JP2010214324A - Carbon dioxide separating membrane - Google Patents

Carbon dioxide separating membrane Download PDF

Info

Publication number
JP2010214324A
JP2010214324A JP2009066014A JP2009066014A JP2010214324A JP 2010214324 A JP2010214324 A JP 2010214324A JP 2009066014 A JP2009066014 A JP 2009066014A JP 2009066014 A JP2009066014 A JP 2009066014A JP 2010214324 A JP2010214324 A JP 2010214324A
Authority
JP
Japan
Prior art keywords
group
carbon dioxide
membrane
acid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009066014A
Other languages
Japanese (ja)
Other versions
JP5378841B2 (en
Inventor
Kaori Takano
香織 高野
Masakazu Ikeda
雅一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, JX Nippon Oil and Energy Corp filed Critical Petroleum Energy Center PEC
Priority to JP2009066014A priority Critical patent/JP5378841B2/en
Publication of JP2010214324A publication Critical patent/JP2010214324A/en
Application granted granted Critical
Publication of JP5378841B2 publication Critical patent/JP5378841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide separating membrane excellent in CO<SB>2</SB>permeability constant and CO<SB>2</SB>/H<SB>2</SB>permeability ratio. <P>SOLUTION: The carbon dioxide separating membrane has a structure that a liquid membrane containing an ion liquid and a porous support which carries the ion liquid is held by two sealing membranes and the ion liquid comprises a combination of at least one kind of a cation selected from a specific imidazolium cation, a quaternary ammonium cation and a quaternary phosphonium cation and an aminocarboxylic acid anion of at least one kind of an amino acid selected from glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, triptophane, aspartic acid, proline, 2-aminobutyric acid, 2-aminoisobutyric acid, 2-aminocyclopentanecarboxylic acid and 4-aminobutyric acid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素と炭酸ガスを主とする混合ガスから炭酸ガスを選択的に回収するために用いることができる炭酸ガス分離膜の製造方法および利用方法に関する。   The present invention relates to a method for producing and utilizing a carbon dioxide separation membrane that can be used for selectively recovering carbon dioxide from a mixed gas mainly composed of hydrogen and carbon dioxide.

水素は将来のエネルギー媒体として期待され、製造、貯蔵・輸送、利用など広い技術分野において活発な研究開発が行われている。水素をエネルギー媒体として用いる利点としては、高いエネルギー利用効率の他、燃焼後の排出物が水だけであることが挙げられる。   Hydrogen is expected as a future energy medium, and active research and development is being carried out in a wide range of technical fields such as production, storage / transport, and utilization. Advantages of using hydrogen as an energy medium include not only high energy utilization efficiency but also only water after combustion.

現状一次エネルギーの約80%は石油、石炭、天然ガスなど化石燃料で占められ、今後再生可能エネルギーの利用増などにより漸減するにしてもその割合は高いまま推移すると予想されている。従って水素の製造において、一次エネルギー源として化石燃料を原料とするルートの重要性は当面下がることはないと言える。   Currently, about 80% of primary energy is occupied by fossil fuels such as oil, coal, and natural gas, and even if it gradually decreases due to increased use of renewable energy, the ratio is expected to remain high. Therefore, in the production of hydrogen, it can be said that the importance of the route using fossil fuel as a primary energy source will not be reduced for the time being.

しかし、化石燃料のように炭素を含有する燃料を用いて水素を製造する場合、炭酸ガスが排出される。   However, when hydrogen is produced using a fuel containing carbon such as fossil fuel, carbon dioxide gas is discharged.

地球温暖化を防止する上で炭酸ガスの排出削減は喫緊の課題と言われている。このような状況の中で、化石燃料から水素を製造する際に副生する炭酸ガスを分離・回収する技術は炭酸ガス排出削減と水素社会の早期実現を両立させるものとして重要であると考えられている。   Reducing carbon dioxide emissions is said to be an urgent issue in preventing global warming. Under these circumstances, the technology for separating and recovering carbon dioxide produced as a by-product when hydrogen is produced from fossil fuels is considered to be important for achieving both reduction of carbon dioxide emissions and the early realization of a hydrogen society. ing.

消費エネルギーが小さい炭酸ガス分離技術として、膜分離技術が知られている。特に、水素と二酸化炭素との分離に適した膜として、促進輸送膜が知られている。   Membrane separation technology is known as a carbon dioxide gas separation technology with low energy consumption. In particular, a facilitated transport membrane is known as a membrane suitable for separation of hydrogen and carbon dioxide.

特許文献1には促進輸送膜を用いて炭酸ガスおよび水素が含まれるガスから炭酸ガスを分離する方法が記載されている。   Patent Document 1 describes a method of separating carbon dioxide from a gas containing carbon dioxide and hydrogen using a facilitated transport membrane.

特許文献2にはCO2透過型メンブレンリアクターに適用可能な促進輸送膜が記載されている。 Patent Document 2 describes a facilitated transport membrane applicable to a CO 2 permeable membrane reactor.

特開2007−54710号公報JP 2007-54710 A 特開2008−36463号公報JP 2008-36463 A

しかしながら、二酸化炭素をさらに選択的に分離するために、よりいっそう二酸化炭素/水素透過係数比αが高い分離膜が求められている。   However, in order to further selectively separate carbon dioxide, a separation membrane having a higher carbon dioxide / hydrogen permeability coefficient ratio α is required.

本発明の目的は、良好な炭酸ガス透過係数を有しつつ、二酸化炭素/水素透過係数比αが改善された炭酸ガス分離膜を提供することである。   An object of the present invention is to provide a carbon dioxide separation membrane having a good carbon dioxide permeability coefficient and an improved carbon dioxide / hydrogen permeability coefficient ratio α.

本発明により、
水素ガスと炭酸ガスを含む混合ガスから、炭酸ガスを分離するための炭酸ガス分離膜であって、
イオン液体と該イオン液体を担持する多孔質支持体とを含む液膜が、二つの封止膜によって挟まれた構造を有し、
前記イオン液体が、
式Iで表されるイミダゾリウムカチオン、式IIで表される第4級アンモニウムカチオンおよび式IIIで表される第4級ホスホニウムカチオンからなる群から選ばれる少なくとも一種のカチオンと、
According to the present invention,
A carbon dioxide separation membrane for separating carbon dioxide from a mixed gas containing hydrogen gas and carbon dioxide,
A liquid film including an ionic liquid and a porous support that supports the ionic liquid has a structure sandwiched between two sealing films,
The ionic liquid is
At least one cation selected from the group consisting of an imidazolium cation represented by formula I, a quaternary ammonium cation represented by formula II, and a quaternary phosphonium cation represented by formula III;

Figure 2010214324
Figure 2010214324

(ここで、R1およびR3はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表し、
2はHまたは炭素数1〜3のアルキル基を表す。)
(Wherein R 1 and R 3 are each independently an alkyl group, an aminoalkyl group, an allyl group having 1 to 6 carbon atoms and linear or branched having 1 or 2 branches, Represents a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group;
R 2 represents H or an alkyl group having 1 to 3 carbon atoms. )

Figure 2010214324
Figure 2010214324

(ここで、R4、R5、R6およびR7はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表す。) (Wherein R 4 , R 5 , R 6 and R 7 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms and having 1 or 2 carbon atoms, amino Represents an alkyl group, an allyl group, a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group.)

Figure 2010214324
Figure 2010214324

(ここで、R8、R9、R10およびR11はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表す。)
グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、プロリン、
2−アミノ酪酸、2−アミノイソ酪酸、2−アミノシクロペンタンカルボン酸、および
4−アミノ酪酸からなる群から選ばれる少なくとも一種のアミノ酸のアミノカルボン酸アニオンと
の組合せからなる
炭酸ガス分離膜が提供される。
(Wherein R 8 , R 9 , R 10 and R 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms and having 1 or 2 carbon atoms, amino Represents an alkyl group, an allyl group, a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group.)
Glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, tryptophan, aspartic acid, proline,
A carbon dioxide gas separation membrane comprising a combination of at least one amino acid aminocarboxylate anion selected from the group consisting of 2-aminobutyric acid, 2-aminoisobutyric acid, 2-aminocyclopentanecarboxylic acid, and 4-aminobutyric acid is provided. The

前記イミダゾリウムカチオンが、式IV〜式VIIでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種であり、   The imidazolium cation is at least one selected from the group consisting of cations represented by formula IV to formula VII,

Figure 2010214324
Figure 2010214324

(ここでR2はHまたはメチル基を表す。) (Here, R 2 represents H or a methyl group.)

