JP2010267875A - Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same - Google Patents

Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same Download PDF

Info

Publication number
JP2010267875A
JP2010267875A JP2009119062A JP2009119062A JP2010267875A JP 2010267875 A JP2010267875 A JP 2010267875A JP 2009119062 A JP2009119062 A JP 2009119062A JP 2009119062 A JP2009119062 A JP 2009119062A JP 2010267875 A JP2010267875 A JP 2010267875A
Authority
JP
Japan
Prior art keywords
negative electrode
storage element
composite porous
porous material
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009119062A
Other languages
Japanese (ja)
Inventor
Keita Kusuzaka
啓太 楠坂
Nobuhiro Okada
宣宏 岡田
Toshio Tsubata
敏男 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2009119062A priority Critical patent/JP2010267875A/en
Publication of JP2010267875A publication Critical patent/JP2010267875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a nonaqueous lithium type electric storage element excelling in high energy density, high output and durability, and to provide a nonaqueous lithium type electric storage element using the same. <P>SOLUTION: In this negative electrode for a nonaqueous lithium type electric storage element including a negative electrode collector and a negative electrode active material layer, the negative electrode active material is prepared by doping lithium ions in a composite porous material with a carbonaceous material deposited on surfaces of active carbon; and, when a meso-pore volume originated from pores having diameters of 20-500 Å in the composite porous material and a micro-pore volume originated from pores having diameters <20 Å are denoted by Vm1 (cc/g) and Vm2 (cc/g), respectively, 0.01≤Vm1≤0.20 and 0.01≤Vm2≤0.40 are satisfied, and lithium ions >700 mAh/g and ≤1,500 mAh/g per unit weight of the composite porous material are doped in advance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系リチウム型蓄電素子用負極、及びそれを用いた非水系リチウム型蓄電素子に関する。   The present invention relates to a negative electrode for a non-aqueous lithium storage element and a non-aqueous lithium storage element using the same.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、風力発電の電力平滑化システムや深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。
これらの蓄電システムにおける第一の要求事項は、用いられる電池のエネルギー密度が高いことである。この様な要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
In recent years, from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources, power smoothing systems for wind power generation, midnight power storage systems, distributed power storage systems for homes based on solar power generation technology, Energy storage systems are attracting attention.
The first requirement in these power storage systems is that the battery used has a high energy density. As a promising candidate for a high energy density battery capable of meeting such demands, development of a lithium ion battery has been vigorously advanced.

第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
現在、高出力蓄電デバイスとしては、電極に活性炭を用いた電気二重層キャパシタが開発されており、耐久性(サイクル特性、高温保存特性)が高く、0.5〜1kW/L程度の出力特性を有する。これら電気二重層キャパシタは、上記高出力が要求される分野で最適のデバイスと考えられてきたが、そのエネルギー密度は、1〜5Wh/L程度に過ぎず、実用化には出力持続時間が足枷となっている。
The second requirement is high output characteristics. For example, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), high output discharge characteristics in the power storage system are required during acceleration. Yes.
At present, electric double layer capacitors using activated carbon as electrodes have been developed as high-power storage devices, have high durability (cycle characteristics, high-temperature storage characteristics), and have output characteristics of about 0.5 to 1 kW / L. Have. These electric double layer capacitors have been considered to be optimal devices in the field where the above high output is required, but the energy density is only about 1 to 5 Wh / L, and the output duration is not enough for practical use. It has become.

一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を実現し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度、出力をより一層高めるとともに、高温での安定性をさらに改善し、耐久性を高めるための研究が精力的に進められている。
また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されているが、そのエネルギー密度は、100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性、高温保存特性)については電気ニ重層キャパシタに比べ劣る。そのため、実用的な耐久性を持たせるためには放電深度が0〜100%の範囲よりも狭い範囲でしか使用することができない。そのため実際に使用できる容量はさらに小さくなり、耐久性をより一層向上させるための研究が精力的に進められている。
On the other hand, nickel-metal hydride batteries currently used in hybrid electric vehicles realize high output equivalent to electric double layer capacitors and have an energy density of about 160 Wh / L. However, research is underway energetically to further increase the energy density and output, further improve the stability at high temperatures, and enhance the durability.
In addition, research for higher output is also being conducted in lithium ion batteries. For example, a lithium ion battery has been developed that can obtain a high output exceeding 3 kW / L at a discharge depth (a value indicating what percentage of the device discharge capacity is discharged) 50%, and its energy density is 100 Wh. / L or less, and a design that dares to suppress the high energy density, which is the greatest feature of the lithium ion battery. Further, its durability (cycle characteristics, high temperature storage characteristics) is inferior to that of an electric double layer capacitor. Therefore, in order to give practical durability, the depth of discharge can be used only in a range narrower than the range of 0 to 100%. For this reason, the capacity that can be actually used is further reduced, and research for further improving the durability is being actively pursued.

上記の様に高エネルギー密度、高出力、耐久性を兼ね備えた蓄電素子の実用化が強く求められているが、上述した既存の蓄電素子には一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められており、有力な候補としてリチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
キャパシタのエネルギーは1/2・C・V(ここで、Cは静電容量、Vは耐電圧)で表される。リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系リチウム型蓄電素子)である。
As described above, there is a strong demand for practical use of a power storage element having high energy density, high output, and durability. However, the existing power storage element described above has advantages and disadvantages. Therefore, a new power storage element that satisfies these technical requirements has been demanded, and a power storage element called a lithium ion capacitor has attracted attention as a promising candidate, and has been actively developed.
The energy of the capacitor is represented by 1/2 · C · V 2 (where C is a capacitance and V is a withstand voltage). A lithium ion capacitor is a storage element (non-aqueous lithium storage element) that uses a non-aqueous electrolyte containing a lithium salt.

リチウムイオンキャパシタの例としては、電気二重層キャパシタと同様に、正極活物質に活性炭、負極活物質に活性炭を用い、該負極にリチウムイオンを予めドープして負極電位を下げることで、耐電圧Vを高め、エネルギー密度の向上した蓄電素子が提案されている(例えば、以下の特許文献1参照)。また、正極活物質に活性炭、負極活物質に黒鉛等のリチウムをイオン化した状態で吸蔵、離脱しうる炭素質材料を用いる蓄電素子も提案されている(例えば、以下の特許文献2参照)。   As an example of a lithium ion capacitor, as with an electric double layer capacitor, activated carbon is used as a positive electrode active material, activated carbon is used as a negative electrode active material, lithium ions are pre-doped into the negative electrode, and the negative electrode potential is lowered. Has been proposed, and an energy storage device with improved energy density has been proposed (see, for example, Patent Document 1 below). In addition, a power storage element using a carbonaceous material that can be occluded and released in a state where activated carbon is used as a positive electrode active material and lithium such as graphite is ionized as a negative electrode active material has been proposed (see, for example, Patent Document 2 below).

高容量かつ高出力を兼ね備えた非水系二次電池用負極としては、水素原子/炭素原子比が0.60〜0.05であり、結晶面002面の面間隔が3.6Å以上であり、平均粒子径が2.0μm以下の不溶不融性基体を主成分とし、該不溶不融性基体の単位重量当り500mAh/g以上のリチウムを予め担持させてある負極活物質を用いることも提案されている(以下の特許文献3参照)。
また、非水系リチウム型蓄電素子用負極材料としては、活性炭の表面に炭素質材料を被着させた複合多孔性材料で、直径20〜500Åの細孔に由来するメソ孔量をVm1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20かつ0.01≦Vm2≦0.40である非水系リチウム型蓄電素子用負極材料も提案されている(以下の特許文献4参照)。
As a negative electrode for a non-aqueous secondary battery having both high capacity and high output, the hydrogen atom / carbon atom ratio is 0.60 to 0.05, and the interplanar spacing of the crystal plane 002 is 3.6 mm or more, It has also been proposed to use a negative electrode active material having an insoluble infusible substrate having an average particle size of 2.0 μm or less as a main component and preliminarily supporting lithium of 500 mAh / g or more per unit weight of the insoluble infusible substrate. (See Patent Document 3 below).
In addition, the negative electrode material for non-aqueous lithium storage element is a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon, and the amount of mesopores derived from pores having a diameter of 20 to 500 mm is defined as Vm1 (cc / g), and when the amount of micropores derived from pores having a diameter of less than 20 mm is Vm2 (cc / g), 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40 A negative electrode material for an aqueous lithium storage element has also been proposed (see Patent Document 4 below).

特開2000−124081号公報JP 2000-124081 A 特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開2007−294286号公報JP 2007-294286 A 特開2003−346801号公報JP 2003-346801 A

本発明者らが検討した結果、正極活物質に活性炭、負極活物質に活性炭を用いたリチウムイオンキャパシタにおいては、負極活物質のリチウムイオンに対する充放電効率が悪いためサイクル特性が良好でないことが判明した。また、正極活物質に活性炭、負極活物質に黒鉛を用いたリチウムイオンキャパシタにおいては、キャパシタの特徴である出力特性が十分ではなかった。
一方、上述の特許文献4に記載の負極材料は、リチウムイオンの対する充放電効率が高く、出力特性に優れた負極材料であるが、耐久性に改良すべき点があった。
以上に鑑み、本発明が解決しょうとする課題は、高エネルギー密度かつ高出力を発現し、さらに耐久性に優れた非水系リチウム型蓄電素子用負極、及び該負極を用いた非水系リチウム型蓄電素子を提供することである。
As a result of investigations by the present inventors, it was found that in a lithium ion capacitor using activated carbon as the positive electrode active material and activated carbon as the negative electrode active material, the cycle characteristics are not good because the charge / discharge efficiency with respect to lithium ions of the negative electrode active material is poor. did. Moreover, in the lithium ion capacitor using activated carbon as the positive electrode active material and graphite as the negative electrode active material, the output characteristics that are characteristic of the capacitor are not sufficient.
On the other hand, the negative electrode material described in Patent Document 4 described above is a negative electrode material that has high charge / discharge efficiency with respect to lithium ions and excellent output characteristics, but has a point that should be improved in durability.
In view of the above, the problems to be solved by the present invention are a negative electrode for a non-aqueous lithium storage element that exhibits high energy density and high output, and has excellent durability, and a non-aqueous lithium storage that uses the negative electrode It is to provide an element.

