JP2010196220A - Low density nonwoven fabric - Google Patents

Low density nonwoven fabric Download PDF

Info

Publication number
JP2010196220A
JP2010196220A JP2009045464A JP2009045464A JP2010196220A JP 2010196220 A JP2010196220 A JP 2010196220A JP 2009045464 A JP2009045464 A JP 2009045464A JP 2009045464 A JP2009045464 A JP 2009045464A JP 2010196220 A JP2010196220 A JP 2010196220A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
fiber
pulp
low density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009045464A
Other languages
Japanese (ja)
Inventor
Miki Yasuno
未樹 安野
Masanobu Matsuoka
昌伸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2009045464A priority Critical patent/JP2010196220A/en
Publication of JP2010196220A publication Critical patent/JP2010196220A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low density nonwoven fabric excellent in high bulkiness, uniformity and thermal dimensional stability. <P>SOLUTION: The low density nonwoven fabric includes a foaming substance, fibrous material and highly bulky pulp, and preferably contains 1 to 20 mass% foaming substance and 1 to 40 mass% highly bulky pulp based on the total amount of the foaming substance, fibrous material and highly bulky pulp. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低密度不織布に関するものである。   The present invention relates to a low density nonwoven fabric.

近年、様々な分野で部材の軽量化が求められており、それに伴い、空隙が多い低密度不織布は、クッション材、断熱材や防音材としての利用が進んでいる。低密度不織布は、加工も容易なことから、その用途は拡大しており、更なる低密度化、機能化、また良好な加工特性が求められている。   In recent years, weight reduction of members has been demanded in various fields, and accordingly, low density nonwoven fabrics having many voids have been increasingly used as cushion materials, heat insulating materials and soundproof materials. Since low-density nonwoven fabrics are easy to process, their uses are expanding, and further reduction in density, functionalization, and good processing characteristics are required.

不織布の製造において、乾式法で製造すると密度は低くなりやすい特徴を持つが、その反面、使用できる繊維の種類が限定される為、機能のバリエーションが制限されてしまったり、均一な地合いの不織布が得られにくいといった欠点がある。一方、抄紙技術を用いた湿式抄造法で製造された湿式不織布は、使用できる繊維の種類が多岐に渡ることから、様々な機能が付与できたり、均一な地合いの不織布を得やすいといった特徴を持つが、その反面、ペーパーライクで高密度になりやすいという欠点がある。   In the production of non-woven fabrics, the density tends to be low when produced by the dry method, but on the other hand, the types of fibers that can be used are limited, so variations in function are limited, and non-woven fabrics with a uniform texture are used. There is a drawback that it is difficult to obtain. On the other hand, wet nonwoven fabrics manufactured by wet papermaking using papermaking technology have a variety of fiber types that can be used to give various functions and easily obtain nonwoven fabrics with uniform texture. However, on the other hand, there is a drawback that it is likely to become high density with paper-like.

嵩高な不織布として、捲縮を有するくびれを含む不定形断面のビスコースレーヨン繊維を含む方法が開示されている(例えば、特許文献1参照)。しかしながら、特許文献1に使用する特定形状のビスコースレーヨン繊維の繊度は、40〜160dtexと、繊度が極めて大きい範囲であり、乾式法による不織布製造に適したものである。従って、該繊維は湿式抄造法に適合することが難しく、その為、多様な種類の繊維組み合わせからなる多機能化に不適当で、更に均一性に劣るといった問題がある。   A method including a viscose rayon fiber having an irregular cross section including a constricted constriction as a bulky nonwoven fabric is disclosed (for example, see Patent Document 1). However, the fineness of the viscose rayon fiber having a specific shape used in Patent Document 1 is in the range of 40 to 160 dtex, which is a very large fineness, and is suitable for manufacturing a nonwoven fabric by a dry method. Therefore, it is difficult to adapt the fiber to the wet papermaking method, and therefore, there is a problem that it is unsuitable for multi-functionalization composed of various kinds of fiber combinations and is inferior in uniformity.

また、湿式不織布を低密度にする手段として、断面形状がH型である捲縮ポリエステル繊維を配合する方法が開示されている(例えば、特許文献2参照)。しかしながら、断面形状がH型である捲縮ポリエステル繊維のみの効果では、得られる不織布の嵩密度は0.07g/cmと依然高く、嵩高効果が未だ不十分である。また、コイル状の繊維が伸び縮みをする為、熱寸法安定性に欠け、加工の際に問題となる。 Moreover, a method of blending crimped polyester fibers having a cross-sectional shape of H type has been disclosed as means for reducing the density of wet nonwoven fabric (see, for example, Patent Document 2). However, the bulk density of the resulting nonwoven fabric is still as high as 0.07 g / cm 3 with the effect of only the crimped polyester fiber having a H-shaped cross section, and the bulkiness effect is still insufficient. In addition, since the coiled fiber expands and contracts, it lacks thermal dimensional stability and causes a problem during processing.

また、極細繊維、極細繊維よりも大きな平均直径を持つ骨格繊維、ならびに発泡性粒子からなる水性分散液を用いて湿式抄造法により抄造した不織布からなる濾材が開示されている(例えば、特許文献3参照)。この方法の場合、発泡性粒子の効果により、嵩高な不織布を得ることが可能となるが、発泡性粒子を効率良く不織布内に留めることが困難であったり、極細繊維として繊維径が1μm以下にフィブリル化された有機繊維を用いると、発泡性粒子の歩留まりは向上するが、フィブリル化した繊維同士が絡み合う為、発泡性粒子による低密度化が阻害されるといった課題がある。   In addition, a filter medium made of a nonwoven fabric made by a wet papermaking method using an ultrafine fiber, a skeletal fiber having an average diameter larger than that of the ultrafine fiber, and an aqueous dispersion made of foamable particles is disclosed (for example, Patent Document 3). reference). In the case of this method, it becomes possible to obtain a bulky nonwoven fabric due to the effect of the expandable particles, but it is difficult to efficiently retain the expandable particles in the nonwoven fabric, or the fiber diameter is 1 μm or less as ultrafine fibers. When the fibrillated organic fiber is used, the yield of the expandable particles is improved. However, since the fibrillated fibers are entangled with each other, there is a problem that the density reduction by the expandable particles is hindered.

また、カールドファイバーを含むパルプ繊維層に発泡性粒子を含有することを特徴とする低密度紙が開示されている(例えば、特許文献4参照)が、これは基本的には、パルプ繊維から構成された紙に関するものであり、パルプ繊維同士が水素結合によって強固に結合する為、得られる低密度紙の密度は0.10g/cmと依然高く、嵩高効果が小さい問題がある。 Further, a low-density paper characterized by containing foamable particles in a pulp fiber layer containing curled fibers has been disclosed (see, for example, Patent Document 4). Since the pulp fibers are firmly bonded to each other by hydrogen bonding, the density of the resulting low density paper is still high at 0.10 g / cm 3 and there is a problem that the bulky effect is small.

また、熱融着繊維単独もしくは熱融着繊維と他の繊維から構成されたウェブ状繊維集合体に熱膨張性マイクロカプセルを散布し、熱処理して得られる不織布が公開されている(例えば、特許文献5参照)。特許文献5では、ある程度柔軟性に優れた不織布を得ることはできるが、熱膨張性カプセルをウェブ状繊維集合体に均一に散布することが困難な為、膨張が不均一になったり、不織布ウェブ状繊維集合体から熱膨張カプセルが粉落ちしやすいという問題もある。   In addition, a nonwoven fabric obtained by spraying thermally expandable microcapsules on a heat-bonded fiber alone or a web-like fiber assembly composed of a heat-bonded fiber and other fibers and heat-treating is disclosed (for example, patents). Reference 5). In Patent Document 5, it is possible to obtain a nonwoven fabric having a certain degree of flexibility. However, since it is difficult to uniformly disperse the heat-expandable capsules on the web-like fiber assembly, the nonwoven fabric web may be unevenly expanded. There is also a problem that the thermally expanded capsule tends to fall off from the fibrous fiber assembly.

特開2007−39841号公報JP 2007-39841 A 特開平9−273096号公報Japanese Patent Laid-Open No. 9-273096 特開平9−155127号公報JP-A-9-155127 特開平11−302991号公報JP 11-302991 A 特開2005−97749号公報Japanese Patent Application Laid-Open No. 2005-97749

本発明の目的は、嵩高性、均一性、熱寸法安定性に優れた低密度不織布を提供することである。   An object of the present invention is to provide a low-density nonwoven fabric excellent in bulkiness, uniformity and thermal dimensional stability.

