JP2010219512A - Seal material sheet for solar cell - Google Patents

Seal material sheet for solar cell Download PDF

Info

Publication number
JP2010219512A
JP2010219512A JP2010031643A JP2010031643A JP2010219512A JP 2010219512 A JP2010219512 A JP 2010219512A JP 2010031643 A JP2010031643 A JP 2010031643A JP 2010031643 A JP2010031643 A JP 2010031643A JP 2010219512 A JP2010219512 A JP 2010219512A
Authority
JP
Japan
Prior art keywords
rosin ester
solar cell
aromatic ring
peak area
hydrogenated rosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031643A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tawara
勝彦 田原
Takashi Nakatani
隆 中谷
Chu Nakamoto
宙 中本
Takumi Okazaki
巧 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2010031643A priority Critical patent/JP2010219512A/en
Publication of JP2010219512A publication Critical patent/JP2010219512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal material sheet for solar cells excelling in processability in performing a process such as melting or processing, excelling in light resistance and heat resistance while having high transparency, and high in stability. <P>SOLUTION: This seal material sheet for solar cells contains (A) an ethylene-vinyl acetate copolymer resin and (B) hydrated rosin ester. In (B) hydrated rosin ester, a residual rate R of aromatic rings given by formula (1): residual rate R (%) of aromatic ring=(H-peak area/total H-peak area of aromatic ring)×100 is <1% (in the formula (1), the H-peak area of the aromatic rings is the sum of H-peak areas of 6-8 ppm obtained by<SP>1</SP>H-NMR spectrum measurement which measures hydrated rosin ester in heavy chloroform (TMS standard) (in this case, the peak of chloroform being an impurity is excluded), and the total H-peak area is the sum of the H-peak areas derived from hydrogen groups). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池用封止材シートに関する。本発明の太陽電池用封止材シートは、太陽電池素子を樹脂やガラスに封じ込んだ各種の太陽電池モジュールについて利用できる。 The present invention relates to a solar cell encapsulant sheet. The solar cell sealing material sheet of this invention can be utilized about the various solar cell module which sealed the solar cell element in resin or glass.

近年、地球環境問題の高まりから太陽電池への関心が高まっている。太陽電池は、太陽の光を直接電気に変えるものであるため、電池の交換が不要である。また、太陽をエネルギー源として使用できるため、半永久的に作動させることができる。しかも、石油などのように燃焼により炭酸ガスなどの有害ガスを発生することもなくクリーンで地球に優しい技術である。 In recent years, interest in solar cells has increased due to increasing global environmental problems. Since the solar cell is a device that directly converts sunlight into electricity, it is not necessary to replace the battery. Moreover, since the sun can be used as an energy source, it can be operated semipermanently. Moreover, it is a clean and earth-friendly technology without generating harmful gases such as carbon dioxide by burning like oil.

従来から、太陽電池は、時計、卓上計算機、携帯電話、カメラ等の電子機器に用いられているが、その実用範囲は急速に拡大しており、街路灯システム、携帯用電源など独立電源用として使われるようになってきている。また、最近では、建物の屋根や窓に取り付けるなど一般家庭用電力用途など応用範囲が拡大しているが、更なる低価格化の実現のため、発電効率の向上、耐熱性の向上、製造工程の簡略化、等の様々な課題がある。 Conventionally, solar cells have been used in electronic devices such as watches, desk calculators, mobile phones, cameras, etc., but their practical range is rapidly expanding, and they are used for independent power sources such as street light systems and portable power supplies. It is becoming used. Recently, the range of applications such as general household power use such as mounting on the roofs and windows of buildings has been expanded. However, in order to achieve further price reduction, power generation efficiency has been improved, heat resistance has been improved, and manufacturing processes have been increased. There are various problems such as simplification.

太陽電池は、複数の太陽電池素子モジュールが接続されたものである。太陽電池素子モジュールは、一般にシリコン、ガリウム−ヒ素、カドミウム−硫黄、カドミウム−インジウム−セレン、フタロシアニン等の太陽電池素子を強化ガラス等の透明基板で挟み込み、太陽電池素子と透明基板を封止材シートで固定したものである。このような太陽電池用封止材シートとしては、エチレンと酢酸ビニルの共重合体樹脂(EVA)が主に使用されている。しかしながら、EVAのみでは耐熱性、耐光性、接着性、接着強度、硬化性、生産効率等が十分ではないため、EVAに様々な添加剤を用いた封止材シートが提案されている(特許文献1〜10参照。)。しかしながら、発電効率に大きく関与する太陽電池用封止材シートの透明性や、耐光性について未だ十分とはいえない。 A solar cell is obtained by connecting a plurality of solar cell element modules. A solar cell element module generally includes a solar cell element such as silicon, gallium-arsenic, cadmium-sulfur, cadmium-indium-selenium, and phthalocyanine sandwiched between transparent substrates such as tempered glass, and the solar cell element and the transparent substrate are encapsulated. It is fixed with. As such a solar cell encapsulant sheet, a copolymer resin (EVA) of ethylene and vinyl acetate is mainly used. However, heat resistance, light resistance, adhesiveness, adhesive strength, curability, production efficiency, etc. are not sufficient with EVA alone, and therefore, a sealing material sheet using various additives for EVA has been proposed (Patent Literature). 1-10). However, it cannot be said that the transparency and light resistance of the solar cell encapsulant sheet, which are greatly involved in power generation efficiency, are yet sufficient.

特開平11−20094号公報Japanese Patent Laid-Open No. 11-20094 特開平11−20095号公報Japanese Patent Laid-Open No. 11-20095 特開平11−20096号公報JP-A-11-20096 特開平11−20097号公報Japanese Patent Laid-Open No. 11-20097 特開平11−20098号公報JP-A-11-20098 特開平11−20099号公報JP-A-11-200999 特開平8−23116号公報JP-A-8-23116 特開2006−210906号公報JP 2006-210906 A 特開2006−269844号公報JP 2006-269844 A 特許第367424号公報Japanese Patent No. 367424

本発明は、優れた密着性を有し、溶融・加工等の処理を行う際に、加工性に優れ、高い透明性を有する太陽電池用封止材シートを提供することを目的とする。 An object of this invention is to provide the sealing material sheet for solar cells which has the outstanding adhesiveness, is excellent in workability, and has high transparency, when processing, such as a fusion | melting and a process, is performed.

