JP2010275970A - 内燃機関の可変バルブタイミング制御装置 - Google Patents

内燃機関の可変バルブタイミング制御装置 Download PDF

Info

Publication number
JP2010275970A
JP2010275970A JP2009131190A JP2009131190A JP2010275970A JP 2010275970 A JP2010275970 A JP 2010275970A JP 2009131190 A JP2009131190 A JP 2009131190A JP 2009131190 A JP2009131190 A JP 2009131190A JP 2010275970 A JP2010275970 A JP 2010275970A
Authority
JP
Japan
Prior art keywords
control
holding
valve timing
vct phase
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131190A
Other languages
English (en)
Inventor
Yuichi Takemura
優一 竹村
Masaomi Inoue
正臣 井上
Minoru Wada
実 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009131190A priority Critical patent/JP2010275970A/ja
Publication of JP2010275970A publication Critical patent/JP2010275970A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】可変バルブタイミング装置において、保持デューティの学習値のずれがVCT位相(バルブタイミング)のフィードバック制御の安定性に及ぼす影響を低減する。
【解決手段】可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域(進角方向のばね力が作用するばね有り領域Aと当該ばね力が作用しないばね無し領域B)を持つ構成となっている。所定の保持デューティ学習実行条件が成立しているときに、VCT位相をばね有り領域A(遅角側の制御領域)とばね無し領域B(進角側の制御領域)に制御して各領域A,Bの保持デューティを学習し、両方の領域A,Bの保持デューティ学習値の中間に、両方の領域A,Bで共通して使用する基準保持デューティを設定する。基準保持デューティが設定されている場合は、両方の領域A,Bで保持デューティとして基準保持デューティを用いてVCT位相をフィードバック制御する。
【選択図】図6