Figure 2010214324
Figure 2010214324

(ここでR2はHまたはメチル基を表す。) (Here, R 2 represents H or a methyl group.)

Figure 2010214324
Figure 2010214324

(ここでR2はHまたはメチル基を表し、nは1または2である。) (Wherein R 2 represents H or a methyl group, and n is 1 or 2)

Figure 2010214324
Figure 2010214324

(ここでR2はHまたはメチル基を表し、nは1または2である。)
前記第4級ホスホニウムカチオンが、式VIIIおよび式IXでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種である
(Wherein R 2 represents H or a methyl group, and n is 1 or 2)
The quaternary phosphonium cation is at least one selected from the group consisting of cations represented by formula VIII and formula IX, respectively.

Figure 2010214324
Figure 2010214324

(ここでBuはn−ブチル基を表す。) (Here, Bu represents an n-butyl group.)

Figure 2010214324
Figure 2010214324

(ここでEtはエチル基を表す。)
ことが好ましい。
(Here Et represents an ethyl group.)
It is preferable.

前記封止膜が、ポリジメチルシロキサン膜、ポリトリメチルシリルプロピン膜、ポリジフェニルアセチレン膜、ポリテトラフルオロエチレン膜またはセラミックス膜であることが好ましい。   The sealing film is preferably a polydimethylsiloxane film, a polytrimethylsilylpropyne film, a polydiphenylacetylene film, a polytetrafluoroethylene film, or a ceramic film.

前記多孔質支持体が、ポリフッ化ビニリデン膜、銀メンブレンフィルター、ポリテトラフルオロエチレン膜、ガラス繊維ろ紙またはセラミックス膜であることが好ましい。   The porous support is preferably a polyvinylidene fluoride film, a silver membrane filter, a polytetrafluoroethylene film, a glass fiber filter paper, or a ceramic film.

前記液膜が、ポリトリメチルシリルプロピン、ポリジフェニルアセチレンおよびポリテトラフルオロエチレンからなる群から選ばれる少なくとも一種の高分子化合物と前記イオン液体とからなるゲルが多孔質支持体に担持された液膜であることが好ましい。   The liquid film is a liquid film in which a gel comprising at least one polymer compound selected from the group consisting of polytrimethylsilylpropyne, polydiphenylacetylene and polytetrafluoroethylene and the ionic liquid is supported on a porous support. Preferably there is.

供給ガスの温度27℃、供給ガスの炭酸ガス分圧0.0049MPa、供給ガスの全圧0.1MPa、透過側の全圧0.003MPa、供給ガスの相対湿度80%のとき、水素透過係数に対する炭酸ガス透過係数の比αが250以上であり、かつ炭酸ガス透過係数が1.0×10-10mol−CO2×m/m2/s/kPa以上であることが好ましい。 When the temperature of the supply gas is 27 ° C., the carbon dioxide partial pressure of the supply gas is 0.0049 MPa, the total pressure of the supply gas is 0.1 MPa, the total pressure on the permeate side is 0.003 MPa, and the relative humidity of the supply gas is 80%, The carbon dioxide permeability coefficient ratio α is preferably 250 or more, and the carbon dioxide permeability coefficient is preferably 1.0 × 10 −10 mol-CO 2 × m / m 2 / s / kPa or more.

本発明により、良好な炭酸ガス透過係数を有しつつ、二酸化炭素/水素透過係数比αが改善された炭酸ガス分離膜が提供される。   The present invention provides a carbon dioxide separation membrane having a good carbon dioxide permeability coefficient and an improved carbon dioxide / hydrogen permeability ratio ratio α.

本発明の炭酸ガス分離膜の一例を示す模式図である。It is a schematic diagram which shows an example of the carbon dioxide gas separation membrane of this invention. 炭酸ガス分離膜評価装置を示す模式図である。It is a schematic diagram which shows a carbon dioxide separation membrane evaluation apparatus.

特に断らない限り本明細書では圧力は絶対圧力を意味し、ガス組成に係る%は水蒸気を除外して計算したモル%を意味する。   Unless otherwise specified, in this specification, pressure means absolute pressure, and% relating to gas composition means mol% calculated excluding water vapor.

本発明の炭酸ガス分離膜においては、液膜が、アニオンにアミノ酸由来のアミノカルボン酸アニオンを用いたイオン液体を含む。このようなイオン液体を多孔質支持体に含浸・担持させることにより、液膜を調製することができる。   In the carbon dioxide gas separation membrane of the present invention, the liquid membrane contains an ionic liquid using an aminocarboxylic acid anion derived from an amino acid as an anion. A liquid film can be prepared by impregnating and supporting such an ionic liquid on a porous support.

本発明の炭酸ガス分離膜は、促進輸送膜の一種である。   The carbon dioxide gas separation membrane of the present invention is a kind of facilitated transport membrane.

本発明の炭酸ガス分離膜は、例えば、含炭素燃料から製造した水素および二酸化炭素を含む混合ガスから炭酸ガスを主成分とするガスを得るために好適に用いることができる。   The carbon dioxide separation membrane of the present invention can be suitably used, for example, for obtaining a gas containing carbon dioxide as a main component from a mixed gas containing hydrogen and carbon dioxide produced from a carbon-containing fuel.

本発明の炭酸ガス分離膜の一形態の概略を図1に示す。炭酸ガス分離膜は、液膜1と、二つの封止膜2−1および2−2を有する。液膜は、封止膜2−1と封止膜2−2とによって挟まれる。   An outline of one embodiment of the carbon dioxide separation membrane of the present invention is shown in FIG. The carbon dioxide separation membrane has a liquid membrane 1 and two sealing membranes 2-1 and 2-2. The liquid film is sandwiched between the sealing film 2-1 and the sealing film 2-2.

液膜は、多孔質支持体1aとイオン液体1bとを有し、イオン液体は多孔質支持体に担持される。   The liquid film has a porous support 1a and an ionic liquid 1b, and the ionic liquid is supported on the porous support.

〔イオン液体〕
イオン液体はカチオンとアニオンとの組合せからなる化合物である。
[Ionic liquid]
An ionic liquid is a compound composed of a combination of a cation and an anion.

カチオンには、式Iで表されるイミダゾリウムカチオン、式IIで表される第4級アンモニウムカチオンおよび式IIIで表される第4級ホスホニウムカチオンからなる群から選ばれる少なくとも一種のカチオンを用いる。   As the cation, at least one cation selected from the group consisting of an imidazolium cation represented by formula I, a quaternary ammonium cation represented by formula II, and a quaternary phosphonium cation represented by formula III is used.

アニオンには、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、プロリン(以上天然のL−α−アミノ酸として知られるアミノ酸);
2−アミノ酪酸、2−アミノイソ酪酸、2−アミノシクロペンタンカルボン酸(以上非天然のα−アミノ酸として知られるアミノ酸);および
4−アミノ酪酸(その他のアミノ酸)
から選ばれる少なくとも一種のアミノ酸のアミノカルボン酸アニオンを用いる。
Anions include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, tryptophan, aspartic acid, proline (and above natural L- amino acids known as α-amino acids);
2-aminobutyric acid, 2-aminoisobutyric acid, 2-aminocyclopentanecarboxylic acid (amino acids known as unnatural α-amino acids); and 4-aminobutyric acid (other amino acids)
An aminocarboxylate anion of at least one amino acid selected from

耐熱性の観点から好ましくは、イミダゾリウムカチオンが式IV〜式VIIでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種であり、第4級ホスホニウムカチオンが、式VIIIおよび式IXでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種である。   From the viewpoint of heat resistance, the imidazolium cation is preferably at least one selected from the group consisting of cations represented by formula IV to formula VII, and the quaternary phosphonium cation is represented by formula VIII and formula IX, respectively. And at least one selected from the group consisting of cations.