本発明者は、太陽電池用封止材シートについて種々検討したところ、EVAの透明性が十分でない原因としてEVAの接着性・粘着性を高めるためにEVAへ添加されている各種添加剤とEVAとの相溶性が悪いことを見出し、また、EVAの耐光性及び耐熱性が十分でない原因として添加剤の耐光性・耐熱性が十分でないことを見出した。すなわち、高い透明性を有しつつ接着性・粘着性及び耐光性・耐熱性をバランス良く高めるためには、EVAとの相溶性が高く、それ自身の耐光性・耐熱性が高い添加剤を選択することが重要であることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The present inventor conducted various studies on the solar cell encapsulant sheet. As a cause of insufficient EVA transparency, various additives and EVA added to EVA in order to increase the adhesion and tackiness of EVA. It was found that the compatibility of the additive was poor, and the light resistance and heat resistance of the additive were not sufficient as a cause of insufficient light resistance and heat resistance of EVA. In other words, in order to improve the adhesiveness, tackiness, light resistance and heat resistance in a well-balanced manner while having high transparency, an additive with high compatibility with EVA and its own light resistance and heat resistance is selected. The present inventors have found that it is important to solve the above-mentioned problems and arrived at the present invention.

すなわち、本発明1は、(A)エチレン・酢酸ビニル共重合体樹脂、及び、(B)水素化ロジンエステルを含む太陽電池用封止材シートである。 That is, the present invention 1 is a solar cell encapsulant sheet comprising (A) an ethylene / vinyl acetate copolymer resin and (B) a hydrogenated rosin ester.

本発明2は、上記本発明1において、上記(B)水素化ロジンエステルは、下記(1)式で与えられる芳香環の残存率Rが10%未満である太陽電池用封止材シートである。
芳香環の残存率R(%)=(芳香環のH−ピーク面積/全H−ピーク面積)×100 (1)
(ここで、芳香環のH−ピーク面積は、水素化ロジンエステルを重クロロホルム中(TMS標準)で測定した1H−NMRスペクトル測定により得られる6〜8ppmのH−ピーク面積の総和(ただし、不純物であるクロロホルムのピークを除く。)であり、全H−ピーク面積は、水素基に由来するH−ピーク面積の総和である。)
The present invention 2 is the solar cell encapsulant sheet according to the present invention 1, wherein the hydrogenated rosin ester (B) has an aromatic ring residual ratio R given by the following formula (1) of less than 10%. .
Residual rate of aromatic ring R (%) = (H-peak area of aromatic ring / total H-peak area) × 100 (1)
(Here, the H-peak area of the aromatic ring is the sum of the H-peak areas of 6 to 8 ppm obtained by 1H-NMR spectrum measurement of hydrogenated rosin ester in deuterated chloroform (TMS standard) (however, impurities) And the total H-peak area is the sum of the H-peak areas derived from hydrogen groups.)

本発明3は、上記本発明2において、芳香環の残存率が1%未満である太陽電池用封止材シートである。 This invention 3 is the sealing material sheet for solar cells in which the residual ratio of an aromatic ring is less than 1% in the said invention 2.

本発明4は、上記本発明1〜3のいずれかにおいて、(A)エチレン・酢酸ビニル共重合体樹脂100重量部に対して、(B)水素化ロジンエステルを1〜200重量部含有する太陽電池用封止材シートである。 The present invention 4 is the solar system according to any one of the present inventions 1 to 3, wherein 1 to 200 parts by weight of (B) hydrogenated rosin ester is contained per 100 parts by weight of (A) ethylene / vinyl acetate copolymer resin It is a sealing material sheet for batteries.

本発明5は、上記本発明1〜4のいずれかにおいて、(B)水素化ロジンエステルの軟化点が60〜150℃である太陽電池用封止材シートである。 This invention 5 is the sealing material sheet for solar cells in which the softening point of (B) hydrogenated rosin ester is 60-150 degreeC in any one of the said invention 1-4.

本発明6は、上記本発明1〜5のいずれかにおいて、(B)水素化ロジンエステルの重量平均分子量が600〜3000である太陽電池用封止材シートである。 This invention 6 is the sealing material sheet for solar cells whose weight average molecular weights of (B) hydrogenated rosin ester are 600-3000 in any of the said invention 1-5.

本発明の太陽電池用封止材シートは、溶融・加工等の処理を行う際に加工性に優れ、高い透明性を有する。また、芳香環の残存率を制御することにより、耐光性および耐熱性を向上させることができる。 The solar cell encapsulant sheet of the present invention has excellent processability and high transparency when performing treatments such as melting and processing. Moreover, light resistance and heat resistance can be improved by controlling the residual ratio of the aromatic ring.

本発明の太陽電池用封止材シートは、(A)エチレン・酢酸ビニル共重合体樹脂(以下、(A)成分ともいう。)及び(B)水素化ロジンエステル(以下、(B)成分ともいう。)を含有する組成物を溶融・加工等の処理を行うことにより得られる。 The solar cell encapsulant sheet of the present invention comprises (A) an ethylene / vinyl acetate copolymer resin (hereinafter also referred to as (A) component) and (B) a hydrogenated rosin ester (hereinafter referred to as (B) component). It is obtained by performing a treatment such as melting and processing on the composition containing the above.

上記(A)成分としては、エチレンと酢酸ビニルを共重合したものであれば特に限定されず、公知のものを使用することができる。なお、(A)成分は、必要に応じて、エチレン、酢酸ビニル以外のモノマーと共重合したものであってもよい。エチレン、酢酸ビニル以外のモノマーとしては、例えば、プロピレン、塩化ビニル、スチレン、アクリル酸エステル等が挙げられる。 The component (A) is not particularly limited as long as it is a copolymer of ethylene and vinyl acetate, and a known component can be used. In addition, (A) component may be copolymerized with monomers other than ethylene and vinyl acetate as needed. Examples of monomers other than ethylene and vinyl acetate include propylene, vinyl chloride, styrene, and acrylic acid esters.

上記(B)成分は、例えば、ロジンとアルコールをエステル化反応させ、ついで水素化触媒の存在下にて当該エステル化物を水素化反応させることにより得られるものである。なお、ロジンを水素化して、ついで水素化ロジンとアルコールをエステル化反応させることにより得られるものであってもよい。また、水素化ロジンをエステル化して、ついで水素化するなど、複数の水素化工程を経て得られるものであってもよい。水素化工程、エステル化工程の順序については特に限定されない。 The component (B) is obtained, for example, by esterifying rosin and alcohol and then hydrogenating the esterified product in the presence of a hydrogenation catalyst. It may be obtained by hydrogenating rosin and then esterifying hydrogenated rosin and alcohol. Alternatively, it may be obtained through a plurality of hydrogenation steps such as esterification of hydrogenated rosin and subsequent hydrogenation. The order of the hydrogenation step and the esterification step is not particularly limited.