本発明者らは、前記課題を解決すべく研究を進めた結果、上述の特許文献4に記載の負極材料において、予めドープするリチウムイオン量を特許文献4に記載されている範囲より大きな値に設定することで、高エネルギー密度かつ高出力を維持したまま、更なる高耐久性を兼ね備えた非水系リチウム型蓄電素子用負極が得られることを見出し、本発明を完成させた。
すなわち、本発明は、以下のとおりのものである。
As a result of advancing research to solve the above problems, the present inventors have made the amount of lithium ions to be doped in advance larger than the range described in Patent Document 4 in the negative electrode material described in Patent Document 4 described above. By setting, it was found that a negative electrode for a non-aqueous lithium electricity storage element having high durability while maintaining high energy density and high output was obtained, and the present invention was completed.
That is, the present invention is as follows.

[1]負極集電体と負極活物質層とを含む非水系リチウム型蓄電素子用負極であって、該負極活物質は、活性炭の表面に炭素質材料を被着させた複合多孔性材料にリチウムイオンをドープさせてなるものであり、該複合多孔性材料における直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20かつ0.01≦Vm2≦0.40であり、そして該複合多孔性材料の単位重量当り700mAh/g超1500mAh/g以下のリチウムイオンを予めドープさせてあることを特徴とする前記非水系リチウム型蓄電素子用負極。   [1] A negative electrode for a non-aqueous lithium storage element including a negative electrode current collector and a negative electrode active material layer, wherein the negative electrode active material is a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon. The lithium ion is doped, and the amount of mesopores derived from pores having a diameter of 20 mm or more and 500 mm or less in the composite porous material is Vm1 (cc / g) and derived from pores having a diameter of less than 20 mm. When the micropore amount is Vm2 (cc / g), 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40, and more than 700 mAh / g per unit weight of the composite porous material The negative electrode for a non-aqueous lithium storage element, which is previously doped with lithium ions of 1500 mAh / g or less.

[2]前記複合多孔性材料の平均粒子径が2μmより大きい、前記[1]に記載の非水系リチウム型蓄電素子用負極。   [2] The negative electrode for a non-aqueous lithium storage element according to [1], wherein the composite porous material has an average particle size larger than 2 μm.

[3]前記[1]又は[2]に記載の非水系リチウム型蓄電素子用負極、正極、及びセパレータからなる電極体、並びに非水系電解液が外装体に収納されてなる非水系リチウム型蓄電素子。   [3] A non-aqueous lithium-type electricity storage in which a non-aqueous lithium-type electricity storage element negative electrode, a positive electrode, and a separator body according to [1] or [2], and a non-aqueous electrolyte solution are housed in an exterior body. element.

[4]前記正極に含まれる正極活物質が活性炭であり、該活性炭の直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8かつ0.5≦V2≦1.0である、前記[3]に記載の非水系リチウム型蓄電素子。   [4] The positive electrode active material contained in the positive electrode is activated carbon, and the amount of mesopores derived from pores having a diameter of 20 to 500 mm is V1 (cc / g), and the pores having a diameter of less than 20 mm The nonaqueous lithium-type electricity storage according to [3], wherein 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 when the amount of micropores derived is V2 (cc / g) element.

本発明の非水系リチウム型蓄電素子用負極、及びそれを用いた非水系リチウム型蓄電素子は、高エネルギー密度かつ高出力を発現し、さらに耐久性に優れるという効果を奏する。   The negative electrode for a non-aqueous lithium storage element and the non-aqueous lithium storage element using the non-aqueous lithium storage element of the present invention exhibit the effects of high energy density, high output, and excellent durability.

以下、本発明の実施形態について詳細に説明する。
本発明の負極は、第1の態様では、負極集電体と負極活物質層とを含む非水系リチウム型蓄電素子用負極であって、負極活物質が活性炭の表面に炭素質材料を被着させた複合多孔性材料にリチウムイオンをドープさせてなるものであり、該複合多孔性材料における直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20かつ0.01≦Vm2≦0.40であり、該複合多孔性材料の単位重量当り700mAh/g超1500mAh/g以下のリチウムイオンを予めドープさせてあることを特徴とする。また、第2の態様では、第1の態様に追加して、該複合多孔性材料の平均粒子径が2μmより大きいことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
In the first aspect, the negative electrode of the present invention is a negative electrode for a non-aqueous lithium storage element that includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material deposits a carbonaceous material on the surface of activated carbon. The composite porous material is doped with lithium ions, and the amount of mesopores derived from pores having a diameter of 20 to 500 mm in the composite porous material is Vm1 (cc / g), and the diameter is 20 mm. When the amount of micropores derived from pores less than Vm2 (cc / g) is 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40, the unit of the composite porous material It is characterized by being previously doped with lithium ions of more than 700 mAh / g and less than 1500 mAh / g per weight. In addition, in the second aspect, in addition to the first aspect, the composite porous material has an average particle diameter larger than 2 μm.

本発明で負極活物質として使用される複合多孔性材料は、例えば、活性炭と炭素質材料前駆体を共存させた状態で熱処理することにより得ることができる。
上記の複合多孔性材料の原料に用いる活性炭は、得られる複合多孔性材料が所望の特性を発揮する限り、活性炭とする前の原材料などに特に制限はなく、石油系、石炭系、植物系、高分子系などの各種の原材料から得られた市販品を使用することができる。平均粒子径が1〜500μm程度(より好ましくは1〜50μm)の活性炭粉末を用いることが好ましい。
The composite porous material used as the negative electrode active material in the present invention can be obtained, for example, by heat treatment in a state where activated carbon and a carbonaceous material precursor coexist.
The activated carbon used for the raw material of the composite porous material is not particularly limited to the raw material before the activated carbon as long as the obtained composite porous material exhibits desired characteristics, such as petroleum-based, coal-based, plant-based, Commercial products obtained from various raw materials such as polymers can be used. It is preferable to use activated carbon powder having an average particle size of about 1 to 500 μm (more preferably 1 to 50 μm).

一方、上記の複合多孔性材料の原料に用いる炭素質材料前駆体とは、熱処理することにより、活性炭に炭素質材料を被着させることができる液体又は溶剤に溶解可能な有機質材料で、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、フェノール樹脂などの合成樹脂などを挙げることができる。これらの炭素質材料前駆体の中でも、安価なピッチを用いることが製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。例えば、石油系ピッチとしては、原油の蒸留残査、流動性接触分解残査(デカントオイルなど)、サーマルクラッカーからのボトム油、ナフサクラッキングの際に得られるエチレンタールなどが例示される。   On the other hand, the carbonaceous material precursor used as a raw material for the composite porous material is an organic material that can be dissolved in a liquid or a solvent that can deposit the carbonaceous material on activated carbon by heat treatment, for example, Examples thereof include synthetic resins such as pitch, mesocarbon microbeads, coke, and phenol resin. Among these carbonaceous material precursors, it is preferable in terms of production cost to use an inexpensive pitch. Pitch is roughly divided into petroleum pitch and coal pitch. Examples of petroleum pitches include crude oil distillation residue, fluid catalytic cracking residue (decant oil, etc.), bottom oil from thermal cracker, ethylene tar obtained during naphtha cracking, and the like.

上記ピッチを用いる場合、複合多孔性材料は、活性炭の表面でピッチの揮発成分又は熱分解成分を熱反応させることにより、該活性炭に炭素質材料を被着させることにより得られる。この場合、200〜500℃程度の温度において、ピッチの揮発成分又は熱分解成分の活性炭細孔内への被着が進行し、400℃以上で該被着成分が炭素質材料となる反応が進行する。熱処理時のピーク温度は得られる複合多孔性材料の特性、熱反応パターン、熱反応雰囲気などにより適宜決定されるものであるが、400℃以上であることが好ましく、より好ましくは450℃〜1000℃であり、さらに好ましくは500〜800℃程度のピーク温度である。また、熱処理時のピーク温度を維持する時間は30分間〜10時間であればよく、好ましくは1時間〜7時間、より好ましくは2時間〜時間である。500〜800℃程度のピーク温度で2時間から5時間熱処理する場合、活性炭表面に被着している炭素質材料は多環芳香族系炭化水素になっているものと考えられる。   When the pitch is used, the composite porous material is obtained by depositing a carbonaceous material on the activated carbon by thermally reacting the volatile component or pyrolysis component of the pitch on the surface of the activated carbon. In this case, at a temperature of about 200 to 500 ° C., the deposition of pitch volatile components or pyrolysis components into the activated carbon pores proceeds, and at 400 ° C. or higher, the reaction in which the deposited components become carbonaceous materials proceeds. To do. The peak temperature during the heat treatment is appropriately determined depending on the characteristics of the composite porous material to be obtained, the thermal reaction pattern, the thermal reaction atmosphere, etc., but is preferably 400 ° C. or higher, more preferably 450 ° C. to 1000 ° C. More preferably, the peak temperature is about 500 to 800 ° C. Moreover, the time which maintains the peak temperature at the time of heat processing should just be 30 minutes-10 hours, Preferably it is 1 hour-7 hours, More preferably, it is 2 hours-time. When heat treatment is performed at a peak temperature of about 500 to 800 ° C. for 2 to 5 hours, the carbonaceous material deposited on the activated carbon surface is considered to be a polycyclic aromatic hydrocarbon.

本発明においては、上記のようにして得られた複合多孔性材料は、以下の特徴を有する。すなわち、複合多孔性材料におけるBJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)と、そしてMP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20かつ0.01≦Vm2≦0.40である。メソ孔量は0.01≦Vm1≦0.10がより好ましく、マイクロ孔量は0.01≦Vm2≦0.30が更に好ましい。各細孔量が上限以下であれば、リチウムイオンに対する高い充放電効率が維持でき、下限以上であれば、高出力特性が得られる。   In the present invention, the composite porous material obtained as described above has the following characteristics. That is, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method in the composite porous material is Vm1 (cc / g) and derived from pores having a diameter of less than 20 mm calculated by the MP method. When the micropore volume is Vm2 (cc / g), 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40. The mesopore amount is more preferably 0.01 ≦ Vm1 ≦ 0.10, and the micropore amount is more preferably 0.01 ≦ Vm2 ≦ 0.30. If the amount of each pore is below the upper limit, high charge / discharge efficiency for lithium ions can be maintained, and if it is above the lower limit, high output characteristics can be obtained.

