JP2010275663A - Fibrous aggregate and method for producing heat-bonded nonwoven fabric - Google Patents

Fibrous aggregate and method for producing heat-bonded nonwoven fabric Download PDF

Info

Publication number
JP2010275663A
JP2010275663A JP2009130376A JP2009130376A JP2010275663A JP 2010275663 A JP2010275663 A JP 2010275663A JP 2009130376 A JP2009130376 A JP 2009130376A JP 2009130376 A JP2009130376 A JP 2009130376A JP 2010275663 A JP2010275663 A JP 2010275663A
Authority
JP
Japan
Prior art keywords
melting point
fiber
composite
point component
formed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130376A
Other languages
Japanese (ja)
Inventor
Toshio Kamisasa
利夫 上笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Holdings Co Ltd
Daiwabo Polytec Co Ltd
Original Assignee
Daiwabo Holdings Co Ltd
Daiwabo Polytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Holdings Co Ltd, Daiwabo Polytec Co Ltd filed Critical Daiwabo Holdings Co Ltd
Priority to JP2009130376A priority Critical patent/JP2010275663A/en
Publication of JP2010275663A publication Critical patent/JP2010275663A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fibrous aggregate by forming a composite resin-formed material as ultrafine composite fibers by an electro-spinning method and accumulating them. <P>SOLUTION: This method for producing the fiber aggregate includes: feeding a solid state composite resin-formed material containing at least a low-melting component and a high-melting component to a pre-heating region 5, pre-heating at or higher than a temperature lower than the melting point of the low-melting component of the composite resin-formed material by 10°C and also at or lower than a temperature higher than the melting point of the high-melting component by 10°C, then heating/melting the composite resin-formed material at the front of supply side electrode 1 between electrodes and/or between the electrodes, stretching by an electro-spinning to make very fine composite fibers and accumulating them. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、エレクトロスピニング法(静電紡糸法)(electro spinning)を用いた繊維集合物の製造方法に関する。   The present invention relates to a method for producing a fiber assembly using an electrospinning method (electrospinning method).

従来からポリエチレンテレフタレート(PET)等のポリエステル繊維、ナイロン等のポリアミド繊維、ポリエチレンやポリプロピレン等のポリオレフィン繊維等の合成繊維は、一般的に溶融紡糸法により製造されている。また、ナノファイバー等の極細繊維は、海島繊維の海成分を溶剤により除去して島成分をナノファイバー化することにより得ることが知られている。しかしながら紡糸後或いは不織布化後に多量の海成分を溶剤により除去する必要があり、処理が煩雑なうえコスト的にも不利である。   Conventionally, synthetic fibers such as polyester fibers such as polyethylene terephthalate (PET), polyamide fibers such as nylon, and polyolefin fibers such as polyethylene and polypropylene are generally produced by a melt spinning method. Further, it is known that ultrafine fibers such as nanofibers are obtained by removing sea components of sea-island fibers with a solvent to convert the island components into nanofibers. However, it is necessary to remove a large amount of sea components with a solvent after spinning or forming into a non-woven fabric, which is cumbersome and disadvantageous in terms of cost.

極細繊維を得る他の方法としては、例えば、特許文献1に記載のような、高分子溶液又は高分子融液に高電圧を作用させて極細繊維を紡糸するエレクトロスピニング法が知られている。エレクトロスピニング法は、海成分の除去や廃棄等の問題もなく、処理も簡便でありコスト的にも有利と言える。また、エレクトロスピニング法は、その原料供給手段から溶液法と溶融法が知られている。溶液法は、原料樹脂を分散させた水溶液、或いは流動性のある原料樹脂液を供給し、原料樹脂に電荷を与えて帯電させ、電気引力により繊維化する方法である。一方、溶融法は、固体状の原料樹脂形成物を供給し、原料樹脂に電荷を与えて帯電させ、加熱溶融させて、電気引力により伸張させて繊維化する方法である。   As another method for obtaining ultrafine fibers, for example, an electrospinning method for spinning ultrafine fibers by applying a high voltage to a polymer solution or polymer melt as described in Patent Document 1 is known. The electrospinning method has no problems such as removal or disposal of sea components, is easy to process, and can be said to be advantageous in terms of cost. As the electrospinning method, a solution method and a melting method are known from the raw material supply means. The solution method is a method in which an aqueous solution in which a raw material resin is dispersed or a fluid raw material resin liquid is supplied, the raw material resin is charged by being charged, and then fiberized by electric attraction. On the other hand, the melting method is a method of supplying a solid raw material resin formed product, charging the raw material resin by charging, heating and melting it, and stretching it by electric attractive force to form a fiber.

溶融法エレクトロスピニングで極細繊維を得る他の方法としては、例えば、特許文献2に記載のような、非溶融状態のポリマーを供給し、供給したポリマーに対しレーザーを照射してポリマーを変形可能な状態にして、変形可能なポリマーを電気的に牽引し、細径化するとともに引き伸ばして繊維化した繊維を集積して繊維集合体を形成する繊維集合体の製造法、特許文献3に記載のような、レーザー光線を照射して熱可塑性樹脂を加熱溶融させる加熱溶融工程と、熱可塑性樹脂の溶融部に電圧を作用させて、伸張する繊維をコレクターに捕集する静電紡糸工程とを経て繊維を製造する方法、特許文献4に記載のような、熱可塑性樹脂糸を溶融エレクトロスピニングする微細熱可塑性樹脂繊維の製造方法であって、先端部がターゲット方向に向けられた導電性筒状ノズルに熱可塑性樹脂糸を挿通し、該導電性筒状ノズルの先端部出口よりターゲット側の位置で熱可塑性樹脂糸の先端部を加熱溶融すると共に導電性筒状ノズルがプラス電極になり、ターゲットがマイナス電極になるように高電圧を印加することを特徴とする微細熱可塑性樹脂繊維の製造方法が知られている。   As another method for obtaining ultrafine fibers by melting electrospinning, for example, a non-melted polymer as described in Patent Document 2 can be supplied, and the supplied polymer can be irradiated with a laser to deform the polymer. As described in Patent Document 3, a method for producing a fiber assembly in which a deformable polymer is electrically pulled to reduce the diameter, and the fibers that have been stretched and fiberized are accumulated to form a fiber assembly. In addition, the fibers are subjected to a heating and melting step in which the thermoplastic resin is heated and melted by irradiating a laser beam, and an electrostatic spinning step in which a voltage is applied to the melting portion of the thermoplastic resin to collect the stretching fibers in a collector. A method for manufacturing, a method for manufacturing a fine thermoplastic resin fiber as described in Patent Document 4, in which a thermoplastic resin yarn is melted and electrospun, with a tip portion in a target direction. Insert the thermoplastic resin thread into the conductive cylindrical nozzle, heat and melt the front end of the thermoplastic resin thread at a position on the target side from the outlet of the front end of the conductive cylindrical nozzle, and the conductive cylindrical nozzle A method for producing fine thermoplastic resin fibers is known, in which a high voltage is applied so that becomes a positive electrode and a target becomes a negative electrode.

特開2007−239114号公報JP 2007-239114 A 特開2005−154927号公報JP 2005-154927 A 特開2007−239114号公報JP 2007-239114 A 特開2007−321246号公報JP 2007-32246 A

上記特許文献には、溶融法によるエレクトロスピニングにおいて、複合繊維を用いることの検討はなされていない。そして、一般に繊維用ポリマーとして用いられる樹脂であるポリプロピレン(PP)、ポリエチレン(PE)、エチレン−プロピレン共重合体(EP)等は、電荷を帯びにくく、エレクトロスピニングで極細繊維を得ることが難しい。かかる事情から、エレクトロスピニング法で得られた不織布においては、繊維表面が難エレクトロスピニング性の成分からなる極細複合繊維が集積した繊維集合物を得ることが困難であった。   The above-mentioned patent document does not discuss the use of composite fibers in electrospinning by the melting method. Polypropylene (PP), polyethylene (PE), ethylene-propylene copolymer (EP) and the like, which are resins generally used as a polymer for fibers, are not easily charged and it is difficult to obtain ultrafine fibers by electrospinning. Under such circumstances, in the nonwoven fabric obtained by the electrospinning method, it has been difficult to obtain a fiber aggregate in which the ultrafine composite fibers each having a fiber surface made of a component that is difficult to electrospin are accumulated.

また、本発明者は、特許文献2〜4のように固体状のポリマーをレーザーで加熱溶融させ、エレクトロスピニングにより繊維化して捕集する繊維集合物の製造法を試みた。しかし、この方法では、固体状のポリマーが電極間で加熱溶融される際に、帯電されず溶融したポリマーが落下し、繊維集合物の表面にビーズ状、パウダー状、粒子状の細繊維化されない樹脂粒が発生するという問題点があった。   In addition, as in Patent Documents 2 to 4, the present inventor tried a method for producing a fiber assembly in which a solid polymer is heated and melted with a laser, and fiberized and collected by electrospinning. However, in this method, when the solid polymer is heated and melted between the electrodes, the melted polymer falls without being charged, and the fiber aggregate is not made into fine fibers in the form of beads, powders, or particles. There was a problem that resin particles were generated.

本発明は、上記の問題を解決するため、複合樹脂形成物をエレクトロスピニング法により極細複合繊維とし、これを集積する繊維集合物の製造方法を提供する。   In order to solve the above problems, the present invention provides a method for producing a fiber assembly in which a composite resin formed product is made into an ultrafine composite fiber by an electrospinning method, and this is integrated.

本発明の繊維集合物の製造方法は、少なくとも低融点成分と高融点成分を含む固体状の複合樹脂形成物を予備加熱領域に供給し、複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱した後、前記複合樹脂形成物を電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニング(electro spinning)により伸張させて極細複合繊維とし、集積することを特徴とする。   The method for producing a fiber assembly of the present invention supplies a solid composite resin formed product containing at least a low melting point component and a high melting point component to the preheating region, and is 10 ° C. lower than the melting point of the low melting point component of the composite resin formed product. After preheating at a temperature not lower than the temperature and not higher than the melting point of the high melting point component and not higher than 10 ° C., the composite resin formed product is heated and melted before and / or between the supply-side electrodes between the electrodes, and electrospinning is performed. ) To form ultrafine composite fibers, which are collected.

本発明の繊維集合物の製造方法は、少なくとも低融点成分と高融点成分を含む固体状の複合樹脂形成物を予備加熱領域に供給し、複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱した後、前記複合樹脂形成物を電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニング(electro spinning)により伸張させて極細複合繊維とし、集積する。予備加熱した複合樹脂形成物は電極間で帯電しやすくなり、良好にエレクトロスピニングにより伸張される。また、ビーズ状、パウダー状、粒子状の細繊維化されない樹脂粒が発生しにくい。   The method for producing a fiber assembly of the present invention supplies a solid composite resin formed product containing at least a low melting point component and a high melting point component to the preheating region, and is 10 ° C. lower than the melting point of the low melting point component of the composite resin formed product. After preheating at a temperature not lower than the temperature and not higher than the melting point of the high melting point component and not higher than 10 ° C., the composite resin formed product is heated and melted before and / or between the supply-side electrodes between the electrodes, and electrospinning is performed. ) To form an ultrafine composite fiber and accumulate. The preheated composite resin formed product is easily charged between the electrodes and is well stretched by electrospinning. In addition, resin particles that are not made into fine fibers, such as beads, powders, and particles, are hardly generated.

本発明における一実施例のエレクトロスピニング装置の概略説明図である。It is a schematic explanatory drawing of the electrospinning apparatus of one Example in this invention. 本発明における別の実施例のエレクトロスピニング装置の概略説明図である。It is a schematic explanatory drawing of the electrospinning apparatus of another Example in this invention.

本発明の繊維集合物の製造方法は、少なくとも低融点成分と高融点成分を含む固体状の複合樹脂形成物を予備加熱領域に供給し、複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱した後、前記複合樹脂形成物を電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニング(electro spinning)により伸張させて極細複合繊維とし、集積して得られる繊維集合物の製造方法である。上記のような固体溶融エレクトロスピニングにおいては、供給側電極を通過する際に帯電された樹脂が、捕集側電極に向かって電気引力によって高速で伸張される。このように高速で伸張するためには、樹脂を正電荷又は負電荷に充分に帯電させることが必要であるが、一般に、固体状態のポリマーは帯電しにくく、エレクトロスピニングの原料として不向きである。しかし、本発明の製造方法は、固体状の複合樹脂形成物を、予備加熱することで、帯電しやすくし、その後、複合樹脂形成物を電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニングにより伸張させるので、樹脂が帯電しやすく良好にエレクトロスピニングにより伸張させることができる。   The method for producing a fiber assembly of the present invention supplies a solid composite resin formed product containing at least a low melting point component and a high melting point component to the preheating region, and is 10 ° C. lower than the melting point of the low melting point component of the composite resin formed product. After preheating at a temperature not lower than the temperature and not higher than the melting point of the high melting point component and not higher than 10 ° C., the composite resin formed product is heated and melted before and / or between the supply-side electrodes between the electrodes, and electrospinning is performed. ) To obtain ultrafine composite fibers, which are then accumulated to obtain a fiber assembly. In the solid melt electrospinning as described above, the resin charged when passing through the supply-side electrode is stretched at high speed by the electric attractive force toward the collection-side electrode. In order to stretch at such a high speed, it is necessary to sufficiently charge the resin to a positive charge or a negative charge. However, in general, a polymer in a solid state is difficult to be charged and is not suitable as a raw material for electrospinning. However, in the production method of the present invention, the solid composite resin formed product is easily charged by preheating, and then the composite resin formed product is heated before and / or between the supply-side electrodes between the electrodes. Since it is melted and stretched by electrospinning, the resin is easily charged and can be stretched well by electrospinning.