上記ロジンとしては、特に限定されず、例えば、アビエチン酸、パラストリン酸、ネオアビエチン酸、ピマール酸、イソピマール酸、デヒドロアビエチン酸等の樹脂酸を主成分とするガムロジン、ウッドロジン、トール油ロジン等が挙げられる。また、上記ロジンには、精製ロジンも含まれる。 The rosin is not particularly limited, and examples thereof include gum rosin, wood rosin, tall oil rosin and the like mainly composed of resin acids such as abietic acid, parastrinic acid, neoabietic acid, pimaric acid, isopimaric acid, and dehydroabietic acid. It is done. The rosin includes a purified rosin.

上記精製には公知の各種精製方法を適宜選択でき、具体的には蒸留、再結晶、抽出等の操作が挙げられ、工業的には蒸留による精製が好ましい。蒸留による場合は、通常は温度200〜300℃程度、圧力100〜15000Pa程度の範囲から蒸留時間を考慮して適宜選択される。再結晶の場合は、例えば未精製ロジンを良溶媒に溶解し、ついで溶媒を留去して濃厚な溶液となし、この溶液に貧溶媒を添加することにより行なう。良溶媒としてはベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒、クロロホルムなどの塩素化炭化水素溶媒、低級アルコール、アセトンなどのケトン類、酢酸エチルなどの酢酸エステル類等が挙げられ、貧溶媒としてはn−ヘキサン、n−ヘプタン、シクロヘキサン、イソオクタン等が挙げられる。抽出の場合は、アルカリ水を用いて未精製のロジンをアルカリ水溶液となし、これに含まれる不溶性の不ケン化物を有機溶媒を用いて抽出したのち、水層を中和することで精製ロジンを得ることができる。 Various known purification methods can be appropriately selected for the purification, and specific examples include operations such as distillation, recrystallization, and extraction, and industrial purification is preferred. In the case of distillation, it is usually selected appropriately from the range of a temperature of about 200 to 300 ° C. and a pressure of about 100 to 15000 Pa in consideration of the distillation time. In the case of recrystallization, for example, unpurified rosin is dissolved in a good solvent, then the solvent is distilled off to form a concentrated solution, and a poor solvent is added to this solution. Examples of good solvents include aromatic hydrocarbon solvents such as benzene, toluene and xylene, chlorinated hydrocarbon solvents such as chloroform, ketones such as lower alcohol and acetone, and acetates such as ethyl acetate. N-hexane, n-heptane, cyclohexane, isooctane and the like. In the case of extraction, an unpurified rosin is made into an aqueous alkaline solution using alkaline water, and insoluble unsaponifiable matter contained therein is extracted using an organic solvent, and then the aqueous layer is neutralized to obtain purified rosin. Obtainable.

上記水素化は、公知の方法により行えばよいが、通常、公知の水素源の存在下で行なうことができる。必要に応じて水素化触媒を用い、1〜30MPa程度の水素加圧下で、ロジンを加熱して溶融した状態又は、溶剤に溶解した状態で反応させればよい。水素源としては、水素ガスの他、リチウムアルミニウムハイドライドなどが挙げられる。水素圧力は反応速度、安全面を考慮すると、好ましくは1MPa〜20MPa程度、特に好ましくは5MPa〜15MPa程度である。 The hydrogenation may be carried out by a known method, but can usually be carried out in the presence of a known hydrogen source. What is necessary is just to make it react in the state which heated the rosin, was melted, or was melt | dissolved in the solvent under the hydrogen pressurization of about 1-30 Mpa using a hydrogenation catalyst as needed. Examples of the hydrogen source include hydrogen gas and lithium aluminum hydride. The hydrogen pressure is preferably about 1 MPa to 20 MPa, particularly preferably about 5 MPa to 15 MPa, considering the reaction rate and safety.

上記水素化触媒として、パラジウム系、ロジウム系,白金系の担持触媒、ニッケル、白金等の金属粉末、ヨウ素、ヨウ化鉄等のヨウ化物等各種公知のものを例示しうる。特にロジウム系触媒としてロジウムカーボン、パラジウム系触媒としてパラジウムカーボン、白金系触媒として白金カーボンが好ましい。該触媒の使用量は、ロジンに対して通常0.01〜5重量%程度、好ましくは0.01〜1重量%である。触媒の使用量については、水素化反応に用いる装置として回分式反応器を用いる場合を中心に記載したが、水素化反応に用いる装置として、流通式反応器を用いることもできる。また、反応装置の形状はとくに限定されず、たとえば、加圧条件ではオートクレーブなどの耐圧容器、常圧条件では水素の流通が可能な装置というように、反応水素圧力や反応温度によって適宜選択することができる。 Examples of the hydrogenation catalyst include various known catalysts such as palladium-based, rhodium-based, platinum-based supported catalysts, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide. In particular, rhodium carbon is preferable as the rhodium catalyst, palladium carbon is preferable as the palladium catalyst, and platinum carbon is preferable as the platinum catalyst. The amount of the catalyst used is usually about 0.01 to 5% by weight, preferably 0.01 to 1% by weight, based on rosin. The amount of catalyst used has been described mainly in the case of using a batch reactor as an apparatus used for the hydrogenation reaction, but a flow reactor can also be used as the apparatus used for the hydrogenation reaction. In addition, the shape of the reaction apparatus is not particularly limited. For example, a pressure vessel such as an autoclave can be selected under pressure conditions, and a hydrogen flow apparatus can be selected under normal pressure conditions depending on the reaction hydrogen pressure and reaction temperature. Can do.

上記反応温度は100〜300℃程度が好ましい。反応温度が低くなると反応速度が低下し、反応の完結にかかる時間が長くなる。250℃以上とすることがより好ましい。 The reaction temperature is preferably about 100 to 300 ° C. As the reaction temperature decreases, the reaction rate decreases and the time required for completion of the reaction increases. More preferably, the temperature is 250 ° C. or higher.

上記水素化の反応時間は、温度、圧力および触媒量などの反応条件によって変わるため、一概にその範囲を決めることは困難であるが、回分式、半回分式においては通常0.5〜30時間程度とすることができる。反応時間が短いと高い転化率が得られないことがあるため、反応時間は0.5時間以上とすることが好ましく、1時間以上とすることがより好ましい。反応時間は30時間よりも長くてもよいが、通常は30時間で充分に反応は進行する。反応時間が長時間になると副反応がおこりやすくなるため、反応時間は20時間以下にすることが好ましく、10時間以下にすることがより好ましく、7時間以下にすることがさらに好ましい。 The hydrogenation reaction time varies depending on the reaction conditions such as temperature, pressure and catalyst amount, and thus it is difficult to determine the range in general. However, in batch and semi-batch systems, it is usually 0.5 to 30 hours. Can be about. If the reaction time is short, a high conversion rate may not be obtained. Therefore, the reaction time is preferably 0.5 hours or more, and more preferably 1 hour or more. The reaction time may be longer than 30 hours, but usually the reaction proceeds sufficiently in 30 hours. Since side reactions are likely to occur when the reaction time is long, the reaction time is preferably 20 hours or less, more preferably 10 hours or less, and even more preferably 7 hours or less.

