JP2010271072A - Pipe thickness measuring device - Google Patents

Pipe thickness measuring device Download PDF

Info

Publication number
JP2010271072A
JP2010271072A JP2009121127A JP2009121127A JP2010271072A JP 2010271072 A JP2010271072 A JP 2010271072A JP 2009121127 A JP2009121127 A JP 2009121127A JP 2009121127 A JP2009121127 A JP 2009121127A JP 2010271072 A JP2010271072 A JP 2010271072A
Authority
JP
Japan
Prior art keywords
pipe
tube
thickness measuring
ultrasonic probe
core metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121127A
Other languages
Japanese (ja)
Other versions
JP4768052B2 (en
Inventor
Kazuyoshi Okano
一良 岡野
Misao Fujieda
操 藤枝
Shuichi Sato
秀一 佐藤
Mitsugi Fujiwara
貢 藤原
Tatsuya Hikichi
達也 引地
Minehiro Nakagawa
峰寛 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAA FUELING FACILITIES CORP
IHI Inspection and Instrumentation Co Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
NAA FUELING FACILITIES CORP
IHI Inspection and Instrumentation Co Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAA FUELING FACILITIES CORP, IHI Inspection and Instrumentation Co Ltd, Shin Nippon Nondestructive Inspection Co Ltd filed Critical NAA FUELING FACILITIES CORP
Priority to JP2009121127A priority Critical patent/JP4768052B2/en
Publication of JP2010271072A publication Critical patent/JP2010271072A/en
Application granted granted Critical
Publication of JP4768052B2 publication Critical patent/JP4768052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe thickness measuring device capable of efficiently measuring the thickness of piping having a bent part and an extended/contracted part in the middle. <P>SOLUTION: The pipe thickness measuring device 10 for measuring the thickness of the piping 16 having the bent part 14 and the extended/contracted part 15 includes: a pipe thickness measuring means 18 which moves in the piping 16, and has on the tip side an ultrasonic probe 17 provided rotatably facing the radial outside for measuring the thickness of the piping 16; a flexible tube 19 connected to the base of the pipe thickness measuring means 18; a torque transmitting member 22 which is arranged rotatably in the flexible tube 19, whose tip is connected to the ultrasonic probe 17 through a core metal pipe 20, and in which a cord 21 from the ultrasonic probe 17 is arranged; a tube transfer means 23 for transferring the flexible tube 19 into or out of the piping 16; a rotating means 24 for rotating/driving the torque transmitting member 22; and a slip ring mechanism 25 which is arranged on the base of the torque transmitting member 22 and is connected to the cord 21 to be rotated/driven. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内部に可燃性の液体が充填され、途中位置に曲がり部及び拡縮部を備える配管の厚みを測定する管厚測定装置に関する。 The present invention relates to a pipe thickness measuring device that measures the thickness of a pipe that is filled with a flammable liquid and includes a bent part and an expansion / contraction part at an intermediate position.

流体輸送配管、熱交換器やボイラの伝熱管等の保守検査のために、超音波を用いた管の肉厚測定が行われている。例えば、特許文献1には、管内に挿入可能なケーブル部の先側に、調芯羽根を介在させて球面状の超音波振動子が周方向に沿って複数(例えば4個)配置された超音波探触子を取付け、ケーブル部の後端部分に超音波送受信装置を接続した管肉厚測定装置が開示され、超音波探触子を回転させることなく管の周方向の複数箇所の肉厚を測定している。
また、特許文献2には、管内に挿入されるロッドと、ロッドの先側の上下に対向配置され、管の半径方向に沿って同期して移動して距離を拡縮する一対の拡縮ブロックと、上部の拡縮ブロックの中央に突出して取付けられた超音波探触子とを備えた管肉厚測定装置が開示され、超音波探触子を管内壁に確実に接触させて管の肉厚を測定している。
For the maintenance inspection of fluid transport pipes, heat exchangers, heat transfer tubes of boilers, etc., the wall thickness measurement of ultrasonic tubes is performed. For example, in Patent Document 1, a supersonic wave in which a plurality of spherical ultrasonic transducers (for example, four) are arranged along the circumferential direction with a centering blade interposed on the front side of a cable portion that can be inserted into a pipe. Disclosed is a tube thickness measurement device in which an ultrasonic probe is attached and an ultrasonic transmission / reception device is connected to the rear end portion of a cable portion, and the thickness of a plurality of locations in the circumferential direction of the tube without rotating the ultrasonic probe is disclosed. Is measuring.
Further, in Patent Document 2, a rod inserted into a pipe, a pair of expansion / contraction blocks that are arranged opposite to each other on the top and bottom sides of the rod, and move synchronously along the radial direction of the pipe to expand and contract the distance, Disclosed is a tube wall thickness measurement device that includes an ultrasonic probe that protrudes from the center of the upper expansion / contraction block. The tube wall thickness is measured by reliably contacting the ultrasonic probe to the inner wall of the tube. is doing.

特開平9−53926号公報Japanese Patent Laid-Open No. 9-53926 特開2002−48528号公報JP 2002-48528 A

しかしながら、特許文献1に記載された管肉厚測定装置では、調芯羽根の寸法が一定のため、管の内径が場所により変化する場合、超音波探触子を管の中心部に配置することが困難となる。また、超音波振動子を複数使用するため、超音波振動子の送受信ケーブルの本数が増え管肉厚測定装置の操作性が低下するという問題が生じる。更に、超音波振動子を複数同時使用するので、超音波送受信装置として多チャンネル処理が可能なものを使用する必要が生じ装置コストが上昇するという問題もある。
また、特許文献2に記載された管肉厚測定装置では、一対の拡縮ブロックを管の半径方向に沿って移動させるため、管の途中に曲がり部が存在すると、拡縮ブロックの通過が困難あるいは不可能になる場合が生じる。また、超音波探触子が管肉厚測定位置に接触するように、管内に挿入する際の超音波探触子の位置決めを厳密に行う必要があり、測定が煩雑になると共に測定に長時間を要するという問題がある。
However, in the tube thickness measuring apparatus described in Patent Document 1, since the dimension of the centering blade is constant, the ultrasonic probe is disposed at the center of the tube when the inner diameter of the tube changes depending on the location. It becomes difficult. In addition, since a plurality of ultrasonic transducers are used, there is a problem that the number of transmission / reception cables of the ultrasonic transducers is increased and the operability of the tube thickness measuring device is lowered. Furthermore, since a plurality of ultrasonic transducers are used at the same time, it is necessary to use an ultrasonic transmission / reception apparatus capable of multi-channel processing, resulting in an increase in apparatus cost.
In the pipe thickness measuring device described in Patent Document 2, since the pair of expansion / contraction blocks are moved along the radial direction of the pipe, if there is a bent portion in the middle of the pipe, it is difficult or impossible to pass the expansion / contraction block. Sometimes it becomes possible. In addition, it is necessary to strictly position the ultrasonic probe when it is inserted into the tube so that the ultrasonic probe is in contact with the tube thickness measurement position. There is a problem that requires.

本発明はかかる事情に鑑みてなされたもので、途中に曲がり部及び拡縮部を備える配管の厚みを効率的に測定することが可能な管厚測定装置を提供することを目的とする。 This invention is made | formed in view of this situation, and it aims at providing the pipe | tube thickness measuring apparatus which can measure the thickness of piping provided with a bending part and an expansion / contraction part in the middle efficiently.