Description

本発明は、内燃機関のクランク軸に対するカム軸の回転位相(以下「VCT位相」という)の制御特性が異なる複数の制御領域を持つ内燃機関の可変バルブタイミング制御装置に関する発明である。
近年、車両に搭載される内燃機関においては、出力向上、燃費節減、エミッション低減等を目的として、内燃機関の吸気バルブや排気バルブのバルブタイミング(開閉タイミング)を変化させる油圧駆動式の可変バルブタイミング装置を搭載したものが増加しつつある。この油圧駆動式の可変バルブタイミング装置は、特許文献1(特開2007−224744号公報)、特許文献2(特開2004−251254号公報)に記載されているように、可変バルブタイミング装置を駆動する油圧を制御する油圧制御弁の制御量(制御デューティ)を演算する際に、目標バルブタイミング(目標VCT位相)と実バルブタイミング(実VCT位相)との偏差に応じたフィードバック制御量と、実バルブタイミングを一定に保持するのに必要な保持制御量(保持デューティ)とに基づいて油圧制御弁の制御量を設定し、この制御量で油圧制御弁を駆動して可変バルブタイミング装置の進角室や遅角室に供給する作動油の流量(油圧)を変化させることで、バルブタイミングを進角又は遅角させるようにしている。
この際、可変バルブタイミング装置や油圧制御弁の製造ばらつきや経時変化によって保持制御量が変動することを考慮して、保持制御量を学習するようにしている。従来の保持制御量の学習処理は、実バルブタイミングが目標バルブタイミングにほぼ一致して安定しているときに(両者の偏差が所定値以内の状態が続くときに)、その時点の油圧制御弁の制御量を保持制御量として学習(更新記憶)するようにしている。
また、油圧駆動式の可変バルブタイミング装置においては、特許文献3(特開平9−324613号公報)、特許文献4(特開2001−159330号公報)に記載されているように、エンジン停止時のロック位相をVCT位相の調整可能範囲の略中間に設定して、バルブタイミング(VCT位相)の調整可能範囲を拡大するようにしたものがある。このものは、エンジン停止時にロックする中間ロック位相を始動に適した位相に設定して、この中間ロック位相で始動し、始動完了後のエンジン回転上昇(オイルポンプ回転上昇)により油圧が適正な油圧に上昇してから、ロックを解除してVCT位相のフィードバック制御を開始するようにしている。
特開2007−224744号公報 特開2004−251254号公報 特開平9−324613号公報 特開2001−159330号公報
ところで、上記特許文献3,4のような中間ロック機構付きの可変バルブタイミング装置は、後述するようにVCT位相の制御特性が異なる複数の制御領域を持っている。各制御領域毎にVCT位相の制御特性が異なれば、保持制御量も各制御領域毎に異なる。
しかし、従来の保持制御量の学習方法は、制御領域とは関係なく、保持制御量を学習するようにしているため、制御領域によっては、保持制御量学習値のずれが大きくなり、オーバーシュートやハンチングが発生しやすくなってVCT位相制御の安定性が低下してしまう可能性がある。
そこで、本発明が解決しようとする課題は、保持制御量の学習値のずれがVCT位相制御の安定性に及ぼす影響を低減できる内燃機関の可変バルブタイミング制御装置を提供することにある。
上記課題を解決するために、請求項1に係る発明は、内燃機関のクランク軸に対するカム軸の回転位相(以下「VCT位相」という)を変化させてバルブタイミングを調整する油圧駆動式の可変バルブタイミング装置を駆動する油圧を制御する内燃機関の可変バルブタイミング制御装置において、実VCT位相を目標VCT位相に一致させるように前記可変バルブタイミング装置の制御量(以下「VCT制御量」という)をフィードバック制御する可変バルブタイミング制御手段と、所定の保持制御量学習実行条件が成立しているときに前記VCT制御量に基づいて前記実VCT位相を一定に保持するのに必要な保持制御量を学習する保持制御量学習手段とを備え、前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、前記保持制御量学習手段は、前記保持制御量学習実行条件が成立しているときにVCT位相を各制御領域に制御して各制御領域の保持制御量を学習し、前記各制御領域の保持制御量に基づいて全ての制御領域で共通して使用する基準保持制御量を設定し、前記可変バルブタイミング制御手段は、前記基準保持制御量が設定されている場合は、全ての制御領域で前記保持制御量として前記基準保持制御量を用いてVCT位相を制御するようにしたものである。
この構成では、VCT位相の制御特性が異なる複数の制御領域を持つことを考慮して、各制御領域の保持制御量を学習し、各制御領域の保持制御量に基づいて全ての制御領域で共通して使用する基準保持制御量を設定するようにしたので、各制御領域の実際の保持制御量と共通使用する保持制御量学習値(基準保持制御量)とのずれを小さくすることが可能となり、保持制御量学習値のずれがVCT位相制御の安定性に及ぼす影響を低減できる。しかも、全ての制御領域で基準保持制御量を共通して使用できるため、VCT位相制御の演算処理が複雑になることを防止できる。
この場合、請求項2のように、基準保持制御量を各制御領域の保持制御量の中間に位置する保持制御量に設定するようにすると良い。このようにすれば、最適な基準保持制御量を設定できる。
また、請求項3のように、前記保持制御量学習実行条件は、少なくとも、車両の走行性に影響しない運転条件であれば良く、これにより、車両の走行性に影響を与えることなく各制御領域の保持制御量を学習できる。
例えば、請求項4のように、前記車両の走行性に影響しない運転条件は、少なくとも、始動後のアイドル期間又は走行中の燃料カット期間であれば良い。
本発明は、吸気側、排気側のいずれの可変バルブタイミング装置にも適用可能であるが、吸気側の可変バルブタイミング装置に適用する場合は、請求項5のように、冷間始動後に吸気バルブのVCT位相(以下「吸気VCT位相」という)を進角させて触媒早期暖機制御を実行する触媒早期暖機制御手段を備え、前記保持制御量学習手段は、触媒早期暖機制御の実行中に吸気VCT位相を最進角位相の所定量手前で保持して進角側の制御領域の保持制御量を学習し、触媒早期暖機制御の終了後に吸気VCT位相を遅角側の制御領域に移動させて当該遅角側の制御領域の保持制御量を学習するようにすると良い。このようにすれば、冷間始動後の触媒早期暖機制御を利用して進角側の制御領域の保持制御量を学習できる。更に、保持制御量の学習完了前は、VCT位相の制御精度が悪いことを考慮して、触媒早期暖機制御の実行中に吸気VCT位相を最進角位相の所定量手前で保持して保持制御量を学習するようにしたので、触媒早期暖機制御の実行中(保持制御量の学習中)に可変バルブタイミング装置のベーン等の部品が最進角位相の端に衝突して衝突音が発生したり当該部品が損傷することを防止できる。
この場合、請求項6のように、前記基準保持制御量が設定されていない場合には、前記基準保持制御量が設定されている場合と比べてVCT位相のフィードバック制御のゲインを小さくするようにすると良い。基準保持制御量が設定されていない場合でも、フィードバック制御のゲインを小さくすることで、VCT位相制御のオーバーシュート/アンダーシュートを防止できる。
また、請求項7のように、前記基準保持制御量が設定されていない場合には、保持制御量の学習を完了した制御領域の保持制御量学習値を用いてVCT位相を制御するようにしても良い。このようにすれば、保持制御量学習値を用いない場合よりもVCT位相制御の精度を向上できる。
この場合、請求項8のように、前記基準保持制御量が設定されていない場合でも複数の制御領域の保持制御量が学習されている場合は、VCT位相の制御方向に応じてオーバーシュート/アンダーシュートが発生しにくい方の制御領域の保持制御量学習値を用いてVCT位相を制御するようにしても良い。このようにすれば、基準保持制御量が設定されていない場合でも、VCT位相制御のオーバーシュート/アンダーシュートを防止できる。
本発明は、VCT位相を駆動する油圧を制御する位相制御用の油圧制御弁とロックピンを駆動する油圧を制御するロック制御用の油圧制御弁とを別々に設けた構成としても良いし、位相制御用の油圧制御弁機能とロック制御用の油圧制御弁機能とを一体化した油圧制御弁を用いた構成としても良い。
位相制御用の油圧制御弁機能とロック制御用の油圧制御弁機能とを一体化した油圧制御弁を用いる場合は、請求項9のように、油圧制御弁の制御量に応じて、VCT位相を遅角方向に駆動する遅角モードの制御領域と、VCT位相を一定に保持する保持モードの制御領域と、VCT位相を進角方向に駆動する進角モードの制御領域と、前記ロックピンを突出させるロックモードの制御領域とに区分し、VCT位相のフィードバック制御の実行中には、前記VCT制御量を前記ロックピンを突出させない所定範囲内に制限すると共に、前記保持制御量学習値を所定の上下限値以内に制限するようにしても良い。このようにすれば、位相制御用の油圧制御弁機能とロック制御用の油圧制御弁機能とを一体化した油圧制御弁を用いるシステムに対しても本発明の制御を適用して実施できる。
また、請求項10のように、実VCT位相を目標VCT位相に一致させるように可変バルブタイミング装置の制御量(以下「VCT制御量」という)をフィードバック制御する可変バルブタイミング制御手段と、所定の保持制御量学習実行条件が成立しているときに前記VCT制御量に基づいて前記実VCT位相を一定に保持するのに必要な保持制御量を学習する保持制御量学習手段と、前記可変バルブタイミング装置を前記保持制御量の学習値で制御したときの実VCT位相と目標VCT位相との偏差を小さくする方向に前記VCT制御量を徐々に補正する目標追従制御を実行する目標追従制御手段とを備え、前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、前記保持制御量学習手段は、前記目標追従制御が実行されている期間中は、前記保持制御量学習手段による保持制御量の学習処理を停止すると共に、当該目標追従制御によるVCT制御量の補正量が所定値を越えた場合に当該所定値を越える分を前記保持制御量の学習値に配分する配分処理を実行するようにしても良い。
要するに、目標追従制御によるVCT制御量の補正量が所定値を越えた場合には、保持制御量の学習値のずれが大きいと判断して、当該所定値を越える分を保持制御量の学習値に配分する配分処理を実行するものである。これにより、保持制御量の学習値のずれが大きい場合には、目標追従制御が実行されている期間中に保持制御量の学習値のずれを部分的に修正することができる。