本発明者らは、この課題を解決するため鋭意研究を行った結果、以下の本発明を見出した。   As a result of intensive studies to solve this problem, the present inventors have found the following present invention.

すなわち、本発明は、発泡性物質、繊維状物質、嵩高パルプを含有してなる湿式抄造法により得られた低密度不織布に関するものである。   That is, this invention relates to the low density nonwoven fabric obtained by the wet papermaking method formed by containing a foamable substance, a fibrous substance, and a bulky pulp.

本発明において、発泡性物質、繊維状物質、嵩高パルプの総量に対して、発泡性物質を1〜20質量%含有する低密度不織布であることが好ましい。   In this invention, it is preferable that it is a low density nonwoven fabric containing 1-20 mass% of a foamable substance with respect to the total amount of a foamable substance, a fibrous material, and a bulky pulp.

本発明において、発泡性物質、繊維状物質、嵩高パルプの総量に対して、嵩高パルプを1〜40質量%含有する低密度不織布であることが好ましい。   In this invention, it is preferable that it is a low density nonwoven fabric which contains 1-40 mass% of bulky pulp with respect to the total amount of a foamable substance, a fibrous material, and a bulky pulp.

本発明の低密度不織布は、発泡性物質と繊維状物質と嵩高パルプからなり、発泡性物質と嵩高パルプが、その他繊維状物質と共に低密度不織布中に均一に分布している。嵩高パルプを配合したことにより、不織布自身が嵩高くなると共に発泡性物質を効率良く不織布内に留めることができ、また、発泡済みの発泡性物質を不織布中に含むか、もしくは不織布中でそれが発泡することにより、更に嵩高く、空隙の多い低密度不織布を得ることができる。得られた低密度不織布は、軽量で加工や運搬も容易であり、かつ、多くの空隙を有することから、音、衝撃の吸収性、断熱性に優れる。本発明では、湿式抄造法によって様々な繊維を使用して所望の機能を付与することができる。また、嵩高パルプを配合することで、熱寸法安定性が良好で、高温下における使用もしくは加工にあたって有利である。   The low density nonwoven fabric of this invention consists of a foamable substance, a fibrous material, and a bulky pulp, and a foamable substance and a bulky pulp are uniformly distributed in a low density nonwoven fabric with other fibrous materials. By blending the bulky pulp, the nonwoven fabric itself becomes bulky and the foamable material can be efficiently retained in the nonwoven fabric, and the foamed foamed material is contained in the nonwoven fabric or it is contained in the nonwoven fabric. By foaming, a low-density nonwoven fabric that is more bulky and has many voids can be obtained. The obtained low-density nonwoven fabric is lightweight, easy to process and transport, and has many voids, and thus has excellent sound and impact absorption and heat insulation properties. In the present invention, a desired function can be imparted using various fibers by a wet papermaking method. In addition, blending bulky pulp has good thermal dimensional stability and is advantageous for use or processing at high temperatures.

以下、本発明の低密度不織布を詳細に説明する。本発明の低密度不織布は、JIS P8118に基づいて測定した際の密度が0.005〜0.05g/cmのものを言う。密度が0.005g/cm未満の場合、強度やコシが弱くなり、用途が制限されることがある。また、密度が0.05g/cmより大きい場合は、不織布内の空隙が少なくなる為、音、衝撃の吸収性、断熱性が劣ることがある。 Hereinafter, the low density nonwoven fabric of this invention is demonstrated in detail. The low density nonwoven fabric of the present invention refers to one having a density of 0.005 to 0.05 g / cm 3 when measured based on JIS P8118. When the density is less than 0.005 g / cm 3 , the strength and stiffness become weak, and the use may be limited. On the other hand, when the density is higher than 0.05 g / cm 3 , the voids in the nonwoven fabric are reduced, so that the sound and impact absorbability and the heat insulation may be inferior.

本発明の低密度不織布に用いられる発泡性物質としては、カプセルの内包物が加熱によってガスとなり膨張することで、カプセルが発泡する熱膨張性マイクロカプセルや、自らが発生させたガスによって発泡する化学発泡剤などが挙げられる。発泡性物質の種類は、製造条件や必要特性、用途に合わせて適宜選択することができる。しかし、本発明の低密度不織布は比較的ポーラスな繊維集合体であることから、化学発泡剤などを用いた場合は生じたガスが繊維集合体の隙間から流出してしまうため不織布内に留まりにくく、十分な低密度効果が得られないことがある。一方、熱膨張性マイクロカプセルを使用した場合は、膨張した粒子が繊維集合体の繊維間の隙間を拡げるため、低密度効果が高い。従って、本発明の低密度不織布には熱膨張性マイクロカプセルを用いることが好ましい。また、抄造時に添加する発泡性物質は、未発泡のものでも既に発泡したものでも良い。ただし、未発泡のものを添加した場合は、乾燥工程、もしくは別途設けた発泡工程において発泡性物質を発泡させる必要がある。   The foamable material used in the low-density nonwoven fabric of the present invention includes a thermally expandable microcapsule that expands as a gas by heating the capsule inclusions, or a chemical that foams by a gas generated by itself. Examples include foaming agents. The kind of foamable substance can be appropriately selected according to production conditions, necessary characteristics, and applications. However, since the low density nonwoven fabric of the present invention is a relatively porous fiber assembly, when a chemical foaming agent or the like is used, the generated gas flows out from the gaps of the fiber assembly, so it is difficult to stay in the nonwoven fabric. A sufficient low density effect may not be obtained. On the other hand, when the thermally expandable microcapsule is used, the expanded particles widen the gaps between the fibers of the fiber assembly, so that the low density effect is high. Therefore, it is preferable to use thermally expandable microcapsules for the low density nonwoven fabric of the present invention. Moreover, the foamable substance added at the time of papermaking may be unfoamed or already foamed. However, when an unfoamed material is added, it is necessary to foam the foamable substance in a drying process or a separately provided foaming process.

また、熱膨張性マイクロカプセル等の熱応答性発泡物質を用いる場合、それぞれにおいて最も効率良く膨張する最大発泡温度なるものがあるが、抄造時のドライヤー温度や加工時の温度を考慮して最適な種類を選定するのが好ましい。なお、ここで言う最大発泡温度とは、熱機械分析装置(TMA)(TA instruments製、商品名:TMA2940)を用いて、直径7mm、深さ1mmの円筒形のアルミ製容器に入れた250μgの発泡性物質に、上方から0.1Nの力を加えた状態で5℃/minで80℃から220℃まで加熱した際、加圧端子の垂直方向における変位が最大になる温度のことである。   In addition, when using thermally responsive foaming materials such as thermally expandable microcapsules, there are those with the maximum foaming temperature that expands most efficiently, but it is optimal to take into consideration the dryer temperature during paper making and the temperature during processing. It is preferable to select the type. In addition, the maximum foaming temperature said here is 250 micrograms put into the cylindrical aluminum container of diameter 7mm and depth 1mm using the thermomechanical analyzer (TMA) (The product made from TA instruments, brand name: TMA2940). When the foaming material is heated from 80 ° C. to 220 ° C. at 5 ° C./min with a force of 0.1 N applied from above, it is the temperature at which the displacement in the vertical direction of the pressure terminal is maximized.

また、粒子状の発泡性物質を用いる場合、粒子径は3〜300μmが好ましい。粒子径が3μm未満の場合は、抄紙ワイヤーから抜け落ちやすくなり添加量に相応した効果が得られないことがあり、粒子径が300μmより大きい場合は、水中での粒子の分散が困難になることがある。また、発泡後の粒子径は10〜1000μmが好ましい。発泡後の粒子径が10μm未満の場合、粒子によって厚み方向に繊維を押し上げることが困難になる為、十分な効果が得られないことがあり、また、1000μmよりも大きい場合は、厚みが不均一になったり、表面の面質が悪くなることがある。なお、未発泡、及び発泡後の発泡性物質の粒子径は、粒度分布径測定器(HORIBA製、商品名:LA−910)を用い、体積平均粒子径を測定した。   Moreover, when using a particulate foamable substance, the particle diameter is preferably 3 to 300 μm. If the particle size is less than 3 μm, it may easily come off from the papermaking wire and an effect corresponding to the amount added may not be obtained. If the particle size is greater than 300 μm, it may be difficult to disperse the particles in water. is there. The particle diameter after foaming is preferably 10 to 1000 μm. If the particle diameter after foaming is less than 10 μm, it will be difficult to push up the fibers in the thickness direction by the particles, so a sufficient effect may not be obtained, and if it is larger than 1000 μm, the thickness is uneven. Or the surface quality may deteriorate. In addition, the particle diameter of the unexpanded foamed substance after foaming was measured by using a particle size distribution diameter measuring device (manufactured by HORIBA, trade name: LA-910).

