これにより、より薄いフォトレジスト層412の利用が決定付けられる。したがって、ハードマスク層408は、厚みが低減されたフォトレジスト層412と組合わされ、これによりフォトレジスト層412のマイクロリソグラフィおよびエッチング性能が増強される。層410は、フォトレジスト層412の露光および現像の間、フォトレジストライン幅の変動といった有害な干渉効果を最小限にするようハードマスク層408上に堆積され得る底面反射防止コーティング(BARC)を例示する。
層412は、ハードマスク層408およびBARC層410の上に適用されるフォトレジストの層を例示し、一実施例では、当該層は193nmのUV波長にて最適化された反応品質を有するフォトレジストからなる。しかしながら、193nmでのフォトレジストの有効性に影響を与えるさまざまな要因が広く行き渡っている。まず、エッチング抵抗が要因となる。なぜならば、フォトレジスト層412の厚みは一般的に100−200nmの範囲内であり、この範囲は以前の論理生成において用いられるフォトレジストの厚みの低減されたものである。したがって、193nmのフォトレジストのエッチング抵抗は増加されるべきであり、当該増加はハードマスク層408を用いて上で論じたように達成され得る。
フォトレジストの崩壊は、フォトレジストのアスペクト比が増加するにつれて一般的になり得る現象である。現像された基板からの現像剤および洗浄水の除去により引起される表面張力によって、狭い間隔で設けられた高アスペクト比のフォトレジストラインがともに引っ張られる。ポリシリコン相互接続部206,208を形成するのに必要とされるフォトレジストのアスペクト比は約3:1である。なぜならば、層412のフォトレジストの厚みは、たとえば150nmに目標設定されるとともに、フォトレジストの幅はたとえば55nmに目標設定されるからである。したがって、フォトレジストの崩壊を防止するようフォトレジストのアスペクト比が低減されるので、ハードマスク層408の利用がさらにより望ましいものとなる。
図5Aを参照して、図2に例示されるようにポリシリコン相互接続ライン206,208を形成するよう第1の処理シーケンスの間に用いられ得る例示的なフロー図が示される。ステップ502のフォトレジストの堆積は、正確な厚みの、均一で、付着性があり、かつ欠陥がないフォトレジストフィルムが図4のフォトレジスト層412を形成するよう堆積される処理を含む。フォトレジストフィルムは一般的に、ウェハをスピンコーティングすることにより適用され、これによりウェハの表面上にフォトレジストが施されるとともに、その後フォトレジストが乾燥するまでウェハの高速スピンサイクルが続く。ステップ504は、ソフトベークサイクルを含む。ソフトベークサイクルは、溶媒を当該スピンコーティングによるフォトレジスト層から取除くよう機能し、ウェハに対するフォトレジストの接着性を向上させ、スピンコーティングの間にフォトレジストに対して加えられたせん断応力を強化する。
ステップ506では、図3に例示されるように相互接続パターン206および208を作り出すよう、フォトレジスト層412上に形状パターンが重ねられる。一実施例では、負のフォトレジストがステップ502において適用され得、これにより照射、たとえばUV照射に晒されるフォトレジストの部分が、ステップ508において行なわれるフォトレジスト現像およびトリミング処理に対して溶解しないようにされる。したがって、図3の部分310は、照射に晒される負のフォトレジストの部分を示し、したがって、フォトレジスト現像およびトリミング処理がステップ508において行なわれた後でもウェハ上に残留する。
逆に、正のフォトレジストがステップ502において適用されてもよい。これにより、照射、たとえばUV照射に晒されるフォトレジストの部分は、ステップ508において行なわれるフォトレジスト現像およびトリミング処理に対して溶解され得なくなる。したがって、図3の部分308は、照射に晒されるとともに、フォトレジスト現像およびトリミング処理がステップ508において行なわれた後ウェハから取除かれる正のフォトレジスト層の部分を示す。
上で論じたように、図3のマスクパターンは、部分302−306がステップ508のフォトレジスト現像およびトリミング処理によって影響を受けないように設計される。すなわち言い換えると、フォトレジスト部分302−306からトリミング処理を除外することにより、ポリシリコン相互接続部206,208を最終的に規定する構造の収縮が、部分302−306内にその後規定されることになる構造に対して有害な収縮効果を引起さないよう排除される。
図3のマスクパターンによって規定される構造の解像度を増加させるために、減衰位相シフトマスキングが用いられ得る。これにより、UV透過光の光学位相は、部分310と部分308との間で変化し得る。たとえば、部分308を通過した透過UV照射光の位相は、部分310を通過した光の位相に対して180度位相シフトされ得る。したがって、ステップ506の間に領域308から領域310の中に回折されたUV照射光が破壊的に干渉し、これにより部分310と部分308との間の遷移部にて回折を事実上相殺するので、部分308と310との間でコントラストが増加する。また、その代わりに、交互の位相シフトマスキングが用いられてもよい。これにより、UV透過の光学位相は、近傍の部分308同士、たとえば相互接続ライン206と208との間に存在する部分308同士の間でのみ変化される。
上で論じたように、ステップ508は、領域308から望まれないフォトレジストを取除く現像処理を含む。現像は、ステップ506の露光によって生成される潜像を、その後のエッチングまたはイオン注入ステップのためのマスクとして機能する最終層へと変換するよう、液浸、スプレー、またはパドル現像のいずれか1つを含み得る。