また、請求項11のように、前記配分処理の実行頻度が所定頻度を越える場合には、保持制御量学習実行条件を厳しくするようにしても良い。要するに、配分処理の実行頻度が高い場合には、保持制御量の学習精度が悪いと判断して、保持制御量学習実行条件を厳しくすることで、保持制御量の学習精度を高めるものである。
或は、請求項12のように、前記配分処理の実行頻度が所定頻度を越える場合に、前記保持制御量の学習完了タイミングを判定するための実VCT位相及び/又は目標VCT位相の安定性を判定する時間(以下「安定判定時間」という)を長くするようにしても良い。要するに、配分処理の実行頻度が高い場合には、保持制御量の学習精度が悪いと判断して、安定判定時間を長くすることで、保持制御量の学習精度を高めるものである。
また、請求項13のように、前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、前記保持制御量学習手段は、前記保持制御量学習実行条件が成立しているときにVCT位相を各制御領域に制御して各制御領域の保持制御量を学習し、前記各制御領域の保持制御量に基づいて全ての制御領域で共通して使用する基準保持制御量を設定し、前記目標追従制御手段は、前記基準保持制御量が更新されたときに当該基準保持制御量と前記保持制御量の学習値との差の範囲内に前記目標追従制御によるVCT制御量の補正量を設定して前記目標追従制御を開始するようにしても良い。このようにすれば、VCT位相の制御特性が異なる複数の制御領域を持つ可変バルブタイミング装置に本発明を適用する場合でも、基準保持制御量の学習と目標追従制御とを組み合わせてVCT位相を精度良く目標VCT位相に制御することができる。
図1は本発明の実施例1を示す制御システム全体の概略構成図である。 図2は可変バルブタイミング装置と油圧制御回路の構成を説明する縦断側面図である。 図3は可変バルブタイミング装置の縦断正面図である。 図4(a)は、油圧制御弁の進角ポート、遅角ポート、ロックピン制御ポートの切り替えパターンを説明する図、同図(b)は、ロックモード、進角モード、保持モード、遅角モードの4つの制御領域と位相変化速度との関係を説明する油圧制御弁の制御特性図である。 図5はばね有り領域Aとばね無し領域Bとの関係を説明する図である。 図6は可変バルブタイミング装置のVCT応答速度特性と各制御領域A,Bの保持デューティと基準保持デューティとの関係を説明する図である。 図7は実施例1の冷間始動後のVCT位相制御の一例を示すタイムチャートである。 図8は実施例1の目標追従制御の一例を示すタイムチャートである。 図9は実施例1の保持デューティ学習実行条件判定ルーチンの処理の流れを示すフローチャートである。 図10は実施例1の基準保持デューティ設定ルーチンの処理の流れを示すフローチャートである。 図11は実施例1の保持デューティ学習・目標追従制御ルーチンの処理の流れを示すフローチャートである。 図12は実施例1の目標追従制御用補正デューティ初期セットルーチンの処理の流れを示すフローチャートである。 図13は実施例1の配分処理ルーチンの処理の流れを示すフローチャートである。 図14は実施例2の保持デューティ学習メインルーチンの処理の流れを示すフローチャートである。 図15は実施例2の保持デューティ学習値更新ルーチンの処理の流れを示すフローチャートである。 図16は実施例2の目標VCT位相判定値・実VCT位相判定値算出ルーチンの処理の流れを示すフローチャートである。 図17は実施例2の保持デューティ学習・目標追従制御ルーチンの処理の流れを示すフローチャートである。
以下、本発明を実施するための形態を吸気バルブの可変バルブタイミング装置に適用して具体化した2つの実施例1,2を説明する。
本発明の実施例1を図1乃至図13に基づいて説明する。
図1に示すように、内燃機関であるエンジン11は、クランク軸12からの動力がタイミングチェーン13により各スプロケット14,15を介して吸気側カム軸16と排気側カム軸17とに伝達されるようになっている。但し、吸気側カム軸16には、クランク軸12に対する吸気側カム軸16の進角量(VCT位相)を調整する可変バルブタイミング装置18(VCT)が設けられている。
また、吸気側カム軸16の外周側には、気筒判別のために特定のカム角でカム角信号パルスを出力するカム角センサ19が設置され、一方、クランク軸12の外周側には、所定クランク角毎にクランク角信号パルスを出力するクランク角センサ20が設置されている。これらカム角センサ19及びクランク角センサ20の出力信号は、エンジン制御回路21に入力され、このエンジン制御回路21によって吸気バルブの実バルブタイミング(実VCT位相)が演算されると共に、クランク角センサ20の出力パルスの周波数(パルス間隔)に基づいてエンジン回転速度が演算される。また、エンジン運転状態を検出する各種センサ(吸気圧センサ22、冷却水温センサ23、スロットルセンサ24等)の出力信号がエンジン制御回路21に入力される。
このエンジン制御回路21は、上記各種センサで検出したエンジン運転状態に応じて燃料噴射制御や点火制御を行うと共に、可変バルブタイミング制御(VCT位相フィードバック制御)を行い、吸気バルブの実バルブタイミング(実VCT位相)を、エンジン運転状態に応じて設定した目標バルブタイミング(目標VCT位相)に一致させるように可変バルブタイミング装置18を駆動する油圧をフィードバック制御する。
次に、図2及び図3に基づいて可変バルブタイミング装置18の構成を説明する。
可変バルブタイミング装置18のハウジング31は、吸気側カム軸16の外周に回動自在に支持されたスプロケット14にボルト32で締め付け固定されている。これにより、クランク軸12の回転がタイミングチェーン13を介してスプロケット14とハウジング31に伝達され、スプロケット14とハウジング31がクランク軸12と同期して回転する。
一方、吸気側カム軸16の一端部には、ロータ35がボルト37で締め付け固定されている。このロータ35は、ハウジング31内に相対回動自在に収納されている。
図3に示すように、ハウジング31の内部には、複数のベーン収容室40が形成され、各ベーン収容室40が、ロータ35の外周部に形成されたベーン41によって進角室42と遅角室43とに区画されている。少なくとも1つのベーン41の両側部には、ハウジング31に対するロータ35(ベーン41)の相対回動範囲を規制するストッパ部56が形成され、このストッパ部56によって実VCT位相(カム軸位相)の調整可能範囲の最遅角位相と最進角位相が規制されている。
可変バルブタイミング装置18には、VCT位相をその調整可能範囲の最遅角位相と最進角位相との間(例えば略中間)に位置する中間ロック位相でロックする中間ロック機構50が設けられている。この中間ロック機構50の構成を説明すると、いずれか1つ又は複数のベーン41にロックピン収容孔57が設けられ、このロックピン収容孔57に、ハウジング31とロータ35(ベーン41)との相対回動をロックするためのロックピン58が突出可能に収容され、このロックピン58がスプロケット14側に突出してスプロケット14のロック穴59に嵌り込むことで、VCT位相がその調整可能範囲の略中間に位置する中間ロック位相でロックされる。この中間ロック位相は、エンジン11の始動に適した位相に設定されている。尚、ロック穴59をハウジング31に設けた構成としても良い。
ロックピン58は、スプリング62によってロック方向(突出方向)に付勢されている。また、ロックピン58の外周部とロックピン収容孔57との間には、ロックピン58をロック解除方向に駆動する油圧を制御するためのロック解除用の油圧室が形成されている。 また、ハウジング31には、進角制御時にロータ35を進角方向に相対回動させる油圧をばね力で補助する付勢手段としてねじりコイルばね等のばね55(図2参照)が設けられている。吸気バルブの可変バルブタイミング装置18では、吸気側カム軸16のトルクがVCT位相を遅角させる方向に作用することから、上記ばね55は、VCT位相を吸気側カム軸16のトルク方向と反対方向である進角方向に付勢することになる。
本実施例1では、図5に示すように、ばね55が作用する範囲は、最遅角位相から中間ロック位相直前までの範囲に設定され、エンジンストール等の異常停止後の再始動時のフェールセーフを想定して、ロックピン58がロックピン収容孔57から外れた状態で中間ロック位相より遅角側の実VCT位相で始動した場合に、スタータ(図示せず)によるクランキング中に、ばね55のばね力により実VCT位相を遅角側から中間ロック位相へ進角させる進角動作を補助してロックピン58をロックピン収容孔57に嵌まり込ませてロックできるように構成されている。
一方、中間ロック位相より進角側の実VCT位相で始動した場合は、クランキング中に吸気側カム軸16のトルクが遅角方向に作用するため、吸気側カム軸16のトルクにより実VCT位相を進角側から中間ロック位相へ遅角させてロックピン58をロックピン収容孔57に嵌まり込ませてロックさせることができる。
また、本実施例1では、可変バルブタイミング装置18のVCT位相及びロックピン58を駆動する油圧を制御する油圧制御装置は、VCT位相を駆動する油圧を制御する位相制御用の油圧制御弁機能とロックピン58を駆動する油圧を制御するロック制御用の油圧制御弁機能とを一体化した油圧制御弁25により構成され、エンジン11の動力によって駆動されるオイルポンプ28により、オイルパン27内のオイル(作動油)が汲み上げられて油圧制御弁25に供給される。この油圧制御弁25は、例えば8ポート・4ポジション型のスプール弁により構成され、図4に示すように、油圧制御弁25の制御デューティ(VCT制御量)に応じて、ロックモード(弱進角モード)、進角モード、保持モード、遅角モードの4つの制御領域に区分されている。
ロックモード(弱進角モード)の制御領域では、油圧制御弁25のロックピン制御ポートをドレンポートに連通させてロックピン収容孔57内のロック解除用油圧室の油圧を抜いて、スプリング62によってロックピン58をロック方向(突出方向)に付勢すると共に、遅角ポートをドレンポートに連通させて遅角室43の油圧を抜いた状態で、油圧制御弁25の制御デューティに応じて、油圧制御弁25の進角ポートの油路の絞りを少しずつ変化させて、進角ポートから進角室42にオイルを少しずつ供給して実VCT位相を緩やかに進角方向に駆動する。
進角モードの制御領域では、油圧制御弁25の遅角ポートをドレンポートに連通させて遅角室43の油圧を抜いた状態で、油圧制御弁25の制御デューティに応じて、油圧制御弁25の進角ポートから進角室42に供給する油圧を変化させて実VCT位相を進角させる。
保持モードの制御領域では、進角室42と遅角室43の両方の油圧を保持して、実VCT位相が動かないように保持する。