本発明において、マイクロ孔量及びメソ孔量は以下のような方法により求めた値である。すなわち、試料を500℃で一昼夜真空乾燥を行い、窒素を吸着質とし吸脱着の等温線の測定を行なう。このときの脱着側の等温線を用いて、マイクロ孔量はMP法により、メソ孔量はBJH法により算出した。MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4,319(1965))を用いて、マイクロ孔容積、マイクロ孔面積、およびマイクロ孔の分布を求める方法を意味する。MP法は、M.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。また、BJH法とは、一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Amer. Chem. Soc., 73, 373(1951))。   In the present invention, the micropore volume and mesopore volume are values determined by the following method. That is, the sample is vacuum-dried at 500 ° C. all day and night, and the adsorption and desorption isotherm is measured using nitrogen as an adsorbate. Using the isotherm on the desorption side at this time, the micropore volume was calculated by the MP method, and the mesopore volume was calculated by the BJH method. The MP method uses a “t-plot method” (BC Lippens, JH de Boer, J. Catalysis, 4, 319 (1965)) to determine the micropore volume, micropore area, and micropore size. It means a method for obtaining the distribution of pores. The MP method is described in M.M. It is a method devised by Mikhail, Brunauer, Bodor (RS Mikhal, S. Brunauer, EE Bodor, J. Colloid Interface Sci., 26, 45 (1968)). The BJH method is a calculation method generally used for analyzing mesopores and proposed by Barrett, Joyner, Halenda et al. (EP Barrett, LG Joyner and P. Halenda). J. Amer. Chem. Soc., 73, 373 (1951)).

上記の複合多孔性材料において、水素原子/炭素原子の原子数比(以下、H/Cともいう。)は、0.05以上0.35以下であることが好ましく、0.05以上0.15以下であることが、より好ましい。H/Cが上限値を上回る場合には、活性炭表面に被着している炭素質材料多環芳香族系共役構造が十分に発達していないので、容量及び効率が低くなる。一方、H/Cが下限値を下回る場合には、炭素化が過度に進行して、十分な容量が得られない場合がある。なお、H/Cは元素分析装置により測定される。   In the above composite porous material, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter also referred to as H / C) is preferably 0.05 or more and 0.35 or less, and 0.05 or more and 0.15. The following is more preferable. When H / C exceeds the upper limit value, the capacity and efficiency are low because the carbonaceous material polycyclic aromatic conjugated structure deposited on the activated carbon surface is not sufficiently developed. On the other hand, when H / C is lower than the lower limit, carbonization may proceed excessively and a sufficient capacity may not be obtained. H / C is measured by an elemental analyzer.

また、上記の複合多孔性材料は原料の活性炭に由来するアモルファス構造を有するが、同時に、主に被着した炭素質材料に由来する結晶構造を有する。X線広角回折法によると、該複合多孔性材料は、(002)面の面間隔d002が3.60Å以上4.00Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが8.0Å以上20.0Å以下であるものが好ましく、d002が3.60Å以上3.75Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが11.0Å以上16.0Å以下であるものがより好ましい。 In addition, the composite porous material has an amorphous structure derived from the activated carbon as a raw material, but at the same time has a crystal structure mainly derived from the deposited carbonaceous material. According to the X-ray wide angle diffraction method, the composite porous material has a (002) plane spacing d 002 of 3.60 mm or more and 4.00 mm or less, and a crystal in the c-axis direction obtained from the half width of this peak. The crystallite size Lc is preferably 8.0 to 20.0 mm, d 002 is 3.60 to 3.75 mm, and the crystallite size Lc in the c-axis direction obtained from the half width of this peak is What is 11.0 to 16.0 is more preferable.

本発明における複合多孔性材料の平均粒子径は2μmより大きいことが好ましく、2.5μm以上であることがより好ましい。上限については、20μm以下であることが好ましく、10μm以下であることがより好ましい。平均粒子径が2μmより大きければ、耐久性が高く、一方、20μm以下であれば十分な出力特性が保たれる。本発明における平均粒子径とは、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径を50%径とし、その50%径(Median径)のことを指すものである。この平均粒子径は市販のレーザー回折式粒度分布測定装置で測定することができる。   The average particle size of the composite porous material in the present invention is preferably larger than 2 μm, more preferably 2.5 μm or more. About an upper limit, it is preferable that it is 20 micrometers or less, and it is more preferable that it is 10 micrometers or less. If the average particle diameter is larger than 2 μm, the durability is high, while if it is 20 μm or less, sufficient output characteristics are maintained. The average particle size in the present invention is the particle size at which the cumulative curve becomes 50% when the cumulative curve is determined with the total volume being 100% when the particle size distribution is measured using a particle size distribution measuring device. % Diameter, and refers to the 50% diameter (Median diameter). This average particle diameter can be measured with a commercially available laser diffraction particle size distribution analyzer.

本発明の非水系リチウム型蓄電素子用負極は、上記複合多孔性材料を活物質とし、公知の手法により電極に成型することができる。
本発明の非水系リチウム型蓄電素子用負極は、負極集電体の片面又は両面に負極活物質層が形成されてなるものである。負極集電体の材質は、蓄電素子にした際、溶出や反応などの劣化が起こらない材質であれば特に制限はなく、例えば、銅、鉄、ステンレス等が挙げられる。本発明の非水系リチウム型蓄電素子用負極においては、銅を負極集電体とすることが好ましい。負極集電体の形状は、金属箔又は金属の隙間に電極が形成可能である構造体を用いることができ、金属箔は貫通孔を持たない通常の金属箔でもよいし、エキスパンドメタル、パンチングメタル等の貫通孔を有する金属箔でも構わない。また、負極集電体の厚みは負極の形状や強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
The negative electrode for a non-aqueous lithium electricity storage element of the present invention can be molded into an electrode by a known method using the composite porous material as an active material.
The negative electrode for a non-aqueous lithium storage element according to the present invention has a negative electrode active material layer formed on one or both sides of a negative electrode current collector. The material of the negative electrode current collector is not particularly limited as long as it does not cause degradation such as elution or reaction when it is used as a power storage element, and examples thereof include copper, iron, and stainless steel. In the negative electrode for a non-aqueous lithium storage element of the present invention, copper is preferably used as the negative electrode current collector. As the shape of the negative electrode current collector, a metal foil or a structure in which an electrode can be formed in a gap between metals can be used, and the metal foil may be a normal metal foil having no through hole, expanded metal, punching metal A metal foil having through-holes such as these may be used. The thickness of the negative electrode current collector is not particularly limited as long as the shape and strength of the negative electrode can be sufficiently maintained, but for example, 1 to 100 μm is preferable.

本発明の非水系リチウム型蓄電素子用負極の負極活物質層には、必要に応じて、負極活物質の他に導電性フィラー、結着剤を添加することができる。導電性フィラーの種類は特に制限されるものではないが、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維が例示される。導電性フィラーの添加量は、例えば、負極活物質に対して0〜30質量%が好ましい。また、結着剤としては、特に制限されるものではないが、PVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、スチレン−ブタジエン共重合体などを用いることができる。結着剤の添加量は、例えば、負極活物質に対して3〜20質量%の範囲が好ましい。   In addition to the negative electrode active material, a conductive filler and a binder can be added to the negative electrode active material layer of the negative electrode for a non-aqueous lithium storage element of the present invention, as necessary. The type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber. For example, the addition amount of the conductive filler is preferably 0 to 30% by mass with respect to the negative electrode active material. The binder is not particularly limited, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), styrene-butadiene copolymer, and the like can be used. The amount of the binder added is preferably, for example, in the range of 3 to 20% by mass with respect to the negative electrode active material.

本発明の非水系リチウム型蓄電素子用負極は、負極活物質層を集電体の片面のみに形成したものでもよいし、両面に形成したものでも構わない。該負極活物質層の厚みは、例えば、片面当り20μm以上100μm以下が好ましい。
本発明の非水系リチウム型蓄電素子用負極は、公知のリチウムイオン電池、電気二重層キャパシタ等の電極成型手法により製造することが可能であり、例えば、負極活物質、導電性フィラー、結着剤を溶媒に分散させ、スラリー状にし、活物質層を集電体上に塗布して乾燥し、必要に応じてプレスすることにより得られる。また、溶媒を使用せずに、乾式で混合し、活物質をプレス成型した後、導電性接着剤等を用いて集電体に貼り付けることも可能である。
The negative electrode for a non-aqueous lithium storage element of the present invention may have a negative electrode active material layer formed on only one side of the current collector, or may be formed on both sides. The thickness of the negative electrode active material layer is preferably 20 μm or more and 100 μm or less per side, for example.
The negative electrode for a non-aqueous lithium storage element of the present invention can be produced by a known lithium ion battery, an electric double layer capacitor, or other electrode molding technique, such as a negative electrode active material, a conductive filler, and a binder. Is dispersed in a solvent to form a slurry, and the active material layer is applied onto a current collector, dried, and pressed as necessary. In addition, it is possible to dry-mix without using a solvent and press-mold the active material, and then affix it to the current collector using a conductive adhesive or the like.