なお、膜の耐熱性としては、5%熱重量減少温度が150℃以上であることが好ましく、200℃以上であることがより好ましい。5%熱重量減少温度は、試料を120℃で6時間乾燥させた後、熱重量測定装置(島津製作所製、商品名:TGA−50)で50℃から5℃/分で昇温したときに、初期質量の5質量%だけ質量が減少したときの温度である。   As for the heat resistance of the film, the 5% thermal weight loss temperature is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher. The 5% thermogravimetric decrease temperature is obtained when the sample is dried at 120 ° C. for 6 hours and then heated from 50 ° C. to 5 ° C./min with a thermogravimetric apparatus (manufactured by Shimadzu Corporation, trade name: TGA-50). The temperature when the mass is reduced by 5% by mass of the initial mass.

〔封止膜〕
封止膜としては炭酸ガス分離用の促進輸送膜の分野で公知の封止膜の中から適宜選んで使用できる。
[Sealing film]
As the sealing film, a sealing film known in the field of the facilitated transport film for carbon dioxide separation can be appropriately selected and used.

封止膜2は液膜1のイオン液体1bが外部に漏れ出さないために用いているものであり、耐熱性かつ疎水性であることが好ましい。   The sealing film 2 is used so that the ionic liquid 1b of the liquid film 1 does not leak to the outside, and is preferably heat resistant and hydrophobic.

また封止膜がCO2を通しやすいことが好ましく、CO2透過係数が1.0×10-6mol−CO2×m/m2/s/kPa以上であることが望ましい。 Moreover, it is preferable that the sealing film easily allows CO 2 to pass therethrough, and the CO 2 permeability coefficient is desirably 1.0 × 10 −6 mol-CO 2 × m / m 2 / s / kPa or more.

このような耐熱性・疎水性およびCO2透過性能の観点から、封止膜が、ポリジメチルシロキサン膜、ポリトリメチルシリルプロピン膜、ポリジフェニルアセチレン膜、疎水性ポリテトラフルオロエチレン膜およびセラミックス膜のいずれかであることが好ましい。   From such a viewpoint of heat resistance / hydrophobicity and CO2 permeation performance, the sealing film is any one of a polydimethylsiloxane film, a polytrimethylsilylpropyne film, a polydiphenylacetylene film, a hydrophobic polytetrafluoroethylene film, and a ceramic film. It is preferable that

〔多孔質支持体〕
多孔質支持体としては、炭酸ガス分離用の促進輸送膜の分野で公知の多孔質支持体の中から適宜選んで使用できる。
(Porous support)
As a porous support body, it can select from the well-known porous support body in the field | area of the facilitated-transport film | membrane for carbon dioxide separation, and can be used suitably.

多孔質支持体1aは、イオン液体1bを孔内部に保持し液膜を形成するために用いるものであり、耐熱性かつ親水性であり、厚さ35μm以上150μm以下、空隙率が30%から70%であることが好ましく、細孔径が0.1μm以上1μm以下であることが好ましい。   The porous support 1a is used to hold the ionic liquid 1b inside the pores to form a liquid film, is heat resistant and hydrophilic, has a thickness of 35 μm to 150 μm, and a porosity of 30% to 70%. %, And the pore diameter is preferably 0.1 μm or more and 1 μm or less.

そのため耐熱性・親水性・厚さ・開孔率・細孔径の観点から、多孔質支持体が、ポリフッ化ビニリデン膜、銀メンブレンフィルター、親水性ポリテトラフルオロエチレン膜、ガラス繊維ろ紙、セラミックス膜のいずれかであることが好ましい。   Therefore, from the viewpoint of heat resistance, hydrophilicity, thickness, porosity, pore diameter, the porous support is made of polyvinylidene fluoride membrane, silver membrane filter, hydrophilic polytetrafluoroethylene membrane, glass fiber filter paper, ceramic membrane. Either is preferable.

細孔径の測定方法としてはバブルポイント法による測定が知られている。   As a method for measuring the pore diameter, measurement by the bubble point method is known.

〔膜の利用条件と性能〕
膜の分離性能の観点から、炭酸ガス分離膜に供給するガスの全圧は0.1MPa以上2MPa以下が好ましい。透過側のガス全圧は供給ガスの炭酸ガス分圧よりも低く、0.001MPa以上1.5MPa以下が好ましく、より好ましくは0.001MPa〜0.1MPaの範囲が好ましい。さらに分離性能を向上させるためには、供給ガス温度20℃以上200℃以下、供給ガス中の炭酸ガス分圧0.0049MPa以上1.5MPa以下、供給ガスの相対湿度50%以上100%以下、が好ましい。
[Membrane usage conditions and performance]
From the viewpoint of membrane separation performance, the total pressure of the gas supplied to the carbon dioxide separation membrane is preferably 0.1 MPa or more and 2 MPa or less. The total gas pressure on the permeate side is lower than the carbon dioxide partial pressure of the supply gas, preferably 0.001 MPa or more and 1.5 MPa or less, more preferably in the range of 0.001 MPa to 0.1 MPa. In order to further improve the separation performance, the supply gas temperature is 20 ° C. or more and 200 ° C. or less, the carbon dioxide partial pressure in the supply gas is 0.0049 MPa or more and 1.5 MPa or less, and the relative humidity of the supply gas is 50% or more and 100% or less. preferable.

本発明により、これらを満たす供給ガスの温度が27℃、供給ガスの炭酸ガス分圧が0.0049MPa、供給ガスの全圧が0.1MPa、透過ガスの全圧が0.003MPa、供給ガスの相対湿度が80%の条件下で、炭酸ガス透過係数が1.0×10-10mol−CO2×m/m2/s/kPa以上であり、水素透過係数に対する炭酸ガス透過係数の比αが250以上である炭酸ガス分離膜を得ることができる。 According to the present invention, the temperature of the supply gas satisfying these is 27 ° C., the carbon dioxide partial pressure of the supply gas is 0.0049 MPa, the total pressure of the supply gas is 0.1 MPa, the total pressure of the permeate gas is 0.003 MPa, Under conditions where the relative humidity is 80%, the carbon dioxide permeability coefficient is 1.0 × 10 −10 mol-CO 2 × m / m 2 / s / kPa or more, and the ratio α of the carbon dioxide permeability coefficient to the hydrogen permeability coefficient α Can obtain a carbon dioxide gas separation membrane having 250 or more.

〔イオン液体の合成〕
イオン液体は、公知の方法によって合成することができ、例えばOhno et al.,J.Am.Chem.Soc.,2005,127,2398−2399に記載の方法を利用して合成することができる。
(Synthesis of ionic liquid)
The ionic liquid can be synthesized by a known method, for example, Ohno et al. , J .; Am. Chem. Soc. , 2005, 127, 2398-2399.

アミノ酸をアニオンとするイオン液体の代表的な合成法として、実施例1に例示する方法が収率の観点から好ましい。   As a typical synthesis method of an ionic liquid having an amino acid as an anion, the method exemplified in Example 1 is preferable from the viewpoint of yield.

〔液膜の調製〕
イオン液体を多孔質支持体に含浸させ液膜1を作成することができる。イオン液体は液体のまま多孔質支持体に担持されてもよいが、イオン液体をゲル化して用いることもできる。液膜として、ポリトリメチルシリルプロピン、ポリジフェニルアセチレンおよび疎水性ポリテトラフルオロエチレンからなる群から選ばれる少なくとも一種の高分子化合物と前記イオン液体とからなるゲルが多孔質支持体に担持された液膜を用いることもできる。
(Preparation of liquid film)
The liquid film 1 can be prepared by impregnating a porous support with an ionic liquid. The ionic liquid may be supported on the porous support as a liquid, but the ionic liquid may be used after gelation. As a liquid film, a liquid film in which a gel comprising at least one polymer compound selected from the group consisting of polytrimethylsilylpropyne, polydiphenylacetylene and hydrophobic polytetrafluoroethylene and the ionic liquid is carried on a porous support Can also be used.