遅角モードの制御領域では、油圧制御弁25の進角ポートをドレンポートに連通させて進角室42の油圧を抜いた状態で、油圧制御弁25の制御デューティに応じて、油圧制御弁25の遅角ポートから遅角室43に供給する油圧を変化させて実VCT位相を遅角させる。
ロックモード以外の制御領域(遅角モード、保持モード、進角モード)では、ロックピン収容孔57内のロック解除用油圧室にオイルを充填してロック解除用油圧室の油圧を上昇させ、その油圧によりロックピン58をロック穴59から抜き出してロックピン58のロックを解除する。
尚、本実施例1では、油圧制御弁25の制御デューティが大きくなるに従って、ロックモード(弱進角モード)、進角モード、保持モード、遅角モードの順に制御モードが切り替わるように構成されているが、例えば、油圧制御弁25の制御デューティが大きくなるに従って、遅角モード、保持モード、進角モード、ロックモード(弱進角モード)の順に制御モードが切り替わるように構成したり、或は、遅角モードと進角モードの順序を入れ替えて、ロックモード(弱進角モード)、遅角モード、保持モード、進角モードの順に制御モードが切り替わるように構成しても良い。また、ロックモード(弱進角モード)の制御領域と遅角モードの制御領域とが連続する場合は、ロックモード(弱進角モード)の制御領域では、ロックピン収容孔57内のロック解除用油圧室の油圧を抜いて、スプリング62によってロックピン58をロック方向(突出方向)に付勢すると共に、進角ポートをドレンポートに連通させて進角室42の油圧を抜いた状態で、油圧制御弁25の制御デューティに応じて、遅角ポートの油路の絞りを少しずつ変化させて、遅角ポートから遅角室43にオイルを少しずつ供給して実VCT位相を緩やかに遅角方向に駆動するようにすれば良い。
エンジン制御回路21は、特許請求の範囲でいう可変バルブタイミング制御手段として機能し、VCT位相F/B制御(可変バルブタイミング制御)中に、エンジン運転条件に基づいて目標VCT位相(目標バルブタイミング)を演算して、吸気側カム軸16の実VCT位相(吸気バルブの実バルブタイミング)を目標VCT位相(目標バルブタイミング)に一致させるように油圧制御弁25の制御デューティ(VCT制御量)を例えばPD制御等によりF/B制御して可変バルブタイミング装置18の進角室42と遅角室43に供給する油圧をF/B制御する。ここで、「F/B」は「フィードバック」を意味する(以下、同じ)。
更に、エンジン制御回路21は、所定の保持デューティ学習実行条件(保持制御量学習実行条件)が成立しているときに、油圧制御弁25の制御デューティに基づいて実VCT位相を一定に保持するのに必要な保持デューティ(保持制御量)を学習する保持制御量学習手段としても機能し、VCT位相F/B制御中は、保持デューティ学習値(保持制御量学習値)にF/B制御量を加算して制御デューティを求める。
制御デューティ=保持デューティ学習値+F/B制御量
F/B制御量=Kp ・ΔVT+Kd ・d(ΔVT)/dt
d(ΔVT)/dt=[ΔVT(i) −ΔVT(i-1) ]/dt
ここで、Kp は比例ゲイン、Kd は微分ゲイン、ΔVTは目標VCT位相と実VCT位相との偏差、ΔVT(i) は今回の偏差、ΔVT(i-1) は前回の偏差、dtは演算周期である。後述する基準保持デューティの学習後は、保持デューティ学習値として基準保持デューティが用いられる。
制御デューティ=基準保持デューティ+F/B制御量
また、エンジン制御回路21は、エンジン11を停止させる時等にロック要求が発生したときに、VCT位相を中間ロック位相に向けて移動させると共にロックピン58を突出させてVCT位相を中間ロック位相でロックするロック制御(ロックモードの制御)を実行するように油圧制御弁25を制御する。
図4に示すように、可変バルブタイミング装置18の制御特性は、VCT応答速度が小さい低応答領域(不感帯)の両側にVCT応答速度が低応答領域と比べて大きい高応答領域を有する非線形の制御特性であって、低応答領域に本当の保持デューティ(保持制御量)が存在する。
図5に示すように、実VCT位相の可変範囲の一部のみにばね55のばね力を作用させる構成では、図6に示すように、ばね有り領域AのVCT応答速度特性とばね無し領域BのVCT応答速度特性とが相違し、ばね無し領域BのVCT応答速度特性における保持デューティは、吸気側カム軸16のトルクの影響で進角側の高応答領域に近いところに存在するが、ばね有り領域AのVCT応答速度特性における保持デューティは、ばね55のばね力の影響で遅角側の高応答領域に近いところに存在する。
尚、図5に示すように、ばね有り領域Aとばね無し領域Bとの間には、保持デューティの学習を禁止する学習禁止領域が存在する。ばね55の製造ばらつき・組付ばらつきやばね力の経時変化等によって、ばね55のばね力が作用する範囲の限界位相がばらつくため、本実施例1では、ばね55の製造ばらつき・組付ばらつきやばね力の経時変化があっても、これらの影響を受けずにばね55のばね力が確実に作用する範囲をばね有り領域Aに設定している。従って、このばね有り領域Aに隣接する学習禁止領域では、実際にばね55のばね力が作用しているのか否か不明であり、この学習禁止領域では、本当の保持デューティが進角側と遅角側のどちらの方向に偏倚しているか不明であるため、保持デューティの学習を禁止し、後述する目標追従制御のみを実行して実VCT位相を目標VCT位相に収束させて保持するようにしている。
本実施例1では、エンジン制御回路21は、所定の保持デューティ学習実行条件(保持制御量学習実行条件)が成立しているときに、VCT位相をばね有り領域Aとばね無し領域Bに制御して各領域A,Bの保持デューティを学習し、両方の領域A,Bの保持デューティ学習値の中間に、両方の領域A,Bで共通して使用する基準保持デューティ(基準保持制御量)を設定し、基準保持デューティが設定されている場合は、両方の領域A,Bで保持デューティとして基準保持デューティを用いてVCT位相を制御するようにしている。
保持デューティ学習実行条件は、少なくとも、車両の走行性に影響しない運転条件であれば良く、例えば、始動後のアイドル期間又は走行中の燃料カット期間であれば良い。これにより、車両の走行性に影響を与えることなく各領域A,Bの保持デューティを学習できる。
本実施例1では、エンジン制御回路21は、冷間始動後に吸気バルブのVCT位相を進角させて触媒早期暖機制御を実行する触媒早期暖機制御手段としても機能する。そして、触媒早期暖機制御の実行中に吸気VCT位相を最進角位相の所定量手前で保持して進角側の制御領域(ばね無し領域B)の保持デューティを学習し、触媒早期暖機制御の終了後にVCT位相を遅角側の制御領域(ばね有り領域A)に移動させて当該遅角側の制御領域の保持デューティを学習するようにしている。このようにすれば、冷間始動後の触媒早期暖機制御を利用して進角側の制御領域(ばね無し領域B)の保持デューティを学習することができる。
更に、保持デューティの学習完了前は、VCT位相の制御精度が悪いことを考慮して、触媒早期暖機制御の実行中にVCT位相を最進角位相の所定量手前(最大制御誤差相当分以上手前)で保持して保持デューティを学習するようにしている。これにより、触媒早期暖機制御の実行中(保持デューティの学習中)に可変バルブタイミング装置18のベーン41等の部品が最進角位相の端に衝突して衝突音が発生したり当該部品が損傷することを防止できる。
この場合、基準保持デューティが設定されていない場合には、基準保持デューティが設定されている場合と比べてVCT位相のF/B制御のゲイン(特に比例項のゲイン)を小さくするようにしている。基準保持デューティが設定されていない場合でも、VCT位相のF/B制御のゲインを小さくすることで、VCT位相制御のオーバーシュート/アンダーシュートを防止できる。
また、基準保持デューティが設定されていない場合には、保持デューティの学習を完了した制御領域の保持デューティ学習値を用いてVCT位相を制御するようにしている。このようにすれば、保持デューティ学習値を用いない場合よりもVCT位相制御の精度を向上できる。
更に、本実施例1では、VCT位相F/B制御の実行中には、制御デューティをロックピン58を突出させない所定範囲内に制限すると共に、保持デューティ学習値を所定の上下限値以内に制限するようにしている。
次に、図7を用いて冷間始動後のVCT位相制御の一例を説明する。
冷間始動後には、吸気バルブのVCT位相を進角させて触媒早期暖機制御を実行する。この際、保持デューティの学習完了前は、VCT位相の制御精度が悪いことを考慮して、触媒早期暖機制御の実行中に目標VCT位相を最進角位相の所定量手前(最大制御誤差相当分以上手前)に設定して実VCT位相を進角側の制御領域であるばね無し領域Bに移動させ、ばね無し領域Bの保持デューティを学習する。このばね無し領域Bの保持デューティの学習を完了するまでは、ばね無し領域Bの保持デューティとして、オーバーシュートしにくいデューティ、例えば遅角側の制御領域であるばね有り領域Aの保持デューティ初期値又は学習値を用いて、VCT位相制御のオーバーシュートを防止する。尚、保持デューティ初期値としては、設計値、製造ばらつき範囲の中央値、平均値、標準値等のいずれかを用いれば良い。
ばね無し領域Bの保持デューティ学習完了後は、遅角側の制御領域であるばね有り領域Aの保持デューティの学習が未完了の場合は、進角側で学習したばね無し領域Bの保持デューティ学習値を用いる。
そして、触媒早期暖機制御の終了後は、目標VCT位相を遅角側の制御領域であるばね有り領域Aに設定して、実VCT位相をばね有り領域Aに移動させ、ばね有り領域Aの保持デューティを学習する。
ばね有り領域Aの保持デューティ学習完了後は、両方の領域A,Bの保持デューティ学習値の中間に、両方の領域A,Bで共通して使用する基準保持デューティを設定する。この後、可変バルブタイミング装置18を基準保持デューティで制御したときの実VCT位相と目標VCT位相との偏差を小さくする方向に油圧制御弁25の制御デューティを徐々に補正する目標追従制御を実行する。この際、基準保持デューティが更新されたときに、当該基準保持デューティと保持デューティ学習値との差の範囲内に目標追従制御による補正デューティ(制御デューティの補正量)を設定して目標追従制御を開始するようにしている。このようにすれば、目標追従制御の応答性・追従性を向上させることができ、目標追従制御により実VCT位相をより早期に目標VCT位相に収束させることができる。
次に、図8を用いて目標追従制御の一例を説明する。
