JP2010196087A - Dispersion ink of ultrafine particle of metal and method for producing the same - Google Patents

Dispersion ink of ultrafine particle of metal and method for producing the same Download PDF

Info

Publication number
JP2010196087A
JP2010196087A JP2009039693A JP2009039693A JP2010196087A JP 2010196087 A JP2010196087 A JP 2010196087A JP 2009039693 A JP2009039693 A JP 2009039693A JP 2009039693 A JP2009039693 A JP 2009039693A JP 2010196087 A JP2010196087 A JP 2010196087A
Authority
JP
Japan
Prior art keywords
phenol resin
copper
solution
copper nanoparticles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009039693A
Other languages
Japanese (ja)
Other versions
JP5466862B2 (en
Inventor
Masayoshi Yoshitake
正義 吉武
Nobuyuki Ito
信行 伊藤
Akihiro Matsumoto
明博 松本
Keiko Otsuka
恵子 大塚
Hajime Kimura
肇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Osaka Municipal Technical Research Institute
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Osaka Municipal Technical Research Institute filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2009039693A priority Critical patent/JP5466862B2/en
Publication of JP2010196087A publication Critical patent/JP2010196087A/en
Application granted granted Critical
Publication of JP5466862B2 publication Critical patent/JP5466862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion ink of ultrafine particles of a metal, in which copper nanoparticles are filled at high concentration in a phenol resin. <P>SOLUTION: This production method includes adding copper hydroxide into an alcohol solution in which approximately 0.5-15 mass% of the phenol resin has been dispersed, stirring the mixed liquid, and adding a reducing agent such as hydrazine into the mixed liquid to precipitate the copper nanoparticles. The precipitated copper nanoparticles have the average particle diameter of 100 nm or less, are uniformly dispersed at high concentration in the precipitate in a state of having the phenol resin adsorbed on the surface. The paint film can be used as a material of an electroconductive ink and the like, because of showing high electroconductivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ビヒクル中に金属のナノ粒子を分散させた金属超微粒子分散インキとその製造方法に関するものである。   The present invention relates to an ultrafine metal particle-dispersed ink in which metal nanoparticles are dispersed in a vehicle and a method for producing the same.

ビヒクル中に銀や銅などの金属微粉末を含む導電性フィラーを分散した金属超微粒子分散インキは、ポリマー型導電性インキ(以下、単に「導電性インキ」という。)と呼ばれ、ジャンパー回路、電磁波シールド、タッチパネル等の材料として使用されている。特に、回路基板のプリント配線パターンへの用途では、配線パターンの高密度化に対応して、「金属ナノ粒子」を分散させた導電性インキによるいわゆる「超ファインパターン」の回路形成技術の開発が進められている。   Ultrafine metal particle dispersed ink in which conductive fillers containing fine metal powders such as silver and copper are dispersed in a vehicle is called a polymer-type conductive ink (hereinafter simply referred to as “conductive ink”), a jumper circuit, It is used as a material for electromagnetic wave shields and touch panels. In particular, in the application of printed circuit patterns on circuit boards, the development of so-called “ultra-fine pattern” circuit formation technology using conductive ink in which “metal nanoparticles” are dispersed in response to higher wiring pattern density. It is being advanced.

ビヒクルとは、有機高分子樹脂と溶剤とからなる粘度の高い溶液であり、かつ金属ナノ粒子は凝集しやすいため、ビヒクル中に均一に金属ナノ粒子を分散させることが難しい。金属の中でも銅は酸化されやすいため金属状態で安定して溶媒中に分散保持することが特に難しい。そこで、これらの問題を解決するためのいくつかの方法が提案されている(特許文献1,2等)。   A vehicle is a highly viscous solution composed of an organic polymer resin and a solvent, and the metal nanoparticles tend to aggregate, so that it is difficult to uniformly disperse the metal nanoparticles in the vehicle. Among metals, copper is easily oxidized, so that it is particularly difficult to stably hold it in a solvent in a metallic state. Therefore, several methods for solving these problems have been proposed (Patent Documents 1, 2, etc.).