本発明の非水系リチウム型蓄電素子用負極にはリチウムイオンを予めドープする。このドープ量は負極活物質である複合多孔性材料の単位重量当り700mAh/gを超える量であり、750mAh/g以上であることが好ましい。上限については、1,500mAh/g以下であり、1,300mAh/g以下であることが好ましい。
リチウムイオンを予めドープすることで、負極電位が低くなり、正極と組み合わせたときにセル電圧が高くなるとともに、正極の利用容量が大きくなるため高容量となり、高いエネルギー密度が得られる。本発明の非水系リチウム型蓄電素子用負極においては、該ドープ量が700mAh/gを超える量であれば、負極電位が十分に下がり、負極材料におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが十分にドープされるため、高い耐久性(サイクル特性、フロート特性など)、出力特性、及びエネルギー密度が得られるものと考えている。また、該ドープ量が多いほど負極電位が下がり、耐久性及びエネルギー密度は向上するが、1,500mAh/g以下であればリチウム金属の析出等の副作用が発生する恐れが少ない。
The negative electrode for a non-aqueous lithium storage element of the present invention is doped in advance with lithium ions. This dope amount exceeds 700 mAh / g per unit weight of the composite porous material as the negative electrode active material, and is preferably 750 mAh / g or more. About an upper limit, it is 1,500 mAh / g or less, and it is preferable that it is 1,300 mAh / g or less.
Pre-doping with lithium ions lowers the negative electrode potential, increases the cell voltage when combined with the positive electrode, and increases the utilization capacity of the positive electrode, resulting in higher capacity and higher energy density. In the negative electrode for a non-aqueous lithium storage element of the present invention, if the doping amount exceeds 700 mAh / g, the negative electrode potential is sufficiently lowered, and is irreversible that cannot be desorbed once lithium ions in the negative electrode material are inserted. Since lithium ions are also sufficiently doped at the site, it is considered that high durability (cycle characteristics, float characteristics, etc.), output characteristics, and energy density can be obtained. In addition, as the doping amount increases, the negative electrode potential decreases and the durability and energy density improve, but if it is 1,500 mAh / g or less, there is little risk of side effects such as precipitation of lithium metal.

上記の負極にリチウムイオンを予めドープする方法は、本発明では特に制限しないが、公知の方法を用いることができる。例えば、負極活物質を電極に成型した後、該負極電極を作用極、金属リチウムを対極に使用し、非水系電解液を組み合わせた電気化学セルを作製し、電気化学的にリチウムイオンをドープする方法が挙げられる。また、該負極電極に金属リチウム箔を圧着し、非水系電解液に入れることで負極にリチウムイオンをドープすることも可能である。   The method of previously doping lithium ions into the negative electrode is not particularly limited in the present invention, but a known method can be used. For example, after forming a negative electrode active material into an electrode, using the negative electrode as a working electrode and metallic lithium as a counter electrode, an electrochemical cell combining non-aqueous electrolyte is produced, and lithium ions are doped electrochemically A method is mentioned. It is also possible to dope lithium ions into the negative electrode by pressing a metal lithium foil on the negative electrode and placing it in a non-aqueous electrolyte.

上述の非水系リチウム型蓄電素子用負極は、正極、及びセパレータを積層してなる電極体として、リチウム塩を含む非水系電解液とともに外装体に収納して、非水系リチウム型蓄電素子とすることができる。   The negative electrode for a non-aqueous lithium storage element is a non-aqueous lithium storage element that is housed in an outer package together with a non-aqueous electrolyte containing a lithium salt as an electrode body formed by laminating a positive electrode and a separator. Can do.

上述の正極における正極活物質としては、炭素質材料や結晶性が低くアモルファス状態のMnOなどの遷移金属酸化物、LiCoOなどのリチウム含有遷移金属酸化物などが挙げられる。好ましくは、炭素質材料の中でも、細孔を有する活性炭である。好ましくは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)と、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8かつ0.5≦V2≦1.0が満たされる活性炭である。ここで言う正極活物質のメソ孔量及びマイクロ孔量の算出方法は、上述の負極活物質のメソ孔量及びマイクロ孔量の算出方法と同様の方法である。
上記の正極活物質として用いられる活性炭において、蓄電素子に組み込んだときの出力特性を大きくする点で、メソ孔量V1が0.3cc/gより大きい値であることが好ましく、一方、蓄電素子の容量の低下を抑える点から、0.8cc/g以下であることが好ましく、より好ましくは0.35cc/g以上0.7cc/g以下、さらに好ましくは0.4cc/g以上0.6cc/g以下である。
Examples of the positive electrode active material in the positive electrode include carbonaceous materials, transition metal oxides such as MnO 2 having a low crystallinity and an amorphous state, and lithium-containing transition metal oxides such as LiCoO 2 . Among the carbonaceous materials, activated carbon having pores is preferable. Preferably, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is V2. (Cc / g) is an activated carbon that satisfies 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0. The calculation method of the mesopore amount and the micropore amount of the positive electrode active material here is the same method as the calculation method of the mesopore amount and the micropore amount of the negative electrode active material described above.
In the activated carbon used as the positive electrode active material, the mesopore amount V1 is preferably a value larger than 0.3 cc / g in terms of increasing the output characteristics when incorporated in the energy storage device. From the viewpoint of suppressing a decrease in capacity, it is preferably 0.8 cc / g or less, more preferably 0.35 cc / g or more and 0.7 cc / g or less, and further preferably 0.4 cc / g or more and 0.6 cc / g. It is as follows.

また、マイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましく、一方、活性炭の嵩を抑え、電極としての密度を増加し、単位体積当たりの容量を増加させるという点から、1.0cc/g以下であることが好ましく、より好ましくは0.6cc/g以上1.0cc/g以下、さらに好ましくは0.8cc/g以上1.0cc/g以下である。   Further, the micropore amount V2 is preferably 0.5 cc / g or more in order to increase the specific surface area of the activated carbon and increase the capacity, while suppressing the bulk of the activated carbon and increasing the density as an electrode. From the viewpoint of increasing the capacity per unit volume, it is preferably 1.0 cc / g or less, more preferably 0.6 cc / g or more and 1.0 cc / g or less, further preferably 0.8 cc / g or more. 1.0 cc / g or less.

メソ孔量V1とマイクロ孔量V2は、0.3≦V1/V2≦0.9の範囲にあることが好ましい。マイクロ孔量に比べてメソ孔量が多く、容量を得ながら、出力特性の低下を抑えるという点から、V1/V2が0.3以上であることが好ましく、一方、メソ孔量に比べてマイクロ孔量が多く、出力特性を得ながら、容量の低下を抑えるという点から、V1/V2は0.9以下であることが好ましく、より好ましい範囲は0.4≦V1/V2≦0.7であり、さらに好ましい範囲は0.55≦V1/V2≦0.7である。   The mesopore volume V1 and the micropore volume V2 are preferably in the range of 0.3 ≦ V1 / V2 ≦ 0.9. V1 / V2 is preferably 0.3 or more from the viewpoint that the amount of mesopores is larger than the amount of micropores and the reduction in output characteristics is suppressed while obtaining the capacity, while the micropore size is smaller than that of mesopores. V1 / V2 is preferably 0.9 or less, and more preferably in a range of 0.4 ≦ V1 / V2 ≦ 0.7 from the viewpoint of suppressing the decrease in capacity while obtaining a large amount of pores and obtaining output characteristics. There is a more preferable range of 0.55 ≦ V1 / V2 ≦ 0.7.

また、上記の正極活物質として用いられる活性炭において平均細孔径は、出力を最大にする点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることがさらに好ましく、一方、容量を最大にする点から、25Å以下であることが好ましい。本発明でいうところの平均細孔径とは、液体窒素温度における各相対圧力下での窒素ガスの各平衡吸着量を測定して得られる重量当たりの全細孔容積をBET比表面積で除して求めたものを意味する。   Further, in the activated carbon used as the positive electrode active material, the average pore diameter is preferably 17 mm or more, more preferably 18 mm or more, and further preferably 20 mm or more from the viewpoint of maximizing the output. On the other hand, from the viewpoint of maximizing the capacity, it is preferably 25 mm or less. The average pore diameter referred to in the present invention is obtained by dividing the total pore volume per weight obtained by measuring each equilibrium adsorption amount of nitrogen gas under each relative pressure at the liquid nitrogen temperature by the BET specific surface area. It means what I asked for.

さらに、上記の正極活物質として使用される活性炭は、そのBET比表面積が1,500m/g以上3,000m/g以下が好ましく、より好ましくは1,500m/g以上2,500m/g以下である。BET比表面積が1,500m/g以上の場合には、エネルギー密度が高く、一方、BET比表面積が3,000m/g以下の場合には、バインダーを多量に入れずとも十分な電極の強度を保つことができ、体積当りの性能が維持できる。 Furthermore, the activated carbon used as the positive electrode active material preferably has a BET specific surface area of 1,500 m 2 / g or more and 3,000 m 2 / g or less, more preferably 1,500 m 2 / g or more and 2,500 m 2. / G or less. When the BET specific surface area is 1,500 m 2 / g or more, the energy density is high. On the other hand, when the BET specific surface area is 3,000 m 2 / g or less, a sufficient electrode can be obtained without adding a large amount of binder. Strength can be maintained and performance per volume can be maintained.

上記の正極活物質に用いられる活性炭の原料として用いられる炭素質材料としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜などの植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタールなどの化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂などの各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレンなどの合成ゴム;その他合成木材、合成パルプなど、あるいはそれらの炭化物が挙げられる。これらの原料の中でも、ヤシ殻、木粉などの植物系原料、又はそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
これらの原料を上記活性炭とするための炭化、賦活方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式などの公知の方式が挙げられる。
The carbonaceous material used as a raw material for activated carbon used in the positive electrode active material is not particularly limited as long as it is a carbon source that is usually used as a raw material for activated carbon. For example, wood, wood powder, coconut shell, pulp Plant raw materials such as by-products, bagasse and molasses during production; peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar, and other fossil raw materials; phenol resin, vinyl chloride resin, Various synthetic resins such as vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, polyamide resin; synthetic rubber such as polybutylene, polybutadiene, polychloroprene; other synthetic wood, synthetic pulp, etc. Or their carbides. Among these raw materials, plant raw materials such as coconut shells and wood flour, or carbides thereof are preferable, and coconut shell carbides are particularly preferable.
Examples of the carbonization and activation methods for using these raw materials as the activated carbon include known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method.

これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガスなどの不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃(特に450〜600℃)程度で30分〜10時間程度焼成する方法が挙げられる。
上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素などの賦活ガスを用いて焼成するガス賦活法が挙げられ、このうち、賦活ガスとしては、水蒸気又は二酸化炭素を使用することが好ましい。
この賦活方法では、賦活ガスを0.5〜3.0kg/h(特に0.7〜2.0kg/h)の割合で供給しながら、上記炭化物を3〜12時間(好ましくは5〜11時間、より好ましくは6〜10時間)かけて800〜1,000℃まで昇温して賦活するのが好ましい。
さらに、上記炭化物の賦活処理に先立ち、上記炭化物を予め1次賦活してもよい。この1次賦活では、通常、炭素質材料を水蒸気、二酸化炭素、酸素などの賦活ガスを用いて、900℃未満の温度で焼成してガス賦活すればよい。
As a carbonization method of these raw materials, nitrogen, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, an exhaust gas such as combustion exhaust gas, or other gases mainly composed of these inert gases. The method of baking for about 30 minutes to about 10 hours at about 400-700 degreeC (especially 450-600 degreeC) using mixed gas is mentioned.
Examples of the activation method of the carbide obtained by the carbonization method include a gas activation method in which firing is performed using an activation gas such as water vapor, carbon dioxide, oxygen, etc. Among these, water vapor or carbon dioxide is used as the activation gas. It is preferable to do.
In this activation method, the carbide is supplied for 3 to 12 hours (preferably 5 to 11 hours) while supplying the activation gas at a rate of 0.5 to 3.0 kg / h (particularly 0.7 to 2.0 kg / h). The temperature is preferably increased to 800 to 1,000 ° C. over 6 to 10 hours).
Furthermore, prior to the activation treatment of the carbide, the carbide may be activated in advance. In this primary activation, the carbonaceous material is usually fired at a temperature of less than 900 ° C. using an activation gas such as water vapor, carbon dioxide, oxygen, etc. to activate the gas.

本発明における正極は、上記の正極活物質を、上述の負極と同様に公知の手法により電極に成型することができる。
本発明における正極は正極集電体の片面又は両面に正極活物質層が形成されてなるものである。正極集電体の材質は、蓄電素子にした際、溶出や反応などの劣化が起こらない材質であれば特に制限はなく、例えば、アルミニウム等が挙げられる。正極集電体の形状は、金属箔又は金属の隙間に電極が形成可能である構造体を用いることができ、金属箔は貫通孔を持たない通常の金属箔でもよいし、エキスパンドメタル、パンチングメタル等の貫通孔を有する金属箔でも構わない。また、正極集電体の厚みは正極の形状や強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
In the positive electrode of the present invention, the above positive electrode active material can be formed into an electrode by a known method in the same manner as the above negative electrode.
The positive electrode in the present invention has a positive electrode active material layer formed on one side or both sides of a positive electrode current collector. The material of the positive electrode current collector is not particularly limited as long as it does not cause degradation such as elution or reaction when the power storage element is formed, and examples thereof include aluminum. As the shape of the positive electrode current collector, a metal foil or a structure in which an electrode can be formed in a gap between metals can be used, and the metal foil may be a normal metal foil having no through hole, expanded metal, punching metal A metal foil having through-holes such as these may be used. The thickness of the positive electrode current collector is not particularly limited as long as the shape and strength of the positive electrode can be sufficiently maintained, but for example, 1 to 100 μm is preferable.

本発明における正極の正極活物質層には必要に応じて、上記の正極活物質の他に導電性フィラー、結着剤を添加することができる。導電性フィラーの種類は特に制限されるものではないが、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維が例示される。導電性フィラーの添加量は、例えば、正極活物質に対して0〜30質量%程度が好ましい。また、結着剤としては、特に制限されるものではないが、PVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、フッ素ゴム、スチレン−ブタジエン共重合体などを用いることができる。結着剤の添加量は、例えば、正極活物質に対して3〜20質量%の範囲が好ましい。
本発明における正極は正極活物質層を集電体の片面のみに形成したものでもよいし、両面に形成したものでも構わない。該正極活物質層の厚みは、例えば、片面あたり30μm以上200μm以下が好ましい。
If necessary, a conductive filler and a binder can be added to the positive electrode active material layer of the positive electrode in the present invention in addition to the positive electrode active material. The type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber. For example, the addition amount of the conductive filler is preferably about 0 to 30% by mass with respect to the positive electrode active material. The binder is not particularly limited, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), fluororubber, styrene-butadiene copolymer, and the like can be used. The amount of the binder added is preferably, for example, in the range of 3 to 20% by mass with respect to the positive electrode active material.
The positive electrode in the present invention may have a positive electrode active material layer formed on only one side of the current collector or may be formed on both sides. The thickness of the positive electrode active material layer is preferably, for example, 30 μm to 200 μm per side.

本発明における正極は、上記の負極と同様に、公知のリチウムイオン電池、電気二重層キャパシタ等の電極成型手法により製造することが可能であり、例えば、正極活物質、導電性フィラー、結着剤を溶媒に分散させ、スラリー状にし、活物質層を集電体上に塗布して乾燥し、必要に応じてプレスすることにより得られる。また、溶媒を使用せずに、乾式で混合し、活物質をプレス成型した後、導電性接着剤等を用いて集電体に貼り付けることも可能である。   The positive electrode in the present invention can be produced by an electrode molding method such as a known lithium ion battery or an electric double layer capacitor in the same manner as the above negative electrode. For example, the positive electrode active material, conductive filler, binder Is dispersed in a solvent to form a slurry, and the active material layer is applied onto a current collector, dried, and pressed as necessary. In addition, it is possible to dry-mix without using a solvent and press-mold the active material, and then affix it to the current collector using a conductive adhesive or the like.

本発明において、上記のようにして成型された正極及び負極は、セパレータを介して積層又は捲廻積層された電極体として、金属缶又はラミネートフィルムから形成された外装体に挿入される。
セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜又は電気二重層コンデンサで用いられるセルロース製の不織紙などを用いることができる。
セパレータの厚みは、10μm以上50μm以下であることが好ましい。厚みが10μm以上であれば、内部のマイクロショートによる自己放電を抑制することができ、一方、厚みが50μm以下であれば、蓄電素子のエネルギー密度及び出力特性に優れる。
In the present invention, the positive electrode and the negative electrode molded as described above are inserted into an exterior body formed of a metal can or a laminate film as an electrode body laminated or wound around via a separator.
As the separator, a polyethylene microporous film or a polypropylene microporous film used in a lithium ion secondary battery, or a cellulose non-woven paper used in an electric double layer capacitor can be used.
The thickness of the separator is preferably 10 μm or more and 50 μm or less. If the thickness is 10 μm or more, self-discharge due to an internal micro short circuit can be suppressed. On the other hand, if the thickness is 50 μm or less, the energy density and output characteristics of the electricity storage device are excellent.

上記の外装体に使用される金属缶としては、アルミニウム製のものが好ましい。また、外装体に使用されるラミネートフィルムは、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムからなる3層構成のものが例示される。外層樹脂フィルムは接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロンやポリエステル等の樹脂が好適に使用できる。金属箔は水分やガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。   As a metal can used for said exterior body, the thing made from aluminum is preferable. Moreover, the laminate film used for the exterior body is preferably a film in which a metal foil and a resin film are laminated, and an example of a three-layer structure comprising an outer layer resin film / metal foil / interior resin film is exemplified. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing the permeation of moisture and gas, and foils of copper, aluminum, stainless steel, etc. can be suitably used. The interior resin film protects the metal foil from the electrolyte contained therein and melts and seals it during heat sealing, and polyolefins and acid-modified polyolefins can be suitably used.

本発明において、蓄電素子に用いられる非水系電解液の溶媒としては、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ−ブチロラクトン(γBL)などのラクトン類、又はこれらの混合溶媒を用いることができる。
これらの溶媒に溶解する電解質は、リチウム塩である必要があり、好ましいリチウム塩としては、LiBF、LiPF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)又はこれらの混合塩を挙げることができる。非水系電解液中の電解質濃度は、0.5〜2.0mol/Lの範囲が好ましい。0.5mol/L以上であれば、陰イオンの供給が不足せず、蓄電素子の容量が高く、一方、2.0mol/L以下であれば、未溶解の塩が該電解液中に析出したり、該電解液の粘度が高くなり過ぎたりすることによって、逆に伝導度が低下して出力特性が低下する恐れが少ない。
In the present invention, the solvent of the non-aqueous electrolyte solution used for the power storage element includes cyclic carbonates represented by ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), carbonic acid A chain carbonate represented by ethylmethyl (MEC), a lactone such as γ-butyrolactone (γBL), or a mixed solvent thereof can be used.
The electrolyte dissolved in these solvents needs to be a lithium salt, and preferred lithium salts include LiBF 4 , LiPF 6 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 2 F 5 ), LiN (SO 2 CF 3 ) (SO 2 C 2 F 4 H), or a mixed salt thereof can be given. The electrolyte concentration in the non-aqueous electrolyte is preferably in the range of 0.5 to 2.0 mol / L. If it is 0.5 mol / L or more, the supply of anions does not become insufficient, and the capacity of the electricity storage device is high. On the other hand, if it is 2.0 mol / L or less, undissolved salt precipitates in the electrolytic solution. In contrast, when the viscosity of the electrolytic solution becomes too high, there is little possibility that the output characteristics are deteriorated due to a decrease in conductivity.