本発明の製造方法は、複合樹脂形成物を帯電させる前に予備加熱することを特徴とする。予備加熱では、複合樹脂形成物の一部又は全体を溶融又は軟化させてよく、複合樹脂形成物の高融点成分は溶融させず、低融点成分は溶融させることが好ましい。溶融又は軟化させる度合いは、複合樹脂形成物が帯電しやすくなる程度でよく、複合樹脂形成物の供給性の観点から、予備加熱では複合樹脂形成物を完全に溶融させないことが好ましい。複合樹脂形成物中に非溶融状態の成分と溶融状態の成分が含まれると、非溶融状態の成分により、形状を維持しやすく、原料の複合樹脂形成物を供給しやすい。また、溶融状態の成分により、ポリマーが帯電しやすく、エレクトロスピニング性も良好である。   The production method of the present invention is characterized in that the composite resin formed product is preheated before being charged. In the preheating, a part or the whole of the composite resin formed product may be melted or softened, and the high melting point component of the composite resin formed product is not melted, and the low melting point component is preferably melted. The degree of melting or softening may be such that the composite resin formed product is easily charged. From the viewpoint of supplyability of the composite resin formed product, it is preferable that the composite resin formed product is not completely melted by preheating. When a non-molten component and a molten component are contained in the composite resin formed product, the shape can be easily maintained and the raw composite resin formed product can be easily supplied by the non-molten component. In addition, the polymer is easily charged due to the molten component, and the electrospinning property is also good.

予備加熱領域における予備加熱の温度は、複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度である。予備加熱の温度を上記範囲にすると、原料の複合樹脂形成物を供給しやすく、ポリマーも帯電しやすい。予備加熱の温度が高融点成分の融点より10℃高い温度以下であると、予備加熱の温度が高融点成分の融点以上であっても、高融点成分が完全に溶融しないため、原料の複合樹脂形成物を供給性を妨げることはない。また、予備加熱の温度が低融点成分の融点より10℃低い温度以上であると、低融点成分の融点に満たない温度であっても、低融点成分が軟化して、ポリマーが帯電しやすくなる。これらの顕著に得る観点から、予備加熱領域における予備加熱の温度は、好ましくは、低融点成分の融点より5℃低い温度以上かつ高融点成分の融点より5℃高い温度以下の温度であり、より好ましくは、低融点成分の融点以上かつ高融点成分の融点未満の温度である。   The preheating temperature in the preheating region is a temperature not lower than a temperature 10 ° C. lower than the melting point of the low melting point component and not higher than 10 ° C. higher than the melting point of the high melting point component. When the preheating temperature is in the above range, the raw composite resin product is easily supplied, and the polymer is easily charged. If the preheating temperature is 10 ° C. or lower than the melting point of the high melting point component, the high melting point component does not melt completely even if the preheating temperature is higher than the melting point of the high melting point component. The formation does not interfere with the supply. In addition, when the preheating temperature is 10 ° C. or higher than the melting point of the low melting point component, the low melting point component is softened and the polymer is easily charged even at a temperature lower than the melting point of the low melting point component. . From the viewpoint of obtaining these significantly, the temperature of the preheating in the preheating region is preferably a temperature not less than 5 ° C. lower than the melting point of the low melting point component and not more than 5 ° C. higher than the melting point of the high melting point component. Preferably, the temperature is higher than the melting point of the low melting point component and lower than the melting point of the high melting point component.

例えば、高融点成分としてエチレン−ビニルアルコールコポリマー(融点171℃)、低融点成分としてポリプロピレン(融点160℃)の複合樹脂形成物を用いる場合、予備加熱温度は、好ましくは150℃〜181℃、より好ましくは155℃〜176℃とすることができる。また、他の例として、高融点成分としてエチレン−ビニルアルコールコポリマー(融点171℃)、低融点成分としてエチレン−プロピレンコポリマー(融点128℃)の複合樹脂形成物を用いる場合、予備加熱温度は、好ましくは118℃〜181℃、より好ましくは123℃〜176℃とすることができる。   For example, when a composite resin formed product of ethylene-vinyl alcohol copolymer (melting point 171 ° C.) as the high melting point component and polypropylene (melting point 160 ° C.) as the low melting point component is used, the preheating temperature is preferably 150 ° C. to 181 ° C. Preferably it can be set as 155 degreeC-176 degreeC. As another example, when a composite resin formed product of ethylene-vinyl alcohol copolymer (melting point 171 ° C.) as the high melting point component and ethylene-propylene copolymer (melting point 128 ° C.) as the low melting point component is used, the preheating temperature is preferably May be 118 ° C. to 181 ° C., more preferably 123 ° C. to 176 ° C.

予備加熱のための予備加熱領域は、特に限定されないが、例えば、熱コイル、熱ヒーター、熱風吹き付け、高周波加熱等により形成されてよい。中でも、熱コイルでの予備加熱は、温度制御を容易にする観点から好ましい。   The preheating region for preheating is not particularly limited, and may be formed by, for example, a heat coil, a heat heater, hot air blowing, high frequency heating, or the like. Among these, preheating with a thermal coil is preferable from the viewpoint of facilitating temperature control.

本発明において、複合樹脂形成物は、少なくとも高融点成分と低融点成分を含む。複合樹脂形成物が、少なくとも高融点成分と低融点成分を含むと、予備加熱領域において、低融点成分のみを溶融させるができるため、複合樹脂形成物の供給性を維持したまま、低融点成分を帯電しやすい状態にすることができる。また、この効果を顕著に得る観点から、複合樹脂形成物は少なくとも高融点成分と低融点成分を含み2以上の相を有することが好ましい。ここで、2以上の相とは、高融点成分と低融点成分の2成分のポリマーを少なくとも含み、かつ2成分のポリマーがそれぞれ混合されずに存在してなることを意味し、ポリマーブレンドやポリマーアロイからなる形成物を除く語句として用いている。2以上の相を持つ複合樹脂形成物は、例えば、芯鞘型、海島型、サイドバイサイド型、分割型等の複合繊維及び上記複合繊維を用いた織物、編物、不織布等の繊維構成物、積層フィルム等が挙げられる。   In the present invention, the composite resin formed product includes at least a high melting point component and a low melting point component. If the composite resin formed product contains at least a high melting point component and a low melting point component, only the low melting point component can be melted in the preheating region. Therefore, the low melting point component is maintained while maintaining the supply property of the composite resin formed product. It can be easily charged. Further, from the viewpoint of remarkably obtaining this effect, the composite resin formed product preferably has at least a high melting point component and a low melting point component and has two or more phases. Here, the term “two or more phases” means that the polymer contains at least a two-component polymer of a high-melting component and a low-melting component, and the two-component polymers exist without being mixed. It is used as a phrase except for formations made of alloys. Composite resin-formed products having two or more phases include, for example, core-sheath-type, sea-island-type, side-by-side-type, split-type and other composite fibers, and fiber components such as woven fabrics, knitted fabrics, and nonwoven fabrics, and laminated films Etc.

複合樹脂形成物における高融点成分は低融点成分の融点より高ければよく、特に限定されないが、高融点成分の融点は、100〜300℃であることが好ましく、120〜200℃であることがよりに好ましく、150〜180℃であることがさらに好ましい。高融点成分として融点が上記範囲であるポリマー成分を用いると、予備加熱領域で溶融され難く、電極間における供給側電極前及び/又は電極間で加熱溶融されるので、詳細な温度制御を必要とせず、エレクトロスピニング性と原料の供給性を両立しやすい。   The high melting point component in the composite resin formed article is not particularly limited as long as it is higher than the melting point of the low melting point component, but the melting point of the high melting point component is preferably 100 to 300 ° C, more preferably 120 to 200 ° C. It is more preferable that it is 150-180 degreeC. If a polymer component having a melting point in the above range is used as the high melting point component, it is difficult to melt in the preheating region, and it is heated and melted before and / or between the supply side electrodes between the electrodes, so detailed temperature control is required. It is easy to achieve both electrospinning and raw material supply.

複合樹脂形成物における、低融点成分の融点は、70〜200℃であることが好ましく、90〜160℃であることがより好ましい。低融点成分として融点が70℃以上のポリマー成分を用いると、極細複合繊維を安定して得やすく、融点が200℃以下のポリマー成分を用いると、予備加熱により低融点成分が溶融しやすくなるため、帯電しやすくなり、エレクトロスピニング性が良好になる効果が顕著となる。さらに、繊維同士を熱接着する場合には、低融点であることにより良好な接着性を得ることができる。   The melting point of the low melting point component in the composite resin formed product is preferably 70 to 200 ° C, and more preferably 90 to 160 ° C. When a polymer component having a melting point of 70 ° C. or higher is used as the low melting point component, it is easy to stably obtain an ultrafine composite fiber, and when a polymer component having a melting point of 200 ° C. or lower is used, the low melting point component is easily melted by preheating. The effect of becoming easily charged and improving the electrospinning property becomes remarkable. Furthermore, when the fibers are thermally bonded, good adhesion can be obtained due to the low melting point.

また、低融点成分としては、上記高融点成分より融点が10℃以上低いポリマー成分を用いることが好ましい。かかる構成であると、繊維同士を低融点成分の熱融着により熱接着させ、シート状に形成することができ、引張強度、突刺強度の高い、例えば熱接着不織布等の繊維集合物を得ることができる。また、上記の繊維集合物は、熱処理を施す場合にも、島成分及び/又は芯成分の融点未満の温度で熱処理すれば、海成分及び/又は鞘成分のみが熱融着し、島成分及び/又は芯成分は繊維形状を維持することができ、フィルム化することがない。また、上記の繊維集合物は、一般的な不織布に比べて、熱収縮が少ない。これらの効果をより顕著に得る観点から低融点成分は高融点成分より融点が20℃以上低いポリマー成分を用いることがさらに好ましい。   Further, as the low melting point component, it is preferable to use a polymer component having a melting point lower by 10 ° C. or more than the high melting point component. With such a configuration, fibers can be thermally bonded to each other by thermal fusion of low melting point components to form a sheet, and a fiber aggregate such as a thermally bonded nonwoven fabric having high tensile strength and high puncture strength is obtained. Can do. In addition, when the above-mentioned fiber assembly is subjected to heat treatment, if it is heat-treated at a temperature lower than the melting point of the island component and / or the core component, only the sea component and / or the sheath component are thermally fused, The core component can maintain the fiber shape and does not form a film. Moreover, said fiber aggregate has few heat shrinks compared with a general nonwoven fabric. From the viewpoint of obtaining these effects more remarkably, it is more preferable to use a polymer component having a melting point lower by 20 ° C. or more than the high melting point component.

高融点成分の含有量は、複合樹脂形成物中に好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。なお、上限は好ましくは、90質量%以下であり、より好ましくは70質量%以下である。高融点成分の含有量が上記範囲であると、予備加熱領域において、低融点成分が溶融した際に原料複合繊維を供給するために必要な強度を得やすくなる。   The content of the high melting point component is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more in the composite resin formed product. The upper limit is preferably 90% by mass or less, more preferably 70% by mass or less. When the content of the high melting point component is within the above range, it is easy to obtain the strength necessary for supplying the raw composite fiber when the low melting point component is melted in the preheating region.

低融点成分の含有量は、複合樹脂形成物中に好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。なお、上限は好ましくは、90質量%以下であり、より好ましくは70質量%以下である。低融点成分の含有量が上記範囲であると、予備加熱により帯電しやすくなり、エレクトロスピニング性が良好になる効果が顕著である。   The content of the low melting point component is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more in the composite resin formed product. The upper limit is preferably 90% by mass or less, more preferably 70% by mass or less. When the content of the low-melting-point component is within the above range, the effect of becoming easy to be charged by preheating and improving the electrospinning property is remarkable.

複合樹脂形成物において高融点成分と低融点成分の含有割合は、質量を基準として、高融点成分:低融点成分が、好ましくは10:90〜90:10であり、より好ましくは30:70〜70:30である。前記の範囲であれば、電極間で帯電しやすく、紡糸性が良好となる。   In the composite resin formed product, the content ratio of the high melting point component and the low melting point component is preferably 10:90 to 90:10, and more preferably 30:70 to high melting point component: low melting point component, based on mass. 70:30. If it is the said range, it will be easily charged between electrodes and spinnability will become favorable.

複合樹脂形成物を構成する高融点成分及び低融点成分のうち、少なくともいずれか1成分は、体積固有抵抗値が1015Ω・cm以下の樹脂であることが好ましい。複合樹脂形成物が供給側電極を通過する際により帯電しやすいからである。より好ましくは、体積固有抵抗値が106〜1014Ω・cmの樹脂、さらに好ましくは107〜1014Ω・cmの樹脂である。 At least one of the high melting point component and the low melting point component constituting the composite resin formed product is preferably a resin having a volume resistivity of 10 15 Ω · cm or less. This is because the composite resin formed product is more easily charged when passing through the supply-side electrode. More preferred is a resin having a volume resistivity of 10 6 to 10 14 Ω · cm, and even more preferred is a resin having a volume resistivity of 10 7 to 10 14 Ω · cm.

