JP2010205905A - Magnetic component, and method of manufacturing the magnetic component - Google Patents

Magnetic component, and method of manufacturing the magnetic component Download PDF

Info

Publication number
JP2010205905A
JP2010205905A JP2009049445A JP2009049445A JP2010205905A JP 2010205905 A JP2010205905 A JP 2010205905A JP 2009049445 A JP2009049445 A JP 2009049445A JP 2009049445 A JP2009049445 A JP 2009049445A JP 2010205905 A JP2010205905 A JP 2010205905A
Authority
JP
Japan
Prior art keywords
magnetic
insulating substrate
coil
main surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009049445A
Other languages
Japanese (ja)
Inventor
Masaharu Edo
雅晴 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009049445A priority Critical patent/JP2010205905A/en
Publication of JP2010205905A publication Critical patent/JP2010205905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic component capable of achieving miniaturization and thinning of the magnetic component with improving the performance compared with the conventional art, of mounting a power source IC and the like to form a power source module to achieve thinning, miniaturization, and performance enhancement of the power source module. <P>SOLUTION: In the magnetic component consisting of an insulating substrate in which a coil conductor is formed, and a magnetic layer formed by metal magnetic particles to which insulating coating is carried out, the insulating substrate has penetrating holes at an inner periphery and an outer periphery. The magnetic layer is formed on both sides of first and second main surfaces of the insulating substrate. These magnetic layers are connected by the penetrating holes formed in the insulating substrate to configure a closed magnetic circuit structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電源用トランス、リアクトル等の磁気部品およびその製造方法に係り、特に半導体基板上に形成した半導体集積回路(以下ICと記す)と、コイルやコンデンサ、抵抗などの受動部品で形成されるDC−DCコンバータなどの超小型電力変換装置等に用いることのできる磁気部品およびその製造方法に関する。   The present invention relates to a magnetic component such as a power transformer and a reactor, and a manufacturing method thereof, and more particularly, a semiconductor integrated circuit (hereinafter referred to as an IC) formed on a semiconductor substrate and a passive component such as a coil, a capacitor, and a resistor. The present invention relates to a magnetic component that can be used in a micro power converter such as a DC-DC converter, and a method for manufacturing the same.

近年、電子情報機器、特に携帯型の各種電子情報機器の普及が著しい。それらの電子情報機器は、電池を電源とするものが多く、DC−DCコンバータなどの電力変換装置を内蔵している。通常その電力変換装置は、スイッチング素子、整流素子、制御用ICなどの能動素子と、磁気部品、コンデンサ、抵抗などの受動素子との各個別部品をセラミック基板やプラスチックなどのプリント基板などの上に実装することでハイブリッド型電源モジュールとして構成されている。   In recent years, electronic information devices, in particular, various portable electronic information devices have been widely used. Many of these electronic information devices use a battery as a power source, and incorporate a power conversion device such as a DC-DC converter. Usually, the power conversion device has individual components, such as switching elements, rectifying elements, control ICs and other passive elements such as magnetic parts, capacitors, resistors, etc., on a printed circuit board such as a ceramic substrate or plastic. By mounting, it is configured as a hybrid power supply module.

上述した携帯用を含めた各種電子情報機器の小型、薄型、軽量化の要望に伴い、内蔵される電力変換装置の小型、薄型、軽量化の要求も強い。ハイブリッド型電源モジュールの小型化は、MCM(マルチチップモジュール)技術や、積層セラミック部品などの技術により進歩してきている。   Along with the demands for reducing the size, thickness, and weight of various electronic information devices including the above-mentioned portable devices, there is a strong demand for reducing the size, thickness, and weight of built-in power conversion devices. Miniaturization of the hybrid power supply module has been advanced by technologies such as MCM (multi-chip module) technology and multilayer ceramic components.

しかしながら、個別の部品を同一基板上に、並べて実装するため、電源モジュールの実装面積の縮小化が制限されている。特にインダクタやトランスなどの磁気部品は、集積回路と比較すると体積が非常に大きいために電子機器の小型、薄型化を図る上で最大の制約となっている。   However, since individual components are mounted side by side on the same substrate, reduction of the mounting area of the power supply module is limited. In particular, magnetic parts such as inductors and transformers have a very large volume compared to integrated circuits, which is the biggest restriction in reducing the size and thickness of electronic devices.

近年、Agペーストなどで形成されるコイル導体とフェライト磁性体を積層して形成されるインダクタなどの磁気部品は、小型、薄型化が進んでいる。これらの部品は、単体では非常に薄く、薄型化の要求に答えているが、電源ICと磁気部品を個別に実装するために、やはり実装面積は大きくなる。特に、近年は携帯機器がさらに高機能化してきており、その結果、さらに実装面積削減が求められている。   In recent years, magnetic parts such as inductors formed by laminating a coil conductor formed of Ag paste or the like and a ferrite magnetic body have been reduced in size and thickness. Although these parts are very thin as a single unit and meet the demand for thinning, since the power supply IC and the magnetic parts are individually mounted, the mounting area is still large. In particular, in recent years, mobile devices have become more sophisticated, and as a result, further reduction in mounting area is required.

薄型化、小型化の要求に対応するために、半導体技術の適用により、半導体基板上に薄型のマイクロ磁気素子(コイル、トランス)を搭載した例も報告されている。   In order to meet the demand for thinning and miniaturization, an example in which a thin micromagnetic element (coil, transformer) is mounted on a semiconductor substrate by applying semiconductor technology has been reported.

特に、平面型磁気部品として、スイッチング素子や制御回路などの半導体部品を作り込んだ半導体基板の表面上に、薄膜コイルを磁性基板とフェライト基板とで挟んだ形状の平面型磁気部品(薄型インダクタ)を薄膜技術により形成したものが考案されている。(特許文献1参照)。   In particular, as a planar magnetic component, a planar magnetic component (thin inductor) in which a thin film coil is sandwiched between a magnetic substrate and a ferrite substrate on the surface of a semiconductor substrate on which semiconductor components such as switching elements and control circuits are built. Has been devised using thin film technology. (See Patent Document 1).

この構造によれば、磁気素子の薄型化とその実装面積の削減が可能となる。しかし、真空プロセスで磁性膜を成膜することから、磁性膜を厚くできないため、磁気部品としての特性が悪く、特に電流の大きい所で使用する場合などは、磁性膜と絶縁膜との多数の積層化が必要であり、コストが非常に高くなるという問題があった。   According to this structure, the magnetic element can be thinned and its mounting area can be reduced. However, since the magnetic film is formed by a vacuum process, the magnetic film cannot be thickened, so the characteristics as a magnetic component are poor. Especially when used in a place with a large current, a large number of magnetic films and insulating films are used. There was a problem that lamination was necessary and the cost was very high.

また、小型化、薄型化を実現する方法として、磁性絶縁基板を使用し、この磁性絶縁基板を貫通する貫通孔に形成された接続導体、磁性基板の両面に導体を形成し、ソレノイド状のコイル導体と実装電極を具備した薄型磁気素子も提案されている(特許文献2参照)。   In addition, as a method for realizing a reduction in size and thickness, a magnetic insulating substrate is used, a connection conductor formed in a through hole penetrating the magnetic insulating substrate, a conductor is formed on both sides of the magnetic substrate, and a solenoid coil A thin magnetic element including a conductor and a mounting electrode has also been proposed (see Patent Document 2).

この構造は、磁性絶縁基板に貫通孔を形成し、コイル導体を形成する際、同時に半導体素子や、実装基板などと接続するための実装端子を形成し、コイルとなる磁性絶縁基板にICを実装するだけで、新たな実装基板を不要とし、超小型・薄型の電力変換装置を構成するものである。   In this structure, when a through hole is formed in a magnetic insulating substrate and a coil conductor is formed, a mounting terminal for connecting to a semiconductor element or a mounting substrate is formed at the same time, and an IC is mounted on the magnetic insulating substrate to be a coil. Thus, a new mounting board is not required, and an ultra-compact and thin power converter is configured.