しかしながら、ステップ508はさらに、ステップ510の間において、その下に存在するポリシリコン層406を化学攻撃から保護するよう残留する、領域310内のフォトレジストのトリミングを促進する。詳細には、軽度の酸素プラズマ処理がステップ508の間に実行され得、領域310内のフォトレジストをトリミングする。これにより、フォトレジストライン206,208の高さおよび幅を含むすべての寸法が収縮する。
したがって、フォトレジストライン206,208は、ステップ508のフォトレジストの現像およびトリミングの間に、たとえば55nmの正常な幅と、たとえば150nmの正常な厚みまで収縮し得る。領域302−306におけるフォトレジストは、しかしながら、そのままの状態で残され、これにより以下でより詳細に論じられるように、第2の処理シーケンスの間に、装置間隔210およびポリ・ツー・コンタクト包囲部216,218の現像を促進する。ステップ510では、領域308におけるハードマスク層408がハードマスク部分308を取除くようエッチングされ、これにより相互接続ライン206,208が規定する構造をハードマスク層408上に転写する。
すなわち、言い換えると、処理ステップ510が実行された後、フォトレジスト412、BARC410、およびハードマスク408は図3のエリア308からエッチングにより取除かれる。ステップ510において任意のポリシリコンエッチングがさらに行なわれる場合、ポリシリコン406はさらにエリア308から同様にエッチングによって取除かれ、これにより相互接続ライン206,208が規定する構造がポリシリコン層406に転写される。一実施例では、ステップ512は実行されず、そのため残存するフォトレジスト層および図4において維持された出発材料のすべての他の層が、処理ステップ510が実行された後でも残存する。このような例において、ステップ502において適用される残存するフォトレジストは、図5Bに関連して以下で論じられるように第2の処理シーケンスの間に再利用され得る。
図5Bを参照して、図2において例示されるようにポリシリコン包囲部216,218および装置間隔210を形成するよう第2の処理シーケンスの間に用いられ得る例示的なフロー図が示される。ステップ552の任意のフォトレジストの堆積およびステップ554のソフトベークサイクルが、図5Aのステップ502および504に関連して上で論じたように処理されるが、これは、フォトレジストの第1の層がステップ512においてのように取除かれた場合に限ってのことである。
ステップ556において、図6において例示されたように、形状パターンがUV露光によりフォトレジスト層412に重ねられ、これにより図5Aの第1の処理シーケンスが終了した後、第2のリソグラフィック像が規定される。ステップ506に関連して上で論じたのと同様の位相シフトマスキング技術が、図6のマスクパターンによって規定される構造の解像度を増加するよう用いられ得る。部分602,604は、図3および図5Aに関連して上で論じたように、相互接続ライン206,208が作り出された第1の処理シーケンスの間に現像された領域を示す。したがって、部分602,604は、部分602,604におけるフォトレジストの再露光および再現像を禁止する適切なマスクの利用により、処理ステップ556−560から保護されたままになる。
他方、部分606は、ステップ556−558のパターン露光およびフォトレジスト現像処理によってそれぞれ、ステップ560において実行されるエッチング処理に対して溶解され得るようにされる。これにより、領域606におけるハードマスク408およびポリシリコン406はエッチングにより取除かれる。したがって、領域304,306内のポリシリコン包囲部216,218はそれぞれ厳しい公差の中になるようにエッチングされ得、これにより処理マージンの向上のためにポリシリコン包囲部216,218の限界寸法を維持する。
図5Bの第2の処理シーケンスのステップ558は、図5Aの第1の処理シーケンスのステップ508とは異なる。なぜならば、ステップ558ではフォトレジストのトリミングが行なわれないが、ステップ508ではフォトレジストのトリミングが行なわれるからである。したがって、ステップ556の第2の露光の後、フォトレジスト層内に規定される限界寸法は収縮から保護される。すなわち言い換えると、ポリシリコン包囲部216,218の表面面積はコンタクト212,214の表面面積よりも大きいまま維持され、これによりポリ・ツー・コンタクト212/216およびポリ・ツー・コンタクト214/218のインピーダンスが最小化される。
さらに、ステップ560において実行されるエッチング処理に対して部分608は溶解可能とされるので、領域608内のハードマスク408およびポリシリコン406がエッチングにより取除かれる。したがって、領域302内の装置間隔210は厳しい公差内になるようにエッチングされ得、これにより処理マージンの向上のための装置間隔210の限界寸法が維持される。すなわち言い換えると、65nmおよび45nmのゲート長を作り出すナノメートルの処理により、受入れ可能な歩留まりのために、たとえば120nmの装置間隔210を確実に達成し得る。最後に、ステップ562においてのように、残留するフォトレジスト層412およびハードマスク層408が取除かれる。
本発明の他の局面および実施例は、この明細書の考察およびここで開示される発明の実施から、当業者には明らかであろう。当該明細書および例示された実施例は例であるとのみ考えられ、本発明の真実の範囲および精神は添付の特許請求の範囲によって示されるということが意図される。