中でも、複合樹脂形成物の高融点成分は、体積固有抵抗値が1015Ω・cm以下の樹脂であることがより好ましい。高融点成分は、複合樹脂形成物の供給を容易にする観点から予備加熱において溶融させない方が好ましいが、一般に樹脂は溶融状態の方がより帯電しやすく、予備加熱で高融点成分が溶融しない条件ではスピニング性が少し低下する。高融点成分の体積固有抵抗値を1015Ω・cm以下にすると、予備加熱で高融点成分が溶融しない条件であっても、樹脂の体積固有抵抗値に起因して帯電しやすく、良好にスピニングすることができ、複合樹脂形成物の供給も容易となる。 Among these, the high melting point component of the composite resin formed product is more preferably a resin having a volume resistivity of 10 15 Ω · cm or less. The high melting point component is preferably not melted in the preheating from the viewpoint of facilitating the supply of the composite resin formed product, but generally the resin is more easily charged in the molten state, and the high melting point component does not melt in the preheating. Then, the spinning performance is slightly reduced. When the volume resistivity value of the high melting point component is 10 15 Ω · cm or less, even if the high melting point component is not melted by preheating, it is easy to be charged due to the volume resistivity value of the resin and spins well. Therefore, the composite resin formed product can be easily supplied.

また、本発明で用いることができる体積固有抵抗値が1015Ω・cm以下の樹脂は見掛け体積固有抵抗値が1015Ω・cm以下の樹脂も含まれる。例えば、体積固有抵抗値が1015Ω・cmを越えるような体積固有抵抗値が高いポリマーであっても、ポリマーに体積固有抵抗値が低減するようなマスターバッチの練り込み(例えば炭素や金属塩類等のフィラー類を含むマスターバッチ)や、コロナ加工、フッ素加工、エレクトレット加工等の樹脂の抵抗値を下げるような処理手法、或いは、体積固有抵抗値が下がるような油剤(例えばアニオン系界面活性剤やカチオン系界面活性剤、ノニオン系界面活性剤等)等を複合樹脂表面に塗布又は浸漬するような処理手法を、単独又は複数組合せて用いることによって、エレクトロスピニング前までに、見掛け体積固有抵抗値を下げることにより、エレクトロスピニングに適した樹脂とすることができる。なお、樹脂の場合、体積固有抵抗は通常ASTM D−257によって測定される。 The volume resistivity 10 15 Ω · cm or less of the resin that can be used in the present invention the volume resistivity apparent that also includes the following resin 10 15 Ω · cm. For example, even a polymer having a high volume resistivity value such that the volume resistivity value exceeds 10 15 Ω · cm, kneading a masterbatch that reduces the volume resistivity value into the polymer (for example, carbon or metal salts) Master batches containing fillers such as), corona processing, fluorine processing, electret processing, and other treatment techniques that lower the resistance value of the resin, or oil agents that reduce the volume resistivity (for example, anionic surfactants) , Cationic surfactants, nonionic surfactants, etc.) on the surface of the composite resin, by using a single or a combination of treatment techniques, apparent volume resistivity before electrospinning. By lowering the value, a resin suitable for electrospinning can be obtained. In the case of resin, the volume resistivity is usually measured by ASTM D-257.

なお、見掛け体積固有抵抗値とは、一般に樹脂で測定される体積固有抵抗(ASTM D−257)が、樹脂部分を前記処理手法で処理した試料で測定された値を示すものである。即ち、見掛け体積固有抵抗値とは、樹脂そのものの体積固有抵抗値ではなく、処理された樹脂が持つ、体積固有抵抗値を示すものである。   The apparent volume resistivity value is a value obtained by measuring a volume resistivity (ASTM D-257), which is generally measured with a resin, with a sample obtained by treating the resin portion with the above-described treatment technique. That is, the apparent volume specific resistance value indicates not the volume specific resistance value of the resin itself but the volume specific resistance value of the treated resin.

体積固有抵抗値が1015Ω・cm以下であるポリマーとしては、特に限定されないが、例えば、エチレンビニルアルコールコポリマー(以下、EVOHとも記す)、ポリエチレンテレフタレート等のポリエステル、ナイロン、ポリウレタン等が挙げられる。中でも、高度に帯電してエレクトロスピニングによる伸張性が大きいという点から、EVOHが好ましい。上記EVOHの体積固有抵抗値は、好ましくは106〜1015Ω・cm、さらに好ましくは107〜109Ω・cm、さらにより好ましくは107.5〜108.5Ω・cmである。 The polymer having a volume resistivity of 10 15 Ω · cm or less is not particularly limited, and examples thereof include ethylene vinyl alcohol copolymer (hereinafter also referred to as EVOH), polyesters such as polyethylene terephthalate, nylon, and polyurethane. Among them, EVOH is preferable because it is highly charged and has high extensibility by electrospinning. The volume resistivity value of the EVOH is preferably 10 6 to 10 15 Ω · cm, more preferably 10 7 to 10 9 Ω · cm, and still more preferably 10 7.5 to 10 8.5 Ω · cm.

上記EVOHは、エチレン酢酸ビニル共重合体を鹸化して得られる。上記EVOHにおけるエチレンの含有量は特に限定されないが、一般的には29〜47モル(mol)%である。市販品としては、クラレ社製商品名“エバール”、日本合成化学工業社製商品名“ソアノール”等があり、本発明ではこれらの市販品を使用できる。また、EVOHの融点は、それに含まれるエチレンとビニルアルコールの含有量により異なり、例えば、エチレンを38モル%含む場合は、融点が171℃である。また、上記固体状の複合樹脂形成物に含まれる他の成分との組合せにより、エチレンの含有量が異なるEVOHを適宜選択して用いてもよい。   The EVOH can be obtained by saponifying an ethylene vinyl acetate copolymer. The content of ethylene in the EVOH is not particularly limited, but is generally 29 to 47 mol (mol)%. Examples of commercially available products include Kuraray's product name “EVAL”, Nippon Synthetic Chemical Industry's product name “Soarnol”, and the like, and these commercially available products can be used in the present invention. The melting point of EVOH varies depending on the contents of ethylene and vinyl alcohol contained therein. For example, when 38 mol% of ethylene is contained, the melting point is 171 ° C. In addition, EVOH having a different ethylene content may be appropriately selected and used depending on the combination with other components contained in the solid composite resin formed product.

本発明は、複合樹脂形成物に、例えばオレフィン(例えばポリプロピレン、ポリエチレン)等の体積固有抵抗値が1015Ω・cmを越えるような固体状態では帯電しにくい樹脂を配合した場合であっても、低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱することで、良好なエレクトロスピニングができる。そして、1015Ω・cm以下の樹脂が10質量%以上配合されていれば、さらに良好なエレクトロスピニングができる。 The present invention, even if the composite resin formed material is blended with a resin that is hard to be charged in a solid state, such as olefin (eg, polypropylene, polyethylene), etc., with a volume resistivity exceeding 10 15 Ω · cm, By preheating at a temperature not lower than the melting point of the low melting point component and not higher than 10 ° C. and not higher than the melting point of the high melting point component, good electrospinning can be performed. And if 10 mass% or more of resin of 10 < 15 > ohm * cm or less is mix | blended, further better electrospinning can be performed.

複合樹脂形成物における、高融点成分および低融点成分として用いるポリマーは、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン、ポリスチレン、エチレン−プロピレンコポリマー、エチレンビニルアルコールコポリマー(以下、EVOHとも記す)、ポリエチレンテレフタレート、ポリ乳酸等のポリエステル、ナイロン、ポリウレタン等が挙げられる。   The polymer used as the high melting point component and the low melting point component in the composite resin formed product is not particularly limited. For example, polyolefin such as polyethylene, polypropylene, polybutene, polystyrene, ethylene-propylene copolymer, ethylene vinyl alcohol copolymer (hereinafter also referred to as EVOH). ), Polyesters such as polyethylene terephthalate and polylactic acid, nylon, polyurethane and the like.

高融点成分は、上述のとおり、体積固有抵抗値が1015Ω・cm以下であるポリマーが好ましく用いられ、エチレンビニルアルコールコポリマー(以下、EVOHとも記す)、ポリエチレンテレフタレート等のポリエステル、ナイロン、ポリウレタン等を用いることが好ましい。 As described above, a polymer having a volume resistivity value of 10 15 Ω · cm or less is preferably used as the high melting point component, such as ethylene vinyl alcohol copolymer (hereinafter also referred to as EVOH), polyester such as polyethylene terephthalate, nylon, polyurethane, and the like. Is preferably used.

低融点成分は、予備加熱での溶融のし易さと熱接着性の点から、ポリエチレン、エチレン−プロピレンコポリマー等が好ましい。なお、低密度ポリエチレン、高密度ポリエチレン、並びに、ポリプロピレンのホモポリマー及びコポリマーの融点は、それぞれ、98〜115℃、130〜137℃、160〜175℃及び150〜175℃である(旭化成アミダス社「プラスチックス」編集部編、「プラスチック・データブック」1999年12月1日発行、工業調査会、7頁及び8頁)。   The low melting point component is preferably polyethylene, ethylene-propylene copolymer or the like from the viewpoint of easy melting by preheating and thermal adhesiveness. The melting points of the low-density polyethylene, the high-density polyethylene, and the homopolymer and copolymer of polypropylene are 98 to 115 ° C, 130 to 137 ° C, 160 to 175 ° C, and 150 to 175 ° C, respectively (Asahi Kasei Amidus Corporation " "Plastics" Editorial Department, "Plastic Data Book" issued December 1, 1999, Industrial Research Committee, pages 7 and 8.

ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレンコポリマー等は、汎用樹脂であり、いろんなメーカーから販売されており、高融点成分又は低融点成分の融点等を考慮し、市販品から適宜に選択して用いることができる。   Polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, etc. are general-purpose resins, and are sold by various manufacturers. Considering the melting point of the high melting point component or low melting point component, etc., select from commercially available products as appropriate. Can do.

本発明の複合樹脂形成物は、高融点成分及び低融点成分以外の他のポリマーを30質量%以下で含んでよい。他のポリマーとしては、特限定されないが、例えば、上述の高融点成分および低融点成分として例示したポリマーを用いることができる。   The composite resin formed article of the present invention may contain other polymer other than the high melting point component and the low melting point component at 30% by mass or less. Although it does not specifically limit as another polymer, For example, the polymer illustrated as the above-mentioned high melting-point component and low-melting-point component can be used.

本発明において、複合樹脂形成物は固体状である。複合樹脂形成物が固体状であると、少なくとも2成分以上のポリマーを含む繊維集合物を容易に得ることができる。好ましくは、複合樹脂形成物は繊維の状態である。複合樹脂形成物が繊維の状態であると、極細複合繊維の断面形状は繊維状の複合樹脂形成物の断面形状と相似形状となりやすく、エレクトロスピニングして得られる繊維集合物を形成する極細複合繊維の断面形状を制御しやすい。また、後述する極細複合繊維同士を熱接着させる場合には、極細複合繊維として海島型及び/又は芯鞘型複合繊維を得やすい観点から、複合樹脂形成物は、繊維断面からみて、海島型及び/又は芯鞘型複合繊維であることが好ましい。上記繊維状の複合樹脂形成物(以下、原料複合繊維とも記す)としては、モノフィラメントを複数本収束したマルチフィラメント、又はトウであることが好ましい。上記においてマルチフィラメントとはフィラメント数が2〜100本のものをいい、トウとはフィラメント数が100本を超えるものをいう。中でも、エレクトロスピニング性の点から、モノフィラメントを10〜1000本収束したマルチフィラメント又はトウであることが好ましい。   In the present invention, the composite resin formed product is solid. When the composite resin formed product is solid, a fiber aggregate containing at least two or more polymer components can be easily obtained. Preferably, the composite resin formed product is in a fiber state. When the composite resin formed product is in a fiber state, the cross-sectional shape of the ultrafine composite fiber tends to be similar to the cross-sectional shape of the fibrous composite resin formed product, and the ultrafine composite fiber forms a fiber aggregate obtained by electrospinning. It is easy to control the cross-sectional shape. In addition, when heat-bonding ultrafine composite fibers to be described later, from the viewpoint of easily obtaining a sea-island type and / or a core-sheath type composite fiber as the ultrafine composite fiber, the composite resin formed product is a sea-island type and It is preferable that it is a core-sheath type composite fiber. The fibrous composite resin formed product (hereinafter also referred to as raw material composite fiber) is preferably a multifilament in which a plurality of monofilaments are converged, or a tow. In the above, the multifilament refers to those having 2 to 100 filaments, and the tow refers to those having more than 100 filaments. Among these, from the viewpoint of electrospinning properties, a multifilament or tow in which 10 to 1000 monofilaments are converged is preferable.