また、薄型の磁気部品としては、樹脂基板上に形成したスパイラルコイルをフェライト板で挟み込む構造も提案されている(特許文献3参照)。   As a thin magnetic component, a structure in which a spiral coil formed on a resin substrate is sandwiched between ferrite plates has been proposed (see Patent Document 3).

特開2001−196542号公報JP 2001-196542 A 特開2004−27400号公報JP 2004-27400 A 特開2005−210010号公報Japanese Patent Laid-Open No. 2005-210010 特開2004−342943号公報Japanese Patent Application Laid-Open No. 2004-342943 特開2006−310716号公報JP 2006-310716 A

上述した通り、磁気部品単体としては、小型化、薄型化が進んでいるが、個別実装では、実装面積の縮小という要求には十分対応できていない。また、サイズが小さくなっているため、磁気素子としての特性、特に電流が大きい領域では、磁気飽和のために特性が悪化してしまう。これは、磁性体として使用しているフェライトの飽和磁化が0.3T程度と小さいことによるところも大きい。   As described above, as a single magnetic component, miniaturization and thinning are progressing, but individual mounting cannot sufficiently meet the demand for reduction in mounting area. Further, since the size is small, the characteristics as a magnetic element, particularly in a region where the current is large, the characteristics deteriorate due to magnetic saturation. This is also due to the fact that the saturation magnetization of the ferrite used as the magnetic material is as small as about 0.3T.

特許文献3に開示されているコイル素子は、スパイラルコイルをフェライトで挟み込む構造であって、上下のフェライトをT型、コの字型に加工し、それらで樹脂基板上に形成されたスパイラルコイルを挟み込む構造であり、上下のフェライトは接触していない(または一部接触している)磁気ギャップを有する開磁路構造となっている。従ってフェライトを使用しているものの、磁気ギャップの効果で磁気飽和を防ぐことができるため、電流の大きい領域でも磁気飽和しづらい特性を有する。しかしながら、磁気ギャップを有することで、フェライトの実質の透磁率は低下してしまい、インダクタンス値の減少を招く。そこで、インダクタンス値を大きくするために、コイルのターン数を増加することが必要となるが、これがRdc(コイル導体の抵抗値)の増加を招くため、結果的にRdc損失のために大電流領域で使用できないということになる。   The coil element disclosed in Patent Document 3 has a structure in which a spiral coil is sandwiched between ferrites, and the upper and lower ferrites are processed into a T shape and a U shape, and the spiral coil formed on the resin substrate by them is processed. The sandwiched structure is an open magnetic circuit structure having a magnetic gap in which the upper and lower ferrites are not in contact (or partly in contact). Therefore, although ferrite is used, magnetic saturation can be prevented by the effect of the magnetic gap, so that it has a characteristic that magnetic saturation is difficult even in a region where current is large. However, by having a magnetic gap, the substantial magnetic permeability of the ferrite decreases, leading to a decrease in inductance value. Therefore, in order to increase the inductance value, it is necessary to increase the number of turns of the coil. However, this causes an increase in Rdc (resistance value of the coil conductor), resulting in a large current region due to Rdc loss. It can not be used in.

上述した磁気部品単体での薄型化と小型化、大電流対応を両立するために、筆者を含むメンバーは、酸化物絶縁材料をコーティングした導体で形成されるコイルを、フェライトにより絶縁被覆した磁性金属粒子からなる磁性粉末中に埋め込み、圧縮成形した構造の磁気部品を提案した(特許文献4参照)。   In order to achieve both the above-mentioned reduction in thickness and size of a magnetic component alone, and compatibility with large currents, the members including the author are magnetic metals with a coil formed of a conductor coated with an oxide insulating material and insulated with ferrite. A magnetic component having a structure in which it is embedded in a magnetic powder made of particles and compression-molded has been proposed (see Patent Document 4).

本構造は、コイル導体を磁性体で埋め込むことにより、閉磁路構造としているため、インダクタンス値を大きくすることができ、特許文献3に示されている構造よりもコイルターン数を少なくすることができる。また、飽和磁化の大きな金属磁性体を使用していることから、閉磁路構造であっても磁気飽和しづらく、大電流領域でも使用することができるという特徴がある。   Since this structure has a closed magnetic circuit structure by embedding the coil conductor with a magnetic material, the inductance value can be increased, and the number of coil turns can be reduced as compared with the structure disclosed in Patent Document 3. . In addition, since a metal magnetic material having a large saturation magnetization is used, magnetic saturation is difficult even in a closed magnetic circuit structure, and it can be used in a large current region.

ただし、この構造では磁性体は金属磁性粒子にフェライトを被覆した複合粒子を使用しているため、磁性体の絶縁性が十分ではなく、その結果、コイル導体に絶縁被覆をしなければならないという問題がある。   However, in this structure, since the magnetic material uses composite particles in which metal magnetic particles are coated with ferrite, the insulation of the magnetic material is not sufficient, and as a result, the coil conductor must be insulated. There is.

また、特許文献5には、両面に導体パターンを有する絶縁基板の両面を磁性体を含む樹脂層で覆い、絶縁基板中央の開口部を介して両面の樹脂層が一体化された平面コイルが開示されているが、中央の開口部以外では両面の樹脂層がギャップを有する開磁路構造となっているため、特許文献3に開示されているコイル素子と同じ課題を有している。   Patent Document 5 discloses a planar coil in which both sides of an insulating substrate having a conductor pattern on both sides are covered with a resin layer containing a magnetic material, and the resin layers on both sides are integrated through an opening at the center of the insulating substrate. However, since the resin layers on both sides have an open magnetic path structure with a gap other than the opening at the center, they have the same problems as the coil element disclosed in Patent Document 3.

本願発明は、上述の引用文献に係る問題点を解決し、磁気部品の小型化、薄型化を従来よりも性能を向上して実現できるだけでなく、電源ICなどを実装して電源モジュールを形成し、電源モジュールの薄型、小型化、高性能化を実現できる磁気部品を提供することを目的とする。   The invention of the present application solves the problems related to the above cited references, and not only can realize the downsizing and thinning of magnetic parts with improved performance compared to the prior art, but also forms a power supply module by mounting a power supply IC or the like. An object of the present invention is to provide a magnetic component capable of realizing a thin, small and high performance power module.

上述した課題を達成するために、絶縁基板上にコイル導体を形成し、そのコイルの内周部および外周部に貫通孔を形成し、その絶縁基板の第1主面および第2主面上に磁性膜を形成し、内周部および外周部の貫通孔にも磁性層を埋め込むことで、閉磁路構造とする構成とし、磁性層には金属磁性粒子に絶縁被膜を形成した複合粒子を成型した磁性材料を使用する構成とする。   In order to achieve the above-described problem, a coil conductor is formed on an insulating substrate, through holes are formed in the inner and outer peripheral portions of the coil, and the first main surface and the second main surface of the insulating substrate are formed. A magnetic film is formed, and a magnetic layer is embedded in the inner and outer perforations, thereby forming a closed magnetic circuit structure. The magnetic layer is formed of composite particles in which an insulating coating is formed on metal magnetic particles. The magnetic material is used.

また、絶縁基板の第1主面上に電源IC等の外部素子との実装電極を有し、第2主面には機器側のプリント基板等との接続用電極を有する構成とする。   In addition, a mounting electrode with an external element such as a power supply IC is provided on the first main surface of the insulating substrate, and an electrode for connection with a printed circuit board or the like on the device side is provided on the second main surface.