Claims (20)

  1. 出発材料内に形状パターンを形成する方法であって、
    前記出発材料のフォトレジスト層の第1の部分を第1の形状パターンへと露光することと、
    前記出発材料内に前記第1の形状パターンを生成するよう前記フォトレジスト層を現像することと、
    前記第1の形状パターンを収縮するよう前記フォトレジスト層をトリミングすることと、
    前記フォトレジスト層の第2の部分を第2の形状パターンへと露光することと、
    前記出発材料内に前記第2の形状パターンを生成するよう前記フォトレジスト層を現像することと、
    前記第1および第2の形状パターンを前記出発材料のポリシリコン層に転写するよう前記出発材料をエッチングすることとを含み、
    前記第2の形状パターンは、前記フォトレジスト層の前記第2の部分を前記第2の形状パターンへと露光した後、前記フォトレジスト層をトリミングすることなしに生成される、方法。
  2. 前記フォトレジスト層の前記第1および第2の部分を露光することは、前記第1および第2の形状パターンによって規定されるパターンの透過紫外線に前記フォトレジスト層を晒すことを含む、請求項1に記載の方法。
  3. 前記フォトレジスト層の前記第1および第2の部分を露光することはさらに、前記透過紫外線の光学位相を前記フォトレジスト層の露光部分と前記フォトレジスト層の非露光部分との間で変化させることを含む、請求項2に記載の方法。
  4. 前記フォトレジスト層をトリミングすることは、前記第1の形状パターンによって規定されるフォトレジスト像の高さおよび幅を収縮させることを含む、請求項1に記載の方法。
  5. 前記第1の形状パターンを前記出発材料のハードマスク層に転写するよう前記ハードマスク層をエッチングすることをさらに含む、請求項1に記載の方法。
  6. 前記第1の形状パターンを前記出発材料のポリシリコン層に転写するよう前記ポリシリコン層をエッチングすることをさらに含む、請求項5に記載の方法。
  7. 前記第2の形状パターンへの露光の前に前記フォトレジスト層を取除くことをさらに含む、請求項1に記載の方法。
  8. 第2のマスクパターンへの露光の前に前記フォトレジスト層を再適用することをさらに含む、請求項7に記載の方法。
  9. 前記第1および第2の形状パターンの露光のために同じフォトレジスト層を用いることをさらに含む、請求項1に記載の方法。
  10. 前記第2の形状パターンの露光の間に前記フォトレジスト層の前記第1の部分を保護することをさらに含む、請求項9に記載の方法。
  11. 相互接続構造を形成する方法であって、
    フォトレジストの第1の層を出発材料に適用することと、
    前記相互接続構造の第1の潜像を前記フォトレジストの第1の層の中に形成するよう前記フォトレジストの第1の層を紫外線照射に晒すことと、
    前記相互接続構造の前記第1の潜像を前記相互接続構造の第1の最終像へと変換するよう前記フォトレジストの第1の層を現像することと、
    第1のトリミングされた最終像を形成するよう前記相互接続構造の前記第1の最終像をトリミングすることと、
    前記フォトレジストの第1の層を取除くことと、
    フォトレジストの第2の層を前記出発材料に適用することと、
    前記相互接続構造の第2の潜像を前記フォトレジストの第2の層の中に形成するよう前記フォトレジストの第2の層を紫外線照射に晒すことと、
    前記相互接続構造の前記第2の潜像を前記相互接続構造の第2の最終像に変換するよう前記フォトレジストの第2の層を現像することと、
    前記相互接続構造の前記第2の最終像をトリミングすることなしに、前記相互接続構造の前記第1のトリミングされた最終像および前記第2の最終像を前記出発材料のポリシリコン層に転写することとを含む、方法。
  12. 前記フォトレジストの第1および第2の層を晒すことはさらに、前記フォトレジストの第1および第2の層の露光部分と前記フォトレジストの第1および第2の層の非露光部分との間で前記紫外線照射の光学位相を変化させることをさらに含む、請求項11に記載の方法。