上記溶剤としては、反応に不活性で原料や生成物が溶解しやすい溶剤であれば足り、具体的には、炭化水素類が例示される。炭化水素類としては、シクロヘキサン、n−ヘキサン、n−ヘプタン、デカリン等が挙げられ、好ましくはシクロヘキサンがよい。溶剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。溶剤の適当な使用量は、(B)成分に対して、固形分が10〜80重量%の範囲となるような量が好ましいが、特に限定されるものではない。上記水素化後は、蒸留、濾過などの常法により、溶媒、触媒等を除去する。 As the solvent, any solvent that is inert to the reaction and in which the raw materials and products are easily dissolved is sufficient, and specifically, hydrocarbons are exemplified. Examples of the hydrocarbons include cyclohexane, n-hexane, n-heptane, decalin and the like, preferably cyclohexane. A solvent may be used individually by 1 type and may be used in combination of 2 or more type. An appropriate amount of the solvent used is preferably an amount such that the solid content is in the range of 10 to 80% by weight based on the component (B), but is not particularly limited. After the hydrogenation, the solvent, catalyst and the like are removed by a conventional method such as distillation or filtration.

上記アルコールの具体例としては、n−オクチルアルコール、2−エチルヘキシルアルコール、デシルアルコール、ラウリルアルコールのような1価アルコール;エチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール等の2価アルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン、シクロヘキサンジメタノール等の3価アルコール;ペンタエリスリトール、ジグリセリン等の4価アルコールなどが挙げられ、これらのうちいずれか一種、または二種以上のアルコールを用いることができる。 Specific examples of the alcohol include monohydric alcohols such as n-octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol and lauryl alcohol; dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol and neopentyl glycol; glycerin, tri Examples include trihydric alcohols such as methylolethane, trimethylolpropane, and cyclohexanedimethanol; tetrahydric alcohols such as pentaerythritol and diglycerin. Among these, one kind or two or more kinds of alcohols can be used.

上記エステル化反応は公知の方法を利用出来、具体的には150〜300℃程度の高温条件において、生成する水を系外に除去しながら行われる。又、エステル化反応中に空気が混入すると生成するエステル化物が着色する恐れがある為、反応は窒素、ヘリウム、アルゴン等の不活性ガスの下で行われる。尚、反応に際して必ずしもエステル化触媒を必要としないが、反応時間の短縮のために酢酸、パラトルエンスルホン酸等の酸触媒、水酸化カルシウム等のアルカリ金属の水酸化物、酸化カルシウム、酸化マグネシウム等の金属酸化物等を使用することも出来る。 The esterification reaction can be carried out using a known method, and specifically, performed at a high temperature of about 150 to 300 ° C. while removing generated water out of the system. In addition, if air is mixed in during the esterification reaction, the produced esterified product may be colored. Therefore, the reaction is performed under an inert gas such as nitrogen, helium or argon. In addition, an esterification catalyst is not necessarily required for the reaction, but in order to shorten the reaction time, acid catalysts such as acetic acid and paratoluenesulfonic acid, alkali metal hydroxides such as calcium hydroxide, calcium oxide, magnesium oxide, etc. It is also possible to use a metal oxide or the like.

上記エステル化反応で得られたエステル化物を水素加圧の下、水素化反応させることで水素化ロジンエステルを得ることが出来る。また、水素化ロジンをエステル化することによっても、水素化ロジンエステルを得ることができる。 A hydrogenated rosin ester can be obtained by hydrogenating the esterified product obtained by the esterification reaction under hydrogen pressure. A hydrogenated rosin ester can also be obtained by esterifying a hydrogenated rosin.

上記(B)水素化ロジンエステルは、下記(1)式で与えられる芳香環の残存率Rが10%未満であることが好ましい。さらには芳香環の残存率Rは1未満%であることがより好ましい。
芳香環の残存率R(%)=(芳香環のH−ピーク面積/全H−ピーク面積)×100 (1)
(ここで、芳香環のH−ピーク面積は、水素化ロジンエステルを重クロロホルム中(TMS標準)で測定したH−NMRスペクトル測定により得られる6〜8ppmのH−ピーク面積の総和(ただし、不純物であるクロロホルムのピークを除く)であり、全H−ピーク面積は、水素基に由来するH−ピーク面積の総和である。)
The (B) hydrogenated rosin ester preferably has an aromatic ring residual ratio R given by the following formula (1) of less than 10%. Furthermore, the aromatic ring residual ratio R is more preferably less than 1%.
Residual rate of aromatic ring R (%) = (H-peak area of aromatic ring / total H-peak area) × 100 (1)
(Here, the H-peak area of the aromatic ring is the sum of the H-peak areas of 6 to 8 ppm obtained by 1 H-NMR spectrum measurement of hydrogenated rosin ester in deuterated chloroform (TMS standard) (however, (Excluding the peak of chloroform, which is an impurity), and the total H-peak area is the sum of H-peak areas derived from hydrogen groups.)

H−NMRスペクトルの測定は、特に限定されず、例えば以下のように行うことができる。
水素化ロジンエステル50mgを0.7mlの重クロロホルムに完全に溶解させ、内部指標としてTMS(テトラメチルシラン)を用いて、NMRスペクトルの測定装置(例えば、VARIAN GEMINI−300が挙げられる。)で測定する。
The measurement of 1 H-NMR spectrum is not particularly limited and can be performed, for example, as follows.
50 mg of hydrogenated rosin ester is completely dissolved in 0.7 ml of deuterated chloroform, and measured with an NMR spectrum measuring apparatus (for example, VARIAN GEMINI-300) using TMS (tetramethylsilane) as an internal indicator. To do.

1H−NMRスペクトル測定で得られたデータのピーク位置の決定は、ピーク分割によって各ピークを抽出する方法で行なうことができる。ピーク分割により求めた各ピーク面積を用いて芳香環の残存率R(%)を求める。 Determination of the peak position of the data obtained by 1H-NMR spectrum measurement can be performed by a method of extracting each peak by peak division. The residual ratio R (%) of the aromatic ring is obtained using each peak area obtained by peak division.