発泡性物質、繊維状物質、嵩高パルプの総量に対して、発泡性物質の含有量は1〜20質量%が好ましく、更に好ましくは3〜10質量%である。1質量%未満では、十分な発泡性物質の効果が得られないことがあり、20質量%を超えると抄紙性が悪くなったり、均一な厚みが得られないことがある。本発明において、抄紙性とは、湿式抄造法において、湿潤状態の低密度不織布が抄造ワイヤーから離れる時に繊維が落ちたり、バラバラになったりしないことを言う。   The content of the foamable material is preferably 1 to 20 mass%, more preferably 3 to 10 mass%, based on the total amount of the foamable material, fibrous material, and bulky pulp. If it is less than 1% by mass, the effect of a sufficient foaming substance may not be obtained, and if it exceeds 20% by mass, paper-making properties may be deteriorated or a uniform thickness may not be obtained. In the present invention, the papermaking property means that, in the wet papermaking method, the fibers do not fall or fall apart when the wet low density nonwoven fabric is separated from the papermaking wire.

発泡性物質はその粒子径や発泡特性に応じて、湿式抄造法により低密度不織布を得る際に凝集剤を用い凝集体を形成しても良い。また、発泡性物質は嵩高パルプもしくはその他の無機繊維や有機繊維と凝集体を形成しても良い。凝集剤は、高分子凝集剤、無機系凝集剤などがあるが、発泡性物質の成分や表面電荷を考慮して適宜選択することができる。凝集剤の添加量は、発泡性物質の種類や欲する凝集体の大きさによって変えると良い。凝集体の大きさをコントロールすることによって、粒子径が小さい発泡性物質でも抄紙ワイヤーから抜け落ちることなく抄造が可能となる。   The foamable substance may form an aggregate using a flocculant when a low density nonwoven fabric is obtained by a wet papermaking method according to the particle diameter and foaming characteristics. The foamable material may form aggregates with bulky pulp or other inorganic fibers or organic fibers. The flocculant includes a polymer flocculant and an inorganic flocculant, and can be appropriately selected in consideration of the component of the foamable substance and the surface charge. The amount of the flocculant added may be varied depending on the type of foaming substance and the desired aggregate size. By controlling the size of the agglomerates, it is possible to make a paper without dropping from the papermaking wire even with a foamable material having a small particle size.

本発明の低密度不織布に用いられる繊維状物質とは、ある程度以上のアスペクト比(繊維長/繊維径)を有する物質を言い、本発明の場合、アスペクト比が300〜3000の範囲が好ましく、より好ましくは700〜2000の範囲である。300未満の場合、繊維が屈曲しにくい為に繊維間の絡み合いが弱くなり、不織布の強度を向上させることができず、また、抄紙性が劣ることがある。一方、3000を超えて大きい場合、例えば、湿式抄造法により低密度不織布を製造した際に、地合いが不均一になることがある。   The fibrous material used in the low density nonwoven fabric of the present invention refers to a material having an aspect ratio (fiber length / fiber diameter) of a certain level or more, and in the present invention, the aspect ratio is preferably in the range of 300 to 3000, more Preferably it is the range of 700-2000. If it is less than 300, the fibers are difficult to bend, so that the entanglement between the fibers becomes weak, the strength of the nonwoven fabric cannot be improved, and the papermaking property may be inferior. On the other hand, when it exceeds 3000, for example, when a low density nonwoven fabric is produced by a wet papermaking method, the texture may be uneven.

本発明の低密度不織布に用いられる繊維状物質の形態は、マルチフィラメント、モノフィラメント、フラットヤーン、ステープルファイバー等を用いることができる。このうち、抄紙性、均一性の点で、ステープルファイバーを用いることが好ましい。また、パルプ状、フィブリル状の繊維を用いることも可能だが、微細な繊維が密に絡み、発泡性物質や嵩高パルプによる低密度化の効果を妨げることがあるため、本発明の効果を阻害しない範囲であれば少量添加することができる。   As the form of the fibrous material used in the low density nonwoven fabric of the present invention, multifilament, monofilament, flat yarn, staple fiber or the like can be used. Of these, it is preferable to use staple fibers in terms of papermaking properties and uniformity. In addition, pulp-like and fibril-like fibers can be used, but fine fibers are closely entangled, which may hinder the effect of reducing the density due to foamable substances and bulky pulp, so the effect of the present invention is not impaired. If it is within the range, a small amount can be added.

繊維状物質には、有機繊維、無機繊維を用いることができる。有機繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びこれらのコポリマー等のポリエステル系繊維、ポリエチレン、ポリプロピレン、ポリスチレン等のポリオレフィン系繊維、ポリアクリロニトリル、モダクリル等のアクリル系繊維、ナイロン6、ナイロン66、ナイロン12等のポリアミド系繊維、ポリビニルアルコール繊維、芳香族ポリアミド繊維、ポリ塩化ビニリデン繊維、ポリ塩化ビニル繊維、ウレタン繊維等の合成繊維、トリアセテート繊維、ジアセテート繊維等の半合成繊維、ビスコースレーヨン、銅アンモニアレーヨン、ポリノジックレーヨン、リヨセル等の再生セルロース系繊維、コラーゲン、アルギン酸、キチン質などを溶液にしたものを紡糸した再生繊維を用いることができる。これらの繊維を構成するポリマーは、ホモポリマー、変性ポリマー、ブレンド、共重合体などの形でも利用でき、また、複数の成分からなる複合繊維を用いても良い。上記の繊維の他に、植物繊維として、ケナフ、竹、麻等のパルプ化していない天然繊維も利用できる。また、断面形状がT型、Y型、三角等の異形断面を有する繊維や、潜在捲縮繊維、機械捲縮繊維を適宜用いることができる。   Organic fiber and inorganic fiber can be used for the fibrous material. Examples of organic fibers include polyester fibers such as polyethylene terephthalate, polybutylene terephthalate and copolymers thereof, polyolefin fibers such as polyethylene, polypropylene, and polystyrene, acrylic fibers such as polyacrylonitrile and modacrylic, nylon 6, nylon 66, and nylon 12. Polyamide fibers such as polyvinyl alcohol fibers, aromatic polyamide fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, urethane fibers, etc., semi-synthetic fibers such as triacetate fibers, diacetate fibers, viscose rayon, copper ammonia Regenerated cellulose fibers such as rayon, polynosic rayon, and lyocell, and regenerated fibers obtained by spinning a solution of collagen, alginic acid, chitin, and the like can be used. The polymer constituting these fibers can be used in the form of a homopolymer, a modified polymer, a blend, a copolymer or the like, or a composite fiber composed of a plurality of components may be used. In addition to the above fibers, non-pulpated natural fibers such as kenaf, bamboo and hemp can be used as plant fibers. In addition, fibers having an irregular cross section such as a T shape, a Y shape, and a triangle, latent crimp fibers, and mechanical crimp fibers can be used as appropriate.

一方、無機繊維としては、ガラス繊維、炭素繊維、金属繊維、岩石繊維(ロック・ファイバー)、チタニア、アルミナ、シリカ等の酸化物繊維を用いることができる。   On the other hand, as the inorganic fibers, glass fibers, carbon fibers, metal fibers, rock fibers (rock fibers), titania, alumina, silica and other oxide fibers can be used.

また、針葉樹パルプ、広葉樹パルプなどの木材パルプや、藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を含む非木材パルプ、更に、古紙、損紙などから得られるパルプ繊維やミクロフィブリル繊維を加えても良いが、これらのパルプ状繊維は比較的繊維間結合が強く、湿式抄造工程のプレスパートにおいて、不織布の構造が密になり、更に、乾燥後の水素結合により固く固着することで、発泡性物質や嵩高パルプによる低密度化の効果を妨げる可能性がある為、本発明の効果を阻害しない範囲であれば少量添加することができる。   In addition, wood pulp such as conifer pulp, hardwood pulp, woods such as straw pulp, bamboo pulp and kenaf pulp, non-wood pulp including herbs, and pulp fiber and microfibril fiber obtained from waste paper, waste paper, etc. However, these pulp-like fibers have relatively strong fiber-to-fiber bonds, and in the press part of the wet papermaking process, the structure of the nonwoven fabric becomes dense, and furthermore, it is firmly fixed by hydrogen bonding after drying. Since there is a possibility that the effect of reducing the density by the foaming substance or bulky pulp may be hindered, a small amount can be added as long as the effect of the present invention is not impaired.