特開平11−140511号公報JP-A-11-140511 特開2008−88518号公報JP 2008-88518 A 特開2000−340030号公報JP 2000-340030 A 特開2005−340124号公報JP-A-2005-340124

しかし、たとえ凝集の少ない銅ナノ粒子が得られたとしても、粘度の高いビヒクル中に銅ナノ粒子を分散させる従来の導電性インキの製造方法では、製造過程で再凝集や分散不良が起こりやすく、均一に分散された銅ナノ粒子を得ることは難しい。導電性インキの一般的な製造方法は、金属粉と分散剤やレベリング剤等の助剤とをロールやミキサーでせん断力を加えながら高粘度のビヒクル中に混錬分散することによる。ここで、金属微粉末として「銅」のナノ粒子を用いる場合、分散性を一層高める必要があるが、そのためにロールやミキサーのせん断力を強くすると却って銅ナノ粒子が圧接凝集してしまうのである。   However, even if copper nanoparticles with little aggregation are obtained, the conventional method for producing conductive ink in which copper nanoparticles are dispersed in a high-viscosity vehicle is likely to cause re-aggregation and poor dispersion during the production process. It is difficult to obtain uniformly dispersed copper nanoparticles. A general method for producing a conductive ink is by kneading and dispersing a metal powder and an auxiliary agent such as a dispersant and a leveling agent in a high-viscosity vehicle while applying a shearing force with a roll or a mixer. Here, when using “copper” nanoparticles as the metal fine powder, it is necessary to further improve the dispersibility. However, if the shearing force of the roll or mixer is increased, the copper nanoparticles are pressed and aggregated instead. .

一方、抵抗率の観点からは、導電性インキとして十分な性能を得るためにはそのインキ中に少なくとも75質量%以上もの銅粉を充填する必要があるといわれている。しかし、銅ナノ粒子は表面積や体積が大きいだけでなく有機高分子樹脂との親和性も悪いため、高充填すればするほど一層凝集が起こりやすくなる。   On the other hand, from the viewpoint of resistivity, it is said that in order to obtain sufficient performance as a conductive ink, it is necessary to fill at least 75% by mass of copper powder in the ink. However, the copper nanoparticles not only have a large surface area and volume but also have a poor affinity with the organic polymer resin, so that the higher the filling, the easier the aggregation.

本発明は、上記のような表面の酸化と凝集が起こりやすい「銅ナノ粒子」特有の事情に鑑みてなされたものであり、銅ナノ粒子の酸化や凝集を防止して、有機高分子樹脂中に銅ナノ粒子を高充填させ、しかも均一に分散した状態を維持できる金属超微粒子分散インキを得ることを主たる技術的課題としている。   The present invention has been made in view of the circumstances unique to “copper nanoparticles” that tend to cause surface oxidation and aggregation as described above, and prevents the oxidation and aggregation of copper nanoparticles. The main technical problem is to obtain a metal ultrafine particle-dispersed ink that is highly filled with copper nanoparticles and that can maintain a uniformly dispersed state.

本発明に係る金属超微粒子分散インキは、フェノール樹脂溶液中に一次粒子径が100nm以下である銅ナノ粒子の分散体を含み、それぞれの一次粒子がフェノール樹脂で被覆され、前記フェノール樹脂溶液中に分散保持されていることを特徴とする。なお、本発明で示す一次粒子径の大きさは、透過型電子顕微鏡で100個の粒子を測定した平均値と定義する。   The ultrafine metal particle dispersed ink according to the present invention includes a dispersion of copper nanoparticles having a primary particle diameter of 100 nm or less in a phenol resin solution, and each primary particle is coated with a phenol resin, It is characterized by being distributed and held. In addition, the magnitude | size of the primary particle diameter shown by this invention is defined as the average value which measured 100 particle | grains with the transmission electron microscope.

このような金属超微粒子分散インキを製造するために、先ず有機溶剤に少量のフェノール樹脂を溶解させる。次に、このフェノール樹脂を溶解させた有機溶剤の溶液に水酸化銅を攪拌分散させ、最後にこの水酸化銅を攪拌分散させた分散液に還元剤を加えて、一次粒子径が100nm以下である銅ナノ粒子を均一に分散させたフェノール樹脂溶液を溶液中に沈殿させ、この沈殿物を回収する。   In order to produce such a metal ultrafine particle dispersed ink, a small amount of phenol resin is first dissolved in an organic solvent. Next, copper hydroxide is stirred and dispersed in a solution of an organic solvent in which the phenol resin is dissolved, and finally a reducing agent is added to the dispersion obtained by stirring and dispersing the copper hydroxide so that the primary particle diameter is 100 nm or less. A phenol resin solution in which certain copper nanoparticles are uniformly dispersed is precipitated in the solution, and the precipitate is collected.