上記芳香環の残存率R(%)を10%未満とすることにより、透明性及び密着性に優れた太陽電池用封止材シートを製造することができる。また、上記芳香環の残存率R(%)を1%未満とすることにより、極めて透明性が高く、耐光性・耐熱性に優れた太陽電池用封止材シートを製造することができる。
上記芳香環の残存率は、水素化ロジンエステルを製造する際に、水素化反応における反応温度、反応時間、触媒量、水素圧力を調整することでコントロールすることができる。
By setting the residual ratio R (%) of the aromatic ring to less than 10%, a solar cell encapsulant sheet excellent in transparency and adhesion can be produced. In addition, by setting the residual ratio R (%) of the aromatic ring to less than 1%, it is possible to produce a solar cell encapsulant sheet having extremely high transparency and excellent light resistance and heat resistance.
When the hydrogenated rosin ester is produced, the residual ratio of the aromatic ring can be controlled by adjusting the reaction temperature, reaction time, amount of catalyst, and hydrogen pressure in the hydrogenation reaction.

上記(B)成分の配合量は、(A)成分100重量部に対して、1〜200重量部程度、好ましくは5〜100重量部である。この場合、溶融・加工等の処理を行う際に、加工性に優れ、また接着性、透明性、耐久性に優れた太陽電池用封止材シートを得ることができる。1重量部未満であると、接着性・透明性が十分でない場合があり、200重量部を超えると、加工性が低下する場合がある。 The blending amount of the component (B) is about 1 to 200 parts by weight, preferably 5 to 100 parts by weight with respect to 100 parts by weight of the component (A). In this case, it is possible to obtain a solar cell encapsulant sheet that is excellent in processability and excellent in adhesiveness, transparency, and durability when performing processing such as melting and processing. If it is less than 1 part by weight, the adhesion and transparency may not be sufficient, and if it exceeds 200 parts by weight, the workability may be reduced.

上記(B)成分の軟化点は60〜150℃程度が好ましい。この場合、溶融・加工等の処理を行う際に、加工性に優れ、また接着性、透明性、耐久性に優れた太陽電池用封止材シートを得ることができる。60℃未満の場合は、得られるシートの耐熱性という点で不十分となる場合があり、150℃を超えると、溶融した際の粘度が高く、加工性が悪くなる場合がある。より好ましくは、90〜140℃である。上記軟化点は、JIS K 2531の環球法により測定した値である。 The softening point of the component (B) is preferably about 60 to 150 ° C. In this case, it is possible to obtain a solar cell encapsulant sheet that is excellent in processability and excellent in adhesiveness, transparency, and durability when performing processing such as melting and processing. If it is less than 60 ° C., it may be insufficient in terms of heat resistance of the resulting sheet, and if it exceeds 150 ° C., the viscosity at the time of melting may be high, and the workability may be deteriorated. More preferably, it is 90-140 degreeC. The softening point is a value measured by the ring and ball method of JIS K2531.

上記(B)成分の重量平均分子量は600〜3000程度であることが好ましい。この場合、溶融・加工等の処理を行う際に、加工性に優れ、また接着性、透明性、耐久性に優れた太陽電池用封止材シートを得ることができる。重量平均分子量が600以上とすることで耐熱性が良好となるため好ましく、3000以下とすることで、加工性が良好となるため好ましい。より好ましくは、700〜2500である。 It is preferable that the weight average molecular weight of the said (B) component is about 600-3000. In this case, it is possible to obtain a solar cell encapsulant sheet that is excellent in processability and excellent in adhesiveness, transparency, and durability when performing processing such as melting and processing. A weight average molecular weight of 600 or more is preferable because heat resistance is improved, and a weight average molecular weight of 3000 or less is preferable because workability is improved. More preferably, it is 700-2500.

上記重量平均分子量は、GPC(ゲルパーメーションクロマトグラフィー)法により、標準ポリスチレンの検量線から求められるポリスチレン換算値として算出した値である。なお、GPC法は以下の条件で測定した。
分析装置:HLC−8120(東ソー(株)製)
カラム:TSKgelSuperHM−Lx3本
溶離液:テトラヒドロフラン
注入試料濃度:5mg/mL
流量:0.6mL/min
注入量:100μL
カラム温度:40℃
検出器:RI
The said weight average molecular weight is the value computed as a polystyrene conversion value calculated | required from the analytical curve of a standard polystyrene by GPC (gel permeation chromatography) method. The GPC method was measured under the following conditions.
Analyzer: HLC-8120 (manufactured by Tosoh Corporation)
Column: TSKgelSuperHM-Lx 3 eluent: tetrahydrofuran injection Sample concentration: 5 mg / mL
Flow rate: 0.6mL / min
Injection volume: 100 μL
Column temperature: 40 ° C
Detector: RI

本発明の太陽電池用封止材シートは、各種の太陽電池モジュールに用いることができる。太陽電池モジュールの構造としては、特に限定されず、2枚の板材の間に置いた樹脂層の中に素子を封入した2枚板構造、裏側に支持板を置き、その上の透明樹脂中に素子を封入した1枚基板構造、受光面側にガラス板を置き、その裏側の透明樹脂中に素子を封入したもので、1枚基板構造とは上下(表裏)が逆になった表板1枚構造等が挙げられる。 The solar cell sealing material sheet of this invention can be used for various solar cell modules. The structure of the solar cell module is not particularly limited, and is a two-plate structure in which an element is enclosed in a resin layer placed between two plates, a support plate is placed on the back side, and a transparent resin is placed on the support plate. A single substrate structure enclosing an element, a glass plate placed on the light-receiving surface side, and an element encapsulated in a transparent resin on the back side. The front plate 1 is upside down (front and back) with respect to the single substrate structure A sheet structure is exemplified.

以下に本発明を実施例により更に具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。また実施例中、「部」は特に断りのない限り「重量部」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “parts” means “parts by weight” unless otherwise specified.