以上説明したように、本発明によれば、内周部および外周部に貫通孔を設けて閉磁路構造を実現することにより、磁気部品の小型化、薄型化を従来よりも性能を向上して実現できるだけでなく、電源ICなどを実装して電源モジュールを形成し、電源モジュールの薄型、小型化、高性能化を実現することができる。   As described above, according to the present invention, through-holes are provided in the inner peripheral portion and the outer peripheral portion to realize a closed magnetic circuit structure, thereby reducing the size and thickness of the magnetic component and improving the performance compared to the conventional one. In addition to the realization, a power supply module can be formed by mounting a power supply IC or the like, and the power supply module can be thinned, miniaturized, and improved in performance.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、第1の実施例の磁気部品の要部構成図である。図1(a)は、薄型磁気部品の絶縁基板およびコイル導体を第1主面側から透視した平面図、図1(b)は、図1(a)のX−X’線で切断したときの断面図である。   FIG. 1 is a configuration diagram of a main part of a magnetic component of the first embodiment. FIG. 1A is a plan view of a thin magnetic component as seen through the insulating substrate and coil conductor from the first main surface side, and FIG. 1B is a cross-sectional view taken along line XX ′ in FIG. FIG.

本構成は、絶縁基板101の第1主面および第2主面にスパイラル状のコイル導体102a、102bを形成してあり、このコイル導体102a、102bは内周に形成された貫通孔105中のコイル接続導体105cを介して接続部電極105a、105bで電気的に接続されている。接続・一体化された両面のコイル導体の始端103と終端104は、外周側に形成される。   In this configuration, spiral coil conductors 102a and 102b are formed on the first main surface and the second main surface of the insulating substrate 101, and the coil conductors 102a and 102b are formed in the through holes 105 formed on the inner periphery. The connection electrodes 105a and 105b are electrically connected via the coil connection conductor 105c. The start end 103 and the end end 104 of the connected / integrated coil conductors on both sides are formed on the outer peripheral side.

コイル導体の内周部には貫通孔106が形成されており、かつ、外周部にも貫通孔107が形成されている。本実施例は絶縁基板を第1主面側の磁性層108と第2主面側の磁性層109で挟み込む構造であり、これらを形成する工程で、貫通孔106、107にも磁性層を埋め込むことで、閉磁路構造を形成している。   A through hole 106 is formed in the inner peripheral portion of the coil conductor, and a through hole 107 is also formed in the outer peripheral portion. In this embodiment, the insulating substrate is sandwiched between the magnetic layer 108 on the first main surface side and the magnetic layer 109 on the second main surface side, and in the step of forming these, the magnetic layer is also embedded in the through holes 106 and 107. Thus, a closed magnetic circuit structure is formed.

なお、本実施例では、コイル導体を2層構造としたが、1層でも構わない。ただし、スパイラル状のコイルの場合、コイル始端を外周とすると、コイル終端は内周側となる。このため、コイルの始端、終端を外周に持ってこようとすると、必然的にコイルは2層、4層と偶数層となる。   In this embodiment, the coil conductor has a two-layer structure, but may have a single layer. However, in the case of a spiral coil, if the coil start end is the outer periphery, the coil end is the inner periphery. For this reason, if it is going to bring the starting end and the terminal end of a coil to an outer periphery, a coil inevitably becomes 2 layers, 4 layers, and an even layer.

磁性体としては、磁性金属粒子に電気抵抗率の高い非磁性絶縁酸化物の被膜を形成した複合粒子を成型して形成したものを使用した。本材料は絶縁被覆されているため、コイル上に絶縁層を形成する必要はない。ただし、粒子の絶縁層が薄い場合は、抵抗率が下がるため、ある程度厚くする必要がある。この磁性層を所定の厚さにシート化したものを上下から挟み込み、それをプレス成型して貫通孔106、107にも磁性層を埋め込む。   As the magnetic material, magnetic metal particles formed by molding composite particles in which a non-magnetic insulating oxide film having high electrical resistivity was formed were used. Since this material is insulated, it is not necessary to form an insulating layer on the coil. However, when the particle insulating layer is thin, the resistivity is lowered, so it is necessary to increase the thickness to some extent. A sheet of this magnetic layer having a predetermined thickness is sandwiched from above and below, and press-molded to embed the magnetic layer in the through holes 106 and 107.

磁性金属粒子の表面に形成される絶縁酸化被膜を形成する材料としてはSiO2を挙げることができ、SiO2被膜の形成には水ガラスを用いることができる。また、この被膜はSiO2被膜に限定されるものではなく、SiN膜やアルミナ膜など、絶縁被膜を形成できればどの材質でも適用できる。また、形成方法もウェット法に限らず、ドライ法でも適用でき、被膜の形成方法は特に限定されるものではない。 Examples of the material for forming the insulating oxide film formed on the surface of the magnetic metal particles include SiO 2, and water glass can be used for forming the SiO 2 film. The coating is not limited to the SiO 2 coating, and any material can be applied as long as an insulating coating such as a SiN film or an alumina film can be formed. Further, the forming method is not limited to the wet method, but can be applied by a dry method, and the method for forming the film is not particularly limited.

水ガラスは組成がNa20・xSiO2・nH20(x=2〜4)で、これを水に溶かした溶液はアルカリ性を示す。この溶液に磁性金属粒子を入れ、酸を溶液に加えると加水分解してゲル状の珪酸(H2SiO3)が析出し、磁性金属粒子表面に付着する。この後、磁性金属粒子を乾燥させれば、表面に珪酸膜が成膜された磁性金属粒子が得られる。珪酸膜の膜厚は、水ガラス水溶液の濃度で制御可能であり、20nm以下(1〜20nm)という薄い膜を再現性よく成膜できる。 The composition of water glass is Na 2 0 · xSiO 2 · nH 2 0 (x = 2 to 4), and a solution obtained by dissolving this in water shows alkalinity. When magnetic metal particles are put into this solution and acid is added to the solution, it hydrolyzes and gel-like silicic acid (H 2 SiO 3 ) precipitates and adheres to the surface of the magnetic metal particles. Thereafter, if the magnetic metal particles are dried, magnetic metal particles having a silicate film formed on the surface can be obtained. The film thickness of the silicate film can be controlled by the concentration of the water glass aqueous solution, and a thin film of 20 nm or less (1 to 20 nm) can be formed with good reproducibility.

コイル導体の始端および終端となる部分については、後で電気的な接続をとることは容易であり、図2(a)に示すようにそれぞれの面から磁性体にレーザー加工などで貫通孔201を形成し、その後、Agペーストやはんだペーストなどで電極202を形成しても良い。または、コイルの層数が偶数の場合に限るが、後述のダイシングを行った後に、図2(b)に示すようにダイシングした側面から電気的接続点221をとり、同様にAgペーストやはんだペーストで電極222を形成しても良い。   It is easy to make electrical connection later for the starting and ending portions of the coil conductor, and as shown in FIG. 2 (a), through holes 201 are formed on the magnetic material from each surface by laser processing or the like. Then, the electrode 202 may be formed using Ag paste, solder paste, or the like. Alternatively, only when the number of coil layers is an even number, after dicing as described later, the electrical connection point 221 is taken from the diced side surface as shown in FIG. Alternatively, the electrode 222 may be formed.

図3は、本実施例の具体的な製造工程を示す概略図である。図3に沿って、製造方法を説明する。   FIG. 3 is a schematic view showing a specific manufacturing process of the present embodiment. A manufacturing method is demonstrated along FIG.

まず、2層構造になった金属基板301a、301b上へコイル導体102a、102bを形成する(工程300)。コイル導体は、レジストのパターニング後、電解Cuめっきを施し、最後にレジストを剥離することで形成した。Cuめっきの膜厚は50μmである。   First, coil conductors 102a and 102b are formed on metal substrates 301a and 301b having a two-layer structure (step 300). The coil conductor was formed by applying electrolytic Cu plating after patterning the resist and finally peeling off the resist. The film thickness of the Cu plating is 50 μm.