繊維状物質の繊維径に特に制限は無いが、3〜50μmが好ましく、より好ましくは5〜25μmであり、更に好ましくは6〜20μmである。繊維径が3μmよりも細い繊維を用いた場合、十分な嵩高性が得られないことがある。一方、50μmを超えた太い繊維を用いた場合、地合いが不均一になることがある。   Although there is no restriction | limiting in particular in the fiber diameter of a fibrous material, 3-50 micrometers is preferable, More preferably, it is 5-25 micrometers, More preferably, it is 6-20 micrometers. When fibers having a fiber diameter smaller than 3 μm are used, sufficient bulkiness may not be obtained. On the other hand, when thick fibers exceeding 50 μm are used, the texture may be uneven.

発泡性物質、繊維状物質、嵩高パルプの総量に対して、繊維状物質の含有量は40〜98質量%が好ましく、更に好ましくは75〜92質量%である。40質量%未満では、十分な強度、コシが得られないことがあり、一方、98質量%を超えると柔軟性が欠け、加工性が悪くなることがある。   The content of the fibrous substance is preferably 40 to 98% by mass, more preferably 75 to 92% by mass, based on the total amount of the foamable substance, fibrous substance and bulky pulp. If it is less than 40% by mass, sufficient strength and stiffness may not be obtained. On the other hand, if it exceeds 98% by mass, flexibility may be lost and workability may deteriorate.

本発明の低密度不織布に用いられる嵩高パルプとは、分子内架橋反応による化学結合によって、カールやねじれのような変化を固定化したパルプ繊維を指す。嵩高パルプはこのような繊維の形状の変化によって嵩高さを得ている。嵩高パルプは架橋処理によりセルロース分子の水酸基(−OH基)が減少する為、木材パルプや、非木材パルプ、ミクロフィブリル繊維等の繊維と比較すると繊維間結合が弱いが、高融点のポリエステル、ポリプロピレン、ナイロン等の合成繊維、炭素繊維、ガラス繊維等の無機繊維や、パルプ化していないケナフ、竹、麻等天然繊維など繊維間結合を形成し難い繊維と共に混抄すると、嵩高パルプの繊維間結合によって抄紙性及び熱寸法安定性の向上を図ることができる。   The bulky pulp used in the low-density nonwoven fabric of the present invention refers to pulp fibers in which changes such as curling and twisting are fixed by chemical bonding by intramolecular crosslinking reaction. Bulky pulp is bulky due to such changes in fiber shape. Bulky pulp has a lower hydroxyl group (-OH group) of cellulose molecules due to cross-linking treatment, so the bond between fibers is weaker than that of wood pulp, non-wood pulp, microfibril fiber, etc., but high melting point polyester, polypropylene When mixed with fibers that are difficult to form an interfiber bond, such as synthetic fibers such as nylon, carbon fibers, glass fibers, and other non-pulpated natural fibers such as kenaf, bamboo, and hemp, It is possible to improve papermaking properties and thermal dimensional stability.

更に、発泡性物質を用いて、湿式抄造法により低密度不織布を製造する場合、発泡性物質と繊維状物質とで抄造すると、不織布内に発泡性物質を効率良く留めることができない為、発泡性物質が流出し、結果として十分な低密度化が図れないことになる。一方、繊維状物質と発泡性物質に木材パルプ、非木材パルプ、ミクロフィブリル繊維等の微細繊維を配合することにより、不織布内に発泡性物質を効率良く留めることができるが、木材パルプ、非木材パルプ、ミクロフィブリル繊維等の微細繊維は繊維間結合が強い為に、発泡性カプセルの発泡膨張を抑制してしまい、結果として十分な低密度化が図れないことになる。発泡性物質と繊維状物質と嵩高パルプを用いて、湿式抄造法により得られた本発明の低密度不織布では、不織布内に効率良く発泡性物質が留まると共に、発泡性物質の発泡、膨張時に嵩高パルプの交絡が緩むことで効率的な発泡、膨張効果が発現し、更に嵩高パルプの嵩高効果により、抄紙性と嵩高性に優れた低密度不織布を得ることができる。   Furthermore, when a low density nonwoven fabric is produced by a wet papermaking method using a foamable material, if the paper is made with a foamable material and a fibrous material, the foamable material cannot be efficiently retained in the nonwoven fabric. The material flows out, and as a result, sufficient density reduction cannot be achieved. On the other hand, by adding fine fibers such as wood pulp, non-wood pulp, and microfibril fiber to the fibrous material and foamable material, the foamable material can be efficiently retained in the nonwoven fabric. Since fine fibers such as pulp and microfibril fiber have strong inter-fiber bonds, the expansion of the expandable capsules is suppressed, and as a result, sufficient density reduction cannot be achieved. In the low density nonwoven fabric of the present invention obtained by a wet papermaking method using foamable material, fibrous material and bulky pulp, the foamable material stays efficiently in the nonwoven fabric and is bulky when the foamable material expands and expands. By loosening the entanglement of the pulp, efficient foaming and expansion effects are exhibited, and further, the bulky effect of the bulky pulp makes it possible to obtain a low density nonwoven fabric excellent in papermaking properties and bulkiness.

発泡性物質、繊維状物質、嵩高パルプの総量に対して、嵩高パルプの含有量は、1〜40質量%が好ましく、より好ましくは5〜15質量%である。1質量%未満では、抄紙性が劣ったり、低密度化の効果が不十分になることがある。一方、40質量%を超えると、強度、コシが弱くなりやすく、また、均一性が損なわれることがある。   As for content of bulky pulp, 1-40 mass% is preferable with respect to the total amount of a foamable substance, a fibrous material, and bulky pulp, More preferably, it is 5-15 mass%. If it is less than 1% by mass, the paper-making property may be inferior or the effect of reducing the density may be insufficient. On the other hand, if it exceeds 40% by mass, the strength and stiffness tend to be weak, and the uniformity may be impaired.

本発明の低密度不織布の乾燥質量は、特に制限は無いが、40〜2000g/mの範囲が好ましく、より好ましくは100〜1500g/mである。40g/mより軽いと十分な強度とコシが得られないことがあり、2000g/mを超えると柔軟性や風合いの点で劣ることがある。 Dry weight of the low density nonwoven fabric of the present invention is not particularly limited, but preferably in the range of 40~2000g / m 2, more preferably from 100 to 1500 g / m 2. If it is lighter than 40 g / m 2 , sufficient strength and stiffness may not be obtained, and if it exceeds 2000 g / m 2 , flexibility and texture may be inferior.

本発明の低密度不織布には、本発明の範囲を阻害しない範囲であれば、繊維状物質として、熱融着性バインダー有機繊維を用いることができる。熱融着性バインダー有機繊維を含有させて、熱融着性バインダー有機繊維の溶融温度以上に不織布の温度を上げる工程を製造工程に組み入れることで、低密度不織布の熱寸法安定性や機械的強度が向上する。ただし、熱融着性バインダー有機繊維の配合量が多すぎたり、熱融着性バインダー有機繊維の溶融温度よりも発泡性物質の発泡開始温度が低い場合、十分な強度が得られなかったり、発泡性物質の発泡、膨張効果が損なわれることがある。熱融着性バインダー有機繊維の溶融温度には特に制限は無いが、発泡性物質の発泡開始温度より低い方が好ましい。なお、ここで言う発泡開始温度とは、熱機械分析装置(TMA)(TA instruments製、商品名:TMA2940)を用いて、直径7mm、深さ1mmの円筒形のアルミ製容器に入れた250μgの発泡性物質に、上方から0.1Nの力を加えた状態で5℃/minで80℃から220℃まで加熱した際、加圧端子が垂直方向に変位を開始する温度のことである。   In the low-density nonwoven fabric of the present invention, a heat-fusible binder organic fiber can be used as the fibrous material as long as it does not interfere with the scope of the present invention. Thermal dimensional stability and mechanical strength of low-density nonwoven fabrics by incorporating a process that raises the temperature of the nonwoven fabric above the melting temperature of the thermally fusible binder organic fiber by including the heat-fusible binder organic fiber. Will improve. However, if the blending amount of the heat-fusible binder organic fiber is too large, or if the foaming start temperature of the foamable material is lower than the melting temperature of the heat-fusible binder organic fiber, sufficient strength cannot be obtained, The foaming and expansion effects of the active substance may be impaired. The melting temperature of the heat-fusible binder organic fiber is not particularly limited, but is preferably lower than the foaming start temperature of the foamable substance. In addition, the foaming start temperature said here is 250 micrograms put into the cylindrical aluminum container of diameter 7mm and depth 1mm using the thermomechanical analyzer (TMA) (The product made from TA instruments, TMA2940). When the foaming material is heated from 80 ° C. to 220 ° C. at 5 ° C./min with a force of 0.1 N applied from above, it is the temperature at which the pressure terminal starts to be displaced in the vertical direction.