前記目的に沿う本発明に係る管厚測定装置は、内部に可燃性の液体が充填され、途中位置に曲がり部を有すると共に、別の途中位置には内径が徐々に異なる拡縮部を備える配管の厚みを測定する管厚測定装置であって、
1)前記配管内を移動し、先側には半径方向外側を向いて前記配管の厚みを測定する超音波探触子を回転可能に有する管厚測定手段と、2)前記管厚測定手段の基部に接続されたフレキシブルチューブと、3)前記フレキシブルチューブ内に回転可能に配置され、先部は前記超音波探触子に芯金管を介して接続され、内部に前記超音波探触子からのコードが配置された回転力伝達部材と、4)前記フレキシブルチューブの前記配管内への搬出入を行うチューブ移送手段と、5)前記フレキシブルチューブ内に配置された前記回転力伝達部材を回転駆動する回転手段と、6)前記回転力伝達部材の基部に配置され、該回転力伝達部材と共に回転駆動される前記コードに接続されるスリップリング機構とを有し、
前記管厚測定手段は、前記配管の入口側から挿入され、常時前記配管の中央に位置する前記芯金管と、該芯金管の内部に回転可能に取付けられ、先部にはL字型に屈曲した取付け部を備えた回転部材と、半径方向外側を指向して前記取付け部に取付けられた前記超音波探触子と、前記芯金管に取付けられ、半径方向外側には前後対となる車輪が設けられた複数の拡縮足を放射状に有して、前記芯金管を前記配管の中央に保持する拡縮保持機構と、前記芯金管の基側に前記フレキシブルチューブの先側を取付ける連結部と、前記芯金管の内側に配置された前記回転部材の基側を内部に前記コードを配置した状態で前記回転力伝達部材の先側に連結する回転連結具とを有している。
The pipe thickness measuring device according to the present invention that meets the above-mentioned object is a pipe with a combustible liquid filled therein, having a bent portion at an intermediate position, and an expansion / contraction portion having a gradually different inner diameter at another intermediate position. A tube thickness measuring device for measuring thickness,
1) a tube thickness measuring means that moves in the pipe and has an ultrasonic probe that is rotatable outwardly in the radial direction and measures the thickness of the pipe; and 2) the tube thickness measuring means. A flexible tube connected to the base, and 3) rotatably arranged in the flexible tube, the tip is connected to the ultrasonic probe via a core metal tube, and the inside from the ultrasonic probe A rotational force transmitting member in which a cord is disposed, 4) a tube transfer means for carrying the flexible tube in and out of the pipe, and 5) rotationally driving the rotational force transmitting member disposed in the flexible tube. A rotation means, and 6) a slip ring mechanism that is disposed at the base of the rotational force transmission member and connected to the cord that is rotationally driven together with the rotational force transmission member,
The pipe thickness measuring means is inserted from the inlet side of the pipe, and is always attached to the core metal pipe located at the center of the pipe and rotatably inside the core metal pipe, and bent at the tip portion into an L-shape. A rotating member provided with the attachment portion, the ultrasonic probe attached to the attachment portion so as to be directed outward in the radial direction, and a pair of front and rear wheels attached to the metal core tube. A plurality of expansion / contraction legs provided radially, an expansion / contraction holding mechanism for holding the core metal pipe in the center of the pipe, a connecting portion for attaching the front side of the flexible tube to the base side of the core metal pipe, A rotating connector that is connected to a front side of the rotational force transmission member in a state in which the cord is disposed inside a base side of the rotating member that is disposed inside the core metal tube.

本発明に係る管厚測定装置において、それぞれの前記拡縮足は、前記芯金管に固定された固定金具と、前記芯金管の軸心方向に移動可能に配置された移動金具と、中間部を回動可能に連結され、内側端部が前記固定金具及び前記移動金具に回動可能に連結された同一長さの第1、第2のリンク材と、該第1のリンク材の外側端部が回動自在に、前記第2のリンク材の外側端部が前後動かつ回動可能に連結された平行部材と、該平行部材の前後に設けられた前記車輪と、前記移動金具を前記固定金具方向に押付けるスプリングとを有することが好ましい。 In the tube thickness measuring apparatus according to the present invention, each of the expansion / contraction legs is provided with a fixing bracket fixed to the core metal tube, a moving bracket arranged to be movable in the axial direction of the core metal tube, and a middle portion. The first and second link members having the same length, the inner end portion being rotatably connected to the fixed bracket and the movable bracket, and the outer end portion of the first link member are A parallel member in which an outer end portion of the second link member is connected to be able to move back and forth and turnably, the wheel provided on the front and back of the parallel member, and the movable fitting. And a spring for pressing in the direction.

本発明に係る管厚測定装置においては、超音波探触子の取付け部を回転可能に取付けている芯金管には複数の拡縮足が放射状に設けられ、拡縮足の半径方向外側には前後対となる車輪が設けられているので、配管の途中に曲がり部及び拡縮部が存在していても、拡縮足の拡縮度合いを調整することで、管厚測定手段を配管内で移動させながら芯金管を配管の中央に保持して芯金管に回転可能に設けられた取付け部を介して超音波探触子を半径方向外側に指向させて配管の周方向に回転させることができ、配管の厚みを効率的に測定することが可能となる。 In the tube thickness measuring apparatus according to the present invention, a plurality of expansion / contraction legs are provided radially on a cored bar tube to which an attachment portion of an ultrasonic probe is rotatably attached, and a pair of front and rear is disposed radially outward of the expansion / contraction legs. Since there is a wheel that becomes, even if there are a bent part and an expansion / contraction part in the middle of the pipe, adjusting the degree of expansion / contraction of the expansion / contraction foot, the core metal pipe while moving the pipe thickness measuring means in the pipe Can be rotated in the circumferential direction of the pipe by directing the ultrasonic probe radially outward through a mounting portion rotatably provided on the core metal pipe while holding the pipe in the center. It becomes possible to measure efficiently.

本発明に係る管厚測定装置において、それぞれの拡縮足が、芯金管に固定された固定金具と、芯金管の軸心方向に移動可能に配置された移動金具と、中間部を回動可能に連結され、内側端部が固定金具及び移動金具に回動可能に連結された同一長さの第1、第2のリンク材と、第1のリンク材の外側端部が回動自在に、第2のリンク材の外側端部が前後動かつ回動可能に連結された平行部材と、平行部材の前後に設けられた車輪と、移動金具を固定金具方向に押付けるスプリングとを有する場合、配管の途中に曲がり部及び拡縮部が存在しても車輪を配管の内壁に常時当接させることができ、芯金管を配管の中央に保持することが可能になる。その結果、配管の途中に曲がり部及び拡縮部が存在していても、芯金管を介して超音波探触子を配管の周方向に回転させながら配管の軸心方向に沿って移動させることができる。 In the tube thickness measuring apparatus according to the present invention, each expansion / contraction foot can be fixed to a metal core tube, a movable metal device arranged to be movable in the axial direction of the metal core tube, and an intermediate portion to be rotatable. The first and second link members having the same length that are connected and the inner end portion is rotatably connected to the fixed bracket and the movable bracket, and the outer end portion of the first link member is rotatable. 2 having a parallel member in which the outer end portion of the link member 2 is connected so as to be able to move back and forth and turn, a wheel provided in front of and behind the parallel member, and a spring that presses the movable fitting in the direction of the fixed fitting. Even if there is a bent part and an expansion / contraction part in the middle of this, the wheel can always be brought into contact with the inner wall of the pipe, and the metal core pipe can be held at the center of the pipe. As a result, even if a bent part and an expansion / contraction part exist in the middle of the pipe, the ultrasonic probe can be moved along the axial direction of the pipe while rotating in the circumferential direction of the pipe via the core metal pipe. it can.

本発明の一実施の形態に係る管厚測定装置の説明図である。It is explanatory drawing of the tube thickness measuring apparatus which concerns on one embodiment of this invention. (A)、(B)は同管厚測定装置の管厚測定手段の側面図、正面図である。(A) and (B) are the side view and front view of the tube thickness measuring means of the tube thickness measuring apparatus. 同管厚測定装置の超音波探触子及び超音波探触子の取付け部を備えた回転部材の説明図である。It is explanatory drawing of the rotating member provided with the attaching part of the ultrasonic probe of the same tube thickness measuring apparatus and an ultrasonic probe. (A)、(B)は同管厚測定装置の管厚測定手段の基部に接続されたフレキシブルチューブの配管内への搬出入を行うチューブ移送手段の平面図、側面図である。(A), (B) is the top view and side view of the tube transfer means which carry in / out to the piping of the flexible tube connected to the base part of the tube thickness measurement means of the tube thickness measuring apparatus. (A)、(B)はフレキシブルチューブ内に配置され超音波探触子に芯金管を介して接続する回転力伝達部材を回転駆動する回転手段の平面図、側面図である。(A), (B) is the top view and side view of the rotation means which rotationally drive the rotational force transmission member which is arrange | positioned in a flexible tube and is connected to an ultrasonic probe via a metal core pipe.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る管厚測定装置10は、例えば、地表11に開口する穴12の底に設置された開閉弁13(例えばボールバルブ)を介して地上と連通するように地下に埋設され、内部に可燃性の液体(例えばケロシン等の燃料)が充填され、途中位置に曲がり部14を有すると共に、別の途中位置には内径が徐々に異なる拡縮部15を備える配管16の厚みを測定する装置である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a pipe thickness measuring apparatus 10 according to an embodiment of the present invention is provided on the ground via an on-off valve 13 (for example, a ball valve) installed at the bottom of a hole 12 that opens to the ground surface 11. An expansion / contraction portion that is buried underground so as to communicate with the inside, is filled with a flammable liquid (for example, fuel such as kerosene), has a bent portion 14 at an intermediate position, and has an inner diameter gradually different at another intermediate position. 15 is a device for measuring the thickness of a pipe 16 including 15.