本発明において、上記複合樹脂形成物である原料複合繊維は、繊維断面からみて、芯鞘型、海島型又は分割型複合繊維であることが好ましい。より好ましくは、繊維断面からみて、海島型及び/又は芯鞘型であり、さらに好ましくは、繊維断面からみて、海島型である。原料複合繊維が芯鞘型又は海島型であると、芯鞘型又は海島型の極細複合繊維を得やすく、後述する極細複合繊維同士を熱接着させる場合に鞘成分又は海成分により接着させることができる。さらに原料複合繊維が海島型であると、島成分が分散して存在することにより、予備加熱の際に均一に熱が伝わりやすく、また、供給側電極前及び/又は電極間で加熱溶融させる際に、原料繊維の先端断面において、断面形状が崩れて瞬間的にアロイ化が起こりやすく、高融点成分が繊維表面に露出しやすくなり、良好なエレクトロスピニング性が得られる。この効果を顕著に得る観点から、海島型の原料複合繊維において、海島型原料複合繊維1本あたりの島成分のセグメント数は、15〜70であることがさらに好ましい。   In this invention, it is preferable that the raw material composite fiber which is the said composite resin formation is a core-sheath-type, a sea-island type, or a split type composite fiber seeing from a fiber cross section. More preferably, it is a sea-island type and / or a core-sheath type as viewed from the fiber cross section, and more preferably, it is a sea-island type as viewed from the fiber cross-section. When the raw composite fiber is a core-sheath type or sea-island type, it is easy to obtain a core-sheath type or sea-island type ultra-fine composite fiber. it can. Furthermore, when the raw composite fiber is of the sea-island type, the island components are dispersed and exist so that heat is easily transferred uniformly during the preheating, and also when heating and melting before and / or between the electrodes on the supply side. In addition, in the cross section at the tip of the raw material fiber, the cross-sectional shape collapses and alloying is likely to occur instantaneously, and the high melting point component is easily exposed on the fiber surface, and good electrospinning properties are obtained. From the viewpoint of remarkably obtaining this effect, the number of segments of the island component per sea-island type raw composite fiber is more preferably 15 to 70 in the sea-island type raw composite fiber.

複合樹脂形成物が、繊維断面からみて、海島型及び/又は芯鞘型である場合、高融点成分及び低融点成分のいずれかが島成分又は芯成分であってよく、いずれかが海成分又は鞘成分であってよい。中でも、高融点成分が島成分又は芯成分であり、かつ低融点成分が海成分又は鞘成分であると、繊維断面から見て低融点成分が外側に配された極細複合繊維を得やすく、後述する極細複合繊維同士を熱接着させる場合に鞘成分又は海成分により接着させることができる。   When the composite resin formed product is a sea-island type and / or a core-sheath type as viewed from the fiber cross section, either the high melting point component or the low melting point component may be an island component or a core component, and either is a sea component or It may be a sheath component. Among them, when the high melting point component is an island component or a core component and the low melting point component is a sea component or a sheath component, it is easy to obtain an ultrafine composite fiber in which the low melting point component is arranged on the outside as viewed from the fiber cross section, which will be described later. When the ultrafine composite fibers to be bonded are thermally bonded, they can be bonded by a sheath component or a sea component.

本発明において、上記高融点成分及び低融点成分を含む固体状の複合樹脂形成物は、予備加熱領域に供給され、複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱され、電極間における供給側電極前及び/又は電極間で加熱溶融され、エレクトロスピニングにより伸張して極細複合繊維となる。複合樹脂形成物は、予備加熱される工程において、複合樹脂形成物の少なくとも低融点成分の一部又は全部が溶融又は軟化状態となり、固体状体と比較して帯電しやすい状態とする。そして、少なくとも低融点成分を溶融状態とした複合樹脂形成物を、電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニングにより伸張させる。上記極細複合繊維は、複合樹脂形成物をエレクトロスピニングにより伸張させる工程において、断面形状がアロイ形状、或いは海成分(鞘成分)と島成分(芯成分)とが逆転した形状となる場合がある。さらに、原料複合繊維がマルチフィラメント又はトウである場合、マルチフィラメント又はトウが1つの繊維となったような断面形状の極細繊維となる場合がある。後述する極細複合繊維の断面形状は、このような断面形状の極細繊維も含む。例えば、原料複合繊維として芯鞘型複合繊維を600本集束したトウを用いた場合、見かけ上、島成分のセグメント数が600である海島型複合繊維が得られる場合がある。   In the present invention, the solid composite resin formed product containing the high melting point component and the low melting point component is supplied to the preheating region and is at least a temperature lower by 10 ° C. than the melting point of the low melting point component of the composite resin formed product. Is preheated at a temperature not higher than 10 ° C. above the melting point of the material, heated and melted before and / or between the supply-side electrodes between the electrodes, and stretched by electrospinning to form ultrafine composite fibers. In the step of preheating the composite resin formed product, at least part or all of the low melting point component of the composite resin formed product is in a molten or softened state, and is in a state of being easily charged as compared with a solid body. Then, the composite resin formed product in which at least the low melting point component is in a molten state is heated and melted before and / or between the supply-side electrodes between the electrodes, and is stretched by electrospinning. In the step of stretching the composite resin formed product by electrospinning, the ultrafine composite fiber may have an alloy shape in cross section or a shape in which the sea component (sheath component) and island component (core component) are reversed. Furthermore, when the raw composite fiber is a multifilament or tow, it may be an ultrafine fiber having a cross-sectional shape such that the multifilament or tow becomes one fiber. The cross-sectional shape of the ultrafine composite fiber described later includes such an ultrafine fiber having a cross-sectional shape. For example, when a tow obtained by bundling 600 core-sheath type composite fibers is used as the raw material composite fiber, a sea-island type composite fiber with an apparent number of island component segments of 600 may be obtained.

本発明においては、電極間の供給側電極と捕集側電極との間に電圧を印加する。好ましい印加電圧は、20〜100kVであり、さらに好ましくは30〜50kVである。電圧が20kV以上であれば、雰囲気中の空間(電極間)において電極間の抵抗が少なく、電子の流れもよく、樹脂が帯電しやすくなる。また、100kV以下であれば、電極間でスパークがおこらず、樹脂に引火する恐れもない。   In the present invention, a voltage is applied between the supply-side electrode and the collection-side electrode between the electrodes. A preferable applied voltage is 20 to 100 kV, and more preferably 30 to 50 kV. If the voltage is 20 kV or more, the resistance between the electrodes is small in the space (between the electrodes) in the atmosphere, the flow of electrons is good, and the resin is easily charged. Moreover, if it is 100 kV or less, a spark does not occur between electrodes and there is no possibility of igniting resin.

そして、極間距離は2〜25cmが好ましく、さらに好ましくは5〜20cmである。極間距離が2cm以上であれば、電極間でスパークが起こらず、樹脂に引火する恐れもない。また、25cm以下であれば、電極間の抵抗が高くなく、電子の流れも悪くならず、樹脂が帯電しやすくなる。   The distance between the electrodes is preferably 2 to 25 cm, more preferably 5 to 20 cm. If the distance between the electrodes is 2 cm or more, no spark occurs between the electrodes, and there is no possibility of igniting the resin. Moreover, if it is 25 cm or less, the resistance between electrodes is not high, the flow of electrons is not deteriorated, and the resin is easily charged.

供給側電極を通過した直後の予備加熱した複合樹脂形成物(例えば原料複合繊維)に、例えばレーザ光線や近赤外線を照射し、複合樹脂形成物を加熱溶融する。ここで、複合樹脂形成物は、繊維断面からみて、海島型及び/又は芯鞘型複合繊維であることが好ましい。予め複合樹脂形成物の一部を溶融状態とするが、加えて電極間で加熱溶融することにより、複合樹脂形成物を低粘度化することができ、伸張性を高くすることができる。特にレーザ光線、近赤外線を用いて加熱溶融すれば、予備加熱により溶融又は軟化した複合樹脂形成物を瞬時に低粘度化できるため、好ましい。ここでは、レーザ光線を照射する場合を例に挙げて説明する。レーザ光線には、YAGレーザ、炭酸ガス(CO2)レーザ、アルゴンレーザ、エキシマレーザ、ヘリウム−カドミウムレーザ等の光源から発生されるレーザ光線が含まれる。これらのレーザ光線のうち、電源効率が高く、複合繊維の溶融性が高い点から、炭酸ガスレーザによるレーザ光線が好ましい。レーザ光線の波長は、例えば、200nm〜20μm、好ましくは500nm〜18μm、さらに好ましくは1〜16μm、さらに特に好ましくは5〜15μmである。レーザ光線の照射方法は、特に限定されないが、例えば、スポット状レーザ光線を照射する方法、或いは、レーザ光線を反射板に反射させ、その反射板を制御して、線状又は平面状に照射する方法が挙げられる。中でも、原料複合繊維に対して、局所的に照射できる点から、スポット状にレーザ光線を照射する方法が好ましい。このスポット状レーザ光線を原料複合繊維に照射するビーム径の大きさは、原料複合繊維の形状に応じて選択できる。具体的なビーム径は、例えば、線状体樹脂(例えば、モノフィラメント、マルチフィラメント、トウ等)の場合、線状体樹脂の平均径よりも大きい径であればよく、例えば、0.5〜30mm、好ましくは1〜20mm、さらに好ましくは2〜15mm、さらに特に好ましくは3〜10mm程度である。線状体樹脂の平均径とビーム径との比率は、線状体樹脂の平均径に対して、1〜100倍程度のビーム径であってもよく、好ましくは2〜50倍、さらに好ましくは3〜30倍、さらに特に好ましくは5〜20倍程度のビーム径である。   The preheated composite resin formed product (for example, raw material composite fiber) immediately after passing through the supply-side electrode is irradiated with, for example, a laser beam or near infrared rays, and the composite resin formed product is heated and melted. Here, the composite resin formed product is preferably a sea-island type and / or a core-sheath type composite fiber as viewed from the fiber cross section. Although a part of the composite resin formed product is previously melted, in addition, by heating and melting between the electrodes, the viscosity of the composite resin formed product can be reduced and the extensibility can be increased. In particular, it is preferable to heat and melt using a laser beam or near-infrared ray because the composite resin formed product melted or softened by preheating can be instantly reduced in viscosity. Here, a case where a laser beam is irradiated will be described as an example. The laser beam includes a laser beam generated from a light source such as a YAG laser, a carbon dioxide (CO2) laser, an argon laser, an excimer laser, and a helium-cadmium laser. Of these laser beams, a laser beam using a carbon dioxide laser is preferable because of its high power efficiency and high meltability of the composite fiber. The wavelength of the laser beam is, for example, 200 nm to 20 μm, preferably 500 nm to 18 μm, more preferably 1 to 16 μm, and even more preferably 5 to 15 μm. The method of irradiating the laser beam is not particularly limited. For example, a method of irradiating a spot laser beam or a method of irradiating the laser beam to a reflecting plate and controlling the reflecting plate to irradiate linearly or planarly. A method is mentioned. Among these, a method of irradiating the raw composite fiber with a laser beam in a spot shape is preferable because it can be irradiated locally. The size of the beam diameter for irradiating the raw composite fiber with the spot laser beam can be selected according to the shape of the raw composite fiber. For example, in the case of linear resin (for example, monofilament, multifilament, tow, etc.), the specific beam diameter may be larger than the average diameter of the linear resin, for example, 0.5 to 30 mm. The thickness is preferably 1 to 20 mm, more preferably 2 to 15 mm, still more preferably about 3 to 10 mm. The ratio between the average diameter of the linear resin and the beam diameter may be about 1 to 100 times the average diameter of the linear resin, preferably 2 to 50 times, more preferably The beam diameter is about 3 to 30 times, more preferably about 5 to 20 times.

そして供給側電極通過後にレーザ光線を照射し、複合樹脂形成物を加熱溶融する場合、供給側電極における樹脂形成物が出る側の端部と、樹脂形成物におけるレーザ光線が照射される部位の距離は1〜6mmが好ましい。より好ましくは2〜4mmである。距離が1mm以上であれば、レーザ光線照射部が電極に近すぎず、電極の温度が高くならず、樹脂分解が起こらない。一方、6mm以下であれば、供給側電極通過時に帯電した樹脂形成物の帯電量が減衰せず、そこをレーザ光線で加熱溶融すると溶融状体の樹脂が捕集側電極に向かって伸張しやすい。   And when irradiating a laser beam after passing through the supply side electrode to heat and melt the composite resin formed product, the distance between the end of the supply side electrode on the side where the resin formed product exits and the portion of the resin formed product irradiated with the laser beam Is preferably 1 to 6 mm. More preferably, it is 2-4 mm. If the distance is 1 mm or more, the laser beam irradiation part is not too close to the electrode, the temperature of the electrode does not increase, and resin decomposition does not occur. On the other hand, if the thickness is 6 mm or less, the charge amount of the resin formed product that has been charged when passing through the supply side electrode is not attenuated, and if the resin is heated and melted with a laser beam, the molten resin tends to expand toward the collection side electrode. .