熱融着性バインダー有機繊維としては、単繊維の他、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)などの複合繊維が挙げられる。複合繊維は、不織布表面に皮膜を形成しにくいので、機械的強度を向上させることができる。熱融着性バインダー有機繊維としては、例えばポリプロピレン(芯)と、ポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせが挙げられる。また、ポリエチレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲であれば使用することができる。   Examples of the heat-fusible binder organic fibers include single fibers, and composite fibers such as core-sheath fibers (core-shell type) and parallel fibers (side-by-side type). Since the composite fiber hardly forms a film on the surface of the nonwoven fabric, the mechanical strength can be improved. Examples of the heat-fusible binder organic fiber include a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a high-melting polyester (core) and a low-melting polyester (sheath). ). In addition, single fibers composed of only low-melting resins such as polyethylene (fully fused type) and hot water-soluble binders such as polyvinyl alcohol are easy to form a film in the drying process, but do not impair the properties. Can be used if present.

次に、本発明の低密度不織布の製造法について説明を行う。本発明の低密度不織布は湿式抄造法で製造する。不織布を製造する方法としては湿式抄造法以外に、「不織布便覧」(1996年、株式会社不織布情報刊、p62〜70)で述べられているように、混開繊法、カーディング法、ランダムウエビング法、スパンボンド法、タテヨコ積層法などが挙げられているが、これらの方法は乾式法と呼ばれ、通常、繊維長50mm以上の長繊維や連続した糸状の繊維を主に加工する方法である。乾式法では、不織布の製造時に発泡性物質を不織布内に均一に分散させることが難しいだけでなく、不織布の高機能化のために、複数種類の繊維を使用するのが困難なことがある。   Next, the manufacturing method of the low density nonwoven fabric of this invention is demonstrated. The low density nonwoven fabric of the present invention is produced by a wet papermaking method. As a method for producing the nonwoven fabric, in addition to the wet papermaking method, as described in “Nonwoven Fabric Handbook” (1996, Nonwoven Fabric Information, p. 62-70), the mixed spread fiber method, carding method, random webbing Method, spunbond method, vertical lamination method, etc. are mentioned, but these methods are called dry methods, and are usually methods for mainly processing long fibers having a fiber length of 50 mm or more and continuous filamentous fibers. . In the dry method, not only is it difficult to uniformly disperse the foamable substance in the nonwoven fabric during the production of the nonwoven fabric, but it may be difficult to use a plurality of types of fibers in order to improve the functionality of the nonwoven fabric.

湿式抄造法の場合、発泡性物質を水中に懸濁、分散した状態で不織布を製造できることから、発泡性物質を均一に不織布内に分散することが可能であり、また、任意の種類の繊維状物質を水中に懸濁、分散することにより、複数種類の繊維状物質から構成される不織布を得ることができる。本発明においては、発泡性物質と繊維状物質と嵩高パルプとを水中に投入し、パルパー等の回転式の装置で、離解、混合する。また、各種繊維と発泡性物質を均一に分散する必要があることから、分散水に分散剤として界面活性剤を添加することが好ましい。界面活性剤は、アニオン系、カチオン系、ノニオン系、両性に分類される。アニオン系界面活性剤としては、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステルなどが挙げられる。カチオン系界面活性剤としては、アミン塩、アンモニウム塩などが挙げられる。ノニオン系界面活性剤としてはエーテル型、エステル型、アミノエーテル型などが挙げられる。これらの中から繊維の分散性の良好なものを適宜選択し、用いれば良い。また、ここに記載していないものでも繊維の分散性の良好なものであれば問題ない。均一に混合分散した繊維の分散安定性を向上させる為に、例えばアニオン系ポリアクリルアミドやポリエチレンオキサイド等の水溶液を、繊維分散液または白水中に添加することによって、地合いが更に向上する。   In the case of the wet papermaking method, since the nonwoven fabric can be produced in a state where the foamable material is suspended and dispersed in water, it is possible to uniformly disperse the foamable material in the nonwoven fabric, and any kind of fibrous material By suspending and dispersing the substance in water, a nonwoven fabric composed of a plurality of types of fibrous substances can be obtained. In the present invention, the foamable substance, the fibrous substance and the bulky pulp are put into water and disaggregated and mixed by a rotary apparatus such as a pulper. Moreover, since it is necessary to disperse | distribute various fibers and a foamable substance uniformly, it is preferable to add surfactant as a dispersing agent to dispersion water. Surfactants are classified into anionic, cationic, nonionic and amphoteric. Examples of the anionic surfactant include carboxylate, sulfate ester salt, sulfonate salt, and phosphate ester. Examples of the cationic surfactant include amine salts and ammonium salts. Nonionic surfactants include ether type, ester type, amino ether type and the like. Of these, those having good fiber dispersibility may be appropriately selected and used. Further, even if not described here, there is no problem as long as the dispersibility of the fibers is good. In order to improve the dispersion stability of uniformly mixed and dispersed fibers, for example, an aqueous solution such as anionic polyacrylamide or polyethylene oxide is added to the fiber dispersion or white water to further improve the texture.

このようにして、濃度0.1〜0.3質量%程度の繊維懸濁液(水性スラリー)を調製し、次いで、繊維懸濁液を用い、長網、短網、円網等の抄造ワイヤーを少なくとも一つ有する抄紙機で抄造し、余分な水分を吸引あるいはウェットプレスなどの方法で取り除いた後、乾燥させる。乾燥には、ヤンキードライヤー、シリンダードライヤー、エアドライヤー、赤外線ドライヤー、サクションドライヤー等の乾燥装置を用いることができる。乾燥温度は、発泡性物質の発泡開始温度や、その後の工程を考慮して適時決定すると良い。   In this way, a fiber suspension (aqueous slurry) having a concentration of about 0.1 to 0.3% by mass is prepared, and then, using the fiber suspension, a paper-making wire such as a long net, a short net, or a circular net The paper is made with a paper machine having at least one, and excess water is removed by a method such as suction or wet pressing, followed by drying. For drying, a drying device such as a Yankee dryer, a cylinder dryer, an air dryer, an infrared dryer, or a suction dryer can be used. The drying temperature is preferably determined in a timely manner in consideration of the foaming start temperature of the foamable material and subsequent processes.

未発泡の発泡性物質を添加した場合、発泡性物質の発泡は、乾燥の際のドライヤー工程で行っても良いが、乾燥後に発泡工程を設けても良く、製造条件やその後の加工条件によって適宜選択するのが好ましい。乾燥工程と発泡工程を分ける場合は、発泡性物質の発泡程度を制御するために、発泡性物質の発泡開始温度以下かつ水分が実質上完全に除去される温度にて乾燥を行うことが好ましい。   When an unfoamed foamable material is added, foaming of the foamable material may be performed in a dryer process at the time of drying, but a foaming process may be provided after drying, depending on manufacturing conditions and subsequent processing conditions. It is preferable to select. In the case where the drying step and the foaming step are separated, it is preferable to perform drying at a temperature not higher than the foaming start temperature of the foamable material and at a temperature at which moisture is substantially completely removed in order to control the degree of foaming of the foamable material.

また、発泡性物質を不織布に付与させる方法としては、他の繊維状物質と共に分散、混合し、湿式抄造法にて混抄するのが好ましいが、他に発泡性物質を散布したり、含浸することによって、不織布に付与することも可能である。しかし、この場合、不織布内部に均一に分布し難い為、厚み・密度の不均一化の原因となることがある。   In addition, as a method for imparting the foamable material to the nonwoven fabric, it is preferable to disperse and mix together with other fibrous materials, and then the wet papermaking method to mix, but it is also possible to spray or impregnate the foamable material. Can also be applied to the nonwoven fabric. However, in this case, since it is difficult to uniformly distribute inside the nonwoven fabric, it may cause uneven thickness and density.