このようにゲル膜化することによって、封止膜がなくてもイオン液体をゲル膜中に保持することができるため封止膜を必要とせず、膜全体の厚さを低減することによりガス透過量を増やすことができる。   By forming a gel film in this way, the ionic liquid can be retained in the gel film even without the sealing film, so no sealing film is required, and the gas permeation is reduced by reducing the thickness of the entire film. The amount can be increased.

どのような素材を用いる場合にも炭酸ガス分離膜の形状には特に制限はなく、板状、筒状、中空糸状など任意の形状を選択することができる。   Whatever material is used, the shape of the carbon dioxide separation membrane is not particularly limited, and any shape such as a plate shape, a cylindrical shape, or a hollow fiber shape can be selected.

〔膜性能〕
本発明では、アニオンに特定のアミノ酸のアミノカルボン酸アニオンを有するイオン液体が、優れたCO2分離能をもたらしている。
[Membrane performance]
In the present invention, an ionic liquid having an aminocarboxylic acid anion of a specific amino acid as an anion provides excellent CO 2 separation ability.

CO2および水素の透過係数の算出方法としては、JISに規定される試験方法(K7126−1またはK7126−2)を用いることができる。試験装置として例えば(株)ラウンドサイエンス製フロー式ガス透過率測定装置(RGP−3000型)を用いることができる。 As a method for calculating the CO 2 and hydrogen permeation coefficient, a test method (K7126-1 or K7126-2) defined in JIS can be used. As the test apparatus, for example, a flow type gas permeability measuring apparatus (RGP-3000 type) manufactured by Round Science Co., Ltd. can be used.

ここで、前記炭酸ガスと水素の透過係数比αは次式で定義されるものである。   Here, the carbon dioxide gas / hydrogen permeability coefficient ratio α is defined by the following equation.

Figure 2010214324
Figure 2010214324

ただし、各成分の透過係数は、各成分のガスの透過速度をQ、供給側圧力(分圧)をp1、透過側圧力(分圧)をp2、膜面積をA、膜厚をLとした時、次式で定義されるものである。   However, the permeation coefficient of each component is Q for the gas permeation rate of each component, p1 for the supply side pressure (partial pressure), p2 for the permeation side pressure (partial pressure), A for the membrane area, and L for the film thickness. Is defined by the following equation.

Figure 2010214324
Figure 2010214324

〔炭酸ガス分離膜の利用形態〕
以下、炭酸ガス分離膜の利用形態について説明する。
[Usage of carbon dioxide separation membrane]
Hereinafter, the utilization form of the carbon dioxide separation membrane will be described.

炭酸ガス分離膜を用いれば、高純度の炭酸ガスを回収することができる。回収された炭酸ガス富化ガスは、このまま地中に注入するなどして貯留することもできるが、好ましくは、炭酸ガス液化工程にて処理され液化炭酸ガスが生産される。従って炭酸ガス富化ガスの炭酸ガス濃度は炭酸ガス液化工程の順調な操業が容易になるように高めることが好ましく、その濃度は好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上である。炭酸ガス濃度が70%以上の場合、液化工程に際して必要なエネルギーを小さくすることができ、また、回収される液化炭酸ガスの割合を高くすることができる。   If a carbon dioxide separation membrane is used, high purity carbon dioxide can be recovered. The recovered carbon dioxide-enriched gas can be stored by being injected into the ground as it is, but is preferably processed in a carbon dioxide liquefaction step to produce liquefied carbon dioxide. Accordingly, the carbon dioxide concentration of the carbon dioxide-enriched gas is preferably increased so as to facilitate the smooth operation of the carbon dioxide liquefaction process, and the concentration is preferably 70% or more, more preferably 80% or more, and still more preferably 90%. % Or more. When the carbon dioxide concentration is 70% or more, the energy required for the liquefaction step can be reduced, and the ratio of the recovered liquefied carbon dioxide can be increased.

また炭酸ガス分離膜を用いれば、含炭素燃料から水蒸気改質反応およびシフト反応を経て生成した水素と炭酸ガスを主とする混合ガスを原料ガスとして膜分離装置の供給ガス側に供給し、透過ガス側より高純度炭酸ガスを得るとともに、非透過ガス側から水素が富化されたガスを得ることが可能になる。このように、炭酸ガス分離膜は水素製造のために使用することができる。   Also, if a carbon dioxide gas separation membrane is used, a mixed gas mainly composed of hydrogen and carbon dioxide produced from a carbon-containing fuel through a steam reforming reaction and a shift reaction is supplied as a raw material gas to the supply gas side of the membrane separation device and permeated. A high-purity carbon dioxide gas can be obtained from the gas side, and a gas enriched with hydrogen can be obtained from the non-permeate gas side. Thus, the carbon dioxide separation membrane can be used for hydrogen production.

炭酸ガス分離膜を利用すれば、化石燃料類等の含炭素燃料を原料として、高純度水素の製造と並行して貯留に適した形態の炭酸ガスを製造するに際し、消費エネルギーを抑えることができる。また水素収率を向上させることができる。したがって、高純度水素の製造と炭酸ガス回収とを効率的に行うことが可能となる。しかも比較的簡易な装置で水素製造および炭酸ガス回収を行うことが可能となり、システムコストの上昇を抑えることもできる。従って本発明は水素社会の実現および地球温暖化の防止のために貢献するものである。   If a carbon dioxide separation membrane is used, energy consumption can be reduced when carbon dioxide fuel such as fossil fuels is used as a raw material to produce carbon dioxide in a form suitable for storage in parallel with the production of high-purity hydrogen. . In addition, the hydrogen yield can be improved. Therefore, it is possible to efficiently produce high-purity hydrogen and recover carbon dioxide gas. In addition, hydrogen production and carbon dioxide recovery can be performed with a relatively simple apparatus, and an increase in system cost can be suppressed. Accordingly, the present invention contributes to the realization of a hydrogen society and the prevention of global warming.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by this.

〔イオン液体合成方法〕
イオン液体Aは以下のとおり合成した。
セリン1.2g(11.42mmol、TCI製)をイオン交換水9.2gに溶解させ、その中に炭酸水素エチルメチルイミダゾリウム(アルドリッチ製、濃度48.2質量%溶液(CH3OH:H2O=2:3)4.32g(12.09mmol))を滴下する。14.5時間攪拌を行い、翌日真空減圧加熱乾燥することで、オイル状の液体を得た。同定は上記文献(Ohno et al.)に従い1H−NMRで行った(収率98%)。
[Ionic liquid synthesis method]
The ionic liquid A was synthesized as follows.
Serine 1.2 g (11.42 mmol, manufactured by TCI) was dissolved in ion-exchanged water 9.2 g, and ethyl methyl imidazolium hydrogen carbonate (manufactured by Aldrich, concentration 48.2% by mass solution (CH 3 OH: H 2) O = 2: 3) 4.32 g (12.09 mmol)) is added dropwise. The mixture was stirred for 14.5 hours, and dried by heating under reduced pressure in the next day to obtain an oily liquid. Identification was carried out by 1H-NMR according to the above document (Ohno et al.) (Yield 98%).

なお、イオン液体B、C、Dはそれぞれこの方法を応用して合成した。
〔評価方法〕
各実施例および比較例において、膜の評価は以下の方法で行った。これらの例では円盤状の炭酸ガス分離膜を用いた。
The ionic liquids B, C, and D were synthesized by applying this method.
〔Evaluation methods〕
In each example and comparative example, the film was evaluated by the following method. In these examples, a disk-shaped carbon dioxide separation membrane was used.