次に2層構造となっている金属基板を剥離し、それぞれを絶縁基板(樹脂基板)101に接着する(工程310)。本実施例では樹脂基板として、厚さ20μmのポリイミドフィルムを使用した。この樹脂基板の材質は、後工程の熱、応力、厚さなどを考慮して決定すれば良く、ポリアミド、エポキシ、アクリルなどの材質もしくはそれらをベースにした基板を使用することができる。   Next, the metal substrate having a two-layer structure is peeled off and bonded to the insulating substrate (resin substrate) 101 (step 310). In this example, a polyimide film having a thickness of 20 μm was used as the resin substrate. The material of the resin substrate may be determined in consideration of heat, stress, thickness, etc. in the subsequent process, and materials such as polyamide, epoxy, acrylic, etc., or substrates based on them can be used.

接着後に金属基板を剥離することにより、樹脂基板101上にコイル導体が転写され、2層構造のコイル基板が形成される(工程320)。   By peeling the metal substrate after bonding, the coil conductor is transferred onto the resin substrate 101 to form a two-layered coil substrate (step 320).

次に、コイル導体102a、102bを電気的に接続するための貫通孔105をドリルで形成する(工程330)。貫通孔径は200μmである。貫通孔形成にはドリルだけでなく、レーザー加工や超音波加工など様々な手法を使用することができる。ただし、コイル導体と樹脂基板を同時に加工できる手法であることが必要である。   Next, a through hole 105 for electrically connecting the coil conductors 102a and 102b is formed by a drill (step 330). The through-hole diameter is 200 μm. Various methods such as laser processing and ultrasonic processing can be used for forming the through-holes in addition to the drill. However, it is necessary to be a technique that can simultaneously process the coil conductor and the resin substrate.

次に、貫通孔105にもめっきを施すことにより、コイル導体102aと102bを電気的に接続する。ここでは、コイル導体102aと102bの接続部電極105aと105bが、めっきにより形成されるコイル接続導体105cを介して接続される構造となる(工程340)。   Next, the coil conductors 102a and 102b are electrically connected by plating the through hole 105 as well. Here, the connection electrodes 105a and 105b of the coil conductors 102a and 102b are connected via the coil connection conductor 105c formed by plating (step 340).

本実施例では、コイル基板形成法に転写法を使用し、コイル導体形成後に貫通孔を形成し、再度めっきする手法を使用したが、これに限定されるものではなく、一般的なプリント基板の製造方法を適用しても良い。一般的には、貫通孔を形成してからめっきをする手法でも製作は可能である。また、プリプレグ法などの手法を使用することも可能である。今回は、樹脂基板が20μmと薄く、この上にレジストパターニングやめっきを施すことが難しいため、転写法を使用した。   In this embodiment, a transfer method is used for the coil substrate forming method, and a method of forming a through hole after the coil conductor is formed and plating again is used. However, the present invention is not limited to this. A manufacturing method may be applied. In general, it is possible to manufacture by a method of plating after forming a through hole. It is also possible to use a technique such as a prepreg method. This time, since the resin substrate is as thin as 20 μm and it is difficult to perform resist patterning or plating on the resin substrate, the transfer method was used.

次に、後で磁性体を埋め込み、閉磁路構造を形成するための貫通孔をルーター加工で形成する(工程350)。内周側の貫通孔106は0.4mm×0.8mm、外周側の貫通孔107は0.2mm×1.6mmで形成した。   Next, a through hole for embedding a magnetic material and forming a closed magnetic circuit structure later is formed by router processing (step 350). The inner peripheral through hole 106 was 0.4 mm × 0.8 mm, and the outer peripheral through hole 107 was 0.2 mm × 1.6 mm.

次に、磁性層(第1主面)108と磁性層(第2主面)109とでコイル導体の上下から挟み込み、プレス成型をして、磁性体を埋め込む(工程360)。   Next, the magnetic layer (first main surface) 108 and the magnetic layer (second main surface) 109 are sandwiched from above and below the coil conductor, and are press-molded to embed the magnetic material (step 360).

磁性体は、Ni78FeMo5(Niが78重量%、Moが5重量%、その他がFeという組成)の8μm粒子を50nmのSiOで被覆した粒子に、ポリビニルブチラールをバインダーとして混合したものでグリーンシートを形成し、それを所定の厚さまで積層した磁性シートを使用した。磁性シートの厚さは0.2mmである。 The magnetic material is made by mixing 8 μm particles of Ni78FeMo5 (composition of Ni 78% by weight, Mo 5% by weight and others Fe) with 50 nm SiO 2 and mixing polyvinyl butyral with a binder as a green sheet. A magnetic sheet formed and laminated to a predetermined thickness was used. The thickness of the magnetic sheet is 0.2 mm.

この磁性シートでコイル基板を挟み込み、プレス成型することにより、貫通孔内部にも磁性体が埋め込まれる。今回、プレス圧は1177MPa(12トン重/cm2)で実施した。この基板を450℃の真空アニール炉で焼成して、コイル基板が完成する(工程370)。 By sandwiching the coil substrate with this magnetic sheet and press-molding, the magnetic material is also embedded inside the through hole. This time, the press pressure was 1177 MPa (12 ton weight / cm 2 ). The substrate is baked in a vacuum annealing furnace at 450 ° C. to complete the coil substrate (step 370).

最後にダイシングで個片化し、図2(b)に示したように、Agペーストで側面から電極を取り出して完成する。   Finally, it is separated into pieces by dicing, and as shown in FIG. 2B, the electrode is taken out from the side surface with Ag paste to complete.

図4は、本実施例で製作したインダクタの一層あたりのターン数とインダクタンス値の関係を示したものである。比較例として、実施例と形状・寸法が同じで、フェライトコアで挟み込んだ構造の特性も示した。フェライトコアの厚さは0.2mmであり、内周および外周の貫通孔で、上下のフェライトコアを接着剤で接着した。接着剤の厚さは10μmである。   FIG. 4 shows the relationship between the number of turns per layer and the inductance value of the inductor manufactured in this example. As a comparative example, the characteristics of the structure having the same shape and dimensions as the examples and sandwiched between ferrite cores are also shown. The thickness of the ferrite core was 0.2 mm, and the upper and lower ferrite cores were bonded with an adhesive at the inner and outer through holes. The thickness of the adhesive is 10 μm.

このグラフより、従来のフェライトコアで挟み込む構造と比較して、インダクタンス値が大きく取れることが分かる。このインダクタの実施例、比較例ともに総厚は520μmであった。   From this graph, it can be seen that the inductance value can be increased as compared with the conventional structure sandwiched between ferrite cores. The total thickness of the inductor and the comparative example was 520 μm.

実施例1ではコイル導体102a、102b上に直接磁性体を埋め込んだが、さらに信頼性を高めたい場合は、コイル導体を絶縁層で被覆する。図5は、コイル導体を被覆した場合の構造を示している。製造工程としては、図3で示した実施例1の製造工程のうち、図3(e)に示す工程330の後に絶縁層501a、501bを形成した。今回は厚さ50μmのポリイミドフィルムを使用し、真空ラミネート法で全面に被覆した。ラミネート後のポリイミドフィルムの厚さは20μmとなった。   In the first embodiment, a magnetic material is directly embedded on the coil conductors 102a and 102b. However, if further reliability is desired, the coil conductor is covered with an insulating layer. FIG. 5 shows the structure when the coil conductor is covered. As a manufacturing process, the insulating layers 501a and 501b were formed after the process 330 shown in FIG. 3E among the manufacturing processes of Example 1 shown in FIG. This time, a polyimide film having a thickness of 50 μm was used, and the entire surface was coated by a vacuum laminating method. The thickness of the polyimide film after lamination was 20 μm.