本発明に係る金属超微粒子分散インキによれば、銅ナノ粒子をフェノール樹脂溶液中に高濃度に均一に分散することができ、高い導電性を有する微細な導電パターンを形成することができる。また、銅は銀などよりもはるかに安価であるため製造コスト面での利点もある。   According to the ultrafine metal particle-dispersed ink according to the present invention, copper nanoparticles can be uniformly dispersed in a phenol resin solution at a high concentration, and a fine conductive pattern having high conductivity can be formed. Further, since copper is much cheaper than silver or the like, there is an advantage in manufacturing cost.

本発明に係る金属超微粒子分散インキの製造方法の手順を示す工程図である。It is process drawing which shows the procedure of the manufacturing method of the metal ultrafine particle dispersion ink which concerns on this invention.

−金属超微粒子分散インキの製造方法について−
図1は、本発明に係る金属超微粒子分散インキの製造方法の手順を示す工程図である。この図に示すように、その製造方法は大きく分けて3工程からなる。以下、各工程について説明する。
-Manufacturing method of ultrafine metal particle dispersed ink-
FIG. 1 is a process diagram showing a procedure of a method for producing a metal ultrafine particle dispersed ink according to the present invention. As shown in this figure, the manufacturing method is roughly divided into three steps. Hereinafter, each step will be described.

[第1工程](溶液調整工程S1)
先ず、反応槽で有機溶剤に少量のフェノール樹脂を溶解させた有機溶剤の溶液を調整する。フェノール樹脂は、レゾール型でもノボラック型でもよい。ただし、レゾール型フェノール樹脂の方が、アルコールやアセトンなどの有機溶剤に対する溶解度が高くかつ硬化剤を必要としないため、好ましい。フェノール樹脂を溶解する有機溶剤は、安全性や作業性の観点から、アルコール系の溶剤が好ましい。具体的には、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコールなどが挙げられる。
[First step] (Solution adjustment step S1)
First, a solution of an organic solvent in which a small amount of a phenol resin is dissolved in an organic solvent is prepared in a reaction tank. The phenolic resin may be a resol type or a novolac type. However, the resol type phenol resin is preferable because it has high solubility in an organic solvent such as alcohol and acetone and does not require a curing agent. The organic solvent for dissolving the phenol resin is preferably an alcohol solvent from the viewpoint of safety and workability. Specific examples include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol.

この溶液中のフェノール樹脂含有量は、約0.5〜15質量%の範囲であることが好ましい。この理由は、フェノール樹脂含有量が0.5質量%よりも小さいと、フェノール樹脂量が少なすぎるため、析出した銅ナノ粒子同士が凝集しやすくなり、一方、溶液中のフェノール樹脂含有量が15質量%より大きいと、水酸化銅の表面がフェノール樹脂で被覆されて還元反応が阻害されやすくなるため、大量の還元剤が必要となり、反応時間も長くなるからである。もっとも好ましい範囲はフェノール樹脂含有量が約2〜10質量%の範囲である。   The phenol resin content in this solution is preferably in the range of about 0.5 to 15% by mass. The reason for this is that if the phenol resin content is less than 0.5% by mass, the amount of phenol resin is too small, so that the precipitated copper nanoparticles tend to aggregate together, while the phenol resin content in the solution is 15%. If it is larger than mass%, the surface of copper hydroxide is coated with a phenol resin and the reduction reaction tends to be hindered, so that a large amount of reducing agent is required and the reaction time becomes longer. The most preferable range is a range in which the phenol resin content is about 2 to 10% by mass.

[第2工程](水酸化銅分散工程S2)
次に、第1工程で得られた溶液に水酸化銅を加えて攪拌することにより、銅ナノ粒子の分散溶液を生成する。水酸化銅は、ナノ粒子の凝集体であり第1工程で調整した溶液には不溶であるが、撹拌機等により攪拌することで溶液中に均一に分散させることができる。
[Second step] (copper hydroxide dispersion step S2)
Next, a dispersion solution of copper nanoparticles is generated by adding copper hydroxide to the solution obtained in the first step and stirring the solution. Copper hydroxide is an aggregate of nanoparticles and is insoluble in the solution prepared in the first step, but can be uniformly dispersed in the solution by stirring with a stirrer or the like.