使用した評価装置の概略を図2に示す。炭酸ガス分離膜14を評価用のセル13に取り付けた。このセルは、評価ガスライン12から混合ガス11を供給し、非透過ガスライン17から非透過ガス19が排出され、透過ガスライン18から透過ガス20が排出されるように構成されている。非透過ガスラインには非透過ガス圧力表示計15が接続され、透過ガスラインには透過ガス圧力表示計16が接続されている。サンプリングバルブ21を切り替えることにより、サンプリングライン22を経て透過ガスをガス組成分析計23に導くことができるようになっている。   An outline of the evaluation apparatus used is shown in FIG. The carbon dioxide separation membrane 14 was attached to the cell 13 for evaluation. This cell is configured such that the mixed gas 11 is supplied from the evaluation gas line 12, the non-permeate gas 19 is discharged from the non-permeate gas line 17, and the permeate gas 20 is discharged from the permeate gas line 18. A non-permeate gas pressure indicator 15 is connected to the non-permeate gas line, and a permeate gas pressure indicator 16 is connected to the permeate gas line. By switching the sampling valve 21, the permeated gas can be guided to the gas composition analyzer 23 via the sampling line 22.

評価ガス11として水素/CO2/H2O=95/5/2.9(水素/CO2=95/5(モル比)、相対湿度80%)混合ガスを、ガス流量102.9ml/分で、評価ガスライン12に供給した。このとき、非透過ガスの圧力(P1、全圧)を0.1MPaに、透過ガス20の圧力(P2、全圧)を0.003MPaに設定し、供給ガスおよび炭酸ガス分離膜の温度を27℃に設定した。評価ガスの温度は炭酸ガス分離膜の温度と同じにした。透過ガスのCO2濃度をガス組成分析装置にて分析した。 As the evaluation gas 11, a hydrogen / CO 2 / H 2 O = 95/5 / 2.9 (hydrogen / CO 2 = 95/5 (molar ratio), relative humidity 80%) mixed gas was used at a gas flow rate of 102.9 ml / min. Then, the gas was supplied to the evaluation gas line 12. At this time, the pressure (P1, total pressure) of the non-permeating gas is set to 0.1 MPa, the pressure (P2, total pressure) of the permeating gas 20 is set to 0.003 MPa, and the temperatures of the supply gas and the carbon dioxide separation membrane are set to 27. Set to ° C. The temperature of the evaluation gas was the same as that of the carbon dioxide separation membrane. The CO 2 concentration of the permeated gas was analyzed with a gas composition analyzer.

〔実施例1〕
膜厚100μm、直径47mm、細孔径0.1μmのPVDFフィルター(ミリポア製、商品名:VVLP04700)を多孔質支持体(円盤状)として、これを合成したイオン液体A中に浸して多孔質支持体にイオン液体を含浸させ、液膜を得た。
[Example 1]
A PVDF filter (made by Millipore, trade name: VVLP04700) having a film thickness of 100 μm, a diameter of 47 mm, and a pore diameter of 0.1 μm is used as a porous support (disc-shaped), and the porous support is immersed in the synthesized ionic liquid A Was impregnated with an ionic liquid to obtain a liquid film.

膜厚100μm、直径47mmのポリジメチルシロキサン(アズワン社製。商品名:シリコンフィルム6−9085−02)を封止膜として上記液膜の両面にそれぞれ設け、促進輸送膜を得た。   Polydimethylsiloxane having a film thickness of 100 μm and a diameter of 47 mm (manufactured by AS ONE, trade name: silicon film 6-9085-02) was provided on both sides of the liquid film as a sealing film to obtain an facilitated transport film.

このようにして得た炭酸ガス分離膜を、前述の評価方法に従って評価した。その結果を表1に示す。   The carbon dioxide gas separation membrane thus obtained was evaluated according to the aforementioned evaluation method. The results are shown in Table 1.

ここでイオン液体Aは1−エチル−3−メチルイミダゾリウム 2−アミノ−3−ヒドロキシプロピオネートであり、下記に示す構造を有する。ここではアニオンがセリンのアミノカルボン酸アニオンである。   Here, the ionic liquid A is 1-ethyl-3-methylimidazolium 2-amino-3-hydroxypropionate, and has the structure shown below. Here, the anion is an aminocarboxylic acid anion of serine.

Figure 2010214324
Figure 2010214324

〔実施例2〕
封止膜として、膜厚70μm、直径47mmのポリテトラフルオロエチレン膜(アドバンテック社製。商品名:T010A047A)を用いたこと以外は、実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。
[Example 2]
A carbon dioxide gas separation membrane was prepared and evaluated in the same manner as in Example 1 except that a polytetrafluoroethylene membrane (manufactured by Advantech Co., Ltd., trade name: T010A047A) having a thickness of 70 μm and a diameter of 47 mm was used as the sealing membrane. did. The results are shown in Table 1.

〔実施例3〕
イオン液体として1−エチル−3−メチルイミダゾリウム 2−アミノプロピオネート(下に示すイオン液体B)を用いたこと以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。ここではアニオンが、アラニンのアミノカルボン酸アニオンである。
Example 3
A carbon dioxide separation membrane was prepared and evaluated in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium 2-aminopropionate (ionic liquid B shown below) was used as the ionic liquid. The results are shown in Table 1. Here, the anion is an aminocarboxylate anion of alanine.

Figure 2010214324
Figure 2010214324

〔実施例4〕
イオン液体として1−エチル−3−メチルイミダゾリウム 2−ピロリジンカルボキシレート(下に示すイオン液体C)を用いたこと以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。ここではアニオンがプロリンのアミノカルボン酸アニオンである。
Example 4
A carbon dioxide gas separation membrane was prepared and evaluated in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium 2-pyrrolidinecarboxylate (ionic liquid C shown below) was used as the ionic liquid. The results are shown in Table 1. Here, the anion is an aminocarboxylic acid anion of proline.

Figure 2010214324
Figure 2010214324

〔実施例5〕
イオン液体として1−エチル−3−メチルイミダゾリウム 2,6−ジアミノヘキサネート(下に示すイオン液体D)を用いたこと以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。ここではアニオンがリシンのアミノカルボン酸アニオンである。
Example 5
A carbon dioxide separation membrane was prepared and evaluated in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium 2,6-diaminohexanate (ionic liquid D shown below) was used as the ionic liquid. . The results are shown in Table 1. Here, the anion is an aminocarboxylic acid anion of lysine.

Figure 2010214324
Figure 2010214324

〔実施例6〕
封止膜として、膜厚20μm、直径47mmのポリトリメチルシリルプロピン膜(原料化合物はNARD社合成。一般的に知られているソルベントキャスト法により発明者等が製膜)を用いた。また、イオン液体としてテトラブチルホスホニウム 2−アミノ−3−ヒドロキシプロピオネート(下に示すイオン液体E、NARD社合成。ただし、Buはn−ブチル基を表す)を用いた。それ以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。ここではアニオンがセリンのアミノカルボン酸アニオンである。
Example 6
As the sealing film, a polytrimethylsilylpropyne film having a film thickness of 20 μm and a diameter of 47 mm (the raw material compound was synthesized by NARD Co., Ltd., formed by the inventors by a generally known solvent casting method) was used. Further, tetrabutylphosphonium 2-amino-3-hydroxypropionate (ionic liquid E shown below, synthesized by NARD Inc., where Bu represents an n-butyl group) was used as the ionic liquid. Otherwise, a carbon dioxide separation membrane was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. Here, the anion is an aminocarboxylic acid anion of serine.

Figure 2010214324
Figure 2010214324

〔実施例7〕
封止膜として、膜厚20μm、直径47mmのポリトリメチルシリルプロピン膜(原料化合物はNARD社合成。一般的に知られているソルベントキャスト法により発明者等が製膜。)を用いた。また、イオン液体として1−エチル−2、3−ジメチルイミダゾリウム 2−アミノ−3−ヒドロキシプロピオネート(下に示すイオン液体F)を用いた。それ以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。ここではアニオンがセリンのアミノカルボン酸アニオンである。
Example 7
As the sealing film, a polytrimethylsilylpropyne film having a film thickness of 20 μm and a diameter of 47 mm (the raw material compound was synthesized by NARD Co., Ltd., formed by the inventors by a generally known solvent cast method) was used. Further, 1-ethyl-2,3-dimethylimidazolium 2-amino-3-hydroxypropionate (ionic liquid F shown below) was used as the ionic liquid. Otherwise, a carbon dioxide separation membrane was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. Here, the anion is an aminocarboxylic acid anion of serine.