複合樹脂形成物を溶融するために必要なレーザ光線の出力は、複合樹脂形成物を構成する高融点成分の融点以上であり、かつ複合樹脂形成物を構成するいずれかの樹脂が発火又は分解しない温度となる範囲に制御すればよい。要は、複合樹脂形成物が粘性を有する状態になればよい。複合樹脂形成物に粘性を持たせるように加熱する温度は、複合樹脂形成物の供給速度、レーザ光線の出力、レーザと複合樹脂形成物間の距離、複合樹脂形成物の太さによって、変わってくるが、例えばレーザ光線の場合の加熱温度は、好ましくは160〜1200℃、より好ましくは600〜800℃である。160℃以上の加熱温度であれば、加熱する熱量が十分なため溶融が良好となって粘性を持ちやすく極細化しやすい。また、1200℃以下であれば、樹脂が発火又は分解せず、樹脂の繊維化が良好となる。また、具体的なレーザ光線の出力は、用いる複合樹脂形成物の物性値(融点)、形状、太さ、供給速度等に応じて適宜選択できるが、例えば、3〜100mA、好ましくは3〜50mA、さらに好ましくは6〜40mA程度である。レーザ光線の出力が3mA未満であると、樹脂を溶融状態にするためのレーザ光線の照射条件は、複合樹脂形成物の融点に基いて制御してもよいが、複合樹脂形成物が径の小さな線状体であり、高電圧が付与される場合には、簡便性の点から、レーザ光線の出力により制御することが好ましい。レーザ光線は、複合樹脂形成物の周囲から1箇所又は複数箇所から照射してもよい。   The laser beam output required to melt the composite resin formed product is equal to or higher than the melting point of the high melting point component constituting the composite resin formed product, and any of the resins constituting the composite resin formed product does not ignite or decompose. What is necessary is just to control to the range used as temperature. In short, it is sufficient that the composite resin formed product is in a viscous state. The temperature at which the composite resin product is heated to have viscosity varies depending on the supply speed of the composite resin product, the output of the laser beam, the distance between the laser and the composite resin product, and the thickness of the composite resin product. However, for example, the heating temperature in the case of a laser beam is preferably 160 to 1200 ° C, more preferably 600 to 800 ° C. If the heating temperature is 160 ° C. or higher, the amount of heat to be heated is sufficient, so that the melting is good, the viscosity is easily obtained, and it is easy to make it ultrafine. Moreover, if it is 1200 degrees C or less, resin will not ignite or decompose | disassemble and the fiberization of resin will become favorable. Further, the specific output of the laser beam can be appropriately selected according to the physical property value (melting point), shape, thickness, supply speed, etc. of the composite resin formed product to be used, but for example, 3 to 100 mA, preferably 3 to 50 mA. More preferably, it is about 6-40 mA. When the output of the laser beam is less than 3 mA, the irradiation condition of the laser beam for bringing the resin into a molten state may be controlled based on the melting point of the composite resin formed product, but the composite resin formed product has a small diameter. When a high voltage is applied to the linear body, it is preferable to control by the output of a laser beam from the viewpoint of simplicity. You may irradiate a laser beam from one place or multiple places from the circumference | surroundings of a composite resin formation.

溶融された複合樹脂形成物は、電気引力とともに捕集側電極に伸張され、極細複合繊維となる。このときの伸張倍率は100〜1000倍、好ましくは200〜800倍、さらに好ましくは300〜500倍程度である。この伸張倍率で伸ばされることにより、極細繊維化される。本発明において、上記極細複合繊維の繊維径は、好ましくは0.3〜10μmである。より好ましくは0.8〜5μmであり、さらに好ましくは、3μm以下、さらに特に好ましくは、1μm以下である。   The melted composite resin formed product is stretched to the collecting side electrode together with the electric attractive force, and becomes an ultrafine composite fiber. The expansion ratio at this time is 100 to 1000 times, preferably 200 to 800 times, and more preferably about 300 to 500 times. By being stretched at this stretch ratio, ultrafine fibers are obtained. In the present invention, the fiber diameter of the ultrafine composite fiber is preferably 0.3 to 10 μm. More preferably, it is 0.8-5 micrometers, More preferably, it is 3 micrometers or less, More preferably, it is 1 micrometer or less.

ここで、極細複合繊維の繊維径は円形繊維の場合は繊維の直径より求める。繊維断面から又は繊維側面から、繊維径(直径)を計測する。また、多角形、楕円、中空、C型、Y型、X型、不定形等の異形断面繊維においては、繊維断面形状を同じ面積を持つ円形と仮定しその直径を計測することにより繊維径を求める。よって、異形断面繊維の場合は繊維側面より繊維径を求めることはできない。   Here, the fiber diameter of the ultrafine composite fiber is obtained from the diameter of the fiber in the case of a circular fiber. The fiber diameter (diameter) is measured from the fiber cross section or from the fiber side surface. In addition, in irregular cross-section fibers such as polygons, ellipses, hollows, C-types, Y-types, X-types, and irregular shapes, the fiber diameter is determined by measuring the diameter assuming that the fiber cross-sectional shape is a circle having the same area. Ask. Therefore, in the case of a modified cross-section fiber, the fiber diameter cannot be obtained from the fiber side surface.

極細複合繊維は、高融点成分と低融点成分を含むことが好ましい。高融点成分と低融点成分の含有割合は、質量を基準として、高融点成分:低融点成分が、好ましくは10:90〜90:10であり、より好ましくは30:70〜70:30である。   The ultrafine composite fiber preferably contains a high melting point component and a low melting point component. The content ratio of the high melting point component and the low melting point component is preferably 10:90 to 90:10, and more preferably 30:70 to 70:30, based on the mass. .

極細複合繊維は、繊維断面からみて、芯鞘型、海島型又は分割型複合繊維を含むことが好ましく、高融点成分が島成分及び/又は芯成分であり、低融点成分が海成分及び/又は鞘成分である海島型又は芯鞘型複合繊維を含むことがより好ましい。極細複合繊維における、芯鞘型、海島型又は分割型複合繊維の含有量は、10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上であり、上限は100質量%である。また、上記極細複合繊維において、後の熱処理において極細複合繊維が互いに容易に熱接着できる観点から、低融点成分は高融点成分の融点より10℃以上低いことが好ましい。また、極細複合繊維の断面形状は、特に限定されず、円形、楕円、多角形、不定形等の形状であってよい。   The ultrafine composite fiber preferably includes a core-sheath-type, sea-island-type, or split-type composite fiber as viewed from the fiber cross section, the high-melting point component is the island component and / or the core component, and the low-melting point component is the sea component and / or It is more preferable to include a sea-island type or core-sheath type composite fiber that is a sheath component. The content of the core-sheath type, sea-island type, or split-type composite fiber in the ultrafine composite fiber is 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, and the upper limit is 100% by mass. . In the ultrafine composite fiber, the low melting point component is preferably lower by 10 ° C. or more than the melting point of the high melting point component from the viewpoint that the ultrafine composite fibers can be easily thermally bonded to each other in the subsequent heat treatment. The cross-sectional shape of the ultrafine composite fiber is not particularly limited, and may be a shape such as a circle, an ellipse, a polygon, and an indeterminate shape.

上記極細複合繊維を捕集側電極に集積して繊維集合物を得る。繊維集合物は捕集側電極に集積したものを直接採取してもよいし、捕集側電極がコンベア形状をなしており、連続的に集積する位置を移動させることにより、シート状の繊維集合物を連続して作製できるようにしてもよい。また、繊維集合物の別の採取方法としては、捕集側電極上に、金属箔、金属板、金属メッシュや織布、不織布、紙等を配置し、そのシート状物の上に極細複合繊維を集積させることにより、積層構造の繊維集合物を得ることができる。さらに、筒状フィルター等、ある程度厚みをもつ物品のようにシート型でないものに集積させてもよい。   The ultrafine composite fiber is accumulated on the collection side electrode to obtain a fiber aggregate. The fiber aggregate may be collected directly on the collection side electrode, or the collection side electrode has a conveyor shape, and the continuous accumulation position is moved to move the sheet-like fiber aggregate. You may enable it to produce a thing continuously. As another method for collecting fiber aggregates, a metal foil, a metal plate, a metal mesh, a woven fabric, a nonwoven fabric, paper, or the like is placed on the collecting electrode, and an ultrafine composite fiber is placed on the sheet-like material. By accumulating the fibers, a fiber assembly having a laminated structure can be obtained. Further, it may be accumulated in a non-sheet type such as an article having a certain thickness such as a cylindrical filter.

集積させる対象物は、アースを取り、捕集側電極と電位差をなくすことが好ましい。ただし、生産上特に問題がなければ、別段アースをとる必要性はなく、捕集側電極から若干浮いた状態で対象物を保持してもよい。   It is preferable that the objects to be accumulated are grounded to eliminate a potential difference from the collection side electrode. However, if there is no particular problem in production, there is no need to take a separate ground, and the object may be held in a state of being slightly lifted from the collection side electrode.

上記繊維集合物において、極細複合繊維同士が熱接着していることが好ましく、低融点成分の融点より10℃以上高く、高融点成分の融点より低い温度で熱処理し、前記極細複合繊維同士を熱接着して熱接着不織布とすることがより好ましい。極細複合繊維の熱接着は、特に限定されないが、下記のような熱処理で行うことができる。   In the fiber assembly, it is preferable that the ultrafine composite fibers are thermally bonded to each other, and heat treatment is performed at a temperature higher than the melting point of the low melting point component by 10 ° C. or more and lower than the melting point of the high melting point component to heat the ultrafine composite fibers to each other. It is more preferable to bond to a heat-bonded nonwoven fabric. The thermal bonding of the ultrafine composite fiber is not particularly limited, but can be performed by the following heat treatment.

上記繊維集合物は、鞘成分及び/又は海成分の熱融着により極細複合繊維同士が熱接着し、シート状に形成されていることが好ましい。例えば、島成分及び/又は芯成分の融点以下の温度で熱処理することで、上記鞘成分及び/又は海成分を熱融着させ、極細複合繊維同士が熱接着した熱接着不織布を得ることができる。熱処理としては、特に限定されないが、例えばエアスルードライヤー(熱風通気方式)やシリンダードライヤー(熱板圧着方式)等による乾燥方式が挙げられる。また、熱収縮率の点から、上記乾燥において、乾燥温度は70〜180℃、乾燥時間は5秒〜30分であることが好ましい。   The fiber aggregate is preferably formed into a sheet by heat-adhering ultrafine composite fibers by thermal fusion of a sheath component and / or a sea component. For example, by performing heat treatment at a temperature below the melting point of the island component and / or the core component, the sheath component and / or the sea component can be heat-sealed to obtain a heat-bonded nonwoven fabric in which ultrafine composite fibers are thermally bonded. . Although it does not specifically limit as heat processing, For example, the drying system by an air through dryer (hot air ventilation system), a cylinder dryer (hot plate pressure bonding system), etc. is mentioned. From the viewpoint of heat shrinkage, the drying temperature is preferably 70 to 180 ° C. and the drying time is preferably 5 seconds to 30 minutes.

上記熱接着不織布の目付は、好ましくは0.5〜200g/m2であり、より好ましくは1.0〜150g/m2である。0.5g/m2以上であれば、ウェブの破断が発生せず、一方、150g/m2以下であれば、捕集が安定的になる。ここで、不織布の目付とは、JIS L 1906 5.2(2006)に準じて測定したものをいう。 The basis weight of the heat-bonding nonwoven fabric is preferably 0.5 to 200 g / m 2 , more preferably 1.0 to 150 g / m 2 . If it is 0.5 g / m 2 or more, web breakage will not occur. On the other hand, if it is 150 g / m 2 or less, collection will be stable. Here, the fabric weight of a nonwoven fabric means what was measured according to JISL19065.2 (2006).

上記熱接着不織布の厚みは、好ましくは1〜300μmであり、より好ましくは5〜200μmである。1μm以上であれば、ウェブの破断が発生せず、一方、300μm以下であれば、捕集が安定する。ここで、不織布の厚みとは、JIS B 7502(2006)に準じて測定したものをいう。   The thickness of the thermobonding nonwoven fabric is preferably 1 to 300 μm, more preferably 5 to 200 μm. If it is 1 μm or more, web breakage does not occur, while if it is 300 μm or less, collection is stable. Here, the thickness of the nonwoven fabric refers to a thickness measured according to JIS B 7502 (2006).

上記熱接着不織布の熱収縮率は、好ましくは5.0%以下であり、より好ましくは3.0%以下である。5.0%以下であれば、熱処理の際に寸法安定性がよく、取り扱い易い。ここで、不織布の熱収縮率とは、JIS L 1906 5.9.1(2006)に準じて測定したものをいう。   The heat shrinkage rate of the heat-bonding nonwoven fabric is preferably 5.0% or less, more preferably 3.0% or less. If it is 5.0% or less, the dimensional stability is good and easy to handle during heat treatment. Here, the thermal shrinkage rate of a nonwoven fabric means what was measured according to JIS L1906 5.9.1 (2006).

上記熱接着不織布の引張強度は、好ましくは10N/5cm以上であり、より好ましくは20N/5cm以上である。10N/5cm以上であれば、不織布を加工する際のラインテンション等で破断することがなく、取り扱い性に優れる。ここで、不織布の引張強度とは、JIS L 1096 8.12.1(ストリップ法)(2006)に準じて測定したものをいう。   The tensile strength of the heat-bonding nonwoven fabric is preferably 10 N / 5 cm or more, more preferably 20 N / 5 cm or more. If it is 10 N / 5 cm or more, it will not break due to line tension or the like when processing the nonwoven fabric, and it is excellent in handleability. Here, the tensile strength of a nonwoven fabric means what was measured according to JISL10968.12.1 (strip method) (2006).

上記熱接着不織布の突刺強度は、好ましくは50gf以上であり、より好ましくは100gf以上である。50gf以上であれば、突刺強度を必要とする分野、例えば、電池用セパレータ、包装材等に好適に用いることができる。ここで、不織布の突刺強度とは、不織布を、25mmφの固定枠にセットし、先端部半径1mmφの突刺針を100mm/分で突刺し、不織布に穴等の欠陥が生じた時の荷重[gf]を測定したものをいう。   The puncture strength of the thermal bonding nonwoven fabric is preferably 50 gf or more, more preferably 100 gf or more. If it is 50 gf or more, it can be suitably used in fields requiring puncture strength, for example, battery separators, packaging materials and the like. Here, the puncture strength of the nonwoven fabric refers to a load [gf when a nonwoven fabric is set on a fixed frame of 25 mmφ, a puncture needle having a tip radius of 1 mmφ is pierced at 100 mm / min, and a defect such as a hole occurs in the nonwoven fabric. ] Is measured.