インダクタとしては、絶縁層の厚さの分、厚くなり、約560μmとなった。特性は実施例1と同等であった。   As the inductor, the thickness of the insulating layer was increased to about 560 μm. The characteristics were the same as in Example 1.

実施例1では、インダクタの始端および終端のみを外部に取り出して、単体として使用するものであった。本実施例では、電源制御ICをインダクタ上に実装するための電極を具備している構造を形成した。   In Example 1, only the start and end of the inductor were taken out and used as a single unit. In this embodiment, a structure including an electrode for mounting the power supply control IC on the inductor is formed.

図6は、本実施例の概略図を示すものであり、図6(a)はコイル部基板のみの平面図、図6(b)は図6(a)のY−Y’部の断面図である。図6(b)には磁性層も示している。   FIG. 6 shows a schematic diagram of the present embodiment. FIG. 6 (a) is a plan view of only the coil portion substrate, and FIG. 6 (b) is a cross-sectional view of the YY ′ portion of FIG. 6 (a). It is. FIG. 6B also shows the magnetic layer.

本構造は、実施例1と同様に、絶縁基板601の第1主面および第2主面にスパイラル状のコイル導体602a、602bを形成してあり、このコイル導体は内周部に形成された貫通孔605を介して電気的に接続されている。コイル導体上には絶縁層608a、608bが形成されており、コイル導体の始端603と終端604は外周部に形成される。   In this structure, spiral coil conductors 602a and 602b are formed on the first main surface and the second main surface of the insulating substrate 601 as in the first embodiment, and these coil conductors are formed on the inner periphery. It is electrically connected through the through hole 605. Insulating layers 608a and 608b are formed on the coil conductor, and the start end 603 and the end 604 of the coil conductor are formed on the outer periphery.

コイル導体の外周部にはコイル始端および終端と同様に実装電極609a、609bが第1主面および第2主面に形成されており、これらは実装電極接続部611,612で電気的に接続されている。   The mounting electrodes 609a and 609b are formed on the first main surface and the second main surface on the outer peripheral portion of the coil conductor in the same manner as the coil start and end, and these are electrically connected by the mounting electrode connecting portions 611 and 612. ing.

コイル導体の内周部には貫通孔606が形成されており、かつ外周部にも貫通孔607が形成されている。絶縁基板を第1主面側の磁性層613と第2主面側の磁性層614で挟み込み、閉磁路構造を形成している。   A through hole 606 is formed in the inner peripheral portion of the coil conductor, and a through hole 607 is also formed in the outer peripheral portion. The insulating substrate is sandwiched between the magnetic layer 613 on the first main surface side and the magnetic layer 614 on the second main surface side to form a closed magnetic circuit structure.

図7は、本実施例の具体的な製造工程を示す概略図である。図7に沿って、製造方法を説明する。   FIG. 7 is a schematic view showing a specific manufacturing process of the present embodiment. A manufacturing method is demonstrated along FIG.

まず、図3に示した実施例1の製造工程の図3(a)〜(c)、工程300〜工程320までを実施し、厚さ20μmの絶縁基板601としてのポリイミドフィルム基板上へ2層構造のコイル導体602a、602b、外周部の電極701a、701bを形成し、絶縁層608a、608bで表面を保護した(工程700)。コイル導体および電極の厚さは50μm、絶縁層の厚さは20μmである。   First, FIGS. 3A to 3C and steps 300 to 320 of the manufacturing process of Example 1 shown in FIG. 3 are performed, and two layers are formed on a polyimide film substrate as an insulating substrate 601 having a thickness of 20 μm. Coil conductors 602a and 602b having a structure and electrodes 701a and 701b on the outer periphery were formed, and the surfaces were protected by insulating layers 608a and 608b (step 700). The thickness of the coil conductor and the electrode is 50 μm, and the thickness of the insulating layer is 20 μm.

次に、別の金属基板702a、702b上に電極609a、609bを形成し、それを工程700の基板の第1主面および第2主面に接着し(工程710)、実装電極を形成する(工程720)。電極の厚さは200μmである。接着層としては、ポリイミドを使用した。   Next, electrodes 609a and 609b are formed on different metal substrates 702a and 702b, and bonded to the first main surface and the second main surface of the substrate in step 700 (step 710) to form mounting electrodes (step 710). Step 720). The thickness of the electrode is 200 μm. Polyimide was used as the adhesive layer.

次に、電極609a、609b、701a、701bを電気的に接続するための貫通孔704をドリルで形成する(工程730)。貫通孔径は200μmである。   Next, a through hole 704 for electrically connecting the electrodes 609a, 609b, 701a, 701b is formed by a drill (step 730). The through-hole diameter is 200 μm.

次に、貫通孔704にもめっきを施すことで、電極609a、609b、701a、701bを電気的に接続する(工程740)。すなわち、実装電極609a、電極701a、701bおよび実装電極609bを順次接続する接続導体をめっきで形成し、これにより実装電極609a、電極701a、701bとコイル導体を接続する実装電極接続部611,612を形成するのである。   Next, the electrodes 609a, 609b, 701a, and 701b are electrically connected by plating the through hole 704 (step 740). That is, a connection conductor that sequentially connects the mounting electrode 609a, the electrodes 701a, 701b, and the mounting electrode 609b is formed by plating, thereby forming the mounting electrode connection portions 611, 612 that connect the mounting electrode 609a, the electrodes 701a, 701b and the coil conductor. It forms.

次に、後で磁性体を埋め込み、閉磁路構造を形成するための貫通孔606をルーター加工で形成する(工程750)。内周側の貫通孔606は0.4mm×0.8mmである。なお、図示していないが、外周側の貫通孔607は0.2mm×1.6mmで形成した。   Next, a through hole 606 for embedding a magnetic material later to form a closed magnetic circuit structure is formed by router processing (step 750). The inner peripheral side through-hole 606 is 0.4 mm × 0.8 mm. In addition, although not shown in figure, the through-hole 607 of the outer peripheral side was formed by 0.2 mm x 1.6 mm.

次に、磁性層(第1主面)613と磁性層(第2主面)614でコイル導体の上下から挟み込み、プレス成型をして、磁性体を埋め込む(工程760)。   Next, the magnetic layer (first main surface) 613 and the magnetic layer (second main surface) 614 are sandwiched from above and below the coil conductor and press-molded to embed the magnetic material (step 760).

磁性体は、実施例1と同様の材料(厚さも0.2mm)を使用し、プレス圧1177MPa(12トン重/cm2)でプレス成型した。この基板を450℃の真空アニール炉で焼成して、実装電極付きコイル基板が完成する。本コイル基板を用いれば、電源制御ICをコイル基板の上に直接実装することができ、電源制御ICおよびコイル基板を積層してなる超小型電力変換装置を容易に実現することができる。 The magnetic material used was the same material as in Example 1 (thickness is also 0.2 mm) and was press-molded at a press pressure of 1177 MPa (12 tons / cm 2 ). This substrate is baked in a 450 ° C. vacuum annealing furnace to complete a coil substrate with mounting electrodes. If this coil substrate is used, the power supply control IC can be directly mounted on the coil substrate, and an ultra-compact power conversion device in which the power supply control IC and the coil substrate are laminated can be easily realized.