Figure 2010214324
Figure 2010214324

イオン液体Fは以下に示す方法で合成した。
1−エチル−2,3−ジメチルイミダゾリウム メチルカルボナート(アルドリッチ製、濃度50質量%溶液(CH3OH:H2O=2:3)2.8g(7.0mmol)はかりとり、L−セリン0.7g(7.0mmol)を少しずつ加え、室温で24時間攪拌した。その後100℃、減圧下で5時間反応させることにより、イオン液体Fが1.5g(92%収率)得られた。
The ionic liquid F was synthesized by the method shown below.
1-Ethyl-2,3-dimethylimidazolium methyl carbonate (manufactured by Aldrich, 50% by weight solution (CH 3 OH: H 2 O = 2: 3) 2.8 g (7.0 mmol) is weighed and L-serine 0.7 g (7.0 mmol) was added little by little, and the mixture was stirred at room temperature for 24 hours, and then reacted at 100 ° C. under reduced pressure for 5 hours to obtain 1.5 g (92% yield) of ionic liquid F. .

〔比較例1〕
イオン液体として1−エチル−3−メチルイミダゾリウム ブロミド(下に示すイオン液体Y、関東化学社製)を用いたこと以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。
[Comparative Example 1]
A carbon dioxide separation membrane was prepared and evaluated in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium bromide (ionic liquid Y shown below, manufactured by Kanto Chemical Co., Inc.) was used as the ionic liquid. The results are shown in Table 1.

Figure 2010214324
Figure 2010214324

〔比較例2〕
イオン液体として1−アリル−3−メチルイミダゾリウム ビストリフルオロメチルスルホニルイミド(下に示すイオン液体Z、関東化学製)を用いたこと以外は実施例1と同様にして炭酸ガス分離膜を作成し、評価した。結果を表1に示す。
[Comparative Example 2]
A carbon dioxide gas separation membrane was prepared in the same manner as in Example 1 except that 1-allyl-3-methylimidazolium bistrifluoromethylsulfonylimide (ionic liquid Z shown below, manufactured by Kanto Chemical Co., Ltd.) was used as the ionic liquid, evaluated. The results are shown in Table 1.

Figure 2010214324
Figure 2010214324

Figure 2010214324
Figure 2010214324

本発明は、例えば、製油所の水素製造装置やIGCCで得られる、二酸化炭素と水素を含む混合ガス中の二酸化炭素を濃縮する際に好適に用いられる。濃縮した二酸化炭素は、例えば圧縮液化して地中に隔離することが考えられる。   The present invention is suitably used, for example, when concentrating carbon dioxide in a mixed gas containing carbon dioxide and hydrogen obtained by a refinery hydrogen production apparatus or IGCC. It is conceivable that the concentrated carbon dioxide is, for example, compressed into a liquid and sequestered in the ground.

1 液膜
1a 多孔質支持体
1b イオン液体
2 封止膜
11 評価ガス
12 評価ガスライン
13 セル
14 炭酸ガス分離膜(円盤状)
15 非透過ガス圧力表示計
16 透過ガス圧力表示計
17 非透過ガスライン
18 透過ガスライン
19 非透過ガス
20 透過ガス
21 サンプリングバルブ
22 サンプリングライン
23 ガス組成分析計
DESCRIPTION OF SYMBOLS 1 Liquid membrane 1a Porous support body 1b Ionic liquid 2 Sealing membrane 11 Evaluation gas 12 Evaluation gas line 13 Cell 14 Carbon dioxide gas separation membrane (disc shape)
DESCRIPTION OF SYMBOLS 15 Non-permeate gas pressure indicator 16 Permeate gas pressure indicator 17 Non-permeate gas line 18 Permeate gas line 19 Non-permeate gas 20 Permeate gas 21 Sampling valve 22 Sampling line 23 Gas composition analyzer

Claims (6)

水素ガスと炭酸ガスを含む混合ガスから、炭酸ガスを分離するための炭酸ガス分離膜であって、
イオン液体と該イオン液体を担持する多孔質支持体とを含む液膜が、二つの封止膜によって挟まれた構造を有し、
前記イオン液体が、
式Iで表されるイミダゾリウムカチオン、式IIで表される第4級アンモニウムカチオンおよび式IIIで表される第4級ホスホニウムカチオンからなる群から選ばれる少なくとも一種のカチオンと、
Figure 2010214324
(ここで、R1およびR3はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表し、
2はHまたは炭素数1〜3のアルキル基を表す。)
Figure 2010214324
(ここで、R4、R5、R6およびR7はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表す。)
Figure 2010214324
(ここで、R8、R9、R10およびR11はそれぞれ独立して、いずれも炭素数1〜6であって直鎖状または分岐数が1もしくは2の分岐状の、アルキル基、アミノアルキル基、アリル基、ヒドロキシアルキル基、アミノヒドロキシアルキル基またはエーテル基を表す。)
グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、プロリン、
2−アミノ酪酸、2−アミノイソ酪酸、2−アミノシクロペンタンカルボン酸、および
4−アミノ酪酸からなる群から選ばれる少なくとも一種のアミノ酸のアミノカルボン酸アニオンと
の組合せからなる
炭酸ガス分離膜。
A carbon dioxide separation membrane for separating carbon dioxide from a mixed gas containing hydrogen gas and carbon dioxide,
A liquid film including an ionic liquid and a porous support that supports the ionic liquid has a structure sandwiched between two sealing films,
The ionic liquid is
At least one cation selected from the group consisting of an imidazolium cation represented by formula I, a quaternary ammonium cation represented by formula II, and a quaternary phosphonium cation represented by formula III;
Figure 2010214324
(Wherein R 1 and R 3 are each independently an alkyl group, an aminoalkyl group, an allyl group having 1 to 6 carbon atoms and linear or branched having 1 or 2 branches, Represents a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group;
R 2 represents H or an alkyl group having 1 to 3 carbon atoms. )
Figure 2010214324
(Wherein R 4 , R 5 , R 6 and R 7 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms and having 1 or 2 carbon atoms, amino Represents an alkyl group, an allyl group, a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group.)
Figure 2010214324
(Wherein R 8 , R 9 , R 10 and R 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms and having 1 or 2 carbon atoms, amino Represents an alkyl group, an allyl group, a hydroxyalkyl group, an aminohydroxyalkyl group or an ether group.)
Glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, tryptophan, aspartic acid, proline,
A carbon dioxide gas separation membrane comprising a combination of at least one amino acid aminocarboxylate anion selected from the group consisting of 2-aminobutyric acid, 2-aminoisobutyric acid, 2-aminocyclopentanecarboxylic acid, and 4-aminobutyric acid.
前記イミダゾリウムカチオンが、式IV〜式VIIでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種であり、
Figure 2010214324
(ここでR2はHまたはメチル基を表す。)
Figure 2010214324
(ここでR2はHまたはメチル基を表す。)
Figure 2010214324
(ここでR2はHまたはメチル基を表し、nは1または2である。)
Figure 2010214324
(ここでR2はHまたはメチル基を表し、nは1または2である。)
前記第4級ホスホニウムカチオンが、式VIIIおよび式IXでそれぞれ表されるカチオンからなる群から選ばれる少なくとも一種である
Figure 2010214324
(ここでBuはn−ブチル基を表す。)
Figure 2010214324
(ここでEtはエチル基を表す。)
請求項1記載の炭酸ガス分離膜。
The imidazolium cation is at least one selected from the group consisting of cations represented by formula IV to formula VII,
Figure 2010214324
(Here, R 2 represents H or a methyl group.)
Figure 2010214324
(Here, R 2 represents H or a methyl group.)
Figure 2010214324
(Wherein R 2 represents H or a methyl group, and n is 1 or 2)
Figure 2010214324
(Wherein R 2 represents H or a methyl group, and n is 1 or 2)
The quaternary phosphonium cation is at least one selected from the group consisting of cations represented by formula VIII and formula IX, respectively.
Figure 2010214324
(Here, Bu represents an n-butyl group.)
Figure 2010214324
(Here Et represents an ethyl group.)
The carbon dioxide separation membrane according to claim 1.
前記封止膜が、ポリジメチルシロキサン膜、ポリトリメチルシリルプロピン膜、ポリジフェニルアセチレン膜、ポリテトラフルオロエチレン膜またはセラミックス膜である請求項1または2記載の炭酸ガス分離膜。   The carbon dioxide gas separation membrane according to claim 1 or 2, wherein the sealing membrane is a polydimethylsiloxane membrane, a polytrimethylsilylpropyne membrane, a polydiphenylacetylene membrane, a polytetrafluoroethylene membrane, or a ceramic membrane. 前記多孔質支持体が、ポリフッ化ビニリデン膜、銀メンブレンフィルター、ポリテトラフルオロエチレン膜、ガラス繊維ろ紙またはセラミックス膜である請求項1〜3の何れか一項記載の炭酸ガス分離膜。   The carbon dioxide gas separation membrane according to any one of claims 1 to 3, wherein the porous support is a polyvinylidene fluoride membrane, a silver membrane filter, a polytetrafluoroethylene membrane, a glass fiber filter paper, or a ceramic membrane. 前記液膜が、ポリトリメチルシリルプロピン、ポリジフェニルアセチレンおよびポリテトラフルオロエチレンからなる群から選ばれる少なくとも一種の高分子化合物と前記イオン液体とからなるゲルが多孔質支持体に担持された液膜である請求項1〜4の何れか一項記載の炭酸ガス分離膜。   The liquid film is a liquid film in which a gel comprising at least one polymer compound selected from the group consisting of polytrimethylsilylpropyne, polydiphenylacetylene and polytetrafluoroethylene and the ionic liquid is supported on a porous support. The carbon dioxide gas separation membrane according to any one of claims 1 to 4. 供給ガスの温度27℃、供給ガスの炭酸ガス分圧0.0049MPa、供給ガスの全圧0.1MPa、透過側の全圧0.003MPa、供給ガスの相対湿度80%のとき、水素透過係数に対する炭酸ガス透過係数の比αが250以上であり、かつ炭酸ガス透過係数が1.0×10-10mol−CO2×m/m2/s/kPa以上である請求項1〜5の何れか一項記載の炭酸ガス分離膜。 When the temperature of the supply gas is 27 ° C., the carbon dioxide partial pressure of the supply gas is 0.0049 MPa, the total pressure of the supply gas is 0.1 MPa, the total pressure on the permeate side is 0.003 MPa, and the relative humidity of the supply gas is 80%, The carbon dioxide gas permeability coefficient ratio α is 250 or more, and the carbon dioxide gas permeability coefficient is 1.0 × 10 −10 mol-CO 2 × m / m 2 / s / kPa or more. The carbon dioxide separation membrane according to one item.
JP2009066014A 2009-03-18 2009-03-18 Carbon dioxide gas separation membrane Active JP5378841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066014A JP5378841B2 (en) 2009-03-18 2009-03-18 Carbon dioxide gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066014A JP5378841B2 (en) 2009-03-18 2009-03-18 Carbon dioxide gas separation membrane