以下、実施例、比較例を示し、本発明の特徴とするところを更に明確にするが、本発明は実施例により何ら限定されるものではない。
<実施例1>
(負極の作製)
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が1,620m/g、メソ孔量(V1)が0.18cc/g、マイクロ孔量(V2)が0.67cc/g、V1/V2=0.27、平均細孔径が20.7Åであった。この活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:80℃)300gを入れたステンレス製バットの上に置き、電気炉 (炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、700℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料1を得た。
複合多孔性材料1はBET比表面積が261m/gであり、重量は277.5gであった。原料活性炭の表面に被着された炭素質材料の重量は原料活性炭の85%と計算された。また、複合多孔性材料1のメソ孔量(Vm1)は0.065cc/g、マイクロ孔量(Vm2)は0.099cc/gであった。さらに、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.55μmであった。
Hereinafter, examples and comparative examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the examples.
<Example 1>
(Preparation of negative electrode)
The pore distribution of a commercially available coconut shell activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,620 m 2 / g, the mesopore volume (V1) was 0.18 cc / g, the micropore volume (V2) was 0.67 cc / g, V1 / V2 = 0.27, the average fineness. The pore diameter was 20.7 mm. 150 g of this activated carbon is placed in a stainless steel mesh jar, placed on a stainless steel bat containing 300 g of coal-based pitch (softening point: 80 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. The heat treatment is carried out in a nitrogen atmosphere by raising the temperature to 700 ° C. over 4 hours, holding the same temperature for 4 hours, subsequently cooling to 60 ° C. by natural cooling, and then removing from the furnace to form a composite porous material 1 that becomes a negative electrode material. Got.
The composite porous material 1 had a BET specific surface area of 261 m 2 / g and a weight of 277.5 g. The weight of the carbonaceous material deposited on the surface of the raw activated carbon was calculated to be 85% of that of the raw activated carbon. The composite porous material 1 had a mesopore volume (Vm1) of 0.065 cc / g and a micropore volume (Vm2) of 0.099 cc / g. Furthermore, as a result of measuring an average particle diameter using a Shimadzu Corporation laser diffraction type particle size distribution measuring apparatus (SALD-2000J), it was 2.55 μm.

次いで、上記で得た複合多孔性材料1を83.4重量部、アセチレンブラックを8.3重量部およびPVDF(ポリフッ化ビニリデン)を8.3重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ14μmの銅箔の片面に塗布し、乾燥し、プレスして、厚さ60μmの負極を得た。
上記で得られた負極を2cmになるように切り取り、作用極として使用し、金属リチウムを対極および参照極として使用し、エチレンカーボネートとメチルエチルカーボネートを1:4重量比で混合した溶媒に1mol/lの濃度にLiN(SOを溶解した溶液を電解液として使用し、アルゴンドライボックス中で電気化学セルを作製した。この電気化学セルを東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、まずリチウム電位に対して1mVになるまで複合多孔性材料1の重量に対して85mA/gの速度で定電流充電し、その後1mVで定電圧充電を行い、複合多孔性材料1の重量に対して合計750mAh/gのリチウムイオンを予めドープした。
Next, 83.4 parts by weight of the composite porous material 1 obtained above, 8.3 parts by weight of acetylene black, 8.3 parts by weight of PVDF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) were mixed. To obtain a slurry. Next, the obtained slurry was applied to one side of a copper foil having a thickness of 14 μm, dried, and pressed to obtain a negative electrode having a thickness of 60 μm.
The negative electrode obtained above was cut out to 2 cm 2 , used as a working electrode, metallic lithium as a counter electrode and a reference electrode, and 1 mol in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4. An electrochemical cell was produced in an argon dry box using a solution in which LiN (SO 2 C 2 F 5 ) 2 was dissolved at a concentration of 1 / l as an electrolyte. Using this electrochemical cell, a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., constant current at a rate of 85 mA / g with respect to the weight of the composite porous material 1 until it reaches 1 mV with respect to the lithium potential. After charging, constant voltage charging was performed at 1 mV, and a total of 750 mAh / g of lithium ions was previously doped with respect to the weight of the composite porous material 1.

(正極の作製)
破砕されたヤシ殻炭化品を小型炭化炉において窒素雰囲気中、500℃で炭化した。その後、窒素の代わりに1kg/hの水蒸気を予熱炉で加温した状態で炉内へ投入し、900℃まで8時間をかけて昇温した後に取り出し、窒素雰囲気下で冷却して賦活化された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行い、正極材料となる活性炭を得た。
本活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が2360m/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59、平均細孔径が22.9Åであった。この活性炭を正極活物質に用い、活性炭83.4重量部、アセチレンブラック8.3重量部およびPVDF(ポリフッ化ビニリデン)8.3重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、厚さ60μmの正極を得た。
(Preparation of positive electrode)
The crushed palm shell carbonized product was carbonized at 500 ° C. in a nitrogen atmosphere in a small carbonization furnace. Then, instead of nitrogen, 1 kg / h of steam was heated into the preheated furnace and taken out after heating up to 900 ° C. over 8 hours, and cooled and activated in a nitrogen atmosphere. Activated carbon was obtained. The obtained activated carbon was washed with water for 10 hours and then drained. Then, after drying for 10 hours in an electric dryer maintained at 115 ° C., pulverization was performed for 1 hour with a ball mill to obtain activated carbon as a positive electrode material.
The pore distribution of this activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 2360 m 2 / g, the mesopore volume (V1) was 0.52 cc / g, the micropore volume (V2) was 0.88 cc / g, V1 / V2 = 0.59, and the average pore diameter was It was 22.9 kg. Using this activated carbon as a positive electrode active material, 83.4 parts by weight of activated carbon, 8.3 parts by weight of acetylene black, 8.3 parts by weight of PVDF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) are mixed, Obtained. Next, the obtained slurry was applied to one side of an aluminum foil having a thickness of 15 μm, dried, and pressed to obtain a positive electrode having a thickness of 60 μm.

(蓄電素子の組立と性能評価)
上記で得られた正極を2cmになるように切り取り、この正極と、上記のリチウムを予めドープした負極を、厚み30μmの不織布セパレータを挟んで対向させ、ポリプロピレンとアルミを使用したラミネートフィルムからなる外装体に封入し、非水系リチウム型蓄電素子を組立てた。この時、電解液としてエチレンカーボネートとメチルエチルカーボネートを1:4重量比で混合した溶媒に1mol/lの濃度にLiN(SOを溶解した溶液を使用した。
作製した蓄電素子をアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.373mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.241mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は64.6%であった。
更に、耐久性試験として、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。試験開始時(0hとする)と、1,000h経過後における容量維持率と、抵抗倍率を測定した。ここでいう容量維持率とは、{(1,000h経過後における放電容量)/(0hでの放電容量)}×100で表される数値とし、抵抗倍率とは、(1000h経過後における0.1Hzでの交流抵抗値)/(0hでの0.1Hzでの交流抵抗値)で表される数値とする。1,000h経過後、容量維持率は95.5%、抵抗倍率は1.53倍であった。
(Assembly and performance evaluation of storage element)
The positive electrode obtained above is cut out to 2 cm 2 , and this positive electrode and the negative electrode previously doped with lithium are opposed to each other with a 30 μm-thick nonwoven fabric separator interposed therebetween, and a laminate film using polypropylene and aluminum is used. The battery was sealed in an exterior body and a non-aqueous lithium storage element was assembled. At this time, a solution in which LiN (SO 2 C 2 F 5 ) 2 was dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4 was used as an electrolytic solution.
Using the charge / discharge device (ACD-01) manufactured by Asuka Electronics, the produced storage element was charged to 4.0 V at a current of 1 mA, and then a constant current and constant voltage charge for applying a constant voltage of 4.0 V for 2 hours. went. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.373 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.241 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 64.6%.
Further, as a durability test, the produced storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. The capacity retention rate and resistance magnification after the start of the test (0 h), after 1,000 hours had elapsed, were measured. The capacity maintenance rate here is a numerical value represented by {(discharge capacity after elapse of 1,000 h) / (discharge capacity at 0 h)} × 100, and the resistance magnification is (0.00% after elapse of 1000 h). It is a numerical value represented by (AC resistance value at 1 Hz) / (AC resistance value at 0.1 Hz at 0 h). After 1,000 hours, the capacity retention ratio was 95.5% and the resistance magnification was 1.53 times.

<実施例2>
複合多孔性材料1の重量に対して合計900mAh/gのリチウムイオンを予めドープした負極を用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.379mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.242mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は63.8%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は95.0%、抵抗倍率は1.44倍であった。
<Example 2>
A non-aqueous lithium storage element was produced in the same manner as in Example 1 except that a negative electrode preliminarily doped with 900 mAh / g of lithium ions with respect to the weight of the composite porous material 1 was used.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.379 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.242 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 63.8%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 95.0%, and the resistance magnification was 1.44 times.

<実施例3>
複合多孔性材料1の重量に対して合計950mAh/gのリチウムイオンを予めドープした負極を用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.382mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.241mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は63.0%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1,000h経過後、容量維持率は95.4%、抵抗倍率は1.40倍であった。
<Example 3>
A non-aqueous lithium storage element was produced in the same manner as in Example 1 except that a negative electrode previously doped with 950 mAh / g of lithium ions in total with respect to the weight of the composite porous material 1 was used.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.382 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.241 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 63.0%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1,000 hours, the capacity retention rate was 95.4%, and the resistance magnification was 1.40 times.

<実施例4>
複合多孔性材料1の重量に対して合計1,050mAh/gのリチウムイオンを予めドープした負極を用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.380mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.238mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は62.5%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は95.3%、抵抗倍率は1.42倍であった。
<Example 4>
A non-aqueous lithium storage element was produced in the same manner as in Example 1 except that a negative electrode pre-doped with a total of 1,050 mAh / g of lithium ions with respect to the weight of the composite porous material 1 was used. .
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.380 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.238 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 62.5%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 95.3%, and the resistance magnification was 1.42 times.

<比較例1>
複合多孔性材料1の重量に対して合計500mAh/gのリチウムイオンを予めドープした負極を用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.364mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.233mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は64.0%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は93.4%、抵抗倍率は2.36倍であった。
<Comparative Example 1>
A non-aqueous lithium storage element was produced in the same manner as in Example 1 except that a negative electrode previously doped with a total of 500 mAh / g of lithium ions with respect to the weight of the composite porous material 1 was used.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.364 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.233 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 64.0%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 93.4%, and the resistance magnification was 2.36.