基準保持デューティが更新される毎に、当該基準保持デューティと保持デューティ学習値との差の範囲内に目標追従制御による補正デューティを設定し、実VCT位相と目標VCT位相との偏差を小さくする方向に当該補正デューティを徐々に変化させる。そして、基準保持デューティの更新時に、補正デューティが所定値を越えた場合に当該所定値を越える分を基準保持デューティと保持デューティ学習値に配分する配分処理を実行する。これにより、基準保持デューティや保持デューティ学習値のずれが大きい場合には、目標追従制御が実行されている期間中に基準保持デューティや保持デューティ学習値のずれを部分的に修正することができる。
以上説明した本実施例1の基準保持デューティ学習処理とVCT位相制御は、エンジン制御回路21によって図9乃至図13の各ルーチンに従って実行される。以下、これら各ルーチンの処理内容を説明する。
[保持デューティ学習実行条件判定ルーチン]
図9の保持デューティ学習実行条件判定ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ101で、車両の走行性に影響しない運転状態であるか否かを、始動後のアイドル期間中(或は冷間始動後の触媒早期暖機制御実行中)又は走行中の燃料カット期間中であるか否かで判定する。その結果、始動後のアイドル期間(或は冷間始動後の触媒早期暖機制御実行中)、走行中の燃料カット期間のいずれでもないと判定されれば、車両の走行性に影響する運転状態であると判断して、保持デューティ学習実行条件が不成立となり、ステップ104に進み、保持デューティ学習モードフラグをOFFにセットする。この場合は、保持デューティの学習処理は行われない。
これに対し、上記ステップ101で、始動後のアイドル期間中(或は冷間始動後の触媒早期暖機制御実行中)又は走行中の燃料カット期間中であると判定されれば、ステップ102に進み、他のVCT位相制御要求(例えばロック要求、最遅角要求等)が無いか否かを判定し、他のVCT位相制御要求が有れば、保持デューティ学習実行条件が不成立となり、ステップ104に進み、保持デューティ学習モードフラグをOFFにセットする。
上記ステップ102で、他のVCT位相制御要求が無いと判定されれば、保持デューティ学習実行条件が成立していると判断して、ステップ103に進み、保持デューティ学習モードフラグをONにセットする。この場合は、保持デューティの学習処理が実行される。
[基準保持デューティ設定ルーチン]
図10の基準保持デューティ設定ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ201で、両方の領域A,Bの保持デューティの学習を完了したか否かを判定し、両方の領域A,Bの保持デューティの学習を完了していれば、ステップ202に進み、両方の領域A,Bの保持デューティ学習値の中間に、両方の領域A,Bで共通して使用する基準保持デューティを設定して、これをバックアップRAM等のメモリに更新記憶する。
こけに対し、上記ステップ201で、2つの領域A,Bの両方又はいずれか一方の領域の保持デューティの学習が完了していないと判定されれば、ステップ203に進み、基準保持デューティが設定されている場合と比べてVCT位相のF/B制御のゲインを小さくする。この後、ステップ204に進み、現在の制御領域の保持デューティの学習を完了したか否かを判定し、現在の制御領域の保持デューティの学習を完了していれば、ステップ205に進み、現在の制御領域の保持デューティ学習値を基準保持デューティとして設定して、これをバックアップRAM等のメモリに更新記憶する。
一方、上記ステップ204で、現在の制御領域の保持デューティの学習を完了していないと判定されれば、ステップ206に進み、目標VCT位相が実VCT位相より進角側であるか否かを判定し、目標VCT位相が実VCT位相より進角側であれば、ステップ207に進み、遅角側の制御領域であるばね有り領域Aの保持デューティを基準保持デューティに設定して、これをバックアップRAM等のメモリに更新記憶する。この際、ばね有り領域Aの保持デューティの学習値が有れば、その学習値を基準保持デューティに設定し、学習値が無ければ、ばね有り領域Aの保持デューティの初期値を基準保持デューティに設定する。この初期値は、設計値、製造ばらつき範囲の中央値、平均値、標準値等のいずれかを用いれば良い。
また、上記ステップ206で、目標VCT位相が実VCT位相より遅角側であれば、ステップ208に進み、進角側の制御領域であるばね無し領域Bの保持デューティを基準保持デューティに設定して、これをバックアップRAM等のメモリに更新記憶する。この際、ばね無し領域Bの保持デューティの学習値が有れば、その学習値を基準保持デューティに設定し、学習値が無ければ、ばね無し領域Bの保持デューティの初期値を基準保持デューティに設定する。この初期値は、設計値、製造ばらつき範囲の中央値、平均値、標準値等のいずれかを用いれば良い。
[保持デューティ学習・目標追従制御ルーチン]
図11の保持デューティ学習・目標追従制御ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ301で、VCT位相制御モードであるか否かを判定し、VCT位相制御モードでは無い場合(例えばロック制御モード等である場合)には、以降の処理を行うことなく、本ルーチンを終了する。
一方、上記ステップ301で、VCT位相制御モードであると判定されれば、ステップ302に進み、少なくとも一方の制御領域の保持デューティの学習を完了したか否かを判定し、当該保持デューティの学習を完了していなければ、以降の処理を行うことなく、本ルーチンを終了する。
上記ステップ302で、保持デューティの学習完了と判定されれば、ステップ303に進み、保持デューティの学習値を更新した直後(学習値更新後の最初の本ルーチンの起動時)であるか否かを判定し、学習値更新直後であれば、ステップ304に進み、後述する図12の目標追従制御用補正デューティ初期セットルーチンを実行して、目標追従制御の補正デューティ初期値をセットする。
この後、ステップ305に進み、保持デューティ学習値の更新を禁止して、次のステップ306で、目標追従制御の実行を許可する。そして、次のステップ307で、目標追従制御の補正デューティが所定値以上であるか否かを判定し、当該補正デューティが所定値以上であれば、保持デューティ学習値のずれ(誤差)が大き過ぎると判断して、ステップ308に進み、補正デューティのうちの所定値を越える分を保持デューティ学習値に配分する配分処理を実行する。
一方、上記ステップ307で、補正デューティが所定値未満であると判定されれば、保持デューティ学習値のずれが小さい(適正範囲内)と判断して、そのまま本ルーチンを終了する。
[目標追従制御用補正デューティ初期セットルーチン]
図12の目標追従制御用補正デューティ初期セットルーチンは、図11の保持デューティ学習・目標追従制御ルーチンのステップ304で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ311で、基準保持デューティと保持デューティ学習値との差分の絶対値が制御デューティの比例項(P項)の絶対値よりも大きいか否かを判定する。その結果、基準保持デューティと保持デューティ学習値との差分の絶対値が制御デューティの比例項(P項)の絶対値よりも大きいと判定されれば、補正デューティの初期値をオフセットさせる必要があると判断して、ステップ312に進み、基準保持デューティと保持デューティ学習値との差分に補正係数α(但し0≦α≦1)を乗算して補正デューティを求める。
補正デューティ=α×(基準保持デューティ−保持デューティ学習値)
ここで、補正係数αは、VCT位相を動かしたい方向に緩やかに動かせるための補正係数である。もし、制御デューティの比例項(P項)が基準保持デューティと保持デューティ学習値との差分の絶対値よりも小さいと、基準保持デューティに比例項(P項)を加算した値を制御デューティとして駆動しても、VCT位相を動かしたい方向に動かすことができず、反対方向に動いてしまう。
これに対し、上記ステップ311で、基準保持デューティと保持デューティ学習値との差分の絶対値が制御デューティの比例項(P項)の絶対値以下であると判定されれば、補正デューティの初期値をオフセットさせる必要はないと判断して、そのまま本ルーチンを終了する。この場合は、補正デューティの初期値は0となる。
[配分処理ルーチン]
図13の配分処理ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ401で、実VCT位相がばね無し領域B(進角側の制御領域)に存在するか否かを判定し、実VCT位相がばね無し領域Bに存在しなければ、ステップ401〜405の処理を飛び越してステップ405の処理に進む。
上記ステップ401で、実VCT位相がばね無し領域Bに存在すると判定されれば、ステップ402に進み、補正デューティがマイナスの所定値β1よりも小さいか否かを判定し、補正デューティが所定値β1以上であれば、ステップ405の処理に進む。
一方、上記ステップ402で、補正デューティが所定値β1よりも小さいと判定されれば、ステップ403に進み、ばね無し領域Bの保持デューティを次式により算出する。
ばね無し領域Bの保持デューティ
=現在の保持デューティ+2・(補正デューティ−β1)
この後、ステップ404に進み、補正デューティを所定値β1に変更して、ステップ405に進む。
このステップ405では、実VCT位相がばね有り領域A(遅角側の制御領域)に存在するか否かを判定し、実VCT位相がばね有り領域Aに存在しなければ、以降の処理を行わず、本ルーチンを終了する。
上記ステップ405で、実VCT位相がばね有り領域Aに存在すると判定されれば、ステップ406に進み、補正デューティがプラスの所定値β2よりも大きいか否かを判定し、補正デューティが所定値β2以下と判定されれば、そのまま本ルーチンを終了する。
一方、上記ステップ406で、補正デューティが所定値β2よりも大きいと判定されれば、ステップ407に進み、ばね有り領域Aの保持デューティを次式により算出する。
ばね有り領域Aの保持デューティ
=現在の保持デューティ+2・(補正デューティ−β2)
この後、ステップ408に進み、補正デューティを所定値β2に変更して本ルーチンを終了する。
以上説明した本実施例1によれば、VCT位相の制御特性が異なる2つの制御領域A,Bを持つことを考慮して、2つの制御領域A,Bの保持デューティを学習し、両方の制御領域A,Bの保持デューティの中間に、両方の制御領域A,Bで共通して使用する基準保持デューティを設定するようにしたので、各制御領域A,Bの実際の保持デューティと共通使用する基準保持デューティとのずれを小さくすることが可能となり、基準保持デューティのずれがVCT位相制御の安定性に及ぼす影響を低減できる。しかも、両方の制御領域A,Bで基準保持デューティを共通して使用できるため、VCT位相制御の演算処理が複雑になることを防止できる。