製造例1 (水素化ロジンエステルの製造)
1リットルオートクレーブに中国水添ロジン200g、5%パラジウムアルミナ粉末(エヌ・イー ケムキャット社製)3g、及びシクロヘキサン200gを仕込み、系内の酸素を除去した後、系内を6MPaに加圧後、200℃まで昇温した。温度到達後、系内を再加圧し、9MPaを保ち、4時間水素添加反応を行い、溶剤ろ別後、減圧下にてシクロヘキサンを除去し、酸価174、軟化点79℃のロジン189gを得た。
次いで、攪拌装置、冷却管および窒素導入管を備えた反応装置にロジン180gを仕込み、200℃まで溶融した後、グリセリン21gを仕込み、280℃で10時間反応させた。軟化点90℃、酸価11のロジンエステル175gを得た。
得られたロジンエステルを1リットルオートクレーブに170g、5%パラジウムカーボン(含水率50%)を1g、シクロヘキサンを170g仕込み、系内の酸素を除去した後、系内を6MPaに加圧後、200℃まで昇温した。温度到達後、系内を再加圧し、9MPaを保ち、4時間水素添加反応を行い、溶剤ろ別後、減圧下にてシクロヘキサンを除去し、芳香環の残存率Rが0.8%、酸価10、軟化点92℃の水素化ロジンエステル(以下樹脂aと略す)を164g得た。色調は200ハーゼン(H)であった。
Production Example 1 (Production of hydrogenated rosin ester)
A 1 liter autoclave was charged with 200 g of Chinese hydrogenated rosin, 3 g of 5% palladium alumina powder (manufactured by NP Chemcat) and 200 g of cyclohexane, the oxygen in the system was removed, and the system was pressurized to 6 MPa. The temperature was raised to ° C. After reaching the temperature, the inside of the system was repressurized, kept at 9 MPa, and subjected to hydrogenation reaction for 4 hours. After filtering off the solvent, cyclohexane was removed under reduced pressure to obtain 189 g of rosin having an acid value of 174 and a softening point of 79 ° C. It was.
Next, 180 g of rosin was charged into a reaction apparatus equipped with a stirrer, a cooling pipe and a nitrogen introduction pipe, and after melting to 200 ° C., 21 g of glycerin was charged and reacted at 280 ° C. for 10 hours. 175 g of a rosin ester having a softening point of 90 ° C. and an acid value of 11 was obtained.
The obtained rosin ester was charged in a 1 liter autoclave by 170 g, 1 g of 5% palladium carbon (moisture content 50%) and 170 g of cyclohexane, the oxygen in the system was removed, the inside of the system was pressurized to 6 MPa, and then 200 ° C. The temperature was raised to. After reaching the temperature, the inside of the system was repressurized, kept at 9 MPa, and subjected to a hydrogenation reaction for 4 hours. After filtering off the solvent, cyclohexane was removed under reduced pressure, and the residual ratio R of the aromatic ring was 0.8%. 164 g of a hydrogenated rosin ester (hereinafter abbreviated as “Resin a”) having a valence of 10 and a softening point of 92 ° C. was obtained. The color tone was 200 Hazen (H).

製造例2 (水素化ロジンエステルの製造)
攪拌装置、冷却管および窒素導入管を備えた反応装置にロジン300gを仕込み、200℃まで昇温溶融した後、グリセリン33gを仕込み、280℃で12時間反応させた。軟化点93℃、酸価6のロジンエステル299gを得た。
得られたロジンエステルを1リットルオートクレーブに250g、5%パラジウムカーボン(含水率50%)を2g仕込み、系内の酸素を除去した後、系内を6MPaに加圧後、240℃まで昇温した。温度到達後、系内を再加圧し、9MPaを保ち、3時間水素添加反応を行い、溶剤ろ別し、芳香環の残存率Rが6%、酸価6、軟化点90℃のロジンエステル7を164g得た(以下樹脂bと略す)。色調は300ハーゼン(H)であった。
Production Example 2 (Production of hydrogenated rosin ester)
A reactor equipped with a stirrer, a cooling tube and a nitrogen introducing tube was charged with 300 g of rosin, heated to 200 ° C. and melted, and then charged with 33 g of glycerin and reacted at 280 ° C. for 12 hours. As a result, 299 g of a rosin ester having a softening point of 93 ° C. and an acid value of 6 was obtained.
The obtained rosin ester was charged in a 1 liter autoclave with 250 g, 2 g of 5% palladium carbon (water content 50%), oxygen in the system was removed, the system was pressurized to 6 MPa, and the temperature was raised to 240 ° C. . After reaching the temperature, the inside of the system was repressurized, maintained at 9 MPa, subjected to a hydrogenation reaction for 3 hours, filtered through a solvent, a rosin ester 7 having an aromatic ring residual ratio R of 6%, an acid value of 6 and a softening point of 90 ° C. 164 g (hereinafter abbreviated as resin b) was obtained. The color tone was 300 Hazen (H).

実施例1
エチレン・酢酸ビニル共重合体樹脂(三井デュポンポリケミカル製 商品名EVAFLEX EV210、酢酸ビニル含有率28重量%)80部と製造例1で製造した樹脂a(水素化ロジンエステル)20部を180〜200℃で加熱溶融して混合させた。この溶融混合物を約50mm×20mm×1mmのガラス板上に滴下・圧着させた後、室温まで冷却して凝固させた。ガラス板より突出した余剰部分をカッターで除去して約50mm×20mm、ドライ厚みで1mmの封止材シートを作製した。
Example 1
180 to 200 parts of 80 parts of ethylene / vinyl acetate copolymer resin (trade name EVAFLEX EV210, manufactured by Mitsui DuPont Polychemicals, vinyl acetate content 28% by weight) and 20 parts of resin a (hydrogenated rosin ester) produced in Production Example 1 The mixture was melted by heating at 0 ° C. The molten mixture was dropped and pressed on a glass plate of about 50 mm × 20 mm × 1 mm, and then cooled to room temperature and solidified. The surplus part which protruded from the glass plate was removed with the cutter, and the sealing material sheet of about 50 mm x 20 mm and dry thickness 1mm was produced.

実施例2
エチレン・酢酸ビニル共重合体樹脂(三井デュポンポリケミカル製 商品名EVAFLEX EV410、酢酸ビニル含有率19重量%)80部と製造例1で製造した樹脂a(水素化ロジンエステル)20部を180〜200℃で加熱溶融して混合させた。この溶融混合物を約50mm×20mm×1mmのガラス板上に滴下・圧着させた後、室温まで冷却して凝固させた。ガラス板より突出した余剰部分をカッターで除去して約50mm×20mm、ドライ厚みで1mmの封止材シートを作製した。
Example 2
180 to 200 parts of 80 parts of ethylene / vinyl acetate copolymer resin (trade name EVAFLEX EV410, manufactured by Mitsui DuPont Polychemicals, vinyl acetate content 19% by weight) and 20 parts of resin a (hydrogenated rosin ester) produced in Production Example 1 The mixture was melted by heating at 0 ° C. The molten mixture was dropped and pressed on a glass plate of about 50 mm × 20 mm × 1 mm, and then cooled to room temperature and solidified. The surplus part which protruded from the glass plate was removed with the cutter, and the sealing material sheet of about 50 mm x 20 mm and dry thickness 1mm was produced.