Publications (2)

Publication Number Publication Date
JP2010214324A true JP2010214324A (en) 2010-09-30
JP5378841B2 JP5378841B2 (en) 2013-12-25

Family

ID=42973743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066014A Active JP5378841B2 (en) 2009-03-18 2009-03-18 Carbon dioxide gas separation membrane

Country Status (1)

Country Link
JP (1) JP5378841B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063697B1 (en) 2011-05-25 2011-09-07 한국가스공사연구개발원 Membrane for carbon dioxide/hydrogen separation in dme preparation process
JP2012144441A (en) * 2011-01-06 2012-08-02 Idemitsu Kosan Co Ltd Ionic liquid, purification method of the ionic liquid, and treatment method of cellulose-based biomass
JP2012205971A (en) * 2011-03-29 2012-10-25 Nippon Steel Engineering Co Ltd System for separating carbon dioxide gas
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
WO2013103420A2 (en) * 2011-10-10 2013-07-11 Yushan Yan Membranes and catalysts for fuel cells, gas separation cells, electrolyzers and solar hydrogen applications
WO2013118776A1 (en) 2012-02-06 2013-08-15 株式会社ルネッサンス・エナジー・リサーチ Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment
WO2014009533A1 (en) * 2012-07-13 2014-01-16 Danmarks Tekniske Universitet Co2 sorption by supported amino acid ionic liquids
JP2015025057A (en) * 2013-07-25 2015-02-05 国立大学法人神戸大学 Polymer gel containing amino acid ionic liquid, and production method thereof
WO2015020144A1 (en) * 2013-08-07 2015-02-12 株式会社ルネッサンス・エナジー・リサーチ Co2 permselective membrane and method for separating co2 from mixed gas
WO2015107060A1 (en) * 2014-01-15 2015-07-23 Danmarks Tekniske Universitet Co2 chemosorption by functionalized amino acid derivatives
JP2015535738A (en) * 2012-10-01 2015-12-17 ダウ グローバル テクノロジーズ エルエルシー Ionic liquid grafted mesoporous silica composition for polar gas / nonpolar gas and olefin / paraffin separation
JP2016010760A (en) * 2014-06-27 2016-01-21 国立研究開発法人産業技術総合研究所 Acid gas chemical absorption liquid and acid gas separation recovery method
JP2016083623A (en) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 Acidic gas absorption liquid and acidic gas separation recovery method
US9597632B2 (en) 2012-02-06 2017-03-21 Renaissance Energy Research Corporation Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
JP2017507771A (en) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd Acid gas recovery and release system
US9863314B2 (en) 2011-04-28 2018-01-09 Hitachi Zosen Corporation Carbon dioxide membrane separation system in coal gasification process, and integrated coal gasification combined cycle power generation facility using same
WO2018012459A1 (en) * 2016-07-15 2018-01-18 シャープ株式会社 Oxygen separation membrane
US10016725B2 (en) * 2016-08-30 2018-07-10 Industrial Technology Research Institute Ionic liquid for forward osmosis process and forward osmosis process
US20180273698A1 (en) * 2017-03-27 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
WO2018211945A1 (en) * 2017-05-18 2018-11-22 株式会社ダイセル Carbon dioxide separation membrane and production method therefor
WO2018211944A1 (en) * 2017-05-18 2018-11-22 株式会社ダイセル Ionic liquid-containing laminate and method for producing same
US10890570B2 (en) * 2017-11-29 2021-01-12 Michigan Technological University Gas measurement device
WO2021172087A1 (en) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 Ionic liquid composition for carbon dioxide separation membrane, carbon dioxide separation membrane holding said composition, and carbon dioxide concentration apparatus provided with said carbon dioxide separation membrane
CN113597337A (en) * 2019-03-19 2021-11-02 日东电工株式会社 Structure containing ionic liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229219A (en) * 1999-02-09 2000-08-22 Agency Of Ind Science & Technol Carbon dioxide absorbent
JP2008036463A (en) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Facilitated transport membrane for carbon dioxide and its manufacturing method
WO2008032790A1 (en) * 2006-09-13 2008-03-20 Kyoto University Reference electrode coated with ionic liquid, and electrochemical measurement system using the reference electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229219A (en) * 1999-02-09 2000-08-22 Agency Of Ind Science & Technol Carbon dioxide absorbent
JP2008036463A (en) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Facilitated transport membrane for carbon dioxide and its manufacturing method
WO2008032790A1 (en) * 2006-09-13 2008-03-20 Kyoto University Reference electrode coated with ionic liquid, and electrochemical measurement system using the reference electrode