そして、図1、図2(A)に示すように、管厚測定装置10は、配管16内を移動し、先側には半径方向外側を向いて配管16の厚みを測定する超音波探触子17を回転可能に有する管厚測定手段18と、管厚測定手段18の基部に接続されたフレキシブルチューブ19と、フレキシブルチューブ19内に回転可能に配置され、先部は超音波探触子17に芯金管20を介して接続され、内部に超音波探触子17からのコード21が配置された回転力伝達部材22と、フレキシブルチューブ19の配管16内への搬出入を行うチューブ移送手段23と、フレキシブルチューブ19内に配置された回転力伝達部材22を回転駆動する回転手段24と、回転力伝達部材22(例えば、コイルばね)の基部に配置され、回転力伝達部材22と共に回転駆動されるコード21に接続されるスリップリング機構25(図5(B)参照)とを有している。ここで、スリップリング機構25には市販のスリップリング機構を使用することができる。 As shown in FIGS. 1 and 2A, the tube thickness measuring apparatus 10 moves inside the pipe 16 and measures the thickness of the pipe 16 facing the outside in the radial direction toward the front side. A tube thickness measuring means 18 having a child 17 rotatably, a flexible tube 19 connected to the base of the tube thickness measuring means 18, and being rotatably arranged in the flexible tube 19, the tip is an ultrasonic probe 17. And a tube transfer means 23 for carrying in and out the pipe 16 of the flexible tube 19 and a rotational force transmitting member 22 which is connected to the core metal pipe 20 through which the cord 21 from the ultrasonic probe 17 is arranged. And a rotating means 24 for rotationally driving the rotational force transmitting member 22 disposed in the flexible tube 19, and disposed at the base of the rotational force transmitting member 22 (for example, a coil spring) and rotated together with the rotational force transmitting member 22. Slip ring mechanism 25 which is connected to the cord 21 to be dynamic and a (see FIG. 5 (B) refer). Here, a commercially available slip ring mechanism can be used for the slip ring mechanism 25.

また、管厚測定装置10は、超音波探触子17に向けて超音波の送信信号を出力すると共に超音波探触子17から出力される受信信号が入力される超音波探傷器26と、チューブ移送手段23及び回転手段24の運転制御を行う制御手段27とを有している。更に、管厚測定装置10は、チューブ移送手段23から出力されるフレキシブルチューブ19の配管16内への挿入長さのデータ及び回転手段24から出力される回転力伝達部材22の回転角度のデータから配管16内における超音波探触子17の位置(開閉弁13の入口から超音波探触子17までの距離及び超音波探触子17の配管16の周方向角度位置)を求め、その位置における超音波探触子17の受信信号に基づいて超音波探傷器26から出力される配管16の厚みデータを、配管16内における超音波探触子17の位置と共に保存するレコーダ28を有している。以下、詳細に説明する。なお、超音波探傷器26には、市販の超音波探傷器を使用することができるので、説明は省略する。 The tube thickness measuring apparatus 10 outputs an ultrasonic transmission signal toward the ultrasonic probe 17 and an ultrasonic flaw detector 26 to which a reception signal output from the ultrasonic probe 17 is input. And a control means 27 for controlling the operation of the tube transfer means 23 and the rotation means 24. Further, the tube thickness measuring device 10 is based on the insertion length data of the flexible tube 19 into the pipe 16 output from the tube transfer means 23 and the rotation angle data of the rotational force transmitting member 22 output from the rotation means 24. The position of the ultrasonic probe 17 in the pipe 16 (the distance from the inlet of the on-off valve 13 to the ultrasonic probe 17 and the angular position in the circumferential direction of the pipe 16 of the ultrasonic probe 17) is obtained, and at that position. A recorder 28 that stores the thickness data of the pipe 16 output from the ultrasonic flaw detector 26 based on the received signal of the ultrasonic probe 17 together with the position of the ultrasonic probe 17 in the pipe 16 is provided. . Details will be described below. Note that since a commercially available ultrasonic flaw detector can be used for the ultrasonic flaw detector 26, description thereof is omitted.

管厚測定手段18は、図2(A)、(B)、図3に示すように、配管16の入口側に設けられた開閉弁13の入口から挿入され、常時配管16の中央に位置する芯金管20と、芯金管20の内部に回転可能に取付けられ、先部にはL字型に屈曲した取付け部29を備えた回転部材30と、半径方向外側を指向して取付け部29に取付けられた超音波探触子17とを有している。また、管厚測定手段18は、芯金管20に取付けられ、半径方向外側には前後対となる車輪31、32が設けられた複数の拡縮足33(この実施の形態では3つ)を放射状に有して、芯金管20を配管16の中央に保持する拡縮保持機構34を有している。更に、管厚測定手段18は、芯金管20の基側にフレキシブルチューブ19の先側を取付ける連結部35と、芯金管20の内側に配置された回転部材30の基側を内部にコード21を配置した状態で回転力伝達部材22の先側に連結する回転連結具36とを有している。 The pipe thickness measuring means 18 is inserted from the inlet of the on-off valve 13 provided on the inlet side of the pipe 16 and is always located at the center of the pipe 16 as shown in FIGS. A metal core tube 20, a rotary member 30 that is rotatably attached to the inside of the metal core tube 20, and has an attachment portion 29 bent in an L shape at the tip, and is attached to the attachment portion 29 so as to be directed radially outward. The ultrasonic probe 17 is provided. Further, the pipe thickness measuring means 18 is attached to the core metal pipe 20 and radially expands / contracts legs 33 (three in this embodiment) provided with front and rear wheels 31, 32 on the outer side in the radial direction. And an expansion / contraction holding mechanism 34 that holds the cored bar 20 at the center of the pipe 16. Further, the pipe thickness measuring means 18 includes a connecting portion 35 for attaching the front side of the flexible tube 19 to the base side of the cored bar tube 20, and a cord 21 with the base side of the rotating member 30 disposed inside the cored bar pipe 20 inside. It has the rotation coupling tool 36 connected with the front side of the rotational force transmission member 22 in the arrange | positioned state.

ここで、拡縮足33は、芯金管20の先側に外装されて固定される環状の固定金具37と、芯金管20の基側に軸心方向に移動可能に外装されて配置される環状の移動金具38と、中間部がピン39を介して回動可能に連結され、内側端部が固定金具37及び移動金具38にピン40、41を介して回動可能に連結された同一長さの第2、第1のリンク材43、42とを有している。また、拡縮足33は、第1のリンク材42の外側端部がピン44を介して回動自在に、第2のリンク材43の外側端部がピン45を介してその内部に形成された長孔46内に掛止されて前後動かつ回動可能に連結された平行部材47と、平行部材47の前後に設けられた車輪31、32と、移動金具38を固定金具37方向に押付けるスプリング48とを有する。 Here, the expansion / contraction foot 33 is an annular fixing bracket 37 that is externally fixed to the front side of the core metal tube 20 and an annular shape that is externally mounted on the base side of the core metal tube 20 so as to be movable in the axial direction. The movable bracket 38 and the intermediate portion are connected to each other via a pin 39 so as to be rotatable, and the inner end portions thereof are rotatably connected to the fixed bracket 37 and the movable fitting 38 via pins 40 and 41. Second and first link members 43 and 42 are provided. The expansion / contraction foot 33 is formed such that the outer end portion of the first link member 42 is rotatable via a pin 44, and the outer end portion of the second link member 43 is formed therein via a pin 45. The parallel member 47 that is hooked in the long hole 46 and is connected to be movable back and forth and rotatable, the wheels 31 and 32 provided on the front and rear of the parallel member 47, and the movable fitting 38 are pressed in the direction of the fixed fitting 37. And a spring 48.