本発明の低密度不織布は、この他の繊維シート、織布、不織布、フィルム、膜などと積層することが可能である。また、本発明の低密度不織布同士の積層も可能である。   The low density nonwoven fabric of the present invention can be laminated with other fiber sheets, woven fabrics, nonwoven fabrics, films, membranes and the like. Moreover, lamination of the low density nonwoven fabrics of the present invention is also possible.

本発明の低密度不織布は、撥水剤、難燃剤、バインダーなどの薬品を添加し、所望の機能を付与することができる。これらの薬品は、抄造時、もしくは抄造、乾燥後に含浸、塗布するなどして、低密度不織布に付与することが可能である。   The low density nonwoven fabric of this invention can add chemicals, such as a water repellent, a flame retardant, and a binder, and can provide a desired function. These chemicals can be applied to the low density nonwoven fabric at the time of papermaking or by impregnation and coating after papermaking and drying.

以下、実施例によって本発明を更に詳しく説明するが、本発明はこの実施例に限定されるものではない。なお、実施例中の部数や百分率は質量基準である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this Example. In addition, the number of parts and percentage in an Example are based on mass.

実施例1
発泡性物質として用いた熱膨張性マイクロカプセル(積水化学工業製、商品名:ADVANCELL EMH203、粒子径38〜44μm、最大発泡温度約160℃)は1質量%で水に分散し、2種類の高分子系凝集剤(明成化学工業製、商品名:ファイレックスM、セラフィックスST)をカプセル質量に対し、それぞれ0.6質量%量添加して凝集体を形成させた。また、繊維状物質として、繊維径9μm×繊維長6mmのガラス繊維と繊維径11μm×繊維長5mmのポリエチレンテレフタレート(PET)/低融点PETの芯鞘繊維を用いた。ガラス繊維とPET/低融点PETの芯鞘繊維との割合は7:1とした。繊維状物質は、繊維状物質全量に対し1質量%のポリエチレングリコール脂肪酸エステル系非イオン性界面活性剤を加えた水中で分散した。嵩高パルプ(Weyerhaeuser製、商品名:TR−993)も、嵩高パルプ全量に対し1質量%のポリエチレングリコール脂肪酸エステル系非イオン性界面活性剤を加えた水中で分散した。これらは、発泡性物質:繊維状物質:嵩高パルプ=10:80:10となるよう混合し、固形分濃度を0.2質量%に調製して乾燥質量で200g/mになるよう円網抄紙機で抄造した。乾燥はシリンダードライヤーにて130℃、2分間行い、不織布を得た。得られた不織布は、160℃の熱風乾燥機内で更に2分加熱し、熱膨張性マイクロカプセルを膨張させることで低密度不織布を得た。
Example 1
Thermally expandable microcapsules (trade name: ADVANCEL EMH203, particle size: 38 to 44 μm, maximum foaming temperature of about 160 ° C.) used as a foaming substance are dispersed in water at 1% by mass and are two types of high A molecular flocculant (manufactured by Meisei Kagaku Kogyo Co., Ltd., trade name: Pyrex M, Serafix ST) was added in an amount of 0.6% by mass with respect to the capsule mass to form aggregates. As the fibrous material, glass fiber having a fiber diameter of 9 μm × fiber length of 6 mm and polyethylene terephthalate (PET) / low melting point PET core-sheath fiber having a fiber diameter of 11 μm × fiber length of 5 mm were used. The ratio of glass fiber to PET / low melting point PET core-sheath fiber was 7: 1. The fibrous material was dispersed in water to which 1% by mass of a polyethylene glycol fatty acid ester nonionic surfactant was added based on the total amount of the fibrous material. Bulky pulp (manufactured by Weyerhaeuser, trade name: TR-993) was also dispersed in water to which 1% by mass of a polyethylene glycol fatty acid ester nonionic surfactant was added based on the total amount of bulky pulp. These are mixed so that foaming substance: fibrous substance: bulky pulp = 10: 80: 10, and the solid content concentration is adjusted to 0.2% by mass so that the dry mass becomes 200 g / m 2. Paper was made with a paper machine. Drying was performed with a cylinder dryer at 130 ° C. for 2 minutes to obtain a nonwoven fabric. The obtained nonwoven fabric was further heated for 2 minutes in a hot air dryer at 160 ° C. to expand the thermally expandable microcapsules to obtain a low density nonwoven fabric.

実施例2
発泡性物質:繊維状物質:嵩高パルプ=0.8:89.2:10とした以外は、実施例1と同様にして実施例2の低密度不織布を得た。
Example 2
A low-density nonwoven fabric of Example 2 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 0.8: 89.2: 10.

実施例3
発泡性物質:繊維状物質:嵩高パルプ=1:89:10とした以外は、実施例1と同様にして実施例3の低密度不織布を得た。
Example 3
A low-density nonwoven fabric of Example 3 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 1: 89: 10.

実施例4
発泡性物質:繊維状物質:嵩高パルプ=20:70:10とした以外は、実施例1と同様にして実施例4の低密度不織布を得た。
Example 4
A low-density nonwoven fabric of Example 4 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 20: 70: 10.

実施例5
発泡性物質:繊維状物質:嵩高パルプ=23:67:10とした以外は、実施例1と同様にして実施例5の低密度不織布を得た。
Example 5
A low-density nonwoven fabric of Example 5 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 23: 67: 10.

実施例6
発泡性物質:繊維状物質:嵩高パルプ=10:89.2:0.8とした以外は、実施例1と同様にして実施例6の低密度不織布を得た。
Example 6
A low-density nonwoven fabric of Example 6 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 10: 89.2: 0.8.

実施例7
発泡性物質:繊維状物質:嵩高パルプ=10:89:1とした以外は、実施例1と同様にして実施例7の低密度不織布を得た。
Example 7
A low-density nonwoven fabric of Example 7 was obtained in the same manner as in Example 1 except that foaming material: fibrous material: bulky pulp = 10: 89: 1.

実施例8
発泡性物質:繊維状物質:嵩高パルプ=10:50:40とした以外は、実施例1と同様にして実施例8の低密度不織布を得た。
Example 8
A low-density nonwoven fabric of Example 8 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 10: 50: 40.

実施例9
発泡性物質:繊維状物質:嵩高パルプ=10:45:45とした以外は、実施例1と同様にして実施例9の低密度不織布を得た。
Example 9
A low-density nonwoven fabric of Example 9 was obtained in the same manner as Example 1 except that foamable material: fibrous material: bulky pulp = 10: 45: 45.

実施例10
繊維径11μm×繊維長5mmのポリエチレンテレフタレート(PET)/低融点PETの芯鞘繊維を繊維径9μm×繊維長6mmのガラス繊維に置き換えた他は、実施例1と同様にして実施例10の低密度不織布を得た。
Example 10
Example 10 is the same as Example 1 except that the core-sheath fiber of polyethylene terephthalate (PET) / low melting point PET having a fiber diameter of 11 μm × fiber length of 5 mm is replaced with a glass fiber having a fiber diameter of 9 μm × fiber length of 6 mm. A density nonwoven fabric was obtained.

実施例11
繊維状物質として繊維径9μm×繊維長6mmのガラス繊維の代わりに繊維径10μm×繊維長3mmのポリプロピレン繊維を用い、発泡性物質:繊維状物質:嵩高パルプ=10:80:10とした以外は、実施例1と同様にして実施例11の低密度不織布を得た。
Example 11
A polypropylene material having a fiber diameter of 10 μm × a fiber length of 3 mm was used in place of the glass fiber having a fiber diameter of 9 μm × fiber length of 6 mm as the fibrous material, and the foamable material: fibrous material: bulky pulp = 10: 80: 10 was used. The low density nonwoven fabric of Example 11 was obtained in the same manner as Example 1.

実施例12
繊維径9μm×繊維長6mmのガラス繊維のうち50質量%を、繊維径10μm×繊維長3mmのポリプロピレン繊維に置き換えた以外は、実施例1と同様にして実施例12の低密度不織布を得た。
Example 12
A low-density nonwoven fabric of Example 12 was obtained in the same manner as in Example 1 except that 50% by mass of glass fiber having a fiber diameter of 9 μm × fiber length of 6 mm was replaced with polypropylene fiber having a fiber diameter of 10 μm × fiber length of 3 mm. .