尚、本実施例1では、両方の制御領域A,Bの保持デューティの中間に、両方の制御領域A,Bで共通して使用する基準保持デューティを設定するようにしたが、両方の制御領域A,Bの保持デューティの中間からどちらかの方向に少しずらした位置に基準保持デューティを設定するようにしても良い。
次に、図14乃至図17を用いて本発明の実施例2を説明する。
本実施例2においても、エンジン制御回路21は、実VCT位相を目標VCT位相に一致させるように油圧制御弁25の制御デューティをF/B制御する可変バルブタイミング制御手段と、所定の保持デューティ学習実行条件が成立しているときに保持デューティを学習する保持制御量学習手段と、可変バルブタイミング装置18を保持デューティ学習値で制御したときの実VCT位相と目標VCT位相との偏差を小さくする方向に制御デューティを徐々に補正する目標追従制御を実行する目標追従制御手段として機能すると共に、可変バルブタイミング装置18は、VCT位相の制御特性が異なる2つの制御領域A,Bを持つように構成されている。
更に、本実施例2では、目標追従制御が実行されている期間中は、保持デューティの学習処理を停止すると共に、当該目標追従制御による補正デューティが所定値を越えた場合に当該所定値を越える分を保持デューティに配分する配分処理を実行するようにしている。この際、配分処理の実行頻度が所定頻度を越える場合には、保持デューティの学習完了タイミングを判定するための実VCT位相及び/又は目標VCT位相の安定性を判定する時間(以下「安定判定時間」という)を長くするようにしている。要するに、配分処理の実行頻度が高い場合には、保持デューティの学習精度が悪いと判断して、安定判定時間を長くすることで、保持デューティの学習精度を高めるものである。
或は、配分処理の実行頻度が所定頻度を越える場合には、保持デューティ学習実行条件を厳しくするようにしても良い。このようにしても、保持デューティの学習精度を高めることができる。
また、本実施例2では、前記実施例1と同様の方法で、各制御領域A,Bの保持デューティを学習し、各制御領域A,Bの保持デューティに基づいて2つの制御領域A,Bで共通して使用する基準保持デューティを設定し、基準保持デューティが更新されたときに当該基準保持デューティと保持デューティ学習値との差の範囲内に目標追従制御による補正デューティを設定して目標追従制御を開始するようにしている。
以上説明した本実施例2の保持デューティの学習処理とVCT位相制御は、エンジン制御回路21によって図14乃至図17の各ルーチンに従って実行される。以下、これら各ルーチンの処理内容を説明する。
[保持デューティ学習メインルーチン]
図14の保持デューティ学習メインルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ501で、目標VCT位相が安定しているか否かを判定し、目標VCT位相が安定していなければ、ステップ502〜507の処理を飛び越して、ステップ508の処理に進む。これに対し、上記ステップ501で、目標VCT位相が安定していると判定されれば、ステップ502に進み、目標VCT位相の安定状態が継続する目標VCT位相安定時間をカウントする。
この後、ステップ503に進み、実VCT位相が安定しているか否かを判定し、実VCT位相が安定していなければ、ステップ504〜507の処理を飛び越して、ステップ508の処理に進む。これに対し、上記ステップ503で、実VCT位相が安定していると判定されれば、ステップ504に進み、実VCT位相の安定状態が継続する実VCT位相安定時間をカウントする。
この後、ステップ505に進み、保持デューティ学習値更新のための目標VCT位相判定値K1と実VCT位相判定値K2をマップ等により算出する。この後、ステップ506に進み、(1) 目標VCT位相安定時間が目標VCT位相判定値K1よりも長く、且つ(2) 実VCT位相安定時間が実VCT位相判定値K2よりも長いか否かを判定し、これら2つの条件(1) ,(2) のうち、いずれか一方でも満たさない条件があれば、保持デューティ学習値更新タイミング(保持デューティ学習完了タイミング)ではないと判断して、以降の処理を行うことなく、本ルーチンを終了する。
これに対し、2つの条件(1) ,(2) を両方とも満たせば、保持デューティ学習値更新タイミングであると判断して、ステップ507に進み、後述する図15の保持デューティ学習値更新ルーチンを実行して保持デューティ学習値を更新する。この後、ステップ508に進み、目標VCT位相安定時間のカウント値をリセットし、次のステップ509で、実VCT位相安定時間のカウント値をリセットして本ルーチンを終了する。
[保持デューティ学習値更新ルーチン]
図15の保持デューティ学習値更新ルーチンは、図14の保持デューティ学習メインルーチンのステップ507で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ601で、目標VCT位相がばね無し領域Bに存在するか否かを判定し、目標VCT位相がばね無し領域Bに存在すれば、ステップ602に進み、現在の制御デューティをばね無し領域Bの保持デューティ学習値としてバックアップRAM等のメモリに更新記憶する。
これに対し、上記ステップ601で、目標VCT位相がばね無し領域Bに存在しないと判定されれば、ステップ603に進み、目標VCT位相がばね有り領域Aに存在するか否かを判定し、目標VCT位相がばね有り領域Aに存在すれば、ステップ604に進み、現在の制御デューティをばね有り領域Aの保持デューティ学習値としてバックアップRAM等のメモリに更新記憶する。尚、上記ステップ601とステップ603でいずれも「No」と判定されれば、保持デューティ学習値を更新せずに本ルーチンを終了する。
以上のようにして、目標VCT位相と実VCT位相が安定する時間がそれぞれ判定値K1,K2以上になったときに、その時点の制御デューティを保持デューティとして学習する。
[目標VCT位相判定値・実VCT位相判定値算出ルーチン]
図16の目標VCT位相判定値・実VCT位相判定値算出ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ701で、後述する図17のルーチンのステップ303aでカウントした保持デューティ学習値の更新回数が所定回数K3以上になったか否かを判定し、まだ保持デューティ学習値の更新回数が所定回数K3未満であれば、以降の処理を行うことなく、本ルーチンを終了する。
その後、保持デューティ学習値の更新回数が所定回数K3以上になった時点で、上記ステップ701で「Yes」と判定されて、ステップ702に進み、後述する図17のルーチンのステップ307aでカウントした配分処理の実行回数が所定回数K4以上であるか否かを判定する。その結果、配分処理の実行回数が所定回数K4未満と判定されれば、配分処理の実行頻度(保持デューティ学習値更新回数K3当たりの配分処理実行回数K4)が比較的少ないと判断して、ステップ704に進み、目標VCT位相判定値K1と実VCT位相判定値K2をともに前回値と同じ値に維持し、これらを変更しない。
これに対し、上記ステップ702で、配分処理の実行回数が所定回数K4以上であると判定されれば、ステップ703に進み、配分処理の実行頻度が高すぎると判断して、ステップ703に進み、目標VCT位相判定値K1と実VCT位相判定値K2をそれぞれ前回値よりも所定値aずつ増加させる。この後、ステップ705に進み、保持デューティ学習値の更新回数のカウント値と配分処理の実行回数のカウント値をそけれぞれリセットして本ルーチンを終了する。
要するに、目標VCT位相安定時間と実VCT位相安定時間が不足すると、保持デューティの学習精度が悪化して保持デューティ学習値のずれが大きくなるため、目標追従制御の補正デューティが大きくなって、配分処理の実行頻度が高くなる。そこで、配分処理の実行頻度が高い場合は、目標VCT位相安定時間と実VCT位相安定時間が不足すると判断して、目標VCT位相判定値K1と実VCT位相判定値K2をそれぞれ長くするものである。尚、目標VCT位相判定値K1と実VCT位相判定値K2のどちらか一方のみを長くするようにしても良い。
[保持デューティ学習・目標追従制御ルーチン]
図17の保持デューティ学習・目標追従制御ルーチンは、エンジン制御回路21の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行される。図17の保持デューティ学習・目標追従制御ルーチンは、前記実施例1で説明した図11の保持デューティ学習・目標追従制御ルーチンのステップ303とステップ307の次にそれぞれステップ303aとステップ307aの処理を追加しただけであり、それ以外の各ステップの処理は同じである。
図17の保持デューティ学習・目標追従制御ルーチンでは、ステップ303で、保持デューティの学習値を更新した直後(学習値更新後の最初の本ルーチンの起動時)であると判定される毎に、ステップ303aに進み、保持デューティ学習値の更新回数をカウントアップする。また、ステップ307で、目標追従制御の補正デューティが所定値以上であると判定される毎に、ステップ307aに進み、配分処理の実行回数をカウントアップする。これらの処理により、保持デューティ学習値の更新回数と配分処理の実行回数をそれぞれカウントする。
尚、本発明は、上記各実施例1,2に限定されず、VCT位相を駆動する油圧を制御するVCT位相制御用の油圧制御弁とロックピン58を駆動する油圧を制御するロック制御用の油圧制御弁とを別々に設けた構成としても良い。
また、上記実施例1,2は、本発明を吸気バルブの可変バルブタイミング装置に適用して具体化した実施例であるが、排気バルブの可変バルブタイミング制御装置に適用して実施しても良い。本発明を排気バルブの可変バルブタイミング制御装置に適用する場合は、排気バルブのVCT位相の制御方向(「進角」と「遅角」の関係)を吸気バルブのVCT位相の制御方向とは反対にすれば良い。
その他、本発明は、可変バルブタイミング装置18の構成や油圧制御弁25の構成等を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
11…エンジン(内燃機関)、12…クランク軸、13…タイミングチェーン、14,15…スプロケット、16…吸気カム軸、17…排気カム軸、18…可変バルブタイミング装置(VCT)、19…カム角センサ、20…クランク角センサ、21…エンジン制御回路(可変バルブタイミング制御手段,保持制御量学習手段,触媒早期暖機制御手段,目標追従制御手段)、23…冷却水温センサ、25…油圧制御弁(油圧制御装置)、28…オイルポンプ、31…ハウジング、35…ロータ、40…ベーン収容室、41…ベーン、42…進角室、43…遅角室、50…中間ロック機構、55…ばね、58…ロックピン、59…ロック穴