回転部材30は、図2、図3に示すように、芯金管20に内装され、両側が芯金管20の先部及び基部にそれぞれ設けられた軸受部材の一例であるオイレスベアリング49により回転可能に取付けられると共に、先側及び基側が芯金管20の先部及び基部からそれぞれ突出している管材50と、管材50の先端より中央側及び管材50の基端より中央側にそれぞれ外装され止めねじ51を介して管材50に固定されてオイレスベアリング49を芯金管20と共に挟持するベアリング固定部材52と、管材50の先端部が基側に嵌入して止めねじ53を介して固定される取付け部29とを有している。ここで、取付け部29は、管材50の先部が基部に嵌入して固定される管状のベース部54と、ベース部54の先側に軸心に直交して(半径方向外側に向けて)取付けられ、先側には超音波探触子17がその探触面55を半径方向外側に向けて取付けられた管状の探触子取付け部56とを有している。そして、超音波探触子17の背部から伸びるコード21は、ベース部54の内側を通過して、ベース部54に接続する管材50内に進入する。なお、探触子取付け部56の内側で、超音波探触子17の背面側には樹脂57が充填されている。これにより、管厚測定手段18をケロシンが充填されている配管16内に挿入した際、ケロシンが探触子取付け部56の先端側からベース部54内に侵入するのを防止できる。 As shown in FIGS. 2 and 3, the rotating member 30 is rotatably provided by an oilless bearing 49 that is an example of a bearing member that is provided in the cored bar tube 20 and that has both sides provided at the front and base parts of the cored bar tube 20. The pipe 50 is attached and the front side and the base side protrude from the front part and the base part of the core metal tube 20 respectively. A bearing fixing member 52 that is fixed to the pipe member 50 and sandwiches the oilless bearing 49 together with the core metal pipe 20, and a mounting portion 29 in which the distal end portion of the pipe member 50 is fitted to the base side and fixed through the set screw 53. Have. Here, the attachment portion 29 includes a tubular base portion 54 in which the tip portion of the pipe material 50 is fitted and fixed to the base portion, and a front side of the base portion 54 that is orthogonal to the axial center (toward the outer side in the radial direction). At the front side, the ultrasonic probe 17 has a tubular probe attachment portion 56 attached with the probe surface 55 facing outward in the radial direction. Then, the cord 21 extending from the back portion of the ultrasonic probe 17 passes through the inside of the base portion 54 and enters the tube material 50 connected to the base portion 54. It should be noted that a resin 57 is filled on the back side of the ultrasonic probe 17 inside the probe mounting portion 56. Thereby, when the tube thickness measuring means 18 is inserted into the pipe 16 filled with kerosene, it is possible to prevent the kerosene from entering the base portion 54 from the distal end side of the probe mounting portion 56.

回転連結具36は、基側端部に回転力伝達部材22の先部が嵌入する嵌入穴(図示せず)が、先側端部に管材50の基部が嵌入する嵌入穴(図示せず)がそれぞれ形成され、内側にコード21が通過可能な内孔(図示せず)が形成された短管58と、短管58の外周側からねじ込まれ、嵌入した回転力伝達部材22の先部及び管材50の基部をそれぞれ固定する止めねじ(図示せず)とを有している。これによって、芯金管20の内側に配置された回転部材30の管材50の基側を内部にコード21を配置した状態で回転力伝達部材22の先側に連結することができる。 The rotary connector 36 has a fitting hole (not shown) in which the tip of the rotational force transmitting member 22 is fitted in the base end, and a fitting hole (not shown) in which the base of the tube material 50 is fitted in the leading end. Are formed, and a short tube 58 in which an inner hole (not shown) through which the cord 21 can pass is formed, and a tip portion of the rotational force transmitting member 22 screwed in and inserted from the outer peripheral side of the short tube 58, and It has set screws (not shown) for fixing the bases of the pipe members 50 respectively. As a result, the base side of the tube 50 of the rotating member 30 disposed inside the cored bar 20 can be connected to the front side of the rotational force transmitting member 22 with the cord 21 disposed therein.

また、連結部35は、芯金管20の基端部に外装されて固定された掛止材59を介して保持される第1の環状部材59aと、フレキシブルチューブ19の先端部に外装されて固定された対となる第1、第2の固着部材60、61で挟持された第2の環状部材62と、第1、第2の環状部材59a、62に両側がそれぞれ固定される複数(例えば、周方向に沿って等間隔に3本) の連結ピン64とを有している。これによって、連結部35の軸心を芯金管20及び管材50の軸心に一致させることができ、すなわち、連結部35が垂れ下がるのを防止することができ、回転連結具36がその軸心を回転部材30の軸心に一致させて回転することができ、回転力伝達部材22からの回転が回転部材30に容易に伝達できる。 The connecting portion 35 is externally fixed to the first annular member 59a that is held via a hooking material 59 that is externally fixed to the base end portion of the core metal tube 20 and the distal end portion of the flexible tube 19. The second annular member 62 sandwiched between the paired first and second fixing members 60 and 61, and a plurality of (for example, for example, both sides fixed to the first and second annular members 59a and 62) 3) connecting pins 64 at equal intervals along the circumferential direction. As a result, the axial center of the connecting portion 35 can be made coincident with the axial centers of the core metal tube 20 and the pipe material 50, that is, the connecting portion 35 can be prevented from drooping, and the rotary connecting device 36 can adjust its axial center. The rotating member 30 can be rotated in accordance with the axial center of the rotating member 30, and the rotation from the rotating force transmitting member 22 can be easily transmitted to the rotating member 30.

図4(A)、(B)に示すように、チューブ移送手段23は、フレキシブルチューブ19の搬出入を行う駆動機63と、駆動機63を載置して地表11を移動するキャスター65を前後両側に備えた台車65aとを有している。ここで、駆動機63は、台車65aの幅方向の一側に配置されたチューブ搬出入部66と、台車65aの幅方向の他側に配置されたチューブ搬出入部66を駆動する駆動制御部67とを備えている。 As shown in FIGS. 4A and 4B, the tube transfer means 23 moves back and forth between a driving machine 63 that carries in and out the flexible tube 19 and a caster 65 that carries the driving machine 63 and moves on the ground surface 11. And a carriage 65a provided on both sides. Here, the drive unit 63 includes a tube carry-in / out section 66 disposed on one side in the width direction of the carriage 65a, and a drive control section 67 that drives the tube carry-in / out section 66 disposed on the other side in the width direction of the carriage 65a. It has.

そして、チューブ搬出入部66は、軸心方向を台車65aの幅方向に向けて台車65aの前後にそれぞれ配置された駆動輪68と、従動輪69と、駆動輪68及び従動輪69の間に軸心方向を台車65aの幅方向に向けて配置された複数の補助輪70と、駆動輪68及び従動輪69に巻付けられ内側が補助輪70で支持されフレキシブルチューブ19を載置する両歯付きエンドレスベルト71とを備えている。また、チューブ搬出入部66は、軸心方向を台車65aの幅方向に向けて台車65aの上方に前後方向に沿って配置され、両歯付きエンドレスベルト71に載置されたフレキシブルチューブ19の上部に当接する複数の押えローラ72と、押えローラ72が回転可能に取付けられたローラ取付け部材73と、ローラ取付け部材73の上方に配置され押さえばね74を介してローラ取付け部材73と連結する支持部材75とを有している。 The tube carry-in / out section 66 has a shaft between the driving wheel 68, the driven wheel 69, the driving wheel 68, and the driven wheel 69 respectively arranged in front and rear of the carriage 65a with the axial center direction in the width direction of the carriage 65a. A plurality of auxiliary wheels 70 arranged in the direction of the width of the carriage 65a, and both teeth that are wound around the driving wheel 68 and the driven wheel 69 and supported on the inner side by the auxiliary wheel 70 and on which the flexible tube 19 is placed. And an endless belt 71. Further, the tube carry-in / out section 66 is arranged along the front-rear direction above the carriage 65a with the axial direction in the width direction of the carriage 65a, and is disposed above the flexible tube 19 placed on the endless belt 71 with both teeth. A plurality of pressing rollers 72 that abut, a roller mounting member 73 on which the pressing roller 72 is rotatably mounted, and a support member 75 that is disposed above the roller mounting member 73 and is connected to the roller mounting member 73 via a pressing spring 74. And have.