[第3工程](銅ナノ粒子還元分離工程S3)
第2工程で得られた分散溶液中に還元剤を加えることにより、水酸化銅を還元して一次粒子径100nm以下の銅ナノ粒子を析出させる。銅ナノ粒子が溶液中で析出しはじめると直ちに周囲のフェノール樹脂が銅ナノ粒子に吸着するため、銅ナノ粒子の表面がフェノール樹脂で被覆され、単分散状態の複合物になって溶液中に均一に分散する。さらに、この複合物は、銅ナノ粒子が核となった集合体となる。
[Third Step] (Copper Nanoparticle Reduction Separation Step S3)
By adding a reducing agent to the dispersion obtained in the second step, copper hydroxide is reduced to precipitate copper nanoparticles having a primary particle size of 100 nm or less. As soon as the copper nanoparticles begin to precipitate in the solution, the surrounding phenolic resin adsorbs to the copper nanoparticles, so the surface of the copper nanoparticles is coated with the phenolic resin, forming a monodispersed composite in the solution. To disperse. Furthermore, this composite becomes an aggregate having copper nanoparticles as a nucleus.

還元剤を加えた後、放置して冷却すると、反応槽の底に「銅ナノ粒子を多く含んだフェノール樹脂溶液」が沈殿する。この沈殿物を分離・回収する。得られた沈殿物は、銅ナノ粒子を高い濃度で含有したものであるが、それぞれの銅ナノ粒子は大きさが均一でかつ分散性が良好な、いわゆる「単分散状態」にあると考えられ、表面がフェノール樹脂で被覆されているため凝集が一切起こらない。   When the reducing agent is added and then allowed to cool, a “phenol resin solution containing a large amount of copper nanoparticles” precipitates at the bottom of the reaction vessel. This precipitate is separated and collected. The obtained precipitate contains copper nanoparticles at a high concentration, but each copper nanoparticle is considered to be in a so-called “monodispersed state” having a uniform size and good dispersibility. Because the surface is coated with phenolic resin, no aggregation occurs.

還元剤は、水素化ホウ素ナトリウム、ホルムアルデヒド、ヒドラジン等の一般的な還元剤を使用できるが、ヒドラジンを使用すると、反応時間が短く、臭気も少ないため、作業効率上好ましい。反応時間を短縮させるため、還元剤を加える水酸化銅の分散溶液は、予め20℃以上にすることが好ましい。   As the reducing agent, a common reducing agent such as sodium borohydride, formaldehyde, hydrazine and the like can be used. However, when hydrazine is used, the reaction time is short and the odor is small, which is preferable in terms of work efficiency. In order to shorten the reaction time, the dispersion of copper hydroxide to which the reducing agent is added is preferably set to 20 ° C. or higher in advance.

なお、第2工程で水酸化銅の代わりに酸化銅や亜酸化銅を使用すると、第3工程で析出する銅の一次粒子径が約500nmの粗大粒子が生成される。同様に、炭酸銅を使用した場合も、析出する銅の一次粒子径が100nmを超える粗大粒子が生成されることが判明している。これらはいずれも一次粒子径が大きいため超ファインパターン用の導電性インキとして使用する場合には好ましくない。   If copper oxide or cuprous oxide is used instead of copper hydroxide in the second step, coarse particles having a primary particle diameter of about 500 nm of copper precipitated in the third step are generated. Similarly, when copper carbonate is used, it has been found that coarse particles having a primary particle diameter of precipitated copper exceeding 100 nm are generated. Since these have a large primary particle size, they are not preferable when used as conductive ink for ultrafine patterns.

(実施形態)
以下、本発明に係る金属超微粒子分散インキの実施態様について、複数の実施例を用いてより具体的に説明するが、本発明の技術的思想の範囲と解される限りにおいて、いかなる意味においても下記の実施例により制限的に解釈されるものではない。
(Embodiment)
Hereinafter, embodiments of the ultrafine metal particle dispersed ink according to the present invention will be described more specifically using a plurality of examples. However, as long as it is understood as the scope of the technical idea of the present invention, in any sense The following examples are not to be construed as limiting.