Claims (13)

  1. 内燃機関のクランク軸に対するカム軸の回転位相(以下「VCT位相」という)を変化させてバルブタイミングを調整する油圧駆動式の可変バルブタイミング装置を駆動する油圧を制御する内燃機関の可変バルブタイミング制御装置において、
    実VCT位相を目標VCT位相に一致させるように前記可変バルブタイミング装置の制御量(以下「VCT制御量」という)をフィードバック制御する可変バルブタイミング制御手段と、
    所定の保持制御量学習実行条件が成立しているときに前記VCT制御量に基づいて前記実VCT位相を一定に保持するのに必要な保持制御量を学習する保持制御量学習手段とを備え、
    前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、
    前記保持制御量学習手段は、前記保持制御量学習実行条件が成立しているときにVCT位相を各制御領域に制御して各制御領域の保持制御量を学習し、前記各制御領域の保持制御量に基づいて全ての制御領域で共通して使用する基準保持制御量を設定し、
    前記可変バルブタイミング制御手段は、前記基準保持制御量が設定されている場合は、全ての制御領域で前記保持制御量として前記基準保持制御量を用いてVCT位相を制御することを特徴とする内燃機関の可変バルブタイミング制御装置。
  2. 前記保持制御量学習手段は、前記基準保持制御量を前記各制御領域の保持制御量の中間に位置する保持制御量に設定することを特徴とする請求項1に記載の内燃機関の可変バルブタイミング制御装置。
  3. 前記保持制御量学習実行条件は、少なくとも、車両の走行性に影響しない運転条件であることを特徴とする請求項1又は2に記載の内燃機関の可変バルブタイミング制御装置。
  4. 前記車両の走行性に影響しない運転条件は、少なくとも、始動後のアイドル期間又は走行中の燃料カット期間に該当することであることを特徴とする請求項3に記載の内燃機関の可変バルブタイミング制御装置。
  5. 前記可変バルブタイミング装置は、吸気バルブのVCT位相(以下「吸気VCT位相」という)を変化させる吸気側の可変バルブタイミング装置であり、
    冷間始動後に吸気VCT位相を進角させて触媒早期暖機制御を実行する触媒早期暖機制御手段を備え、
    前記保持制御量学習手段は、触媒早期暖機制御の実行中に吸気VCT位相を最進角位相の所定量手前で保持して進角側の制御領域の保持制御量を学習し、触媒早期暖機制御の終了後に吸気VCT位相を遅角側の制御領域に移動させて当該遅角側の制御領域の保持制御量を学習することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  6. 前記可変バルブタイミング制御手段は、前記基準保持制御量が設定されていない場合には、前記基準保持制御量が設定されている場合と比べてVCT位相のフィードバック制御のゲインを小さくすることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  7. 前記可変バルブタイミング制御手段は、前記基準保持制御量が設定されていない場合には、保持制御量の学習を完了した制御領域の保持制御量学習値を用いてVCT位相を制御することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  8. 前記可変バルブタイミング制御手段は、前記基準保持制御量が設定されていない場合でも複数の制御領域の保持制御量が学習されている場合は、VCT位相の制御方向に応じてオーバーシュート/アンダーシュートが発生しにくい方の制御領域の保持制御量学習値を用いてVCT位相を制御することを特徴とする請求項1乃至7のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  9. VCT位相を駆動する油圧を制御する位相制御用の油圧制御弁機能とVCT位相を所定位相でロックするロックピンを駆動する油圧を制御するロック制御用の油圧制御弁機能とを一体化した油圧制御弁を用い、該油圧制御弁の制御量に応じて、VCT位相を遅角方向に駆動する遅角モードの制御領域と、VCT位相を一定に保持する保持モードの制御領域と、VCT位相を進角方向に駆動する進角モードの制御領域と、前記ロックピンを突出させるロックモードの制御領域とに区分され、
    前記可変バルブタイミング制御手段は、VCT位相のフィードバック制御の実行中には、前記VCT制御量を前記ロックピンを突出させない所定範囲内に制限すると共に、前記保持制御量学習値を所定の上下限値以内に制限することを特徴とする請求項1乃至8のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  10. 内燃機関のクランク軸に対するカム軸の回転位相(以下「VCT位相」という)を変化させてバルブタイミングを調整する油圧駆動式の可変バルブタイミング装置を駆動する油圧を制御する内燃機関の可変バルブタイミング制御装置において、
    実VCT位相を目標VCT位相に一致させるように前記可変バルブタイミング装置の制御量(以下「VCT制御量」という)をフィードバック制御する可変バルブタイミング制御手段と、
    所定の保持制御量学習実行条件が成立しているときに前記VCT制御量に基づいて前記実VCT位相を一定に保持するのに必要な保持制御量を学習する保持制御量学習手段と、 前記可変バルブタイミング装置を前記保持制御量の学習値で制御したときの実VCT位相と目標VCT位相との偏差を小さくする方向に前記VCT制御量を徐々に補正する目標追従制御を実行する目標追従制御手段とを備え、
    前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、
    前記保持制御量学習手段は、前記目標追従制御が実行されている期間中は、前記保持制御量学習手段による保持制御量の学習処理を停止すると共に、当該目標追従制御によるVCT制御量の補正量が所定値を越えた場合に当該所定値を越える分を前記保持制御量の学習値に配分する配分処理を実行することを特徴とする内燃機関の可変バルブタイミング制御装置。
  11. 前記保持制御量学習手段は、前記配分処理の実行頻度が所定頻度を越える場合に前記保持制御量学習実行条件を厳しくすることを特徴とする請求項10に記載の内燃機関の可変バルブタイミング制御装置。
  12. 前記保持制御量学習手段は、前記配分処理の実行頻度が所定頻度を越える場合に、前記保持制御量の学習完了タイミングを判定するための実VCT位相及び/又は目標VCT位相の安定性を判定する時間を長くすることを特徴とする請求項10又は11に記載の内燃機関の可変バルブタイミング制御装置。
  13. 前記可変バルブタイミング装置は、VCT位相の制御特性が異なる複数の制御領域を持つように構成され、
    前記保持制御量学習手段は、前記保持制御量学習実行条件が成立しているときにVCT位相を各制御領域に制御して各制御領域の保持制御量を学習し、前記各制御領域の保持制御量に基づいて全ての制御領域で共通して使用する基準保持制御量を設定し、
    前記目標追従制御手段は、前記基準保持制御量が更新されたときに当該基準保持制御量と前記保持制御量の学習値との差の範囲内に前記目標追従制御によるVCT制御量の補正量を設定して前記目標追従制御を開始することを特徴とする請求項10乃至12のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
JP2009131190A 2009-05-29 2009-05-29 内燃機関の可変バルブタイミング制御装置 Pending JP2010275970A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131190A JP2010275970A (ja) 2009-05-29 2009-05-29 内燃機関の可変バルブタイミング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131190A JP2010275970A (ja) 2009-05-29 2009-05-29 内燃機関の可変バルブタイミング制御装置