更に、チューブ搬出入部66は、駆動制御部67のケース83のチューブ搬出入部66と対向する側部に距離を設けて上下方向に配置されたレール76と、ローラ取付け部材73及び支持部材75のケース83と対向する側部にそれぞれ取付けられレール76を幅方向両側から挟んでレール76上を摺動するスライド部材77と、レバー78操作により支持部材75をレール76から遠ざけて支持部材75に取付けられたスライド部材77をレール76の顎部に押圧してスライド部材77をレール76に掛止する固定機構79と、ローラ取付け部材73及び支持部材75間の距離を拡縮して押さえばね74の反発力を調整する調圧ねじ80を備えたばね調圧機構81とを有している。なお、符号82は、台車65aの前部の幅方向の一側に配置され、チューブ移送手段23から搬出される、又はチューブ移送手段23に搬入されるフレキシブルチューブ19の移動を支持する搬出入用プーリーである。 Further, the tube carry-in / out section 66 has a rail 76 arranged in the vertical direction at a distance from the side of the case 83 of the drive control section 67 facing the tube carry-in / out section 66, and a case of the roller mounting member 73 and the support member 75. 83, a slide member 77 that is attached to each side facing the rail 83 and slides on the rail 76 across the rail 76 from both sides in the width direction, and a support member 75 is attached to the support member 75 by moving the lever 78 away from the rail 76. The repelling force of the pressing spring 74 by expanding and contracting the distance between the fixing mechanism 79 that presses the slide member 77 against the jaw of the rail 76 and latches the slide member 77 on the rail 76, and the roller mounting member 73 and the support member 75. And a spring pressure adjusting mechanism 81 having a pressure adjusting screw 80 for adjusting the pressure. In addition, the code | symbol 82 is arrange | positioned at the width direction one side of the front part of the trolley | bogie 65a, and is for carrying in / out which supports the movement of the flexible tube 19 carried out from the tube transfer means 23 or carried into the tube transfer means 23. It is a pulley.

駆動制御部67は、駆動輪68に減速機84を介して接続する駆動モータ85と、制御手段27からの信号に基づいて駆動モータ85の操作を行うモータドライバ86と、従動輪69の回転数を測定する第1のエンコーダ87とを有している。なお、駆動モータ85、モータドライバ86、及び第1のエンコーダ87をケース83内に収納して密閉することにより、駆動モータ85、モータドライバ86、及び第1のエンコーダ87の接点で放電が生じても、フレキシブルチューブ19の表面に付着しているケロシンに引火するのを防止できる。 The drive control unit 67 includes a drive motor 85 connected to the drive wheel 68 via the speed reducer 84, a motor driver 86 that operates the drive motor 85 based on a signal from the control unit 27, and the number of rotations of the driven wheel 69. And a first encoder 87 for measuring. In addition, when the drive motor 85, the motor driver 86, and the first encoder 87 are housed in the case 83 and sealed, a discharge occurs at the contact of the drive motor 85, the motor driver 86, and the first encoder 87. In addition, it is possible to prevent ignition of kerosene attached to the surface of the flexible tube 19.

このような構成とすることにより、支持部材75の上下方向の高さ位置を決めて固定機構79を用いて固定すると、両歯付きエンドレスベルト71に載置されたフレキシブルチューブ19に対して複数の押えローラ72を上方から当接させて、ばね調圧機構81で調整された押さえばね74の反発力でフレキシブルチューブ19を押さえ付けることができる。その結果、駆動輪68を回転させて両歯付きエンドレスベルト71を移動させると、両歯付きエンドレスベルト71の移動方向に、両歯付きエンドレスベルト71の移動速度と同一の速度でフレキシブルチューブ19を送出すことができる。このとき、従動輪69は、駆動輪68と同一の回転数で回転するので、従動輪69の回転数から駆動輪68の回転数が求められ、駆動輪68の回転数を調整することにより両歯付きエンドレスベルト71の移動速度を決めることができる。そして、両歯付きエンドレスベルト71の移動速度と、駆動輪68の総回転数から送出したフレキシブルチューブ19の長さを求めることができる。 With this configuration, when the vertical position of the support member 75 is determined and fixed using the fixing mechanism 79, a plurality of flexible tubes 19 placed on the double-toothed endless belt 71 are fixed. The presser roller 72 is brought into contact from above, and the flexible tube 19 can be pressed by the repulsive force of the pressing spring 74 adjusted by the spring pressure adjusting mechanism 81. As a result, when the driving wheel 68 is rotated to move the endless belt 71 with both teeth, the flexible tube 19 is moved in the moving direction of the endless belt 71 with both teeth at the same speed as the moving speed of the endless belt 71 with both teeth. Can be sent out. At this time, since the driven wheel 69 rotates at the same rotational speed as that of the driving wheel 68, the rotational speed of the driving wheel 68 is obtained from the rotational speed of the driven wheel 69, and both are adjusted by adjusting the rotational speed of the driving wheel 68. The moving speed of the toothed endless belt 71 can be determined. And the length of the flexible tube 19 sent out from the moving speed of the endless belt 71 with both teeth and the total number of rotations of the drive wheel 68 can be obtained.

図5(A)、(B)に示すように、回転手段24は、回転力伝達部材22の基部が連結部材88を介して接続されると共に回転力伝達部材22内を挿通したコード21の基部が接続口(図示せず)に挿入されて固定されるコネクター部89、コネクター部89の外側に取付けられた第1の歯車90と、第1の歯車90の両側に設けられ、第1の歯車90と同一の歯数を備えた第2、第3の歯車91、92と、コネクター部89及び第2、第3の歯車91、92を回転可能に支持する第1の取付け部材93とを有している。また、回転手段24は、コネクター部89の基部に先部が連結する第1の回転軸94と、第2、第3の歯車91、92に先部がそれぞれ連結する第2、第3の回転軸95、96と、第1の取付け部材93に固定され、第1の回転軸94の基側を突出させて回転可能に支持する第2の取付け部材97とを有している。そして、突出した第1の回転軸94の基側にスリップリング機構25が取付けられている。 As shown in FIGS. 5A and 5B, the rotating means 24 includes a base portion of the cord 21 in which the base portion of the rotational force transmitting member 22 is connected via a connecting member 88 and the inside of the rotational force transmitting member 22 is inserted. Is inserted into a connection port (not shown) and fixed, a first gear 90 attached to the outside of the connector portion 89, and a first gear 90 provided on both sides of the first gear 90. Second and third gears 91 and 92 having the same number of teeth as 90, and a connector portion 89 and a first mounting member 93 that rotatably supports the second and third gears 91 and 92. is doing. Further, the rotating means 24 includes a first rotating shaft 94 whose tip is connected to the base of the connector portion 89, and second and third rotations whose tips are connected to the second and third gears 91 and 92, respectively. It has shafts 95 and 96, and a second mounting member 97 that is fixed to the first mounting member 93 and supports the first rotating shaft 94 so that the base side of the first rotating shaft 94 protrudes. A slip ring mechanism 25 is attached to the base side of the protruding first rotating shaft 94.

更に、回転手段24は、第2の取付け部材97に固定されて出力軸(図示せず)が第2の回転軸95に連結する駆動モータ98と、第2の取付け部材97に固定されて第3の回転軸96と接続する第2のエンコーダ99とを有している。このような構成とすることにより、駆動モータ98を駆動させて第2の回転軸95を回転させると、第2の歯車91、第1の歯車90、及び第3の歯車92を介して、コネクター部89及び第3の回転軸96を第2の回転軸95と同一の回転速度で回転させることができる。なお、符号100は、超音波探傷器26に接続された図示しない信号線が接続される探傷器用コネクターである。これにより、超音波探傷器26からの送信信号をスリップリング機構25及びコネクター部89を介してコード21に入力することができ、超音波探触子17に伝達することができる。また、コード21を介して出力される超音波探触子17の受信信号は、コネクター部89及びスリップリング機構25を介して取出すことができ、探傷器用コネクター100に接続する信号線を介して超音波探傷器26に入力することができる。 Further, the rotating means 24 is fixed to the second mounting member 97 and an output shaft (not shown) is connected to the second rotating shaft 95, and the rotating means 24 is fixed to the second mounting member 97 and fixed to the second mounting member 97. And a second encoder 99 connected to the three rotary shafts 96. With this configuration, when the drive motor 98 is driven to rotate the second rotating shaft 95, the connector is connected via the second gear 91, the first gear 90, and the third gear 92. The part 89 and the third rotating shaft 96 can be rotated at the same rotational speed as that of the second rotating shaft 95. Reference numeral 100 denotes a flaw detector connector to which a signal line (not shown) connected to the ultrasonic flaw detector 26 is connected. As a result, the transmission signal from the ultrasonic flaw detector 26 can be input to the cord 21 via the slip ring mechanism 25 and the connector portion 89 and can be transmitted to the ultrasonic probe 17. Further, the reception signal of the ultrasonic probe 17 output via the cord 21 can be taken out via the connector portion 89 and the slip ring mechanism 25, and can be obtained via a signal line connected to the flaw detector connector 100. The sound can be input to the sound flaw detector 26.