<比較例2>
複合多孔性材料1の重量に対して合計650mAh/gのリチウムイオンを予めドープした負極を用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.376mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.231mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は61.4%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は93.8%、抵抗倍率は1.87倍であった。
<Comparative example 2>
A non-aqueous lithium storage element was produced in the same manner as in Example 1 except that a negative electrode previously doped with a total of 650 mAh / g lithium ions with respect to the weight of the composite porous material 1 was used.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.376 mAh. Next, when the same charge was performed and the battery was discharged at 250 mA to 2.0 V, a capacity of 0.231 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 61.4%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 93.8%, and the resistance magnification was 1.87 times.

<実施例5>
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が1,620m/g、メソ孔量(V1)が0.18cc/g、マイクロ孔量(V2)が0.67cc/g、V1/V2=0.27、平均細孔径が20.7Åであった。この活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:80℃)250gを入れたステンレス製バットの上に置き、電気炉 (炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、670℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料2を得た。
複合多孔性材料2はBET比表面積が226m/gであり、重量は259.5gであった。原料活性炭の表面に被着された炭素質材料の重量は原料活性炭の73%と計算された。また、複合多孔性材料2のメソ孔量(Vm1)は0.109cc/g、マイクロ孔量(Vm2)は0.043cc/gであった。さらに、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.88μmであった。
この複合多孔性材料2を負極活物質として用いたことを除いては、実施例1と同様の方法で電極を作製し、非水系リチウム型蓄電素子を作製した。負極に予めドープしたリチウムイオン量は実施例1と同様に、複合多孔性材料2の重量に対して合計750mAh/gとした。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.369mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.239mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は64.8%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は96.5%、抵抗倍率は1.59倍であった。
<Example 5>
The pore distribution of a commercially available coconut shell activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,620 m 2 / g, the mesopore volume (V1) was 0.18 cc / g, the micropore volume (V2) was 0.67 cc / g, V1 / V2 = 0.27, the average fineness. The pore diameter was 20.7 mm. 150 g of this activated carbon is placed in a stainless steel mesh cage, placed on a stainless steel bat containing 250 g of coal-based pitch (softening point: 80 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. The heat treatment was performed in a nitrogen atmosphere in 4 hours up to 670 ° C., held at the same temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 2 serving as a negative electrode material. Got.
The composite porous material 2 had a BET specific surface area of 226 m 2 / g and a weight of 259.5 g. The weight of the carbonaceous material deposited on the surface of the raw activated carbon was calculated to be 73% of the raw activated carbon. The composite porous material 2 had a mesopore volume (Vm1) of 0.109 cc / g and a micropore volume (Vm2) of 0.043 cc / g. Furthermore, it was 2.88 micrometers as a result of measuring an average particle diameter using the Shimadzu Corporation laser diffraction type particle size distribution analyzer (SALD-2000J).
Except that this composite porous material 2 was used as the negative electrode active material, an electrode was prepared in the same manner as in Example 1 to prepare a non-aqueous lithium storage element. The amount of lithium ions previously doped into the negative electrode was set to 750 mAh / g in total with respect to the weight of the composite porous material 2 as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.369 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.239 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 64.8%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 96.5%, and the resistance magnification was 1.59 times.

<実施例6>
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が1,620m/g、メソ孔量(V1)が0.18cc/g、マイクロ孔量(V2)が0.67cc/g、V1/V2=0.27、平均細孔径が20.7Åであった。この活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:80℃)300gを入れたステンレス製バットの上に置き、電気炉 (炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、650℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料3を得た。
複合多孔性材料3はBET比表面積が351m/gであり、重量は243gであった。原料活性炭の表面に被着された炭素質材料の重量は原料活性炭の62%と計算された。また、複合多孔性材料3のメソ孔量(Vm1)は0.081cc/g、マイクロ孔量(Vm2)は0.144cc/gであった。さらに、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.73μmであった。
この複合多孔性材料3を負極活物質として用いたことを除いては、実施例1と同様の方法で電極を作製し、非水系リチウム型蓄電素子を作製した。負極に予めドープしたリチウムイオン量は実施例1と同様に、複合多孔性材料3の重量に対して合計750mAh/gとした。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.379mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.231mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は61.0%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は96.4%、抵抗倍率は1.60倍であった。
<Example 6>
The pore distribution of a commercially available coconut shell activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,620 m 2 / g, the mesopore volume (V1) was 0.18 cc / g, the micropore volume (V2) was 0.67 cc / g, V1 / V2 = 0.27, the average fineness. The pore diameter was 20.7 mm. 150 g of this activated carbon is placed in a stainless steel mesh jar, placed on a stainless steel bat containing 300 g of coal-based pitch (softening point: 80 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. The heat treatment was performed in a nitrogen atmosphere in 4 hours up to 650 ° C., held at the same temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 3 serving as a negative electrode material. Got.
The composite porous material 3 had a BET specific surface area of 351 m 2 / g and a weight of 243 g. The weight of the carbonaceous material deposited on the surface of the raw activated carbon was calculated to be 62% of that of the raw activated carbon. The composite porous material 3 had a mesopore volume (Vm1) of 0.081 cc / g and a micropore volume (Vm2) of 0.144 cc / g. Furthermore, it was 2.73 micrometers as a result of measuring an average particle diameter using the Shimadzu Corporation laser diffraction type particle size distribution measuring apparatus (SALD-2000J).
Except that this composite porous material 3 was used as the negative electrode active material, an electrode was prepared in the same manner as in Example 1 to produce a non-aqueous lithium storage element. The amount of lithium ions previously doped into the negative electrode was set to 750 mAh / g in total with respect to the weight of the composite porous material 3 as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.379 mAh. Next, when the same charge was performed and the battery was discharged at 250 mA to 2.0 V, a capacity of 0.231 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 61.0%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 96.4%, and the resistance magnification was 1.60 times.

<実施例7>
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が1,620m/g、メソ孔量(V1)が0.18cc/g、マイクロ孔量(V2)が0.67cc/g、V1/V2=0.27、平均細孔径が20.7Åであった。この活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:80℃)350gを入れたステンレス製バットの上に置き、電気炉 (炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、650℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料4を得た。
複合多孔性材料4はBET比表面積が132m/gであり、重量は295.5gであった。原料活性炭の表面に被着された炭素質材料の重量は原料活性炭の97%と計算された。また、複合多孔性材料4のメソ孔量(Vm1)は0.043cc/g、マイクロ孔量(Vm2)は0.039cc/gであった。さらに、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.51μmであった。
この複合多孔性材料4を負極活物質として用いたことを除いては、実施例1と同様の方法で電極を作製し、非水系リチウム型蓄電素子を作製した。負極に予めドープしたリチウムイオン量は実施例1と同様に、複合多孔性材料4の重量に対して合計750mAh/gとした。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.377mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.242mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は64.0%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は96.2%、抵抗倍率は1.49倍であった。
<Example 7>
The pore distribution of a commercially available coconut shell activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,620 m 2 / g, the mesopore volume (V1) was 0.18 cc / g, the micropore volume (V2) was 0.67 cc / g, V1 / V2 = 0.27, the average fineness. The pore diameter was 20.7 mm. 150 g of this activated carbon is placed in a stainless steel mesh basket, placed on a stainless steel bat containing 350 g of coal-based pitch (softening point: 80 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. In the heat treatment, the temperature is raised to 650 ° C. in 4 hours in a nitrogen atmosphere, maintained at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 4 that becomes a negative electrode material. Got.
The composite porous material 4 had a BET specific surface area of 132 m 2 / g and a weight of 295.5 g. The weight of the carbonaceous material deposited on the surface of the raw activated carbon was calculated to be 97% of the raw activated carbon. The composite porous material 4 had a mesopore volume (Vm1) of 0.043 cc / g and a micropore volume (Vm2) of 0.039 cc / g. Furthermore, the average particle diameter was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation, and as a result, it was 2.51 μm.
Except that this composite porous material 4 was used as the negative electrode active material, an electrode was prepared in the same manner as in Example 1 to prepare a non-aqueous lithium storage element. The amount of lithium ions previously doped in the negative electrode was set to 750 mAh / g in total with respect to the weight of the composite porous material 4 as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.377 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.242 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 64.0%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 96.2%, and the resistance magnification was 1.49.

<実施例8>
正極材料の活性炭として、実施例1に記載の複合多孔性材料1の原材料に用いた活性炭(BET比表面積が1,620m/g、メソ孔量(V1)が0.18cc/g、マイクロ孔量(V2)が0.67cc/g、V1/V2=0.27、平均細孔径が20.7Å)をそのまま正極活物質として用いたことを除いては、実施例1と同様の方法で非水系リチウム型蓄電素子を作製した。負極に予めドープしたリチウムイオン量は実施例1と同様に、複合多孔性材料1の重量に対して合計750mAh/gとした。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.341mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.151mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は44.3%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は94.9%、抵抗倍率は1.60倍であった。
<Example 8>
Activated carbon used as a raw material of the composite porous material 1 described in Example 1 as the positive electrode active carbon (BET specific surface area of 1,620 m 2 / g, mesopore volume (V1) of 0.18 cc / g, micropore The amount (V2) was 0.67 cc / g, V1 / V2 = 0.27, and the average pore diameter was 20.7 mm. A water-based lithium storage element was produced. The amount of lithium ions previously doped into the negative electrode was set to 750 mAh / g in total with respect to the weight of the composite porous material 1 as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.341 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.151 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 44.3%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 94.9%, and the resistance magnification was 1.60 times.

以上の結果を以下の表1にまとめて示す。

Figure 2010267875
表1に示す結果から、本発明の負極を用いた蓄電素子が、高エネルギー密度かつ高出力を保ちつつ、高耐久性を発現できることは明らかである。 The above results are summarized in Table 1 below.
Figure 2010267875
From the results shown in Table 1, it is clear that the electricity storage device using the negative electrode of the present invention can exhibit high durability while maintaining high energy density and high output.

本発明の蓄電素子用負極を用いた蓄電素子は、自動車において、内燃機関又は燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、さらには瞬間電力ピークのアシスト用途などで好適に利用できる。   The electric storage element using the negative electrode for the electric storage element of the present invention is suitably used in automobiles, in the field of hybrid drive systems combining an internal combustion engine or a fuel cell, a motor, and an electric storage element, and also for assisting instantaneous power peaks. it can.