Publications (1)

Publication Number Publication Date
JP2010275970A true JP2010275970A (ja) 2010-12-09

Family

ID=43423147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131190A Pending JP2010275970A (ja) 2009-05-29 2009-05-29 内燃機関の可変バルブタイミング制御装置

Country Status (1)

Country Link
JP (1) JP2010275970A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149598A (ja) * 2011-01-20 2012-08-09 Denso Corp バルブタイミング調整装置
JP2013019352A (ja) * 2011-07-12 2013-01-31 Aisin Seiki Co Ltd 弁開閉時期調整システム
JP2014080948A (ja) * 2012-10-18 2014-05-08 Toyota Motor Corp バルブタイミング可変機構の制御装置
US20140216377A1 (en) 2011-07-12 2014-08-07 Aisin Seiki Kabushiki Kaisha Valve timing adjustment system
JP2015017513A (ja) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 内燃機関の制御装置
CN105526006A (zh) * 2014-10-21 2016-04-27 福特环球技术公司 用于可变凸轮正时装置的方法和***
JP2019085940A (ja) * 2017-11-08 2019-06-06 アイシン精機株式会社 弁開閉時期制御装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149598A (ja) * 2011-01-20 2012-08-09 Denso Corp バルブタイミング調整装置
US9121312B2 (en) 2011-01-20 2015-09-01 Denso Corporation Valve timing control apparatus
US20140216377A1 (en) 2011-07-12 2014-08-07 Aisin Seiki Kabushiki Kaisha Valve timing adjustment system
US9057292B2 (en) 2011-07-12 2015-06-16 Aisin Seiki Kabushiki Kaisha Valve timing adjustment system
JP2013019352A (ja) * 2011-07-12 2013-01-31 Aisin Seiki Co Ltd 弁開閉時期調整システム
JP2014080948A (ja) * 2012-10-18 2014-05-08 Toyota Motor Corp バルブタイミング可変機構の制御装置
JP2015017513A (ja) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 内燃機関の制御装置
CN105358805A (zh) * 2013-07-09 2016-02-24 丰田自动车株式会社 内燃机的控制装置
US9695717B2 (en) 2013-07-09 2017-07-04 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN105358805B (zh) * 2013-07-09 2018-03-02 丰田自动车株式会社 内燃机的控制装置
DE112014003225B4 (de) * 2013-07-09 2021-02-04 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für eine Brennkraftmaschine
CN105526006A (zh) * 2014-10-21 2016-04-27 福特环球技术公司 用于可变凸轮正时装置的方法和***
CN105526006B (zh) * 2014-10-21 2020-08-28 福特环球技术公司 用于可变凸轮正时装置的方法和***
JP2019085940A (ja) * 2017-11-08 2019-06-06 アイシン精機株式会社 弁開閉時期制御装置

Similar Documents

Publication Publication Date Title
JP5152681B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5126157B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5013323B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP4877615B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5240674B2 (ja) 内燃機関の可変バルブタイミング制御装置
KR100720020B1 (ko) 밸브 타이밍 제어 장치 및 최소 토크의 설정 방법
JP5030028B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5257628B2 (ja) 可変バルブタイミング制御装置
JP4947499B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP2010275970A (ja) 内燃機関の可変バルブタイミング制御装置
US8457864B2 (en) Variable valve timing control apparatus for internal combustion engine
JP2010138698A (ja) 内燃機関の可変バルブタイミング制御装置
JP5257629B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP3791658B2 (ja) 内燃機関の可変バルブタイミング制御装置
US20080135002A1 (en) Controller for internal combustion engine and method for variable valve timing control for the same
JP2011111893A (ja) 内燃機関の可変バルブタイミング制御装置
JP5141649B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5408514B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5408505B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5447338B2 (ja) 可変バルブタイミング制御システムの異常診断装置
JP2010255497A (ja) 内燃機関の可変バルブタイミング制御装置
JP2011226452A (ja) バルブタイミング制御装置
JP5573609B2 (ja) バルブタイミング調整装置の異常復帰装置
JP2010255498A (ja) 内燃機関の可変バルブタイミング制御装置
JP6389727B2 (ja) 内燃機関の可変バルブタイミング制御装置