なお、コイル基板を磁性体で挟み込む際、電極上に磁性体が残ってしまう場合には、平面研磨を実施し、電極面を露出させてれば良い。今回は平面研磨を使用して、磁性体を20μm研磨し、電極を露出させた。埋め込み時の磁性層の厚さの制御が良好であれば、研磨をしなくても良いが、後の実装工程を考慮すると、ウォータージェットやウォーターブラスト、サンドブラストなどの、表面洗浄を実施した方が良い。   If the magnetic body remains on the electrode when the coil substrate is sandwiched between the magnetic bodies, planar polishing may be performed to expose the electrode surface. This time, planar polishing was used to polish the magnetic material by 20 μm to expose the electrodes. If the control of the thickness of the magnetic layer at the time of embedding is good, it is not necessary to polish, but considering the subsequent mounting process, it is better to perform surface cleaning such as water jet, water blast, sand blast etc. good.

図8は、本実施例で製作したインダクタの一層当たりのターン数とインダクタンス値の関係を示したものである。比較例として、実施例と同じ寸法・形状で、フェライトコアで挟み込んだ構造の特性も示した。フェライトコアの厚さは0.2mmであり、内周および外周の貫通孔で、上下のフェライトコアを接着剤で接着した。接着剤の厚さは10μmである。   FIG. 8 shows the relationship between the number of turns per layer and the inductance value of the inductor manufactured in this example. As a comparative example, characteristics of a structure sandwiched between ferrite cores having the same size and shape as those of the example are also shown. The thickness of the ferrite core was 0.2 mm, and the upper and lower ferrite cores were bonded with an adhesive at the inner and outer through holes. The thickness of the adhesive is 10 μm.

このグラフより、従来のフェライトコアで挟み込む構造と比較して、インダクタンス値が大きく取れることが分かる。このインダクタの総厚は、実施例、比較例ともに、560μmであった。   From this graph, it can be seen that the inductance value can be increased as compared with the conventional structure sandwiched between ferrite cores. The total thickness of this inductor was 560 μm in both the example and the comparative example.

本発明の実施例1に係る磁気部品の要部構成図であって、図1(a)は、薄型磁気部品の絶縁基板およびコイル導体を第1主面側から透視した平面図であり、図1(b)は、図1(a)のX−X’線で切断したときの断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is principal part block diagram of the magnetic component which concerns on Example 1 of this invention, Comprising: Fig.1 (a) is the top view which saw through the insulating substrate and coil conductor of the thin magnetic component from the 1st main surface side, 1 (b) is a cross-sectional view taken along line XX ′ of FIG. 1 (a). 本発明の実施例1に係る磁気部品の電極取り出し方法を示す概略図であり、図2(a)は、それぞれの面から電極を取り出す例を示し、図2(b)は、ダイシングした側面から電極を取り出す例を示す。It is the schematic which shows the electrode extraction method of the magnetic component which concerns on Example 1 of this invention, FIG.2 (a) shows the example which takes out an electrode from each surface, FIG.2 (b) shows from the diced side surface. The example which takes out an electrode is shown. 本発明の実施例1に係る磁気部品の製造方法の製作工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of the manufacturing method of the magnetic component which concerns on Example 1 of this invention. 本発明の実施例1に係る磁気部品の一層あたりのコイルターン数とインダクタンスの関係を比較例と共に示す図である。It is a figure which shows the relationship between the number of coil turns per layer of the magnetic component which concerns on Example 1 of this invention, and an inductance with a comparative example. 本発明の実施例2に係る磁気部品の要部断面図を示す図である。It is a figure which shows the principal part sectional drawing of the magnetic component which concerns on Example 2 of this invention. 本発明の実施例3に係る磁気部品の要部構成図であって、図6(a)はコイル部基板のみの平面図であり、図6(b)は図6(a)のY−Y’部の断面図である。FIG. 6A is a plan view of a main part of a magnetic component according to a third embodiment of the present invention, where FIG. 6A is a plan view of only a coil portion substrate, and FIG. 6B is a YY view of FIG. It is sectional drawing of a part. 本発明の実施例3に係る磁気部品の製造方法の製作工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of the manufacturing method of the magnetic component which concerns on Example 3 of this invention. 本発明の実施例3に係る磁気部品の一層あたりのコイルターン数とインダクタンスの関係を比較例と共に示す図である。It is a figure which shows the relationship between the number of coil turns per layer of the magnetic component which concerns on Example 3 of this invention, and an inductance with a comparative example.

101 絶縁基板
102a,102b コイル導体
103 コイル導体の始端
104 コイル導体の終端
105 貫通孔
105a,105b 接続部電極
105c コイル接続導体
106 貫通孔(内周部)
107 貫通孔(外周部)
108 磁性層(第1主面)
109 磁性層(第2主面)
201 貫通孔
202 電極
221 電気的接続点
222 電極
301a,301b 金属基板
501a,501b 絶縁層
601 絶縁基板
602a,602b コイル導体
603 コイル導体の始端
604 コイル導体の終端
605 貫通孔(コイル接続部)
606 貫通孔(内周部)
607 貫通孔(外周部)
608a、608b 絶縁層
609a、609b 実装電極
611,612 実装電極接続部
613 磁性層(第1主面)
614 磁性層(第2主面)
701a,701b 電極
702a,702b 金属基板
704 貫通孔
DESCRIPTION OF SYMBOLS 101 Insulation board | substrate 102a, 102b Coil conductor 103 Starting end of coil conductor 104 End of coil conductor 105 Through hole 105a, 105b Connection part electrode 105c Coil connection conductor 106 Through hole (inner peripheral part)
107 Through hole (outer periphery)
108 Magnetic layer (first main surface)
109 Magnetic layer (second main surface)
201 Through-hole 202 Electrode 221 Electrical connection point 222 Electrode 301a, 301b Metal substrate 501a, 501b Insulating layer 601 Insulating substrate 602a, 602b Coil conductor 603 Coil conductor start 604 Coil conductor end 605 Through hole (coil connection)
606 Through hole (inner circumference)
607 Through hole (outer periphery)
608a, 608b Insulating layer 609a, 609b Mounting electrode 611, 612 Mounting electrode connection 613 Magnetic layer (first main surface)
614 Magnetic layer (second main surface)
701a, 701b Electrode 702a, 702b Metal substrate 704 Through hole

Claims (4)

コイル導体が形成された絶縁基板と、絶縁被覆された金属磁性粒子で形成される磁性層とからなる磁気部品において、
前記絶縁基板は、その内周と外周に貫通孔を具備し、
前記磁性層は、前記絶縁基板の第1主面および第2主面の両面に形成され、かつそれらの磁性層が前記絶縁基板に形成された貫通孔で接続され、閉磁路構造を有することを特徴とする磁気部品。
In a magnetic component consisting of an insulating substrate on which a coil conductor is formed and a magnetic layer formed of metal magnetic particles coated with insulation,
The insulating substrate has through holes on the inner periphery and outer periphery thereof,
The magnetic layer is formed on both surfaces of the first main surface and the second main surface of the insulating substrate, and the magnetic layers are connected by through holes formed in the insulating substrate, and has a closed magnetic circuit structure. Features magnetic parts.
前記絶縁基板の第1主面および第2主面上に実装電極をさらに備えることを特徴とする請求項1に記載の磁気部品。   The magnetic component according to claim 1, further comprising mounting electrodes on the first main surface and the second main surface of the insulating substrate. コイル導体が形成された絶縁基板と、絶縁被覆された金属磁性粒子で形成される磁性層とからなる磁気部品を製造する方法において、
前記絶縁基板上へコイルを形成する工程と、
前記絶縁基板の内周と外周に貫通孔を形成する工程と、
前記絶縁基板の第1主面および第2主面に形成される磁性層を形成する工程と、
前記磁性層が前記絶縁基板に形成された貫通孔で接続され、閉磁路構造とする工程と
からなることを特徴とする磁気部品の製造方法。
In a method of manufacturing a magnetic component comprising an insulating substrate on which a coil conductor is formed and a magnetic layer formed of metal magnetic particles coated with insulation,
Forming a coil on the insulating substrate;
Forming through holes in the inner periphery and outer periphery of the insulating substrate;
Forming a magnetic layer formed on the first main surface and the second main surface of the insulating substrate;
The magnetic layer is connected by a through hole formed in the insulating substrate to form a closed magnetic circuit structure.
前記絶縁基板上へコイルを形成する工程と、前記絶縁基板の内周と外周に貫通孔を形成する工程との間に、さらに、
前記絶縁基板上に実装電極を形成する工程と
を備えることを特徴とする請求項3に記載の磁気部品の製造方法。
Between the step of forming a coil on the insulating substrate and the step of forming through holes on the inner periphery and outer periphery of the insulating substrate,
The method of manufacturing a magnetic component according to claim 3, further comprising: forming a mounting electrode on the insulating substrate.
JP2009049445A 2009-03-03 2009-03-03 Magnetic component, and method of manufacturing the magnetic component Pending JP2010205905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049445A JP2010205905A (en) 2009-03-03 2009-03-03 Magnetic component, and method of manufacturing the magnetic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049445A JP2010205905A (en) 2009-03-03 2009-03-03 Magnetic component, and method of manufacturing the magnetic component