  13. 前記第1のトリミングされた最終像を転写することは、前記相互接続構造の前記第1のトリミングされた最終像に適合するよう前記出発材料のハードマスク層をエッチングすることを含む、請求項11に記載の方法。
  14. 前記第1のトリミングされた最終像を転写することはさらに、前記フォトレジストの第2の層を紫外線照射に晒す前に、前記相互接続構造の前記第1のトリミングされた最終像に適合するよう前記ポリシリコン層をエッチングすることを含む、請求項13に記載の方法。
  15. 前記第1のトリミングされた最終像を転写することはさらに、前記フォトレジストの第2の層を紫外線照射に晒した後、前記相互接続構造の前記第1のトリミングされた最終像に適合するよう前記ポリシリコン層をエッチングすることを含む、請求項13に記載の方法。
  16. 前記相互接続構造の前記第2の最終像を転写することは、前記相互接続構造の前記第2の最終像に適合するよう、前記出発材料のハードマスクおよびポリシリコン層をエッチングすることを含む、請求項15に記載の方法。
  17. 半導体ウェハ上の複数の装置のための相互接続構造を形成する方法であって、
    前記半導体ウェハのフォトレジスト層を第1のマスクパターンへと露光することと、
    前記第1のマスクパターンを前記半導体ウェハ内に生成するよう前記フォトレジスト層を現像することとを含み、前記第1のマスクパターンは前記半導体ウェハ上の前記複数の装置のための前記相互接続構造を規定し、前記方法はさらに、
    前記半導体ウェハ内に生成された前記第1のマスクパターンをトリミングすることと、
    前記フォトレジスト層を第2のマスクパターンへと露光することと、
    前記半導体ウェハ内に前記第2のマスクパターンを生成するよう前記フォトレジスト層を現像することとを含み、前記第2のマスクパターンは前記半導体ウェハ上の前記複数の装置の間の分離距離を規定し、前記方法はさらに、
    前記第1および第2のマスクパターンを前記半導体ウェハのポリシリコン層に転写することを含み、
    前記第2のマスクパターンは、前記第2のマスクパターンをトリミングすることなしに、前記ポリシリコン層に転写される、方法。
  18. 前記第1のマスクパターンを転写することは、前記第1のマスクパターンに適合するよう前記半導体ウェハのハードマスク層をエッチングすることを含む、請求項17に記載の方法。
  19. 前記第1のマスクパターンを転写することはさらに、前記フォトレジスト層を前記第2のマスクパターンへと露光する前に、前記第1のマスクパターンに適合するよう、前記半導体ウェハのポリシリコン層をエッチングすることを含む、請求項18に記載の方法。
  20. 前記第1のマスクパターンを転写することはさらに、前記フォトレジスト層を前記第2のマスクパターンへと露光した後、前記第1のマスクパターンに適合するよう前記半導体ウェハのポリシリコン層をエッチングすることを含む、請求項18に記載の方法。
JP2010520263A 2007-08-08 2008-08-05 処理マージンの向上のための複式露光半導体処理 Active JP5167563B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/891,258 2007-08-08
US11/891,258 US7951722B2 (en) 2007-08-08 2007-08-08 Double exposure semiconductor process for improved process margin
PCT/US2008/072249 WO2009020979A1 (en) 2007-08-08 2008-08-05 A double exposure semiconductor process for improved process margin