実施例13
発泡性物質として用いた熱膨張性マイクロカプセルを、熱膨張性マイクロカプセル(積水化学工業製、商品名:ADVANCELL EMH−301、粒子径23〜29μm、最大発泡温度約160℃)に変更した以外は実施例1と同様にして実施例13の低密度不織布を得た。
Example 13
The heat-expandable microcapsule used as the foamable substance was changed to a heat-expandable microcapsule (manufactured by Sekisui Chemical Co., Ltd., trade name: ADVANCEL EMH-301, particle size 23-29 μm, maximum foaming temperature about 160 ° C.) The low density nonwoven fabric of Example 13 was obtained in the same manner as Example 1.

比較例1
発泡性物質:繊維状物質:嵩高パルプ=0:88:12とした以外は、実施例1と同様にして比較例1の低密度不織布を得た。
Comparative Example 1
A low-density nonwoven fabric of Comparative Example 1 was obtained in the same manner as in Example 1 except that foaming material: fibrous material: bulky pulp = 0: 88: 12.

比較例2
発泡性物質:繊維状物質:嵩高パルプ=12:88:0とした以外は、実施例1と同様にして比較例2の低密度不織布を得た。
Comparative Example 2
A low-density nonwoven fabric of Comparative Example 2 was obtained in the same manner as Example 1 except that foaming material: fibrous material: bulky pulp = 12: 88: 0.

比較例3
嵩高パルプの代わりに未叩解のNBKP(濾水度600mlCSF)を用いた以外は実施例1と同様にして比較例3の低密度不織布を得た。
Comparative Example 3
A low density nonwoven fabric of Comparative Example 3 was obtained in the same manner as in Example 1 except that unbeaten NBKP (freeness 600 mlCSF) was used instead of bulky pulp.

比較例4
発泡性物質:繊維状物質:嵩高パルプ=20:0:80とした以外は実施例1と同様にして比較例4の低密度不織布を得た。
Comparative Example 4
A low density nonwoven fabric of Comparative Example 4 was obtained in the same manner as in Example 1 except that foaming material: fibrous material: bulky pulp = 20: 0: 80.

比較例5
発泡性物質:繊維状物質:嵩高パルプ=0:100:0とした以外は実施例1と同様にして比較例5の低密度不織布を得た。
Comparative Example 5
A low density nonwoven fabric of Comparative Example 5 was obtained in the same manner as in Example 1 except that foaming material: fibrous material: bulky pulp = 0: 100: 0.

上記の実施例1〜13、比較例1〜5で作製した低密度不織布について、下記の評価方法により評価し、その結果を表1に示した。   About the low density nonwoven fabric produced in said Examples 1-13 and Comparative Examples 1-5, it evaluated by the following evaluation method and the result was shown in Table 1.

(1)密度の評価
測定方法
密度:JIS P8118に準ずる。
(1) Density Evaluation Measurement Method Density: Conforms to JIS P8118.

(2)熱寸法安定性の評価
160℃、2分間の加熱処理(熱膨張性マイクロカプセルの発泡工程)を行っていない、抄造、乾燥後の不織布を100mm×100mmの大きさに切断する。これを160℃で2分間加熱し、この時の各辺の長さの平均(mm)を測定し、下記の式より寸法変化率を算出する。
寸法変化率(%)=160℃、2分間加熱後の各辺の長さの平均(mm)/100(mm)×100
(2) Evaluation of thermal dimensional stability The non-woven fabric after papermaking and drying, which has not been subjected to heat treatment at 160 ° C. for 2 minutes (foaming process of thermally expandable microcapsules), is cut into a size of 100 mm × 100 mm. This is heated at 160 ° C. for 2 minutes, the average length (mm) of each side at this time is measured, and the dimensional change rate is calculated from the following formula.
Dimensional change rate (%) = 160 ° C. Average length of each side after heating for 2 minutes (mm) / 100 (mm) × 100

(3)抄紙性の評価
抄紙性は以下の4段階で評価した。
◎ 抄造ワイヤーからきれいに剥がれる。
○ 抄造ワイヤーに毛羽が数本残る。
△ 抄造ワイヤーに毛羽が若干残るが、問題ない範囲。
× 抄造ワイヤーに毛羽がかなり残る。
(3) Evaluation of papermaking property Papermaking property was evaluated in the following four stages.
◎ It peels cleanly from the paper making wire.
○ Some fluff remains on the paper making wire.
△ Some fluff remains on the paper making wire, but there is no problem.
× A lot of fuzz remains on the papermaking wire.

(4)コシの評価
20cm×20cmに切断した低密度不織布を曲げるなどして触り、コシを3段階で評価した。評価はモニター6名によって行われ、各人がそれぞれ評価した等級の最多数をその等級とした。
○ 適度な柔軟性とコシを有している。
△ やや柔らかいが問題ないレベルのコシを有している。
× かなり柔らかく、コシが弱い。もしくは硬すぎて風合いが劣る。
(4) Evaluation of stiffness The low density nonwoven fabric cut into 20 cm x 20 cm was touched by bending or the like, and the stiffness was evaluated in three stages. Evaluation was performed by 6 monitors, and the highest number of grades evaluated by each person was taken as that grade.
○ It has moderate flexibility and stiffness.
△ Slightly soft but has a problem-free stiffness.
× It is quite soft and weak. Or it is too hard and the texture is inferior.

(5)均一性の評価
300mm×200mmの試験片を採取し、JIS Z8703(試験場所の標準状態)に規定する温度20℃、相対温度65%の試験室に24時間放置し、水分平衡に調整後、各試験片において試験片の縁を50mmおきに20点、不織布厚み計(テクロック製)にて厚みを測定した(単位:mm)。得られた20点の厚みに関して標準偏差を算出し、下記の通り均一性を評価した。
○ 標準偏差0.2未満
△ 標準偏差0.2以上0.3未満
× 標準偏差0.3以上
(5) Uniformity evaluation A test piece of 300 mm x 200 mm was collected and left in a test room at a temperature of 20 ° C and a relative temperature of 65% as specified in JIS Z8703 (standard condition at the test site) for 24 hours to adjust the moisture balance. After that, the thickness of each test piece was measured with a nonwoven fabric thickness meter (manufactured by TECKOT) at 20 points every 50 mm on the edge of the test piece (unit: mm). The standard deviation was calculated with respect to the obtained thickness of 20 points, and the uniformity was evaluated as follows.
○ Standard deviation less than 0.2 △ Standard deviation 0.2 or more and less than 0.3 × Standard deviation 0.3 or more

Figure 2010196220
Figure 2010196220

表1から明らかなように、発泡性物質と嵩高パルプと繊維状物質とを混抄した実施例1〜13の低密度不織布は、嵩高性、均一性、熱寸法安定性に優れている。   As is clear from Table 1, the low-density nonwoven fabrics of Examples 1 to 13 in which the foamable material, the bulky pulp, and the fibrous material are mixed are excellent in bulkiness, uniformity, and thermal dimensional stability.

これに対し、比較例1の低密度不織布では、発泡性物質を含有していない為、密度が高くなった。比較例2の低密度不織布では、嵩高パルプを含有していない為、密度が高く、均一性、熱寸法安定性も悪かった。また、嵩高パルプの代わりに未叩解パルプを使用した比較例3の低密度不織布では、未叩解パルプ繊維同士の結合が強く、発泡性物質による十分な低密度化の効果を得ることができなかった。比較例4の低密度不織布では、繊維状物質を含有していないため、コシが弱く、また、均一性も悪い。比較例5の低密度不織布では、発泡性物質及び嵩高パルプを含有していない為、密度が高くなり、また、抄紙性も悪かった。   On the other hand, since the low density nonwoven fabric of Comparative Example 1 did not contain a foamable substance, the density was high. Since the low density nonwoven fabric of Comparative Example 2 did not contain bulky pulp, the density was high, and uniformity and thermal dimensional stability were also poor. Moreover, in the low density nonwoven fabric of the comparative example 3 which used unbeaten pulp instead of bulky pulp, the coupling | bonding of unbeaten pulp fibers was strong, and it was not able to acquire the effect of sufficient density reduction by a foamable substance. . Since the low density nonwoven fabric of Comparative Example 4 does not contain a fibrous material, the stiffness is weak and the uniformity is poor. The low density nonwoven fabric of Comparative Example 5 contained no foamable substance and bulky pulp, so the density was high and papermaking properties were also poor.