上記熱接着不織布の透気度は、好ましくは0.1〜20s/100ccであり、より好ましくは0.2〜150s/100ccである。通気度が0.1〜20s/100ccの範囲であれば、通気度を必要とする分野、例えば、フィルター、マスク等に好適に用いることができる。ここで、不織布の透気度とは、JIS P 8117(2006)に準じて測定したものをいう。   The air permeability of the heat-bonded nonwoven fabric is preferably 0.1 to 20 s / 100 cc, more preferably 0.2 to 150 s / 100 cc. If the air permeability is in the range of 0.1 to 20 s / 100 cc, it can be suitably used in fields requiring air permeability, such as filters and masks. Here, the air permeability of the nonwoven fabric refers to a value measured according to JIS P 8117 (2006).

上記熱接着不織布において、極細複合繊維は繊維形状を維持し、互いの極細複合繊維間で微細孔を構成していることが好ましい。上記微細孔の平均孔径は、10μm以下であることが好ましく、より好ましくは5μm以下である。上記平均孔径10μm以下であれば、フィルター、電池用セパレータとして好適に用いることができる。また、上記微細孔の最大孔径は、10μm以下である。平均孔径が小さすぎると、例えば電池用セパレータとして使用したときイオンの移動性が悪くなり、平均孔径が大きすぎるとイオンの移動性が大きすぎるので不適当である。ここで、平均孔径(mean flow pore diameter)及び最大孔径(bubble point pore diameter)は、ASTM F 316 86 に準じて、バブルポイント法によって測定したものをいう。   In the above heat-bonding nonwoven fabric, it is preferable that the ultrafine composite fibers maintain the fiber shape and that micropores are formed between the ultrafine composite fibers. The average pore diameter of the micropores is preferably 10 μm or less, more preferably 5 μm or less. If the said average hole diameter is 10 micrometers or less, it can use suitably as a filter and a battery separator. Moreover, the maximum hole diameter of the fine holes is 10 μm or less. If the average pore size is too small, for example, when used as a battery separator, the ion mobility becomes poor, and if the average pore size is too large, the ion mobility is too large. Here, the mean pore diameter and the maximum pore diameter are those measured by the bubble point method according to ASTM F31686.

上記のように、本発明の熱接着不織布は、引張強度及び突刺強度に優れている。また、熱接着不織布において、極細複合繊維は繊維形状を維持している。さらに、本発明の熱接着不織布は、熱収縮も少ない。よって、本発明の熱接着不織布は、フィルターやリチウムイオン電池等の電池セパレータとして極めて有用である。   As described above, the heat-bonded nonwoven fabric of the present invention is excellent in tensile strength and puncture strength. In the heat-bonding nonwoven fabric, the ultrafine composite fiber maintains the fiber shape. Furthermore, the heat-bonded nonwoven fabric of the present invention has little heat shrinkage. Therefore, the heat bonding nonwoven fabric of this invention is very useful as battery separators, such as a filter and a lithium ion battery.

次に、本発明の繊維集合物の製造方法について図面を用いて説明する。図1は、本発明における一実施例のエレクトロスピニング装置の概略説明図である。このエレクトロスピニング装置11は、供給側電極1と捕集側電極2との間に電圧発生装置3から電圧を印加し、供給側電極1の直下にレーザ照射装置4から矢印Aに沿ってレーザ光線を照射する。原料複合繊維8は、容器6に入れられた繊維堆積物7から引き出され、ガイド9を通過し、供給ローラ10から原料複合繊維8はエレクトロスピニング装置11に供給される。原料複合繊維は、ボビンに巻き取られた糸巻体から供給してもよい。原料複合繊維8は予備加熱領域5を通過する際に複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱される。続いて、原料複合繊維8は供給側電極を通過する際帯電する。この帯電状態で、供給側電極1の直下でレーザ照射装置4から矢印Aに沿ってレーザ光線が照射されることにより、原料複合繊維7は加熱溶融され、電気引力とともに捕集側電極に伸張される。このとき原料複合繊維8は矢印B方向に伸張して極細化し、極細複合繊維となる。12は極細複合繊維が集積した繊維集合物である。   Next, the manufacturing method of the fiber assembly of this invention is demonstrated using drawing. FIG. 1 is a schematic explanatory diagram of an electrospinning apparatus according to an embodiment of the present invention. The electrospinning device 11 applies a voltage from the voltage generator 3 between the supply-side electrode 1 and the collection-side electrode 2, and a laser beam along the arrow A from the laser irradiation device 4 immediately below the supply-side electrode 1. Irradiate. The raw composite fiber 8 is drawn from the fiber deposit 7 put in the container 6, passes through the guide 9, and the raw composite fiber 8 is supplied from the supply roller 10 to the electrospinning device 11. The raw composite fiber may be supplied from a bobbin wound on a bobbin. When the raw composite fiber 8 passes through the preheating region 5, the raw composite fiber 8 is preheated at a temperature that is 10 ° C. higher than the melting point of the low melting point component and 10 ° C. higher than the melting point of the high melting point component. Subsequently, the raw composite fiber 8 is charged when passing through the supply-side electrode. In this charged state, the raw material composite fiber 7 is heated and melted by being irradiated with a laser beam from the laser irradiation device 4 along the arrow A immediately below the supply side electrode 1 and is stretched to the collection side electrode together with the electric attractive force. The At this time, the raw composite fiber 8 expands in the direction of the arrow B to become ultrafine, and becomes an ultrafine composite fiber. Reference numeral 12 denotes a fiber assembly in which ultrafine composite fibers are accumulated.

図2は、本発明における別の実施例のエレクトロスピニング装置の概略説明図である。このエレクトロスピニング装置20は、予備加熱領域26が加熱された電熱線がコイル状に形成されている。そして、ポリイミド樹脂板23に取り付けた供給側電極21に高電圧端子22から電圧を印加する。供給側電極はニードル状が好ましい。ニードル状電極において、好ましいニードル長さは5〜30mmである。さらに好ましいニードル長さは10〜20mmである。ニードル長さが5mmを下回ると原料複合繊維の押し出す方向性が定まらず、レーザ光線照射部分に誘導し難くなる傾向にある。また30mmを超えると、ニードル内を原料複合繊維が通過する際に抵抗がかかり、押し出すときにスムーズに押し出されない可能性がある。ニードル内径は10〜2000μmが好ましい。より好ましい内径は20〜1650μmである。内径が10μmを下回ると、処理本数が少なくなり、細いため原料複合繊維を通すのが難しくなる傾向にある。一方、2000μmを超えるようであると繊維の内部の方まで帯電させることが難しくなる傾向にある。そして、ニードル状電極は1本である必要はなく、一度に多量のエレクトロスピニングを行いたい場合には、太いニードル1本で行うよりは、細い複数本のニードルを束ねた方が、原料複合繊維をレーザ光線照射部に誘導しやすいため好ましい。好ましいニードル本数は1〜1000本である。さらに好ましいニードル本数は1〜300本である。捕集側電極24にはアースを取る。供給側電極21の直下に複数のレーザ照射装置25から矢印Aに沿ってレーザ光線を照射する。原料複合繊維8は、予備加熱されて供給側電極21を通過する際帯電する。この帯電状態で、供給側電極21の直下でレーザ照射装置25から矢印Aに沿ってレーザ光線が照射されることにより、原料複合繊維8は瞬時に加熱溶融され、電気引力とともに捕集側電極24に伸張されて極細化し、極細複合繊維となる。このとき原料複合繊維8は矢印B方向に一例として数百倍に伸張されて極細化し、極細複合繊維となる。29は極細複合繊維が集積した繊維集合物である。また、供給側電極と捕集側電極の間に、加熱伸張領域を設けてもよい。加熱伸張領域では、例えば、レーザ照射部以降の捕集側電極付近に近づくにつれて温度が低くなる場合、伸張している最中に樹脂の結晶化が始まり、細く引くことが困難になる傾向にある場合等に、繊維が急冷されないように、例えば電気ヒーター等のヒーターや油槽等の加熱手段から熱を送り、加熱伸張領域を加熱する。加熱伸張領域の温度は原料複合繊維の種類にもよるが、原料複合繊維のガラス転移点以上融点以下に加熱するとよい。具体的には加熱伸張領域の温度は50〜300℃が好ましく、さらに好ましくは100〜200℃である。また、加熱方法は電気を使用した方法で行うことが、細かい温度調整が容易であることから好ましい。   FIG. 2 is a schematic explanatory diagram of an electrospinning apparatus according to another embodiment of the present invention. In the electrospinning device 20, a heating wire in which the preheating region 26 is heated is formed in a coil shape. Then, a voltage is applied from the high voltage terminal 22 to the supply-side electrode 21 attached to the polyimide resin plate 23. The supply side electrode is preferably needle-shaped. In the needle-like electrode, the preferable needle length is 5 to 30 mm. A more preferable needle length is 10 to 20 mm. If the needle length is less than 5 mm, the direction of extrusion of the raw composite fibers is not fixed, and it tends to be difficult to guide to the laser beam irradiated portion. Moreover, when it exceeds 30 mm, resistance will be applied when the raw material composite fiber passes through the needle, and there is a possibility that it will not be smoothly extruded when extruded. The inner diameter of the needle is preferably 10 to 2000 μm. A more preferable inner diameter is 20 to 1650 μm. When the inner diameter is less than 10 μm, the number of treatments is reduced, and the thin composite fiber tends to be difficult to pass through. On the other hand, if it exceeds 2000 μm, it tends to be difficult to charge up to the inside of the fiber. The number of needle-shaped electrodes does not need to be one, and when performing a large amount of electrospinning at one time, it is better to bundle a plurality of thin needles than to use a single thick needle. Is preferable because it can be easily guided to the laser beam irradiation part. A preferable number of needles is 1-1000. A more preferable number of needles is 1 to 300. The collection side electrode 24 is grounded. A laser beam is irradiated along the arrow A from a plurality of laser irradiation devices 25 immediately below the supply-side electrode 21. The raw composite fiber 8 is preheated and charged when passing through the supply-side electrode 21. In this charged state, the raw material composite fiber 8 is instantaneously heated and melted by being irradiated with the laser beam from the laser irradiation device 25 along the arrow A immediately below the supply side electrode 21, and together with the electric attractive force, the collection side electrode 24. To become ultrafine and become ultrafine composite fiber. At this time, the raw composite fiber 8 is stretched several hundred times as an example in the direction of the arrow B to be ultrafine, and becomes an ultrafine composite fiber. Reference numeral 29 denotes a fiber assembly in which ultrafine composite fibers are accumulated. Further, a heating extension region may be provided between the supply side electrode and the collection side electrode. In the heating extension region, for example, when the temperature becomes lower as it approaches the collection side electrode after the laser irradiation part, crystallization of the resin starts during the extension, and it tends to be difficult to draw it thinly. In some cases, heat is sent from a heating means such as a heater such as an electric heater or an oil tank so that the fibers are not rapidly cooled, and the heating extension region is heated. Although the temperature of the heating extension region depends on the type of the raw composite fiber, it is preferable to heat it to a melting point or higher and a melting point of the raw composite fiber. Specifically, the temperature in the heat extension region is preferably 50 to 300 ° C, more preferably 100 to 200 ° C. Moreover, it is preferable to perform the heating method by a method using electricity because fine temperature adjustment is easy.

以下、実施例を用いて本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.

実施例及び比較例で用いた測定方法は以下のとおりである。   The measuring methods used in Examples and Comparative Examples are as follows.

<繊維径の測定方法>
走査電子顕微鏡(SEM、日立製作所社製商品名“S−3500N”、倍率1500倍)を使用して、繊維側面を観察し、任意の30本の単繊維の測定結果から平均値を求めた。
<Measurement method of fiber diameter>
Using a scanning electron microscope (SEM, trade name “S-3500N” manufactured by Hitachi, Ltd., magnification of 1500 times), the fiber side surface was observed, and an average value was obtained from the measurement results of arbitrary 30 single fibers.

<目付け>
JIS L 1906(2000)に準じて測定した。
<Weighting>
It measured according to JIS L 1906 (2000).

<熱収縮率>
JIS L 1906 5.9.1に準じ、装置内の温度を100℃に設定し、幅20cm、長さ20cmの不織布の試験片を用い、複合繊維の長さ方向の熱収縮率を求めた。
<Heat shrinkage>
In accordance with JIS L 1906 5.9.1, the temperature in the apparatus was set to 100 ° C., and a nonwoven fabric test piece having a width of 20 cm and a length of 20 cm was used to determine the thermal shrinkage in the length direction of the composite fiber.

<引張強度>
JIS L 1096 6.12.1(ストリップ法)に準じ、幅5cm、長さ15cmの不織布の試験片を用いて、複合繊維の長さ方向の引張強度を測定した。
<Tensile strength>
In accordance with JIS L 1096 6.12.1 (strip method), the tensile strength in the length direction of the composite fiber was measured using a nonwoven fabric test piece having a width of 5 cm and a length of 15 cm.

<突刺強度>
不織布を、25mmφの固定枠にセットし、先端部半径1mmφの突刺針を100mm/分で突刺し、不織布に穴等の欠陥が生じた時の荷重[gf]を求め、突刺強度とした。なお、1gfは9.8×10-3Nである。
<Puncture strength>
The nonwoven fabric was set on a fixed frame of 25 mmφ, and a piercing needle with a tip radius of 1 mmφ was pierced at 100 mm / min, and the load [gf] when a defect such as a hole occurred in the nonwoven fabric was determined to obtain the piercing strength. 1 gf is 9.8 × 10 −3 N.

<平均孔径及び最大孔径>
ASTM F 316 86に準じて、バブルポイント法によって測定した。
<Average pore size and maximum pore size>
It was measured by the bubble point method according to ASTM F31686.