Publications (2)

Publication Number Publication Date
JP2010536179A true JP2010536179A (ja) 2010-11-25
JP5167563B2 JP5167563B2 (ja) 2013-03-21

Family

ID=39761022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520263A Active JP5167563B2 (ja) 2007-08-08 2008-08-05 処理マージンの向上のための複式露光半導体処理

Country Status (7)

Country Link
US (2) US7951722B2 (ja)
EP (1) EP2176710B1 (ja)
JP (1) JP5167563B2 (ja)
CN (1) CN101784959B (ja)
CA (1) CA2693228C (ja)
TW (1) TWI463531B (ja)
WO (1) WO2009020979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010295A (ja) * 2012-06-29 2014-01-20 Fujitsu Semiconductor Ltd マスクパターンの形成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285781B2 (en) * 2004-07-07 2007-10-23 Intel Corporation Characterizing resist line shrinkage due to CD-SEM inspection
US7951722B2 (en) * 2007-08-08 2011-05-31 Xilinx, Inc. Double exposure semiconductor process for improved process margin
US8609327B2 (en) * 2008-07-10 2013-12-17 International Business Machines Corporation Forming sub-lithographic patterns using double exposure
JP5357473B2 (ja) * 2008-09-09 2013-12-04 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US8163466B2 (en) * 2009-02-17 2012-04-24 International Business Machines Corporation Method for selectively adjusting local resist pattern dimension with chemical treatment
US20130302985A1 (en) * 2012-05-10 2013-11-14 Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") Method of removing residue during semiconductor device fabrication
US9978221B2 (en) 2013-03-22 2018-05-22 Igt Gaming system and method for providing a multiple dimension symbol game with expanding wild symbols
US9529265B2 (en) 2014-05-05 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method of preparing and using photosensitive material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100700A (ja) * 1998-09-22 2000-04-07 Toshiba Corp パターン形成方法およびハイブリッド露光方法
JP2002055432A (ja) * 2000-08-10 2002-02-20 Matsushita Electric Ind Co Ltd フォトマスク装置及びパターン形成方法
JP2004103999A (ja) * 2002-09-12 2004-04-02 Renesas Technology Corp 半導体装置の製造方法
JP2005079226A (ja) * 2003-08-29 2005-03-24 Renesas Technology Corp 半導体装置の製造方法
JP2005150494A (ja) * 2003-11-18 2005-06-09 Sony Corp 半導体装置の製造方法
JP2008306143A (ja) * 2007-06-11 2008-12-18 Toshiba Corp パターン形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235440B1 (en) * 1999-11-12 2001-05-22 Taiwan Semiconductor Manufacturing Company Method to control gate CD
WO2001084242A1 (en) * 2000-05-03 2001-11-08 Caliper Technologies Corp. Multi depth substrate fabrication processes
US6534224B2 (en) * 2001-01-30 2003-03-18 Advanced Micro Devices, Inc. Phase shift mask and system and method for making the same
US6852471B2 (en) * 2001-06-08 2005-02-08 Numerical Technologies, Inc. Exposure control for phase shifting photolithographic masks
US7015148B1 (en) * 2004-05-25 2006-03-21 Advanced Micro Devices, Inc. Reduce line end pull back by exposing and etching space after mask one trim and etch
TWI389334B (zh) * 2004-11-15 2013-03-11 Verticle Inc 製造及分離半導體裝置之方法
US20070092844A1 (en) * 2005-10-21 2007-04-26 Macronix International Co., Ltd. Method to form photo patterns
US20070099424A1 (en) * 2005-10-28 2007-05-03 Texas Instruments Incorporated Reduction of mechanical stress on pattern specific geometries during etch using double pattern layout and process approach
US7951722B2 (en) * 2007-08-08 2011-05-31 Xilinx, Inc. Double exposure semiconductor process for improved process margin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100700A (ja) * 1998-09-22 2000-04-07 Toshiba Corp パターン形成方法およびハイブリッド露光方法
JP2002055432A (ja) * 2000-08-10 2002-02-20 Matsushita Electric Ind Co Ltd フォトマスク装置及びパターン形成方法
JP2004103999A (ja) * 2002-09-12 2004-04-02 Renesas Technology Corp 半導体装置の製造方法
JP2005079226A (ja) * 2003-08-29 2005-03-24 Renesas Technology Corp 半導体装置の製造方法
JP2005150494A (ja) * 2003-11-18 2005-06-09 Sony Corp 半導体装置の製造方法
JP2008306143A (ja) * 2007-06-11 2008-12-18 Toshiba Corp パターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010295A (ja) * 2012-06-29 2014-01-20 Fujitsu Semiconductor Ltd マスクパターンの形成方法