実施例3〜10
使用するエチレン・酢酸ビニル共重合体樹脂、樹脂aの種類及び量を表1に記載のとおりに代えた他は、実施例1と同様にしてシートを作成した。
Examples 3-10
A sheet was prepared in the same manner as in Example 1 except that the type and amount of the ethylene / vinyl acetate copolymer resin and resin a used were changed as shown in Table 1.

比較例1
エチレン・酢酸ビニル共重合体樹脂(三井デュポンポリケミカル製 商品名EV210)100部を180〜200℃で加熱溶融させた。この溶融混合物を約50mm×20mm×1mmのガラス板上に滴下・圧着させた後、室温まで冷却して凝固させた。ガラス板より突出した余剰部分をカッターで除去して約50mm×20mm、ドライ厚みで1mmの封止材シートを作製した。
Comparative Example 1
100 parts of ethylene / vinyl acetate copolymer resin (trade name EV210, manufactured by Mitsui DuPont Polychemical) was heated and melted at 180 to 200 ° C. The molten mixture was dropped and pressed on a glass plate of about 50 mm × 20 mm × 1 mm, and then cooled to room temperature and solidified. The surplus part which protruded from the glass plate was removed with the cutter, and the sealing material sheet of about 50 mm x 20 mm and dry thickness 1mm was produced.

比較例2
エチレン・酢酸ビニル共重合体樹脂として、三井デュポンポリケミカル製 商品名EV410を使用した以外は、比較例1と同様にシートを作製した。
Comparative Example 2
A sheet was prepared in the same manner as in Comparative Example 1 except that Mitsui DuPont Polychemical product name EV410 was used as the ethylene / vinyl acetate copolymer resin.

(密着性の評価)
ガラス板上に圧着・作製した膜厚が約1mmのシートのガラスとの表面密着性を評価した。結果を表1に示す。表1中、「密着性」の項目における「○」はシートがガラスに完全に密着し、指で剥がすことができないことを示し、「×」はシートがガラスから指で容易に剥がれることを示す。
(Evaluation of adhesion)
The surface adhesion of the sheet having a film thickness of about 1 mm that was press-bonded onto the glass plate to the glass was evaluated. The results are shown in Table 1. In Table 1, “◯” in the item “Adhesion” indicates that the sheet is completely adhered to the glass and cannot be peeled off with a finger, and “X” indicates that the sheet is easily peeled off from the glass with a finger. .

(透明性の評価)
本発明におけるシートの透明性は目視にて、以下のように評価した。結果を表1に示す。
◎:透明
○:少し白濁しているが透明
△:やや白濁(EVA単独レベル)
×:かなり白濁
(Evaluation of transparency)
The transparency of the sheet in the present invention was visually evaluated as follows. The results are shown in Table 1.
◎: Transparent ○: Slightly cloudy but transparent △: Slightly cloudy (EVA single level)
×: Pretty cloudy

(耐熱性の評価)
本発明におけるシートの耐熱性は、180℃にて4時間熱した時の着色性を目視にて確認した。
○着色なし。△やや着色がみられる。×着色が著しい。
(Evaluation of heat resistance)
The heat resistance of the sheet in the present invention was confirmed by visual observation of the colorability when heated at 180 ° C. for 4 hours.
○ No coloring. Δ Slightly colored. X Coloring is remarkable.

(耐光性の評価)
本発明におけるシートの耐光性は、耐光性試験機(キセノンランプ照射、HERAEUS社製、SUNTEST耐光性試験機)に入れ、72時間光照射した。その後試験片の着色程度を目視判定した。判定基準は以下の通りである。○着色無し。△やや着色が見られる。×着色が著しい。
(Evaluation of light resistance)
The light resistance of the sheet in the present invention was placed in a light resistance tester (xenon lamp irradiation, manufactured by HERAEUS, SUNTEST light resistance tester) and irradiated with light for 72 hours. Thereafter, the degree of coloring of the test piece was visually determined. Judgment criteria are as follows. ○ No coloring. Δ Slightly colored. X Coloring is remarkable.

Figure 2010219512
表1中の用語は以下を意味する。
EV210:エチレン・酢酸ビニル共重合体樹脂(三井デュポンポリケミカル製 商品名EV210)
EV410:エチレン・酢酸ビニル共重合体樹脂(三井デュポンポリケミカル製 商品名EV410)
Figure 2010219512
The terms in Table 1 mean the following:
EV210: Ethylene / vinyl acetate copolymer resin (trade name EV210 manufactured by Mitsui DuPont Polychemical)
EV410: Ethylene / vinyl acetate copolymer resin (trade name EV410 manufactured by Mitsui DuPont Polychemical)

Claims (6)

(A)エチレン・酢酸ビニル共重合体樹脂、及び、(B)水素化ロジンエステルを含む太陽電池用封止材シート。 A solar cell encapsulant sheet comprising (A) an ethylene / vinyl acetate copolymer resin and (B) a hydrogenated rosin ester. 前記(B)水素化ロジンエステルは、下記(1)式で与えられる芳香環の残存率Rが10%未満である太陽電池用封止材シート。
芳香環の残存率R(%)=(芳香環のH−ピーク面積/全H−ピーク面積)×100 (1)
(ここで、芳香環のH−ピーク面積は、水素化ロジンエステルを重クロロホルム中(TMS標準)で測定したH−NMRスペクトル測定により得られる6〜8ppmのH−ピーク面積の総和であり、全H−ピーク面積は、水素基に由来するH−ピーク面積の総和である。)
The (B) hydrogenated rosin ester is a solar cell encapsulant sheet having an aromatic ring residual ratio R given by the following formula (1) of less than 10%.
Residual rate of aromatic ring R (%) = (H-peak area of aromatic ring / total H-peak area) × 100 (1)
(Here, the H-peak area of the aromatic ring is the sum of the H-peak areas of 6-8 ppm obtained by 1 H-NMR spectrum measurement of hydrogenated rosin ester in deuterated chloroform (TMS standard), The total H-peak area is the sum of H-peak areas derived from hydrogen groups.)
芳香環の残存率が1%未満である、請求項2に記載の太陽電池用封止材シート。 The solar cell sealing material sheet according to claim 2, wherein the residual ratio of the aromatic ring is less than 1%. 前記(A)エチレン・酢酸ビニル共重合体樹脂100重量部に対して、(B)水素化ロジンエステルを1〜200重量部含有する請求項1〜3のいずれかに記載の太陽電池用封止材シート。 The sealing for solar cell according to any one of claims 1 to 3, comprising 1 to 200 parts by weight of (B) hydrogenated rosin ester with respect to 100 parts by weight of (A) ethylene / vinyl acetate copolymer resin. Material sheet. 前記(B)水素化ロジンエステルの軟化点が60〜150℃である請求項1〜4のいずれかに記載の太陽電池用封止材シート。 The softening point of said (B) hydrogenated rosin ester is 60-150 degreeC, The sealing material sheet for solar cells in any one of Claims 1-4. 前記(B)水素化ロジンエステルの重量平均分子量が600〜3000である請求項1〜5のいずれかに記載の太陽電池用封止材シート。
The solar cell encapsulant sheet according to any one of claims 1 to 5, wherein the (B) hydrogenated rosin ester has a weight average molecular weight of 600 to 3000.
JP2010031643A 2009-02-18 2010-02-16 Seal material sheet for solar cell Pending JP2010219512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031643A JP2010219512A (en) 2009-02-18 2010-02-16 Seal material sheet for solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009035211 2009-02-18
JP2010031643A JP2010219512A (en) 2009-02-18 2010-02-16 Seal material sheet for solar cell