Claims (4)

負極集電体と負極活物質層とを含む非水系リチウム型蓄電素子用負極であって、該負極活物質は、活性炭の表面に炭素質材料を被着させた複合多孔性材料にリチウムイオンをドープさせてなるものであり、該複合多孔性材料における直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20かつ0.01≦Vm2≦0.40であり、そして該複合多孔性材料の単位重量当り700mAh/g超1500mAh/g以下のリチウムイオンを予めドープさせてあることを特徴とする前記非水系リチウム型蓄電素子用負極。   A negative electrode for a non-aqueous lithium storage element including a negative electrode current collector and a negative electrode active material layer, wherein the negative electrode active material is formed by applying lithium ions to a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon. The amount of mesopores derived from the pores having a diameter of 20 to 500 mm in the composite porous material is Vm1 (cc / g), and the amount of micropores derived from the pores having a diameter of less than 20 mm. Vm2 (cc / g), 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40, and more than 700 mAh / g to 1500 mAh / g per unit weight of the composite porous material The negative electrode for a non-aqueous lithium storage element, wherein the following lithium ions are doped in advance. 前記複合多孔性材料の平均粒子径が2μmより大きい、請求項1に記載の非水系リチウム型蓄電素子用負極。   2. The negative electrode for a non-aqueous lithium storage element according to claim 1, wherein the composite porous material has an average particle size larger than 2 μm. 請求項1又は2に記載の非水系リチウム型蓄電素子用負極、正極、及びセパレータからなる電極体、並びに非水系電解液が外装体に収納されてなる非水系リチウム型蓄電素子。   A non-aqueous lithium storage element in which a non-aqueous lithium storage element negative electrode according to claim 1 or 2, a positive electrode, an electrode body comprising a separator, and a non-aqueous electrolyte solution are housed in an exterior body. 前記正極に含まれる正極活物質が活性炭であり、該活性炭の直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)と、そして直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8かつ0.5≦V2≦1.0である、請求項3に記載の非水系リチウム型蓄電素子。   The positive electrode active material contained in the positive electrode is activated carbon, the amount of mesopores derived from pores having a diameter of 20 mm or more and 500 mm or less of the activated carbon is V1 (cc / g), and the micropores derived from pores having a diameter of less than 20 mm. The non-aqueous lithium storage element according to claim 3, wherein 0.3 <V1≤0.8 and 0.5≤V2≤1.0 when the amount of pores is V2 (cc / g).
JP2009119062A 2009-05-15 2009-05-15 Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same Pending JP2010267875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119062A JP2010267875A (en) 2009-05-15 2009-05-15 Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119062A JP2010267875A (en) 2009-05-15 2009-05-15 Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same

Publications (1)

Publication Number Publication Date
JP2010267875A true JP2010267875A (en) 2010-11-25

Family

ID=43364588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119062A Pending JP2010267875A (en) 2009-05-15 2009-05-15 Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same

Country Status (1)

Country Link
JP (1) JP2010267875A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026505A (en) * 2011-07-22 2013-02-04 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
WO2014058040A1 (en) * 2012-10-12 2014-04-17 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
WO2014088074A1 (en) 2012-12-06 2014-06-12 旭化成株式会社 Nonaqueous lithium storage element
WO2014115723A1 (en) * 2013-01-22 2014-07-31 旭化成株式会社 Lithium ion capacitor
KR20150045470A (en) * 2012-10-01 2015-04-28 아사히 가세이 가부시키가이샤 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
WO2015080288A1 (en) * 2013-11-29 2015-06-04 日本カーボン株式会社 Negative-electrode active material for lithium ion capacitor
WO2015080253A1 (en) 2013-11-29 2015-06-04 旭化成株式会社 Lithium ion capacitor
JP2015198164A (en) * 2014-04-01 2015-11-09 旭化成株式会社 Nonaqueous lithium power storage element
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
CN105723483A (en) * 2013-11-19 2016-06-29 旭化成株式会社 Non-aqueous lithium-type power storage element
WO2017126686A1 (en) 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium storage element
KR20170126204A (en) * 2016-05-09 2017-11-17 제노에너지(주) Carbon electrode for lithium battery using porous carbon black-carbon composite and method for fabricating the same
WO2019212040A1 (en) * 2018-05-02 2019-11-07 株式会社ジェイテクト Lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2004221523A (en) * 2002-11-22 2004-08-05 Hitachi Maxell Ltd Electrochemical capacitor and hybrid power source constituted of it
JP2007043091A (en) * 2005-05-27 2007-02-15 Sumitomo Chemical Co Ltd Electrode and electric double-layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2004221523A (en) * 2002-11-22 2004-08-05 Hitachi Maxell Ltd Electrochemical capacitor and hybrid power source constituted of it
JP2007043091A (en) * 2005-05-27 2007-02-15 Sumitomo Chemical Co Ltd Electrode and electric double-layer capacitor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026505A (en) * 2011-07-22 2013-02-04 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
KR20150045470A (en) * 2012-10-01 2015-04-28 아사히 가세이 가부시키가이샤 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
KR101674842B1 (en) 2012-10-01 2016-11-09 아사히 가세이 가부시키가이샤 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
WO2014058040A1 (en) * 2012-10-12 2014-04-17 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
JP5571270B1 (en) * 2012-10-12 2014-08-13 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
US9406936B2 (en) 2012-10-12 2016-08-02 Showa Denko K.K. Carbon material, carbon material for battery electrode, and battery
JPWO2014088074A1 (en) * 2012-12-06 2017-01-05 旭化成株式会社 Non-aqueous lithium storage element
WO2014088074A1 (en) 2012-12-06 2014-06-12 旭化成株式会社 Nonaqueous lithium storage element
KR101676214B1 (en) * 2012-12-06 2016-11-29 아사히 가세이 가부시키가이샤 Nonaqueous lithium storage element
TWI629817B (en) * 2012-12-06 2018-07-11 旭化成股份有限公司 Non-aqueous lithium storage battery
EP2930728A4 (en) * 2012-12-06 2015-11-18 Asahi Chemical Ind Nonaqueous lithium storage element
US9748045B2 (en) 2012-12-06 2017-08-29 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
WO2014115723A1 (en) * 2013-01-22 2014-07-31 旭化成株式会社 Lithium ion capacitor
JPWO2014115723A1 (en) * 2013-01-22 2017-01-26 旭化成株式会社 Lithium ion capacitor
US10242807B2 (en) 2013-01-22 2019-03-26 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
KR101811971B1 (en) * 2013-11-19 2018-01-25 아사히 가세이 가부시키가이샤 Non-aqueous lithium-type power storage element
CN105723483A (en) * 2013-11-19 2016-06-29 旭化成株式会社 Non-aqueous lithium-type power storage element
US10242809B2 (en) 2013-11-19 2019-03-26 Asahi Kasei Kabushiki Kaisha Non-aqueous lithium-type power storage element
WO2015080253A1 (en) 2013-11-29 2015-06-04 旭化成株式会社 Lithium ion capacitor
EP3076416A4 (en) * 2013-11-29 2017-01-18 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
TWI573154B (en) * 2013-11-29 2017-03-01 Asahi Chemical Ind Lithium ion capacitors
JPWO2015080253A1 (en) * 2013-11-29 2017-03-16 旭化成株式会社 Lithium ion capacitor
WO2015080288A1 (en) * 2013-11-29 2015-06-04 日本カーボン株式会社 Negative-electrode active material for lithium ion capacitor
US10102980B2 (en) 2013-11-29 2018-10-16 Nippon Carbon Co., Ltd. Negative-electrode active material for lithium ion capacitor
CN105765680A (en) * 2013-11-29 2016-07-13 旭化成株式会社 Lithium ion capacitor
KR101811970B1 (en) * 2013-11-29 2018-01-25 아사히 가세이 가부시키가이샤 Lithium ion capacitor
US10002718B2 (en) 2013-11-29 2018-06-19 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
JP2015198164A (en) * 2014-04-01 2015-11-09 旭化成株式会社 Nonaqueous lithium power storage element
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
KR20180087421A (en) 2016-01-22 2018-08-01 아사히 가세이 가부시키가이샤 Non-aqueous lithium secondary battery
WO2017126686A1 (en) 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium storage element
US10403447B2 (en) 2016-01-22 2019-09-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
KR20170126204A (en) * 2016-05-09 2017-11-17 제노에너지(주) Carbon electrode for lithium battery using porous carbon black-carbon composite and method for fabricating the same
WO2019212040A1 (en) * 2018-05-02 2019-11-07 株式会社ジェイテクト Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5255569B2 (en) Non-aqueous lithium storage element
JP5463144B2 (en) Cathode material for non-aqueous lithium storage element
JP5654820B2 (en) Positive electrode material, method for producing the same, and power storage device
JP5479969B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP5554932B2 (en) Non-aqueous lithium storage element
JP2010267875A (en) Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
JP6262432B2 (en) Method for manufacturing lithium ion capacitor
JP6410417B2 (en) Non-aqueous lithium storage element
KR101811970B1 (en) Lithium ion capacitor
JP5654742B2 (en) Non-aqueous lithium storage element
JPWO2014088074A1 (en) Non-aqueous lithium storage element
JP6675146B2 (en) Non-aqueous lithium storage element
JP2013219152A (en) Positive electrode material, manufacturing method thereof, and power storage element
JP2015225876A (en) Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
JP2010205846A (en) Nonaqueous lithium type electricity storage element
JP2016042502A (en) Negative electrode for nonaqueous lithium type power storage device
JP5827085B2 (en) Non-aqueous lithium storage element
JP6453560B2 (en) Negative electrode for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP5785014B2 (en) Non-aqueous lithium storage element
JP5706017B2 (en) Non-aqueous lithium storage element
JP6292833B2 (en) Non-aqueous lithium storage element
JP5759677B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP2016042504A (en) Nonaqueous lithium type power storage device
JP2014017286A (en) Nonaqueous lithium type storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723