Also Published As

Publication number Publication date
US8384164B1 (en) 2013-02-26
CA2693228A1 (en) 2009-02-12
EP2176710A1 (en) 2010-04-21
US7951722B2 (en) 2011-05-31
JP5167563B2 (ja) 2013-03-21
TWI463531B (zh) 2014-12-01
CA2693228C (en) 2013-09-24
CN101784959A (zh) 2010-07-21
WO2009020979A1 (en) 2009-02-12
EP2176710B1 (en) 2017-11-08
TW200910421A (en) 2009-03-01
US20090042389A1 (en) 2009-02-12
CN101784959B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5167563B2 (ja) 処理マージンの向上のための複式露光半導体処理
US7879727B2 (en) Method of fabricating a semiconductor device including a pattern of line segments
TWI523074B (zh) 製造半導體結構的方法
US7648918B2 (en) Method of pattern formation in semiconductor fabrication
US8518820B2 (en) Methods for forming contacts in semiconductor devices
US8309462B1 (en) Double spacer quadruple patterning with self-connected hook-up
TWI709165B (zh) 微影圖案化的方法
US7368226B2 (en) Method for forming fine patterns of semiconductor device
US7674703B1 (en) Gridded contacts in semiconductor devices
KR100295426B1 (ko) 배선형성방법
US20130045591A1 (en) Negative tone develop process with photoresist doping
TWI467655B (zh) 半導體裝置中形成開口之方法及半導體裝置
US9791775B2 (en) Lithography process on high topology features
US8349528B2 (en) Semiconductor devices and methods of manufacturing thereof
US11688610B2 (en) Feature patterning using pitch relaxation and directional end-pushing with ion bombardment
KR100598169B1 (ko) 반도체 소자의 콘택 형성 방법
CN111383920B (zh) 半导体结构及其形成方法
JP2003008017A (ja) 半導体装置の製造方法
Yamada et al. Enabling 35nm Double patterning Contact imaging using a novel CD shrink Process
KR20060075077A (ko) 반도체 소자의 제조방법
KR20060076368A (ko) 반도체 소자의 제조방법
JP2004177883A (ja) パターン形成方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

R150 Certificate of patent or registration of utility model

Ref document number: 5167563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250