このような構成とすることにより、コネクター部89と第3の回転軸96は、同期して同一の回転速度で回転するので、第2のエンコーダ99で第3の回転軸96の回転角度を測定することにより、コネクター部89の回転角度を求めることができる。更に、コネクター部89は回転力伝達部材22とも、同期して同一の回転速度で回転するので、コネクター部89の回転角度から回転力伝達部材22の回転角度が判明する。そして、回転部材30は回転力伝達部材22と一体で回転するので、回転部材30の回転角度は取付け部29の回転角度と同一になって、取付け部29に取付けられた超音波探触子17の探触面55と対向する配管16の内壁の周方向角度位置が判る。 By adopting such a configuration, the connector unit 89 and the third rotation shaft 96 rotate at the same rotation speed synchronously, so the second encoder 99 measures the rotation angle of the third rotation shaft 96. By doing so, the rotation angle of the connector part 89 can be obtained. Further, since the connector part 89 and the rotational force transmission member 22 are synchronously rotated at the same rotational speed, the rotational angle of the rotational force transmission member 22 is determined from the rotational angle of the connector part 89. Since the rotation member 30 rotates integrally with the rotational force transmission member 22, the rotation angle of the rotation member 30 is the same as the rotation angle of the attachment portion 29, and the ultrasonic probe 17 attached to the attachment portion 29. The circumferential angular position of the inner wall of the pipe 16 facing the probe surface 55 can be seen.

続いて、本発明の一実施の形態に係る管厚測定装置10の作用について説明する。
芯金管20に設けられた移動金具38を常に固定金具37側に向けて付勢することができるので、第1、第2のリンク材42、43の交差角度を減少させて平行部材47を芯金管20の半径方向外側に向けて移動させることができる。このため、配管16の途中に拡縮部15が存在しても平行部材47に設けられた車輪31、32を配管16の内壁に常時当接させることができ、配管16の途中に拡縮部15が存在していても芯金管20を配管16の中央に保持することが可能になる。
Then, the effect | action of the tube thickness measuring apparatus 10 which concerns on one embodiment of this invention is demonstrated.
Since the movable metal fitting 38 provided on the metal core tube 20 can always be urged toward the fixed metal fitting 37 side, the crossing angle of the first and second link members 42 and 43 is reduced, and the parallel member 47 is arranged in the core. The gold tube 20 can be moved outward in the radial direction. For this reason, even if the expansion / contraction part 15 exists in the middle of the pipe 16, the wheels 31, 32 provided on the parallel member 47 can always be brought into contact with the inner wall of the pipe 16, and the expansion / contraction part 15 is in the middle of the pipe 16. Even if it exists, the cored bar 20 can be held at the center of the pipe 16.

また、配管16の途中の曲がり部14の曲率半径に応じて、平行部材47の前後に設けられた車輪31、32の間隔を予め設定することで、車輪31、32が曲がり部14の内壁に沿って移動する際に平行部材47が傾斜しても、平行部材47の端部が曲がり部14の内壁に接触するのを防止できる。これにより、配管16の途中に曲がり部14が存在していても、芯金管20を配管16の曲がり部14に沿って移動させることができる。以上のことから、配管16の途中に曲がり部14及び拡縮部15が存在していても、芯金管20を配管16の内壁に沿って移動させることができる。 Further, by setting in advance the distance between the wheels 31 and 32 provided before and after the parallel member 47 according to the radius of curvature of the bent portion 14 in the middle of the pipe 16, the wheels 31 and 32 are attached to the inner wall of the bent portion 14. Even if the parallel member 47 is inclined when moving along, the end of the parallel member 47 can be prevented from contacting the inner wall of the bent portion 14. Thereby, even if the bending part 14 exists in the middle of the piping 16, the metal core pipe 20 can be moved along the bending part 14 of the piping 16. FIG. From the above, even if the bent portion 14 and the expansion / contraction portion 15 exist in the middle of the pipe 16, the core metal pipe 20 can be moved along the inner wall of the pipe 16.

ここで、チューブ移送手段23に設けられた第1のエンコーダ87で測定される駆動輪68の回転速度から両歯付きエンドレスベルト71の移動速度が求まるので、両歯付きエンドレスベルト71の移動速度と第1のエンコーダ87で測定される駆動輪68の総回転数から、チューブ移送手段23が送出したフレキシブルチューブ19の長さを求めることができる。また、回転手段24に設けられた第2のエンコーダ99で測定される第3の回転軸96の回転角度から、超音波探触子17の探触面55と対向する(超音波探触子17で厚みが測定される)配管16の内壁の周方向角度位置が判る。その結果、回転力伝達部材22の先端から回転力伝達部材22の軸方向に沿って測った超音波探触子17の探触面55の中心までの距離を予め求めて置くと、配管16の開閉弁13の入口から超音波探触子17の中心までの距離が判るので、超音波探触子17で厚みが測定される配管16の周方向角度位置が特定できる。 Here, since the moving speed of the endless belt 71 with both teeth is obtained from the rotational speed of the driving wheel 68 measured by the first encoder 87 provided in the tube transfer means 23, the moving speed of the endless belt 71 with both teeth is From the total number of rotations of the drive wheel 68 measured by the first encoder 87, the length of the flexible tube 19 sent out by the tube transfer means 23 can be obtained. Further, it faces the probe surface 55 of the ultrasonic probe 17 from the rotation angle of the third rotary shaft 96 measured by the second encoder 99 provided in the rotating means 24 (the ultrasonic probe 17). The thickness of the inner wall of the pipe 16 can be determined. As a result, if the distance from the tip of the rotational force transmitting member 22 to the center of the probe surface 55 of the ultrasonic probe 17 measured along the axial direction of the rotational force transmitting member 22 is obtained in advance, Since the distance from the inlet of the on-off valve 13 to the center of the ultrasonic probe 17 is known, the circumferential angular position of the pipe 16 whose thickness is measured by the ultrasonic probe 17 can be specified.

従って、制御手段27を用いてチューブ移送手段23を操作してフレキシブルチューブ19を配管16の先端まで挿入し、回転手段24を操作して超音波探触子17で厚みを測定する際の配管16の内壁における周方向角度測定の基準位置を決めてから、制御手段27でフレキシブルチューブ19の搬出速度(両歯付きエンドレスベルト71の移動速度で、例えば2mm/秒)、及び回転部材30(超音波探触子17)の回転速度(例えば5回/秒)を設定して超音波探触子17を配管16の周方向に回転させながら配管16の入口側に移動させることにより、超音波探触子17で厚みを測定する部位を配管16の内壁上で螺旋状に移動させることができる。また、超音波探触子17を移動させながら、超音波探傷器26から超音波探触子17に超音波送信用の送信信号を入力すると共に、配管16の内表面及び外底面でそれぞれ反射した超音波を超音波探触子17で受信した受信信号を超音波探傷器26に入力する。 Therefore, the pipe 16 when the tube transfer means 23 is operated using the control means 27 to insert the flexible tube 19 to the tip of the pipe 16 and the rotation means 24 is operated to measure the thickness with the ultrasonic probe 17. After determining the reference position for measuring the angle in the circumferential direction on the inner wall, the control means 27 takes out the flexible tube 19 (the moving speed of the endless belt 71 with both teeth, for example, 2 mm / second) and the rotating member 30 (ultrasonic wave). By setting the rotation speed (for example, 5 times / second) of the probe 17) and moving the ultrasonic probe 17 to the inlet side of the pipe 16 while rotating in the circumferential direction of the pipe 16, the ultrasonic probe is performed. The part whose thickness is measured by the child 17 can be moved spirally on the inner wall of the pipe 16. Further, while moving the ultrasonic probe 17, a transmission signal for ultrasonic transmission is input from the ultrasonic flaw detector 26 to the ultrasonic probe 17 and reflected on the inner surface and the outer bottom surface of the pipe 16. A reception signal received by the ultrasonic probe 17 is input to the ultrasonic flaw detector 26.