Publications (1)

Publication Number Publication Date
JP2010219512A true JP2010219512A (en) 2010-09-30

Family

ID=42977977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031643A Pending JP2010219512A (en) 2009-02-18 2010-02-16 Seal material sheet for solar cell

Country Status (1)

Country Link
JP (1) JP2010219512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212313A (en) * 2013-04-05 2014-11-13 日東電工株式会社 Solar cell panel end sealing composition, solar cell panel end sealing sheet, and solar cell panel
KR20150117695A (en) * 2013-02-06 2015-10-20 아르끄마 프랑스 Use of a fluid polymeric composition for encapsulating photovoltaic modules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445263A (en) * 1966-05-24 1969-05-20 Hercules Inc Pressure sensitive adhesive tape
JPH03285849A (en) * 1990-03-03 1991-12-17 Tosoh Corp Laminated glass
JPH0494891A (en) * 1990-08-09 1992-03-26 Sorudaa Kooto Kk Flux for soldering and solder containing resin
JPH0955524A (en) * 1995-08-15 1997-02-25 Canon Inc Solar battery module
JPH1121397A (en) * 1997-06-30 1999-01-26 Arakawa Chem Ind Co Ltd Aromatic vinylic resin composition
JP2004107545A (en) * 2002-09-20 2004-04-08 Saiden Chemical Industry Co Ltd Water-based adhesive composition for film base material
JP2005089594A (en) * 2003-09-17 2005-04-07 Arakawa Chem Ind Co Ltd Polyolefin-based resin composition, packaging film, and stretch-packaging film
JP2008030349A (en) * 2006-07-31 2008-02-14 Toray Advanced Film Co Ltd Surface protective film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445263A (en) * 1966-05-24 1969-05-20 Hercules Inc Pressure sensitive adhesive tape
JPH03285849A (en) * 1990-03-03 1991-12-17 Tosoh Corp Laminated glass
JPH0494891A (en) * 1990-08-09 1992-03-26 Sorudaa Kooto Kk Flux for soldering and solder containing resin
JPH0955524A (en) * 1995-08-15 1997-02-25 Canon Inc Solar battery module
JPH1121397A (en) * 1997-06-30 1999-01-26 Arakawa Chem Ind Co Ltd Aromatic vinylic resin composition
JP2004107545A (en) * 2002-09-20 2004-04-08 Saiden Chemical Industry Co Ltd Water-based adhesive composition for film base material
JP2005089594A (en) * 2003-09-17 2005-04-07 Arakawa Chem Ind Co Ltd Polyolefin-based resin composition, packaging film, and stretch-packaging film
JP2008030349A (en) * 2006-07-31 2008-02-14 Toray Advanced Film Co Ltd Surface protective film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150117695A (en) * 2013-02-06 2015-10-20 아르끄마 프랑스 Use of a fluid polymeric composition for encapsulating photovoltaic modules
JP2016508533A (en) * 2013-02-06 2016-03-22 アルケマ フランス Use of flowable polymer composition to seal photovoltaic module
KR102163584B1 (en) * 2013-02-06 2020-10-08 에스케이종합화학 주식회사 Use of a fluid polymeric composition for encapsulating photovoltaic modules
JP2014212313A (en) * 2013-04-05 2014-11-13 日東電工株式会社 Solar cell panel end sealing composition, solar cell panel end sealing sheet, and solar cell panel

Similar Documents

Publication Publication Date Title
CN102869692B (en) UV curable encapsulant
JP5190668B2 (en) Tackifier, sticky / adhesive composition and sticky / adhesive film label
EP2921524B1 (en) Resin composition and molded article comprising same
CN108084952B (en) Preparation method of UV pressure-sensitive/moisture dual-curing polyurethane hot melt adhesive
JP5598743B2 (en) Tackifier, adhesive / adhesive composition, acrylic adhesive / adhesive composition, and acrylic active energy ray-curable adhesive / adhesive composition
CN110437795B (en) Hot melt adhesive and preparation method thereof
WO1995001655A1 (en) Solar cell module having excellent weather resistance
CN1220076C (en) Light guide plane and lighting unit
CN104137277A (en) Sheet set for solar cell sealing
CN104136565B (en) Hot-melt adhesive composition
CN109401719A (en) A kind of pair of solidification polyurethane hot melt and preparation method thereof and application method
JP2010219512A (en) Seal material sheet for solar cell
TW201302890A (en) Sealing resin sheet of solar cell and solar cell modules using the same and manufacturing method thereof
JP2013132755A (en) Multilayered sheet and use thereof
JP5382344B2 (en) Solar cell encapsulant sheet
CN102382221A (en) Phellandrene resin production process
JP6730674B2 (en) Plasticizer and optical adhesive composition
JP6075020B2 (en) Polymer and solar cell encapsulant using the polymer
JPH0741749A (en) Pressure-sensitive acrylic adhesive composition
KR101520356B1 (en) Tackifier, tackifier for medical cataplasm, tacky or adhesive composition, tacky agent for medical cataplasm, tacky or adhesive tape and medical cataplasm
JP2002201434A (en) Production method for colorless polymerized rosin ester
JP4998767B2 (en) Method for producing acrylic polymer composition, adhesive / adhesive containing acrylic polymer composition obtained by the production method, and active energy ray-curable resin composition
JP4507036B2 (en) A modifier for a styrene block copolymer, and a pressure-sensitive adhesive composition and a sealing material composition containing the modifier.
JP2018127606A (en) Additive for optically active energy ray-curable adhesives, and optically acrylic active energy ray-curable adhesive
WO2013083565A1 (en) Uv-protecting rosin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140521