Publications (1)

Publication Number Publication Date
JP2010205905A true JP2010205905A (en) 2010-09-16

Family

ID=42967122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049445A Pending JP2010205905A (en) 2009-03-03 2009-03-03 Magnetic component, and method of manufacturing the magnetic component

Country Status (1)

Country Link
JP (1) JP2010205905A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089765A (en) * 2010-10-21 2012-05-10 Tdk Corp Coil component
JP2012164958A (en) * 2011-01-20 2012-08-30 Taiyo Yuden Co Ltd Coil component
JP2013080846A (en) * 2011-10-04 2013-05-02 Ibiden Co Ltd Wiring board and manufacturing method thereof
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
KR20130134639A (en) * 2012-05-31 2013-12-10 삼성전기주식회사 Chip inductor
US20140022041A1 (en) * 2012-07-18 2014-01-23 Samsung Electro-Mechanics Co., Ltd. Magnetic module for power inductor, power inductor, and manufacturing method thereof
JP2014013815A (en) * 2012-07-04 2014-01-23 Tdk Corp Coil component and manufacturing method therefor
JP2014107548A (en) * 2012-11-23 2014-06-09 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method for manufacturing the same
KR101434351B1 (en) * 2010-10-21 2014-08-26 티디케이가부시기가이샤 Coil component and method for producing same
KR101442402B1 (en) * 2013-03-25 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
JP2014212684A (en) * 2013-04-19 2014-11-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component, packaging substrate thereof, and power supply stabilization unit including the same
KR101462806B1 (en) * 2013-10-11 2014-11-20 삼성전기주식회사 Inductor and Manufacturing Method for the Same
JP2015088753A (en) * 2013-10-29 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method of the same, coil component built-in substrate, and voltage adjustment module including the substrate
KR20150050306A (en) * 2013-10-29 2015-05-08 삼성전기주식회사 Coil component, manufacturing method thereof, coil component embedded substrate, module having the same
US20150155093A1 (en) * 2013-12-04 2015-06-04 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
JP2015126198A (en) * 2013-12-27 2015-07-06 東光株式会社 Method of manufacturing electronic component, electronic component
KR101565703B1 (en) 2013-10-22 2015-11-03 삼성전기주식회사 Chip electronic component and manufacturing method thereof
US20160086719A1 (en) * 2014-09-18 2016-03-24 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
JP2016072407A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Method of manufacturing electronic component
US9349522B2 (en) 2012-07-04 2016-05-24 Tdk Corporation Coil component
US20160189840A1 (en) * 2014-12-30 2016-06-30 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same
JP2016167578A (en) * 2015-03-09 2016-09-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and manufacturing method of same
CN106575570A (en) * 2014-04-23 2017-04-19 沃思电子埃索斯有限责任两合公司 Method for producing an induction component and an induction component
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
JP2017183663A (en) * 2016-03-31 2017-10-05 太陽誘電株式会社 Coil component
KR101792281B1 (en) 2012-12-14 2017-11-01 삼성전기주식회사 Power Inductor and Manufacturing Method for the Same
KR101912275B1 (en) * 2015-06-03 2018-10-29 삼성전기 주식회사 Coil electronic component and manufacturing method thereof
KR20190020308A (en) * 2019-02-18 2019-02-28 삼성전기주식회사 Magnetic Substance Module for Power Inductor, Power Inductor and Manufacturing Method for the Same
WO2019221843A1 (en) * 2018-05-17 2019-11-21 Intel Corporation Embedding magnetic material in a cored or coreless semiconductor package
CN111508692A (en) * 2015-10-02 2020-08-07 株式会社村田制作所 Inductance element, package member, and switching regulator
WO2020178944A1 (en) * 2019-03-04 2020-09-10 株式会社プリケン Coil device and manufacturing method
JP2020191476A (en) * 2020-08-21 2020-11-26 株式会社村田製作所 Inductor component
WO2022172949A1 (en) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 Electronic component and method for manufacturing electronic component