発泡性物質と嵩高パルプと繊維状物質との総量に対して、発泡性物質の含有量が1質量%未満の実施例2の低密度不織布では、密度が僅かであるが高くなった。また、発泡性物質の含有量が20質量%より大きい実施例5の低密度不織布は、抄紙性と均一性が低下する傾向が見られた。   In the low density nonwoven fabric of Example 2 in which the content of the foamable material was less than 1% by mass with respect to the total amount of the foamable material, the bulky pulp, and the fibrous material, the density was slightly higher but higher. Moreover, the low density nonwoven fabric of Example 5 in which the content of the foamable substance is larger than 20% by mass showed a tendency for papermaking properties and uniformity to be lowered.

発泡性物質と嵩高パルプと繊維状物質との総量に対して、嵩高パルプの含有量が1質量%未満の実施例6の低密度不織布は、熱寸法安定性と抄紙性が僅かであるが低下した。また、嵩高パルプの含有量が40質量%より大きい実施例9の低密度不織布は、コシが弱くなる傾向と均一性がやや低下する傾向が見られた。   The low-density nonwoven fabric of Example 6 having a bulky pulp content of less than 1% by mass with respect to the total amount of foamable material, bulky pulp, and fibrous material has a slight decrease in thermal dimensional stability and papermaking properties. did. Moreover, the tendency for the low density nonwoven fabric of Example 9 in which the content of bulky pulp is larger than 40% by mass to be weaker and the uniformity to be slightly reduced was observed.

本発明の低密度不織布は、嵩高性、均一性、熱寸法安定性に優れると共に、複数の種類の繊維状物質を組み合わせたり、配合比率を変えることで、所望の特性を備えさせることができ、クッション材、断熱材、吸音材、フィルター材に用いることができ、各種補強材、建材、床材などへの応用が可能である。   The low-density nonwoven fabric of the present invention is excellent in bulkiness, uniformity, thermal dimensional stability, and can be provided with desired characteristics by combining a plurality of types of fibrous substances or changing the blending ratio. It can be used for cushion materials, heat insulating materials, sound absorbing materials, filter materials, and can be applied to various reinforcing materials, building materials, floor materials, and the like.

Claims (3)

発泡性物質、繊維状物質、嵩高パルプを含有してなる湿式抄造法により得られた低密度不織布。   A low-density nonwoven fabric obtained by a wet papermaking method comprising a foamable material, a fibrous material, and a bulky pulp. 発泡性物質、繊維状物質、嵩高パルプの総量に対して、発泡性物質を1〜20質量%含有する請求項1記載の低密度不織布。   The low-density nonwoven fabric according to claim 1, comprising 1 to 20% by mass of the foamable material with respect to the total amount of the foamable material, the fibrous material, and the bulky pulp. 発泡性物質、繊維状物質、嵩高パルプの総量に対して、嵩高パルプを1〜40質量%含有する、請求項1または2に記載の低密度不織布。   The low-density nonwoven fabric according to claim 1 or 2, comprising 1 to 40% by mass of bulky pulp with respect to the total amount of foamable material, fibrous material, and bulky pulp.
JP2009045464A 2009-02-27 2009-02-27 Low density nonwoven fabric Pending JP2010196220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045464A JP2010196220A (en) 2009-02-27 2009-02-27 Low density nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045464A JP2010196220A (en) 2009-02-27 2009-02-27 Low density nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2010196220A true JP2010196220A (en) 2010-09-09

Family

ID=42821217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045464A Pending JP2010196220A (en) 2009-02-27 2009-02-27 Low density nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2010196220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126233A (en) * 2010-12-15 2012-07-05 Yokohama Rubber Co Ltd:The Pneumatic tire
KR20140072151A (en) * 2011-09-30 2014-06-12 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Method of forming a web from fibrous materials
JP2017057511A (en) * 2015-09-14 2017-03-23 明成化学工業株式会社 Dispersant for wet type paper, dispersion composition for wet type paper and fiber sheet
WO2020138268A1 (en) * 2018-12-27 2020-07-02 清水建設株式会社 Simple house

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230798A (en) * 1992-02-18 1993-09-07 Oji Paper Co Ltd Production of bulking paper
JPH11200282A (en) * 1997-12-26 1999-07-27 Mitsubishi Paper Mills Ltd Low density paper
JP2000034695A (en) * 1991-10-31 2000-02-02 Oji Paper Co Ltd Foam particle-incorporated paper
JP2006028654A (en) * 2004-07-13 2006-02-02 Meisei Kagaku Kogyo Kk Thermally foamable sheet and method for producing the same, and method for producing low density foamed sheet using the thermally foamable sheet
JP2006336186A (en) * 1994-03-25 2006-12-14 Weyerhaeuser Co Individualized chemically crosslinked high-bulk cellulosic fiber comprising chemically intra-fiber crosslinked cellulosic fiber
JP2009235627A (en) * 2008-03-27 2009-10-15 Uni Charm Corp Heat expandable particle-containing bulky paper and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034695A (en) * 1991-10-31 2000-02-02 Oji Paper Co Ltd Foam particle-incorporated paper
JPH05230798A (en) * 1992-02-18 1993-09-07 Oji Paper Co Ltd Production of bulking paper
JP2006336186A (en) * 1994-03-25 2006-12-14 Weyerhaeuser Co Individualized chemically crosslinked high-bulk cellulosic fiber comprising chemically intra-fiber crosslinked cellulosic fiber
JPH11200282A (en) * 1997-12-26 1999-07-27 Mitsubishi Paper Mills Ltd Low density paper
JP2006028654A (en) * 2004-07-13 2006-02-02 Meisei Kagaku Kogyo Kk Thermally foamable sheet and method for producing the same, and method for producing low density foamed sheet using the thermally foamable sheet
JP2009235627A (en) * 2008-03-27 2009-10-15 Uni Charm Corp Heat expandable particle-containing bulky paper and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126233A (en) * 2010-12-15 2012-07-05 Yokohama Rubber Co Ltd:The Pneumatic tire
KR20140072151A (en) * 2011-09-30 2014-06-12 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Method of forming a web from fibrous materials
JP2014531526A (en) * 2011-09-30 2014-11-27 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Method for forming a web from a fibrous material
KR101986673B1 (en) 2011-09-30 2019-06-07 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Method of forming a web from fibrous materials
US10703668B2 (en) 2011-09-30 2020-07-07 Owens Corning Intellectual Capital, Llc Method of forming a web from fibrous material
US11939255B2 (en) 2011-09-30 2024-03-26 Owens Corning Intellectual Capital, Llc Method of forming a web from fibrous material
JP2017057511A (en) * 2015-09-14 2017-03-23 明成化学工業株式会社 Dispersant for wet type paper, dispersion composition for wet type paper and fiber sheet
WO2020138268A1 (en) * 2018-12-27 2020-07-02 清水建設株式会社 Simple house
JP2020105830A (en) * 2018-12-27 2020-07-09 清水建設株式会社 Simple house

Similar Documents

Publication Publication Date Title
EP0491383B1 (en) Nonwoven fabric and production method thereof
EP2781652B1 (en) Wet-laid nonwoven comprising nanofibrillar cellulose and a method of manufacturing such
CN109518519B (en) Flame-retardant sheet
JPH10507792A (en) Nonwoven material containing a mixture of pulp fibers and long hydrophilic plant fibers and method for producing the nonwoven material
JP2009079329A (en) Sustained release nonwoven fabric and method for producing the same
JP6436096B2 (en) Manufacturing method of total heat exchange element
US20220127792A1 (en) Fibrous sheet with improved properties
JP2010196220A (en) Low density nonwoven fabric
AU2023202720A1 (en) Foam-formed fibrous sheets with crimped staple fibers
JPH09155127A (en) Filter medium
JP6976767B2 (en) Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition
JP4424541B2 (en) Method for producing hydrolytic paper and hydrolytic paper
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP6914106B2 (en) Carbon short fiber non-woven fabric
JP2013148601A (en) Cleaning sheet base material for electrophotographic device
JP2022554071A (en) Wet-laid web containing viscose fibers
WO2002000983A1 (en) Functional non-woven fabric
JP3046347B2 (en) Filter material for deodorization and method for producing the same
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
JP6016769B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JPH10217415A (en) Complex structure
JP2007168284A (en) Paper-fiber structured laminate and its manufacturing method
JPH10219589A (en) Heat-insulating material
JP2022148272A (en) Carbon fiber composite material precursor and carbon fiber composite material
JP2023148946A (en) Heat-resistant glass fiber nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226