そして、超音波探傷器26から出力される配管16の厚みのデータ、チューブ移送手段23の第1のエンコーダ87から出力される駆動輪68の回転速度のデータ及び総回転数のデータ、及び回転手段24の第2のエンコーダ99から出力される第3の回転軸96の回転角度のデータをレコーダ28に入力することで、レコーダ28には、超音波探触子17で厚みを測定した部位のデータと共に配管16の厚みのデータが保存され、配管16の厚みを効率的に測定することが可能となる。 The pipe 16 thickness data output from the ultrasonic flaw detector 26, the rotational speed data and the total rotational speed data of the drive wheels 68 output from the first encoder 87 of the tube transfer means 23, and the rotating means. The data of the rotation angle of the third rotary shaft 96 output from the 24 second encoders 99 is input to the recorder 28, so that the recorder 28 stores the data of the part whose thickness is measured by the ultrasonic probe 17. At the same time, the thickness data of the pipe 16 is stored, and the thickness of the pipe 16 can be measured efficiently.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.

10:管厚測定装置、11:地表、12:穴、13:開閉弁、14:曲がり部、15:拡縮部、16:配管、17:超音波探触子、18:管厚測定手段、19:フレキシブルチューブ、20:芯金管、21:コード、22:回転力伝達部材、23:チューブ移送手段、24:回転手段、25:スリップリング機構、26:超音波探傷器、27:制御手段、28:レコーダ、29:取付け部、30:回転部材、31、32:車輪、33:拡縮足、34:拡縮保持機構、35:連結部、36:回転連結具、37:固定金具、38:移動金具、39、40、41:ピン、42:第1のリンク材、43:第2のリンク材、44、45:ピン、46:長孔、47:平行部材、48:スプリング、49:オイレスベアリング、50:管材、51:止めねじ、52:ベアリング固定部材、53:止めねじ、54:ベース部、55:探触面、56:探触子取付け部、57:樹脂、58:短管、59:掛止材、59a:第1の環状部材、60:第1の固着部材、61:第2の固着部材、62:第2の環状部材、63:駆動機、64:連結ピン、65:キャスター、65a:台車、66:チューブ搬出入部、67:駆動制御部、68:駆動輪、69:従動輪、70:補助輪、71:両歯付きエンドレスベルト、72:押えローラ、73:ローラ取付け部材、74:押さえばね、75:支持部材、76:レール、77:スライド部材、78:レバー、79:固定機構、80:調圧ねじ、81:ばね調圧機構、82:搬出入用プーリー、83:ケース、84:減速機、85:駆動モータ、86:モータドライバ、87:第1のエンコーダ、88:連結部材、89:コネクター部、90:第1の歯車、91:第2の歯車、92:第3の歯車、93:第1の取付け部材、94:第1の回転軸、95:第2の回転軸、96:第3の回転軸、97:第2の取付け部材、98:駆動モータ、99:第2のエンコーダ、100:探傷器用コネクター 10: Tube thickness measuring device, 11: Ground surface, 12: Hole, 13: On-off valve, 14: Bending part, 15: Expansion / contraction part, 16: Piping, 17: Ultrasonic probe, 18: Pipe thickness measuring means, 19 : Flexible tube, 20: Core tube, 21: Cord, 22: Rotational force transmitting member, 23: Tube transfer means, 24: Rotating means, 25: Slip ring mechanism, 26: Ultrasonic flaw detector, 27: Control means, 28 : Recorder, 29: Mounting part, 30: Rotating member, 31, 32: Wheel, 33: Expansion / contraction foot, 34: Expansion / contraction holding mechanism, 35: Connection part, 36: Rotation connector, 37: Fixed metal fitting, 38: Moving metal fitting , 39, 40, 41: pin, 42: first link material, 43: second link material, 44, 45: pin, 46: long hole, 47: parallel member, 48: spring, 49: oilless bearing, 50: Pipe material, 51: Set screw 52: Bearing fixing member, 53: Set screw, 54: Base portion, 55: Probe surface, 56: Probe mounting portion, 57: Resin, 58: Short tube, 59: Hook, 59a: First Annular member, 60: first fixing member, 61: second fixing member, 62: second annular member, 63: driving machine, 64: connecting pin, 65: caster, 65a: carriage, 66: tube carry-in / out part , 67: drive control unit, 68: drive wheel, 69: driven wheel, 70: auxiliary wheel, 71: endless belt with both teeth, 72: presser roller, 73: roller mounting member, 74: presser spring, 75: support member 76: Rail, 77: Slide member, 78: Lever, 79: Fixing mechanism, 80: Pressure adjusting screw, 81: Spring pressure adjusting mechanism, 82: Pull-in / out pulley, 83: Case, 84: Reducer, 85: Drive motor, 86: motor dry , 87: first encoder, 88: connecting member, 89: connector portion, 90: first gear, 91: second gear, 92: third gear, 93: first mounting member, 94: first 1 rotating shaft, 95: second rotating shaft, 96: third rotating shaft, 97: second mounting member, 98: drive motor, 99: second encoder, 100: connector for flaw detector

Claims (2)

内部に可燃性の液体が充填され、途中位置に曲がり部を有すると共に、別の途中位置には内径が徐々に異なる拡縮部を備える配管の厚みを測定する管厚測定装置であって、
1)前記配管内を移動し、先側には半径方向外側を向いて前記配管の厚みを測定する超音波探触子を回転可能に有する管厚測定手段と、2)前記管厚測定手段の基部に接続されたフレキシブルチューブと、3)前記フレキシブルチューブ内に回転可能に配置され、先部は前記超音波探触子に芯金管を介して接続され、内部に前記超音波探触子からのコードが配置された回転力伝達部材と、4)前記フレキシブルチューブの前記配管内への搬出入を行うチューブ移送手段と、5)前記フレキシブルチューブ内に配置された前記回転力伝達部材を回転駆動する回転手段と、6)前記回転力伝達部材の基部に配置され、該回転力伝達部材と共に回転駆動される前記コードに接続されるスリップリング機構とを有し、
前記管厚測定手段は、前記配管の入口側から挿入され、常時前記配管の中央に位置する前記芯金管と、該芯金管の内部に回転可能に取付けられ、先部にはL字型に屈曲した取付け部を備えた回転部材と、半径方向外側を指向して前記取付け部に取付けられた前記超音波探触子と、前記芯金管に取付けられ、半径方向外側には前後対となる車輪が設けられた複数の拡縮足を放射状に有して、前記芯金管を前記配管の中央に保持する拡縮保持機構と、前記芯金管の基側に前記フレキシブルチューブの先側を取付ける連結部と、前記芯金管の内側に配置された前記回転部材の基側を内部に前記コードを配置した状態で前記回転力伝達部材の先側に連結する回転連結具とを有することを特徴とする管厚測定装置。
A tube thickness measuring device that measures the thickness of a pipe that is filled with a combustible liquid and has a bent portion at a midway position, and another expansion / contraction portion with a gradually different inner diameter at another midpoint position,
1) a tube thickness measuring means that moves in the pipe and has an ultrasonic probe that is rotatable outwardly in the radial direction and measures the thickness of the pipe; and 2) the tube thickness measuring means. A flexible tube connected to the base, and 3) rotatably arranged in the flexible tube, the tip is connected to the ultrasonic probe via a core metal tube, and the inside from the ultrasonic probe A rotational force transmitting member in which a cord is disposed, 4) a tube transfer means for carrying the flexible tube in and out of the pipe, and 5) rotationally driving the rotational force transmitting member disposed in the flexible tube. A rotation means, and 6) a slip ring mechanism that is disposed at the base of the rotational force transmission member and connected to the cord that is rotationally driven together with the rotational force transmission member,
The pipe thickness measuring means is inserted from the inlet side of the pipe, and is always attached to the core metal pipe located at the center of the pipe and rotatably inside the core metal pipe, and bent at the tip portion into an L-shape. A rotating member provided with the attachment portion, the ultrasonic probe attached to the attachment portion so as to be directed outward in the radial direction, and a pair of front and rear wheels attached to the metal core tube. A plurality of expansion / contraction legs provided radially, an expansion / contraction holding mechanism for holding the core metal pipe in the center of the pipe, a connecting portion for attaching the front side of the flexible tube to the base side of the core metal pipe, A pipe thickness measuring device comprising: a rotary coupling for connecting a base side of the rotary member arranged inside a core metal pipe to a front side of the rotary force transmitting member in a state where the cord is arranged inside. .
請求項1記載の管厚測定装置において、それぞれの前記拡縮足は、前記芯金管に固定された固定金具と、前記芯金管の軸心方向に移動可能に配置された移動金具と、中間部を回動可能に連結され、内側端部が前記固定金具及び前記移動金具に回動可能に連結された同一長さの第1、第2のリンク材と、該第1のリンク材の外側端部が回動自在に、前記第2のリンク材の外側端部が前後動かつ回動可能に連結された平行部材と、該平行部材の前後に設けられた前記車輪と、前記移動金具を前記固定金具方向に押付けるスプリングとを有することを特徴とする管厚測定装置。 2. The tube thickness measuring device according to claim 1, wherein each of the expansion / contraction legs includes a fixing metal fitting fixed to the core metal pipe, a moving metal fitting arranged to be movable in an axial direction of the core metal pipe, and an intermediate portion. First and second link members of the same length, which are rotatably connected and whose inner end portions are rotatably connected to the fixed bracket and the movable bracket, and the outer end portions of the first link members A parallel member in which the outer end of the second link member is connected to be able to move back and forth and turn, the wheel provided on the front and back of the parallel member, and the movable bracket are fixed. A tube thickness measuring device comprising a spring pressed in the metal fitting direction.
JP2009121127A 2009-05-19 2009-05-19 Tube thickness measuring device Active JP4768052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121127A JP4768052B2 (en) 2009-05-19 2009-05-19 Tube thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121127A JP4768052B2 (en) 2009-05-19 2009-05-19 Tube thickness measuring device