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434351B1 (en) * 2010-10-21 2014-08-26 티디케이가부시기가이샤 Coil component and method for producing same
JP2012089765A (en) * 2010-10-21 2012-05-10 Tdk Corp Coil component
US9236171B2 (en) 2010-10-21 2016-01-12 Tdk Corporation Coil component and method for producing same
JP2012164958A (en) * 2011-01-20 2012-08-30 Taiyo Yuden Co Ltd Coil component
JP2013080846A (en) * 2011-10-04 2013-05-02 Ibiden Co Ltd Wiring board and manufacturing method thereof
US9424988B2 (en) 2011-12-30 2016-08-23 Samsung Electro-Mechanics Co., Ltd. Common mode filter and method of manufacturing the same
US9082540B2 (en) 2011-12-30 2015-07-14 Samsung Electro-Mechanics Co., Ltd. Common mode filter and method of manufacturing the same
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
CN103515077A (en) * 2012-05-31 2014-01-15 三星电机株式会社 Chip inductor
US9472608B2 (en) 2012-05-31 2016-10-18 Samsung Electro-Mechanics Co., Ltd Chip inductor
KR20130134639A (en) * 2012-05-31 2013-12-10 삼성전기주식회사 Chip inductor
KR101580709B1 (en) * 2012-05-31 2015-12-28 삼성전기주식회사 Chip inductor
US9660013B2 (en) 2012-05-31 2017-05-23 Samsung Electro-Mechanics Co., Ltd. Chip inductor
JP2014013815A (en) * 2012-07-04 2014-01-23 Tdk Corp Coil component and manufacturing method therefor
US9349522B2 (en) 2012-07-04 2016-05-24 Tdk Corporation Coil component
JP2014022724A (en) * 2012-07-18 2014-02-03 Samsung Electro-Mechanics Co Ltd Magnetic module for power inductor, power inductor, and method for manufacturing the same
CN103578708A (en) * 2012-07-18 2014-02-12 三星电机株式会社 Magnetic module for power inductor, power inductor, and manufacturing method thereof
US20140022041A1 (en) * 2012-07-18 2014-01-23 Samsung Electro-Mechanics Co., Ltd. Magnetic module for power inductor, power inductor, and manufacturing method thereof
CN103578708B (en) * 2012-07-18 2018-03-13 三星电机株式会社 Magnetic module, power inductor and its manufacture method for power inductor
US9478334B2 (en) * 2012-07-18 2016-10-25 Samsung Electro-Mechanics Co., Ltd. Magnetic module for power inductor, power inductor, and manufacturing method thereof
KR20140011693A (en) * 2012-07-18 2014-01-29 삼성전기주식회사 Magnetic substance module for power inductor, power inductor and manufacturing method for the same
JP2014107548A (en) * 2012-11-23 2014-06-09 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method for manufacturing the same
US9035738B2 (en) 2012-11-23 2015-05-19 Samsung Electro-Mechanics Co., Ltd. Multilayer inductor and method for manufacturing the same
KR101420525B1 (en) 2012-11-23 2014-07-16 삼성전기주식회사 Multilayer inductor and method for preparing thereof
KR101792281B1 (en) 2012-12-14 2017-11-01 삼성전기주식회사 Power Inductor and Manufacturing Method for the Same
US9520223B2 (en) 2013-03-25 2016-12-13 Samsung Electro-Mechanics Co., Ltd. Inductor and method for manufacturing the same
KR101442402B1 (en) * 2013-03-25 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
JP2014212684A (en) * 2013-04-19 2014-11-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component, packaging substrate thereof, and power supply stabilization unit including the same
US9425760B2 (en) 2013-04-19 2016-08-23 Samsung Electro-Mechanics Co., Ltd. Composite electronic component, board having the same mounted thereon, and power smoothing unit comprising the same
KR101462806B1 (en) * 2013-10-11 2014-11-20 삼성전기주식회사 Inductor and Manufacturing Method for the Same
KR101565703B1 (en) 2013-10-22 2015-11-03 삼성전기주식회사 Chip electronic component and manufacturing method thereof
JP2015088753A (en) * 2013-10-29 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method of the same, coil component built-in substrate, and voltage adjustment module including the substrate
KR20150050306A (en) * 2013-10-29 2015-05-08 삼성전기주식회사 Coil component, manufacturing method thereof, coil component embedded substrate, module having the same
US20170047160A1 (en) * 2013-12-04 2017-02-16 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
CN104700982A (en) * 2013-12-04 2015-06-10 三星电机株式会社 Chip electronic component and manufacturing method thereof
CN104700982B (en) * 2013-12-04 2020-08-14 三星电机株式会社 Chip electronic component and method for manufacturing the same
CN111261367A (en) * 2013-12-04 2020-06-09 三星电机株式会社 Chip electronic component
US9899143B2 (en) 2013-12-04 2018-02-20 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
KR101598256B1 (en) * 2013-12-04 2016-03-07 삼성전기주식회사 Chip electronic component and manufacturing method thereof
US20150155093A1 (en) * 2013-12-04 2015-06-04 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
KR20150065075A (en) * 2013-12-04 2015-06-12 삼성전기주식회사 Chip electronic component and manufacturing method thereof
CN111261367B (en) * 2013-12-04 2021-08-17 三星电机株式会社 Chip electronic component
JP2015126198A (en) * 2013-12-27 2015-07-06 東光株式会社 Method of manufacturing electronic component, electronic component
JP2017514309A (en) * 2014-04-23 2017-06-01 ビュルト エレクトロニク アイソス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Induction component manufacturing method and induction component
CN106575570A (en) * 2014-04-23 2017-04-19 沃思电子埃索斯有限责任两合公司 Method for producing an induction component and an induction component
US20160086719A1 (en) * 2014-09-18 2016-03-24 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US10170229B2 (en) * 2014-09-18 2019-01-01 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
KR101823193B1 (en) * 2014-09-18 2018-01-29 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
JP2016072407A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Method of manufacturing electronic component
US10115521B2 (en) 2014-09-30 2018-10-30 Murata Manufacturing Co., Ltd. Manufacturing method for electronic component
CN105742035A (en) * 2014-12-30 2016-07-06 三星电机株式会社 Electronic Component And Method Of Manufacturing The Same
US20160189840A1 (en) * 2014-12-30 2016-06-30 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same
KR20160108927A (en) * 2015-03-09 2016-09-21 삼성전기주식회사 Coil electronic component and manufacturing method thereof
JP2016167578A (en) * 2015-03-09 2016-09-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and manufacturing method of same
KR102184566B1 (en) * 2015-03-09 2020-12-02 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR101912275B1 (en) * 2015-06-03 2018-10-29 삼성전기 주식회사 Coil electronic component and manufacturing method thereof
CN111508692B (en) * 2015-10-02 2023-10-31 株式会社村田制作所 Inductance element, package member, and switching regulator
CN111508692A (en) * 2015-10-02 2020-08-07 株式会社村田制作所 Inductance element, package member, and switching regulator
US11876449B2 (en) * 2015-10-02 2024-01-16 Murata Manufacturing Co., Ltd. Inductor component, package component, and switching regulator
US20200304025A1 (en) * 2015-10-02 2020-09-24 Murata Manufacturing Co., Ltd. Inductor component, package component, and switching regulator
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
US11488768B2 (en) 2015-11-20 2022-11-01 Samsung Electro-Mechanics Co., Ltd. Coil component
US10658103B2 (en) 2016-03-31 2020-05-19 Taiyo Yuden Co., Ltd. Coil component
JP2017183663A (en) * 2016-03-31 2017-10-05 太陽誘電株式会社 Coil component
US11355459B2 (en) 2018-05-17 2022-06-07 Intel Corpoation Embedding magnetic material, in a cored or coreless semiconductor package
WO2019221843A1 (en) * 2018-05-17 2019-11-21 Intel Corporation Embedding magnetic material in a cored or coreless semiconductor package
KR102004815B1 (en) 2019-02-18 2019-07-29 삼성전기주식회사 Magnetic Substance Module for Power Inductor, Power Inductor and Manufacturing Method for the Same
KR20190020308A (en) * 2019-02-18 2019-02-28 삼성전기주식회사 Magnetic Substance Module for Power Inductor, Power Inductor and Manufacturing Method for the Same
WO2020178944A1 (en) * 2019-03-04 2020-09-10 株式会社プリケン Coil device and manufacturing method
JP2020191476A (en) * 2020-08-21 2020-11-26 株式会社村田製作所 Inductor component
WO2022172949A1 (en) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 Electronic component and method for manufacturing electronic component

Similar Documents

Publication Publication Date Title
JP2010205905A (en) Magnetic component, and method of manufacturing the magnetic component
JP5115691B2 (en) Coil device and method of manufacturing coil device
WO2012053439A1 (en) Coil component and method for producing same
JP5874199B2 (en) Coil component and manufacturing method thereof
WO2011145490A1 (en) Electronic component to be embedded in substrate and component embedded substrate
JP6230972B2 (en) Chip electronic component and manufacturing method thereof
JP6750776B2 (en) Coil electronic component and manufacturing method thereof
JP2007250924A (en) Inductor element and its manufacturing method, and semiconductor module using inductor element
JP2009033106A (en) Method of manufacturing magnetic device, and magnetic device
JP6058584B2 (en) Multilayer electronic component and manufacturing method thereof
JP2006210541A (en) Inductor
TW201125003A (en) Multilayered chip power inductor using the magnetic sheet and the method for manufacturing the same
JP2004343976A (en) Multi-output microminiature power conversion device
US20160343498A1 (en) Coil component and manufacturing method thereof
JP2008171965A (en) Microminiature power converter
JP4682606B2 (en) Inductance element, manufacturing method thereof, and wiring board
CN109074947A (en) Electronic component
US20140285304A1 (en) Inductor and method for manufacturing the same
JP2009246159A (en) Multiple output magnetic induction unit, and multiple output micro power converter having the same
JP2008066592A (en) Method of manufacturing thin magnetic parts
JP2008066671A (en) Thin magnetic component, and its manufacturing process
JP2008066672A (en) Substrate incorporating thin magnetic component, and switching power supply module employing it
KR102118489B1 (en) Manufacturing method of chip electronic component
KR20110132576A (en) Multi-layer circuit carrier and method for the production thereof
JP2003257744A (en) Magnetic element, manufacturing method thereof, and power-supply module using the same