<捕集効率>
JIS B 9908に準じ、フィルターユニットの替わりに不織布の試験片を装着し、濾過面を100mmφとして測定する測定法により、測定速度5.3cm/秒で大気塵を濾過し、濾過前後の0.3〜2.0μmの粒子を分画し、粒子の個数を測定して下記式により捕集効率を算出した。なお、3サンプルの平均値を用いた。
捕集効率(%)=(1−C2/C1)×100
上記式において、C1は濾過前の粒子の個数であり、C2は濾過後の粒子の個数である。
<Collection efficiency>
According to JIS B 9908, air dust is filtered at a measurement speed of 5.3 cm / second by a measurement method in which a non-woven fabric test piece is attached instead of a filter unit and the filtration surface is 100 mmφ, and before and after filtration. Particles of ˜2.0 μm were fractionated, the number of particles was measured, and the collection efficiency was calculated according to the following formula. In addition, the average value of 3 samples was used.
Collection efficiency (%) = (1-C2 / C1) × 100
In the above formula, C1 is the number of particles before filtration, and C2 is the number of particles after filtration.

<圧力損失>
上記捕集効率測定時のフィルターユニットの替わりに装着した不織布の試験片の上流側の圧力及び下流側の圧力を測定し、上流側の圧力と下流側の圧力の差を圧力損失とした。
<Pressure loss>
The pressure on the upstream side and the pressure on the downstream side of the non-woven fabric test piece mounted instead of the filter unit at the time of measuring the collection efficiency was measured, and the difference between the upstream pressure and the downstream pressure was taken as the pressure loss.

<透気度>
JIS P 8117に準じて測定した。測定装置としてB型ガーレーデンソメーター(東洋精機社製)を使用した。不織布の試験片を直径28.6mm、面積645mm2の
円孔に締付ける。内筒重量567gにより、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し、透気度(ガーレー値)とした。
<Air permeability>
Measurement was performed according to JIS P 8117. A B-type Gurley Densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The nonwoven fabric test piece is clamped in a circular hole having a diameter of 28.6 mm and an area of 645 mm2. With the inner cylinder weight of 567 g, the air in the cylinder is allowed to pass out of the cylinder from the test circular hole. The time required for 100 cc of air to pass through was measured and used as the air permeability (Gurley value).

<原料樹脂>
(1)エチレン−ビニルアルコールコポリマー(EVOH):日本合成化学社製“K3835BN”、融点171℃、JIS−K−7210に準じて測定したメルトフローレート(MFR;測定温度230℃、荷重21.18N(2.16kgf))35g/10min
(2)エチレン−プロピレンコポリマー(EP):日本ポリプロ社製“WXK1183”、融点128℃、JIS−K−7210に準じて測定したメルトフローレート(MFR;測定温度230℃、荷重21.18N(2.16kgf))25g/10min
(3)高密度ポリエチレン(PE):日本ポリエチレン社製“HE481”、融点130℃、JIS−K−7210に準じて測定したメルトフローレート(MFR;測定温度190℃、荷重21.18N(2.16kgf))12g/10min
(4)ポリプロピレン(PP):日本ポリプロ社製“SA03”、融点161℃、JIS−K−7210に準じて測定したメルトフローレート(MFR;測定温度230℃、荷重21.18N(2.16kgf))30g/10min
(5)ポリメチルペンテン(PMP):三井化学社製、“TPX−DX820”、融点240℃
(6)ポリエチレンテレフタレート(PET):東レ社製商品名“T200E”、融点255℃、固有粘度(IV)0.64
<Raw resin>
(1) Ethylene-vinyl alcohol copolymer (EVOH): “K3835BN” manufactured by Nippon Synthetic Chemical Co., Ltd., melting point 171 ° C., measured according to JIS-K-7210 (MFR; measuring temperature 230 ° C., load 21.18 N) (2.16 kgf)) 35 g / 10 min
(2) Ethylene-propylene copolymer (EP): “WXK1183” manufactured by Nippon Polypro Co., Ltd., melting point 128 ° C., melt flow rate measured according to JIS-K-7210 (MFR; measuring temperature 230 ° C., load 21.18 N (2 .16 kgf)) 25 g / 10 min
(3) High density polyethylene (PE): “HE481” manufactured by Nippon Polyethylene Co., Ltd., melting point 130 ° C., melt flow rate measured according to JIS-K-7210 (MFR; measuring temperature 190 ° C., load 21.18 N (2. 16kgf)) 12g / 10min
(4) Polypropylene (PP): “SA03” manufactured by Nippon Polypro Co., Ltd., melting point 161 ° C., melt flow rate measured according to JIS-K-7210 (MFR; measuring temperature 230 ° C., load 21.18 N (2.16 kgf) ) 30g / 10min
(5) Polymethylpentene (PMP): manufactured by Mitsui Chemicals, "TPX-DX820", melting point 240 ° C
(6) Polyethylene terephthalate (PET): trade name “T200E” manufactured by Toray Industries, Inc., melting point 255 ° C., intrinsic viscosity (IV) 0.64

<複合樹脂形成物の製造>
複合樹脂形成物は、常法に従い、溶融紡糸して未延伸糸を得、原料の複合樹脂形成物(原料複合繊維)とした。原料複合繊維の繊維断面、高融点成分、低融点成分、配合割合、単繊維繊維径、繊維本数を表1に示した。
<Manufacture of composite resin molding>
The composite resin formed product was melt-spun according to a conventional method to obtain an undrawn yarn, and a raw composite resin formed product (raw composite fiber) was obtained. Table 1 shows the fiber cross section, high melting point component, low melting point component, blending ratio, single fiber diameter, and number of fibers of the raw composite fiber.

(実施例1)
製造例1で作製した原料複合繊維を用い、下記のエレクトピニング方法のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は150℃とした。なお、実施例1の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
Example 1
Using the raw material composite fiber produced in Production Example 1, ultrafine fibers were obtained under the spinning conditions of the following electpinning method. The heating temperature in the preheating region was 150 ° C. In addition, the fiber assembly of Example 1 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

<エレクトロスピニング方法>
エレクトロスピニング装置は図1に示す装置を使用し、その条件は次のとおりとした。
電極間の電圧:32.5kV
電極間距離:10cm
紡出速度:30mm/min
雰囲気温度:23℃
レーザ装置:鬼塚硝子社製PIN−30R(定格出力30W、波長10.6μm、ビーム径6mm)
供給側電極とレーザ照射部の距離:4mm
供給側電極:ユニコントロールズ株式会社製 UNシリーズ 20G×15を1本で使用レーザ強度:20mA。
<Electrospinning method>
The electrospinning apparatus used the apparatus shown in FIG. 1, and the conditions were as follows.
Voltage between electrodes: 32.5 kV
Distance between electrodes: 10cm
Spinning speed: 30mm / min
Atmospheric temperature: 23 ° C
Laser device: PIN-30R manufactured by Onizuka Glass Co., Ltd. (rated output 30 W, wavelength 10.6 μm, beam diameter 6 mm)
Distance between supply side electrode and laser irradiation part: 4mm
Supply side electrode: UN series 20G × 15 manufactured by Unicontrols Co., Ltd. Laser power: 20 mA.

(実施例2)
製造例2で作製した原料複合繊維を用い、実施例1と同様のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は160℃とした。なお、実施例2の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
(Example 2)
Using the raw composite fibers produced in Production Example 2, ultrafine fibers were obtained under the same spinning conditions as in Example 1. The heating temperature in the preheating region was 160 ° C. In addition, the fiber assembly of Example 2 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

(実施例3)
製造例3で作製した原料複合繊維を用い、実施例1と同様のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は166℃とした。なお、実施例3の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
(Example 3)
Using the raw composite fibers produced in Production Example 3, ultrafine fibers were obtained under the same spinning conditions as in Example 1. The heating temperature in the preheating region was 166 ° C. In addition, the fiber assembly of Example 3 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

(実施例4)
製造例4で作製した原料複合繊維を用い、実施例1と同様のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は166℃とした。なお、実施例4の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
Example 4
Using the raw composite fibers produced in Production Example 4, ultrafine fibers were obtained under the same spinning conditions as in Example 1. The heating temperature in the preheating region was 166 ° C. In addition, the fiber assembly of Example 4 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

(実施例5)
製造例4で作製した原料複合繊維を用い、実施例1と同様のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は200℃とした。なお、実施例5の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
(Example 5)
Using the raw composite fibers produced in Production Example 4, ultrafine fibers were obtained under the same spinning conditions as in Example 1. The heating temperature in the preheating region was 200 ° C. In addition, the fiber assembly of Example 5 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

(実施例6)
製造例4で作製した原料複合繊維を用い、実施例1と同様のスピニング条件下で極細繊維を得た。予備加熱領域の加熱温度は180℃とした。なお、実施例6の繊維集合物は、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒がないものであった。
(Example 6)
Using the raw composite fibers produced in Production Example 4, ultrafine fibers were obtained under the same spinning conditions as in Example 1. The heating temperature in the preheating region was 180 ° C. In addition, the fiber assembly of Example 6 did not have resin particles that are not made into fine fibers such as beads, powders, and particles.

(比較例1)
予備加熱領域の加熱温度を200℃としたこと以外は、実施例1と同様にして極細繊維を得た。比較例1の繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。
(Comparative Example 1)
Ultrafine fibers were obtained in the same manner as in Example 1 except that the heating temperature in the preheating region was 200 ° C. On the surface of the fiber assembly of Comparative Example 1, resin particles such as beads, powders, and particles that were not made into fine fibers were observed.

(比較例2)
予備加熱領域の加熱温度を100℃としたこと以外は、実施例1と同様にして極細繊維を得た。比較例2の繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。
(Comparative Example 2)
Ultrafine fibers were obtained in the same manner as in Example 1 except that the heating temperature in the preheating region was 100 ° C. On the surface of the fiber assembly of Comparative Example 2, resin particles such as beads, powders, and particles that were not made into fine fibers were observed.

(比較例3)
予備加熱領域の加熱温度を200℃としたこと以外は、実施例3と同様にして極細繊維を得た。比較例3の繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。
(Comparative Example 3)
Ultrafine fibers were obtained in the same manner as in Example 3 except that the heating temperature in the preheating region was 200 ° C. On the surface of the fiber assembly of Comparative Example 3, resin particles such as beads, powders, and particles that were not made into fine fibers were observed.

(比較例4)
予備加熱領域の加熱温度を100℃としたこと以外は、実施例3と同様にして極細繊維を得た。比較例4の繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。
(Comparative Example 4)
Ultrafine fibers were obtained in the same manner as in Example 3 except that the heating temperature in the preheating region was 100 ° C. On the surface of the fiber aggregate of Comparative Example 4, resin particles such as beads, powders, and particles that were not made into fine fibers were observed.

(比較例5)
製造例7で作製した原料繊維を用い、実施例1と同様のスピニング条件下、予備加熱領域の加熱温度は166℃で極細繊維を得ようとしたが、予備加熱領域から電極間に原料繊維を供給する際に、詰まりが発生し、紡出することができなかった。
(Comparative Example 5)
The raw fiber produced in Production Example 7 was used under the same spinning conditions as in Example 1, and an attempt was made to obtain ultrafine fibers at a heating temperature of 166 ° C. in the preheating region. When feeding, clogging occurred and spinning could not be performed.

(比較例6)
製造例7で作製した原料繊維を用い、実施例1と同様のスピニング条件下、予備加熱領域の加熱温度は100℃で極細繊維を得ようとしたが、原料繊維が帯電されず、紡出することができなかった。
(Comparative Example 6)
An attempt was made to obtain ultrafine fibers using the raw material fibers produced in Production Example 7 under the same spinning conditions as in Example 1 at a heating temperature in the preheating region of 100 ° C., but the raw material fibers are not charged and are spun. I couldn't.

実施例1〜6及び比較例1〜6のエレクトロスピニング後の単繊維繊維径、繊維集合物の目付を表2に示した。   Table 2 shows the single fiber diameter after electrospinning of Examples 1 to 6 and Comparative Examples 1 to 6, and the basis weight of the fiber aggregate.

実施例1〜6は予備加熱領域の温度を低融点成分のみが溶融する温度としたので、低融点成分のみが溶融状態となり、高融点成分は溶融状態とならず、原料複合繊維を良好に供給することができた。また、実施例1〜6で得た繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒はみられなかった。   In Examples 1 to 6, since the temperature of the preheating region was set to a temperature at which only the low melting point component melts, only the low melting point component enters the molten state, and the high melting point component does not enter the molten state, and the raw composite fibers are supplied satisfactorily. We were able to. Moreover, the resin particle which is not made into fine fibers, such as a bead shape, a powder form, and a particle form, was not seen on the surface of the fiber assembly obtained in Examples 1-6.

比較例1及び比較例3は予備加熱領域の温度を低融点成分及び高融点成分が溶融する温度としたので、低融点成分及び高融点成分が溶融状態となり、原料複合繊維を電極間に供給する際に、詰まりが発生した。また、原料複合繊維が電極間で加熱溶融される際に、過度に溶融されたポリマーが落下することがあり、比較例1及び比較例3で得た繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。   In Comparative Example 1 and Comparative Example 3, the temperature of the preheating region is set to a temperature at which the low melting point component and the high melting point component are melted. Therefore, the low melting point component and the high melting point component are in a molten state, and the raw composite fibers are supplied between the electrodes. When clogging occurred. In addition, when the raw composite fiber is heated and melted between the electrodes, the excessively melted polymer may fall, and the surface of the fiber aggregate obtained in Comparative Example 1 and Comparative Example 3 has a bead shape, Resin particles that were not made into fine fibers such as powder and particles were observed.