Publications (2)

Publication Number Publication Date
JP2010271072A true JP2010271072A (en) 2010-12-02
JP4768052B2 JP4768052B2 (en) 2011-09-07

Family

ID=43419233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121127A Active JP4768052B2 (en) 2009-05-19 2009-05-19 Tube thickness measuring device

Country Status (1)

Country Link
JP (1) JP4768052B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106028A (en) * 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd System and method for inspecting wall thickness of boiler tube
KR101594719B1 (en) * 2014-12-26 2016-02-17 주식회사 포스코 Apparatus and method for measuring stave thickness.
WO2018048083A1 (en) * 2016-09-06 2018-03-15 주식회사 포스코 Device for measuring stave thickness
EP3693690A1 (en) * 2019-02-08 2020-08-12 Paul Wurth S.A. Cooling plate thickness measurement in a metallurgical furnace
KR102145429B1 (en) * 2019-12-20 2020-08-18 한전케이피에스 주식회사 Wall-thinning Inspection Device For Boiler Tube
JP2021051049A (en) * 2019-09-26 2021-04-01 三菱重工環境・化学エンジニアリング株式会社 Pipe thickness measurement device and pipe thickness measurement system
US20220011099A1 (en) * 2018-11-01 2022-01-13 HiBot Corporation Ultrasonic probe and method for measuring thickness of pipe being inspected using the same
CN115560708A (en) * 2022-11-22 2023-01-03 菏泽恒翼金属材料有限公司 Multipoint thickness measuring device for metal steel wall thickness
LU500898B1 (en) 2021-11-24 2023-05-24 Wurth Paul Sa Cooling plate thickness measurement in a blast furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178615A (en) * 1982-04-13 1983-10-19 Matsushita Electric Ind Co Ltd Recording amplifier circuit provided with alc
JPS61288153A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Aligning device for probe
JPH06148146A (en) * 1992-11-06 1994-05-27 Sumitomo Chem Co Ltd Pipe inspection probe and inspection device
JPH0749336A (en) * 1993-08-04 1995-02-21 Mitsubishi Heavy Ind Ltd Tube internal insertion type ultrasonic probe
JPH1019860A (en) * 1996-07-04 1998-01-23 Mitsubishi Heavy Ind Ltd Probe device for testing
JP2000187004A (en) * 1998-12-24 2000-07-04 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for inspecting interior of liquefied gas tank
JP2002022430A (en) * 2000-07-04 2002-01-23 Toyo Eng Works Ltd Equipment for measuring thickness of tubular body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178615A (en) * 1982-04-13 1983-10-19 Matsushita Electric Ind Co Ltd Recording amplifier circuit provided with alc
JPS61288153A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Aligning device for probe
JPH06148146A (en) * 1992-11-06 1994-05-27 Sumitomo Chem Co Ltd Pipe inspection probe and inspection device
JPH0749336A (en) * 1993-08-04 1995-02-21 Mitsubishi Heavy Ind Ltd Tube internal insertion type ultrasonic probe
JPH1019860A (en) * 1996-07-04 1998-01-23 Mitsubishi Heavy Ind Ltd Probe device for testing
JP2000187004A (en) * 1998-12-24 2000-07-04 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for inspecting interior of liquefied gas tank
JP2002022430A (en) * 2000-07-04 2002-01-23 Toyo Eng Works Ltd Equipment for measuring thickness of tubular body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106028A (en) * 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd System and method for inspecting wall thickness of boiler tube
KR101594719B1 (en) * 2014-12-26 2016-02-17 주식회사 포스코 Apparatus and method for measuring stave thickness.
WO2018048083A1 (en) * 2016-09-06 2018-03-15 주식회사 포스코 Device for measuring stave thickness
US20220011099A1 (en) * 2018-11-01 2022-01-13 HiBot Corporation Ultrasonic probe and method for measuring thickness of pipe being inspected using the same
CN113396308A (en) * 2019-02-08 2021-09-14 保尔沃特股份公司 Cooling plate thickness measurement in a blast furnace
WO2020161314A1 (en) 2019-02-08 2020-08-13 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace
EP3693690A1 (en) * 2019-02-08 2020-08-12 Paul Wurth S.A. Cooling plate thickness measurement in a metallurgical furnace
US20220128513A1 (en) * 2019-02-08 2022-04-28 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace
JP2021051049A (en) * 2019-09-26 2021-04-01 三菱重工環境・化学エンジニアリング株式会社 Pipe thickness measurement device and pipe thickness measurement system
WO2021060156A1 (en) * 2019-09-26 2021-04-01 三菱重工環境・化学エンジニアリング株式会社 Tube wall thickness measuring device and tube wall thickness measuring system
CN114424021A (en) * 2019-09-26 2022-04-29 三菱重工环境·化学工程株式会社 Pipe wall thickness measuring device and pipe wall thickness measuring system
CN114424021B (en) * 2019-09-26 2022-08-12 三菱重工环境·化学工程株式会社 Pipe wall thickness measuring device and pipe wall thickness measuring system
KR102145429B1 (en) * 2019-12-20 2020-08-18 한전케이피에스 주식회사 Wall-thinning Inspection Device For Boiler Tube
LU500898B1 (en) 2021-11-24 2023-05-24 Wurth Paul Sa Cooling plate thickness measurement in a blast furnace
WO2023094545A1 (en) 2021-11-24 2023-06-01 Paul Wurth S.A. System and method for measuring cooling plate thickness in a blast furnace
CN115560708A (en) * 2022-11-22 2023-01-03 菏泽恒翼金属材料有限公司 Multipoint thickness measuring device for metal steel wall thickness
CN115560708B (en) * 2022-11-22 2023-03-28 菏泽恒翼金属材料有限公司 Multipoint thickness measuring device for metal steel wall thickness

Also Published As

Publication number Publication date
JP4768052B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4768052B2 (en) Tube thickness measuring device
KR200479032Y1 (en) In-Pipe Inspection Robot
JP4641824B2 (en) In-pipe inspection device
JP5512310B2 (en) Pipe thinning measuring device
JP5649599B2 (en) Ultrasonic inspection apparatus and inspection method thereof
CA1134937A (en) Pipe inspection apparatus
JP7133809B2 (en) Pipe inspection robot
JP6306904B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP6206694B1 (en) Tube thickness measuring device
JP6039599B2 (en) Tube ultrasonic inspection equipment
JP5574861B2 (en) Pipe thinning measuring device
CN105698731A (en) Apparatus for detecting inner and outer diameters of ball cage
JP4707595B2 (en) In-pipe inspection device
AU600250B2 (en) Method and apparatus for determining bends in a pipeline
JP2009236613A (en) Inspection apparatus of piping and inspection method of the same
JP6596227B2 (en) Inspection apparatus and inspection method
JP5740283B2 (en) Pipe thickness measuring device
JP4707594B2 (en) In-pipe inspection device
JP2003302217A (en) Self-running steel pipe inspection device, motor truck running in steel pipe, driving truck and sensor truck
JP7458075B2 (en) Piping inner surface measuring device
JP5804680B2 (en) Bend pipe inspection device
JP5316136B2 (en) Internal processing inspection device
JP6782277B2 (en) Piping inspection equipment
JP2010060477A (en) Implement for pipe inspection
JP4576030B2 (en) Ultrasonic inspection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4768052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250