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144441A (en) * 2011-01-06 2012-08-02 Idemitsu Kosan Co Ltd Ionic liquid, purification method of the ionic liquid, and treatment method of cellulose-based biomass
JP2012205971A (en) * 2011-03-29 2012-10-25 Nippon Steel Engineering Co Ltd System for separating carbon dioxide gas
US9863314B2 (en) 2011-04-28 2018-01-09 Hitachi Zosen Corporation Carbon dioxide membrane separation system in coal gasification process, and integrated coal gasification combined cycle power generation facility using same
KR101063697B1 (en) 2011-05-25 2011-09-07 한국가스공사연구개발원 Membrane for carbon dioxide/hydrogen separation in dme preparation process
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
WO2013103420A2 (en) * 2011-10-10 2013-07-11 Yushan Yan Membranes and catalysts for fuel cells, gas separation cells, electrolyzers and solar hydrogen applications
WO2013103420A3 (en) * 2011-10-10 2013-10-03 Yushan Yan Membranes and catalysts for fuel cells, gas separation cells, electrolyzers and solar hydrogen applications
JPWO2013118776A1 (en) * 2012-02-06 2015-05-11 株式会社ルネッサンス・エナジー・リサーチ CO2 permselective membrane, method for separating CO2 from mixed gas, and membrane separation apparatus
KR20140130469A (en) 2012-02-06 2014-11-10 가부시키가이샤 르네상스 에너지 리서치 Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment
KR101942135B1 (en) * 2012-02-06 2019-01-24 가부시키가이샤 르네상스 에너지 리서치 Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment
WO2013118776A1 (en) 2012-02-06 2013-08-15 株式会社ルネッサンス・エナジー・リサーチ Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment
US9597632B2 (en) 2012-02-06 2017-03-21 Renaissance Energy Research Corporation Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
CN104470633A (en) * 2012-07-13 2015-03-25 丹麦科技大学 CO2 sorption by supported amino acid ionic liquids
US10130911B2 (en) 2012-07-13 2018-11-20 Danmarks Tekniske Universitet CO2 sorption by supported amino acid ionic liquids
WO2014009533A1 (en) * 2012-07-13 2014-01-16 Danmarks Tekniske Universitet Co2 sorption by supported amino acid ionic liquids
CN104470633B (en) * 2012-07-13 2016-10-26 丹麦科技大学 CO by the amino acid ion liquid of load2sorption
JP2015535738A (en) * 2012-10-01 2015-12-17 ダウ グローバル テクノロジーズ エルエルシー Ionic liquid grafted mesoporous silica composition for polar gas / nonpolar gas and olefin / paraffin separation
JP2015025057A (en) * 2013-07-25 2015-02-05 国立大学法人神戸大学 Polymer gel containing amino acid ionic liquid, and production method thereof
WO2015020144A1 (en) * 2013-08-07 2015-02-12 株式会社ルネッサンス・エナジー・リサーチ Co2 permselective membrane and method for separating co2 from mixed gas
JPWO2015020144A1 (en) * 2013-08-07 2017-03-02 株式会社ルネッサンス・エナジー・リサーチ Method for separating CO2 permselective membrane and CO2 from mixed gas
JP2017507771A (en) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd Acid gas recovery and release system
WO2015107060A1 (en) * 2014-01-15 2015-07-23 Danmarks Tekniske Universitet Co2 chemosorption by functionalized amino acid derivatives
JP2016010760A (en) * 2014-06-27 2016-01-21 国立研究開発法人産業技術総合研究所 Acid gas chemical absorption liquid and acid gas separation recovery method
JP2016083623A (en) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 Acidic gas absorption liquid and acidic gas separation recovery method
WO2018012459A1 (en) * 2016-07-15 2018-01-18 シャープ株式会社 Oxygen separation membrane
US10016725B2 (en) * 2016-08-30 2018-07-10 Industrial Technology Research Institute Ionic liquid for forward osmosis process and forward osmosis process
US10875973B2 (en) * 2017-03-27 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
US20180273698A1 (en) * 2017-03-27 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
CN108658795B (en) * 2017-03-27 2022-12-13 松下知识产权经营株式会社 Ionic liquid and method for dissolving cellulose by using same
CN108658795A (en) * 2017-03-27 2018-10-16 松下知识产权经营株式会社 Ionic liquid and the method that cellulose is dissolved using the ionic liquid
CN110662597B (en) * 2017-05-18 2022-08-30 株式会社大赛璐 Carbon dioxide separation membrane and method for producing same
WO2018211944A1 (en) * 2017-05-18 2018-11-22 株式会社ダイセル Ionic liquid-containing laminate and method for producing same
JPWO2018211944A1 (en) * 2017-05-18 2020-03-19 株式会社ダイセル Ionic liquid-containing laminate and method for producing the same
JPWO2018211945A1 (en) * 2017-05-18 2020-05-28 株式会社ダイセル Carbon dioxide separation membrane and manufacturing method thereof
CN110636897A (en) * 2017-05-18 2019-12-31 株式会社大赛璐 Laminate containing ionic liquid and method for producing same
US11524265B2 (en) 2017-05-18 2022-12-13 Daicel Corporation Carbon dioxide separation membrane and method for producing same
WO2018211945A1 (en) * 2017-05-18 2018-11-22 株式会社ダイセル Carbon dioxide separation membrane and production method therefor
US11491447B2 (en) 2017-05-18 2022-11-08 Daicel Corporation Ionic liquid-containing laminate and method for producing same
JP7073357B2 (en) 2017-05-18 2022-05-23 株式会社ダイセル Carbon dioxide separation membrane and its manufacturing method
JP7078613B2 (en) 2017-05-18 2022-05-31 株式会社ダイセル Ionic liquid-containing laminate and its manufacturing method
CN110662597A (en) * 2017-05-18 2020-01-07 株式会社大赛璐 Carbon dioxide separation membrane and method for producing same
CN110636897B (en) * 2017-05-18 2022-10-14 株式会社大赛璐 Laminate containing ionic liquid and method for producing same
US10890570B2 (en) * 2017-11-29 2021-01-12 Michigan Technological University Gas measurement device
CN113597337A (en) * 2019-03-19 2021-11-02 日东电工株式会社 Structure containing ionic liquid
WO2021172087A1 (en) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 Ionic liquid composition for carbon dioxide separation membrane, carbon dioxide separation membrane holding said composition, and carbon dioxide concentration apparatus provided with said carbon dioxide separation membrane

Also Published As

Publication number Publication date
JP5378841B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5378841B2 (en) Carbon dioxide gas separation membrane
Yin et al. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO 2–N 2 separation
KR101330336B1 (en) Gas separation device, membrane reactor, hydrogen production device, gas separation method, hydrogen production method
Li et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation
JP5443773B2 (en) Carbon dioxide separator
JP5553421B2 (en) CO2-facilitated transport membrane and method for producing the same
Lu et al. Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions
Jin et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions
US20110269906A1 (en) Membranes, methods of making membranes, and methods of separating gases using membranes
US20110223650A1 (en) Modular Membrane Reactor and Process for Carbon Dioxide Extraction
US9597632B2 (en) Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
JP6553739B2 (en) Gas recovery apparatus, gas recovery method, and semiconductor cleaning system
Kim et al. Practical designs of membrane contactors and their performances in CO2/CH4 separation
Patil et al. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review
JP2017202449A (en) Method for separating solvent mixed liquor, and metal organic structure separation membrane used therefor
JP2014000535A (en) Carbon dioxide separation method and carbon dioxide separation membrane
KR101749618B1 (en) Blend absorbent for separation of carbon dioxide and membrane contactor comprising the same
Fang et al. CO2 chemical absorption by using membrane vacuum regeneration technology
LU et al. Membrane-based CO2 absorption into blended amine solutions
Dey et al. An insight into the recent developments in membrane-based carbon dioxide capture and utilization
JP5877961B2 (en) Gas separation gel membrane
Api Biohydrogen purification from palm oil mill effluent fermentation for fuel cell application
Orme et al. Membrane separation processes for the benefit of the sulfur–iodine and hybrid sulfur thermochemical cycles
CN115477579B (en) Ligand for preparing metal organic framework material, film and application of film
Zou Carbon dioxide-selective membranes and their applications in hydrogen processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250