比較例2及び比較例4は予備加熱領域の温度を低融点成分及び高融点成分が共に溶融しない温度としたので、低融点成分及び高融点成分が共に溶融状態とならず、原料複合繊維を良好に供給することができた。しかし、原料複合繊維が電極間で加熱溶融される際に、帯電されず溶融したポリマーが落下することがあり、比較例2及び比較例4で得た繊維集合物の表面には、ビーズ状、パウダー状、粒子状等の細繊維化されない樹脂粒が見られた。   In Comparative Example 2 and Comparative Example 4, since the temperature of the preheating region was set to a temperature at which neither the low melting point component nor the high melting point component was melted, both the low melting point component and the high melting point component were not melted and the raw composite fiber was good Could be supplied to. However, when the raw composite fiber is heated and melted between the electrodes, the polymer that is not charged and falls may fall, and the surface of the fiber aggregate obtained in Comparative Example 2 and Comparative Example 4 has a bead shape, Resin particles that were not made into fine fibers such as powder and particles were observed.

比較例5は、原料繊維として、単一成分からなる繊維を用い、予備加熱領域を原料繊維が溶融する温度に設定したため、予備加熱領域において原料繊維全体が溶融状態となり、原料繊維を電極間に供給する際に、詰まりが発生した。   In Comparative Example 5, since a single component fiber was used as the raw material fiber and the preheating region was set to a temperature at which the raw material fiber melted, the entire raw material fiber was melted in the preheating region, and the raw material fiber was placed between the electrodes. Clogging occurred during supply.

比較例6は、原料繊維として、単一成分からなる繊維を用い、予備加熱領域を原料繊維が溶融しない温度に設定したため、予備加熱領域において原料繊維がまったく溶融状態とならず、原料繊維を電極間に供給しても、帯電せず、エレクトロスピニングを行うことができなかった。   In Comparative Example 6, a single component fiber was used as the raw fiber, and the preheating region was set to a temperature at which the raw fiber was not melted. Therefore, the raw fiber was not melted at all in the preheating region. Even if it was fed in between, it was not charged and electrospinning could not be performed.

(実施例7〜10)
実施例1の極細複合繊維をそれぞれ目付が6、9、12、20g/m2となるように集積して得た繊維集合物に、145℃、30秒のエアスルードライヤー方式により熱処理して熱接着不織布
を作製した。
(Examples 7 to 10)
The fiber aggregates obtained by accumulating the ultrafine composite fibers of Example 1 so as to have a basis weight of 6, 9, 12, and 20 g / m 2 were heat-treated by an air-through dryer method at 145 ° C. for 30 seconds and thermally bonded. A nonwoven fabric was prepared.

(実施例11〜14)
実施例1と同様にして得た極細複合繊維をそれぞれ目付が6、9、12、20g/m2となるように集積して得た繊維集合物に、145℃、30秒のシリンダードライヤー方式により熱処理して熱接着不織布を作製した。
(Examples 11-14)
A fiber dryer obtained by accumulating ultrafine composite fibers obtained in the same manner as in Example 1 so that the basis weights are 6, 9, 12, and 20 g / m 2 , respectively, by a cylinder dryer method at 145 ° C. for 30 seconds. A heat-bonded nonwoven fabric was produced by heat treatment.

実施例11〜14の熱接着不織布の目付け、厚み、熱収縮率、引張強度、突刺強度、透気度、平均孔径、最大孔径、圧力損失、捕集効率等の材料特性を上記のとおり測定し、その測定結果を表3に示した。   The material properties such as the basis weight, thickness, thermal shrinkage rate, tensile strength, puncture strength, air permeability, average pore size, maximum pore size, pressure loss, collection efficiency, etc. of the heat-bonded nonwoven fabrics of Examples 11 to 14 were measured as described above. The measurement results are shown in Table 3.

実施例7〜14の熱接着不織布は、いずれも表面がフィルム化しておらず、フィルター用途に適した不織布であった。   None of the heat-bonded nonwoven fabrics of Examples 7 to 14 was a nonwoven fabric suitable for filter applications because the surface was not formed into a film.

本発明の製造方法で得た繊維集合物は、フィルター、電池セパレータ(特にリチウムイオン電池用セパレータ)、紙、不織布等として有用である。   The fiber aggregate obtained by the production method of the present invention is useful as a filter, a battery separator (particularly a lithium ion battery separator), paper, nonwoven fabric, and the like.

1、21 供給側電極
2、24 捕集側電極
3 電圧発生装置
4、25 レーザ照射装置
5、26 予備加熱領域
6 容器
7 繊維堆積物
8 原料複合繊維
9 ガイド
10 供給ローラ
11、20 エレクトロスピニング装置
22 高電圧端子
23 ポリイミド樹脂板
12、29 極細複合繊維の繊維集合物
DESCRIPTION OF SYMBOLS 1,21 Supply side electrode 2, 24 Collection side electrode 3 Voltage generator 4, 25 Laser irradiation apparatus 5, 26 Preheating area 6 Container 7 Fiber deposit 8 Raw material composite fiber 9 Guide 10 Supply roller 11, 20 Electrospinning device 22 High voltage terminal 23 Polyimide resin plate 12, 29 Fiber assembly of ultrafine composite fiber

Claims (7)

少なくとも低融点成分と高融点成分を含む固体状の複合樹脂形成物を予備加熱領域に供給し、
複合樹脂形成物の低融点成分の融点より10℃低い温度以上かつ高融点成分の融点より10℃高い温度以下の温度で予備加熱した後、
前記複合樹脂形成物を電極間における供給側電極前及び/又は電極間で加熱溶融し、エレクトロスピニング(electro spinning)により伸張させて極細複合繊維とし、集積して得られる繊維集合物の製造方法。
Supplying a solid composite resin formed product containing at least a low melting point component and a high melting point component to the preheating region;
After preheating at a temperature not lower than the melting point of the low melting point component of the composite resin formed product by 10 ° C. and not higher than the melting point of the high melting point component,
A method for producing a fiber aggregate obtained by heat-melting the composite resin formed product before and / or between electrodes on the supply side between electrodes and stretching it by electrospinning to form ultrafine composite fibers.
予備加熱領域が熱コイルからなる請求項1に記載の繊維集合物の製造方法。   The method for producing a fiber assembly according to claim 1, wherein the preheating region includes a thermal coil. 前記複合樹脂形成物の高融点成分は、体積固有抵抗値が1015Ω・cm以下の樹脂である請求項1又は2のいずれかに記載の繊維集合物の製造方法。 The method for producing a fiber assembly according to claim 1, wherein the high melting point component of the composite resin formed material is a resin having a volume resistivity of 10 15 Ω · cm or less. 前記複合樹脂形成物の高融点成分が、エチレン−ビニルアルコールコポリマーである請求項3に記載の繊維集合物の製造方法。   The method for producing a fiber assembly according to claim 3, wherein the high melting point component of the composite resin formed product is an ethylene-vinyl alcohol copolymer. 前記複合樹脂形成物が、繊維形状であり、かつ繊維断面からみて、芯鞘型、海島型又は分割型の複合繊維である請求項1〜4のいずれかに記載の繊維集合物の製造方法。   The method for producing a fiber assembly according to any one of claims 1 to 4, wherein the composite resin formed product is a fiber shape and is a core-sheath type, sea-island type, or split type composite fiber as viewed from the fiber cross section. 前記複合樹脂形成物が、モノフィラメントを10〜1000本収束したマルチフィラメント又はトウである請求項1〜5のいずれかに記載の繊維集合物の製造方法。   The method for producing a fiber assembly according to any one of claims 1 to 5, wherein the composite resin formed product is a multifilament or tow in which 10 to 1000 monofilaments are converged. 前記極細複合繊維を集積して得られる繊維集合物を、さらに、低融点成分の融点より10℃以上高く、高融点成分の融点より低い温度で熱処理し、前記極細複合繊維同士を熱接着して、シート状に形成する請求項1〜6のいずれかに記載の熱接着不織布の製造方法。   The fiber aggregate obtained by accumulating the ultrafine composite fibers is further heat-treated at a temperature higher than the melting point of the low melting point component by 10 ° C. or more and lower than the melting point of the high melting point component, and the ultrafine composite fibers are thermally bonded to each other. The manufacturing method of the thermobonding nonwoven fabric in any one of Claims 1-6 formed in a sheet form.
JP2009130376A 2009-05-29 2009-05-29 Fibrous aggregate and method for producing heat-bonded nonwoven fabric Pending JP2010275663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130376A JP2010275663A (en) 2009-05-29 2009-05-29 Fibrous aggregate and method for producing heat-bonded nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130376A JP2010275663A (en) 2009-05-29 2009-05-29 Fibrous aggregate and method for producing heat-bonded nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2010275663A true JP2010275663A (en) 2010-12-09

Family

ID=43422881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130376A Pending JP2010275663A (en) 2009-05-29 2009-05-29 Fibrous aggregate and method for producing heat-bonded nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2010275663A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560896A (en) * 2012-02-13 2012-07-11 东华大学 Method and device for preparation of composite functional membrane with nanofiber layer
WO2012133631A1 (en) * 2011-03-30 2012-10-04 株式会社クラレ Filtering medium for filter, and water filtering apparatus provided with filtering medium
JP2013023804A (en) * 2011-07-15 2013-02-04 Samsung Electro-Mechanics Co Ltd Porous sheet and method for producing the same
JP2013071456A (en) * 2011-09-27 2013-04-22 Samsung Electro-Mechanics Co Ltd Porous sheet and method for manufacturing the same
CN103541149A (en) * 2013-08-29 2014-01-29 天津工业大学 Method for enhancing electrostatic spinning nanofiber membrane
JP2014185265A (en) * 2013-03-25 2014-10-02 Kuraray Co Ltd Method of producing foam-containing resin molding
JP2019070204A (en) * 2017-10-06 2019-05-09 花王株式会社 Method for producing fiber, and composition for melt-electrospinning
KR102620413B1 (en) * 2022-11-28 2024-01-04 지에이치신소재 주식회사 A melt-electro spinning nano fiber manufacturing apparatus using a thermoplastic high polymer filament

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133631A1 (en) * 2011-03-30 2012-10-04 株式会社クラレ Filtering medium for filter, and water filtering apparatus provided with filtering medium
JP5876871B2 (en) * 2011-03-30 2016-03-02 株式会社クラレ Filter medium for filter and water filter device provided with the filter medium
JP2013023804A (en) * 2011-07-15 2013-02-04 Samsung Electro-Mechanics Co Ltd Porous sheet and method for producing the same
JP2013071456A (en) * 2011-09-27 2013-04-22 Samsung Electro-Mechanics Co Ltd Porous sheet and method for manufacturing the same
CN102560896A (en) * 2012-02-13 2012-07-11 东华大学 Method and device for preparation of composite functional membrane with nanofiber layer
JP2014185265A (en) * 2013-03-25 2014-10-02 Kuraray Co Ltd Method of producing foam-containing resin molding
CN103541149A (en) * 2013-08-29 2014-01-29 天津工业大学 Method for enhancing electrostatic spinning nanofiber membrane
JP2019070204A (en) * 2017-10-06 2019-05-09 花王株式会社 Method for producing fiber, and composition for melt-electrospinning
JP7040909B2 (en) 2017-10-06 2022-03-23 花王株式会社 Fiber manufacturing method and composition for molten electric field spinning
KR102620413B1 (en) * 2022-11-28 2024-01-04 지에이치신소재 주식회사 A melt-electro spinning nano fiber manufacturing apparatus using a thermoplastic high polymer filament

Similar Documents

Publication Publication Date Title
JP4749511B2 (en) Fiber assembly, composite of conductive substrate and fiber assembly, and production method thereof
JP2010275663A (en) Fibrous aggregate and method for producing heat-bonded nonwoven fabric
US20100297443A1 (en) Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure
US8277711B2 (en) Production of nanofibers by melt spinning
JP4558826B2 (en) Extra fine composite fiber, extra fine fiber, method for producing the same, and fiber structure
JP4209734B2 (en) Nonwoven fabric and method for producing the same
WO2007105479A1 (en) Melt electrostatic spinning method and extra-fine fiber
US10981095B2 (en) Nonwoven fabric and air filter including same
JP5593038B2 (en) Extra fine composite fiber, method for producing the same, and fiber structure
JP5846621B2 (en) Filter material and method for producing the same
Niu et al. Electrospinning: an advanced nanofiber production technology
JP2017185422A (en) Depth filter
WO2015141495A1 (en) Method for manufacturing ultrafine fiber
JP5004774B2 (en) Extra fine composite fiber, method for producing the same, and fiber structure
JP6457757B2 (en) Meltblown nonwoven
JP2013064203A (en) Method for manufacturing continuous sheet formed of nanofiber
JP2015190081A (en) Melt-blown nonwoven fabric
JP5540293B2 (en) Spinning method, fiber mat manufacturing method, spinning device, fiber, and fiber mat
JP5305960B2 (en) Manufacturing method of ultra-fine fiber nonwoven fabric and manufacturing apparatus thereof
JP5467895B2 (en) Fiber assembly and method for producing the same
JP2008088610A (en) Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same
JP2006274457A (en) Melt blown biodegradable nonwoven fabric, method for producing the same and filtration material
JP5004852B2 (en) Nonwoven manufacturing method
JP2009161889A (en) Manufacturing equipment of spunbond web
JPH02175919A (en) Heat-fusible conjugate fiber