<実施例1>
[第1工程]
メチルアルコール360gにレゾール型フェノール樹脂40gを溶解したフェノール樹脂含有量10質量%の溶液を調整し、その液温を約20℃とする。
<Example 1>
[First step]
A solution having a phenol resin content of 10% by mass in which 40 g of a resol type phenol resin is dissolved in 360 g of methyl alcohol is prepared, and the liquid temperature is set to about 20 ° C.

[第2工程]
第1工程で得られた溶液に水酸化銅50gを加え、撹拌分散する。
[Second step]
Add 50 g of copper hydroxide to the solution obtained in the first step and stir and disperse.

[第3工程]
第2工程で得られた水酸化銅の分散溶液を攪拌しながら、80%ヒドラジン水溶液を100ml添加する。しばらくすると銅ナノ粒子が析出し、6分後に反応が停止した。その後、還元反応停止後2時間放置冷却し、沈殿した銅ナノ粒子含有フェノール樹脂溶液を回収した。
[Third step]
While stirring the copper hydroxide dispersion obtained in the second step, 100 ml of 80% hydrazine aqueous solution is added. After a while, copper nanoparticles precipitated, and the reaction stopped after 6 minutes. Thereafter, the reaction was allowed to cool for 2 hours after the reduction reaction was stopped, and the precipitated copper nanoparticle-containing phenol resin solution was recovered.

<実施例1の結果>
得られた銅ナノ粒子含有フェノール樹脂溶液は、フェノール樹脂中に平均粒径30nmの銅ナノ粒子を78質量%含有し、その銅ナノ粒子を均一に分散していた。
<Results of Example 1>
The obtained copper nanoparticle-containing phenol resin solution contained 78% by mass of copper nanoparticles having an average particle diameter of 30 nm in the phenol resin, and the copper nanoparticles were uniformly dispersed.

上記銅ナノ粒子含有フェノール樹脂溶液を170℃で15分間加熱して硬化させ、その塗膜導電性を測定した。その結果、抵抗率は1.2×10−3 Ω・cmであり、電磁波シールド塗膜用インキとして使用できる性能であった。 The copper nanoparticle-containing phenol resin solution was cured by heating at 170 ° C. for 15 minutes, and the coating film conductivity was measured. As a result, the resistivity was 1.2 × 10 −3 Ω · cm, which was a performance that could be used as an ink for electromagnetic wave shielding coating.

<実施例2>
[第1工程]
メチルアルコール372gにレゾール型フェノール樹脂28gを溶解したフェノール樹脂含有量7質量%の溶液を調整し、その液温を20℃とする。
<Example 2>
[First step]
A solution having a phenol resin content of 7% by mass in which 28 g of a resol type phenol resin is dissolved in 372 g of methyl alcohol is prepared, and the liquid temperature is set to 20 ° C.

[第2工程]
第1工程で得られた溶液に水酸化銅50gを加え、撹拌分散する。
[Second step]
Add 50 g of copper hydroxide to the solution obtained in the first step and stir and disperse.

[第3工程]
第2工程で得られた水酸化銅の分散溶液を攪拌しながら、50%ヒドラジン水溶液を100ml添加する。しばらくすると銅ナノ粒子が析出し、4分後に反応が停止した。その後、還元反応停止後2時間放置冷却し、沈殿した銅ナノ粒子含有フェノール樹脂溶液を回収した。
[Third step]
While stirring the copper hydroxide dispersion obtained in the second step, 100 ml of 50% hydrazine aqueous solution is added. After a while, copper nanoparticles were precipitated and the reaction was stopped after 4 minutes. Thereafter, the reaction was allowed to cool for 2 hours after the reduction reaction was stopped, and the precipitated copper nanoparticle-containing phenol resin solution was recovered.

<実施例2の結果>
得られた銅ナノ粒子含有フェノール樹脂溶液は、フェノール樹脂中に平均粒径40nmの銅ナノ粒子を82質量%含有し、その銅ナノ粒子を均一に分散していた。
<Results of Example 2>
The obtained copper nanoparticle-containing phenol resin solution contained 82% by mass of copper nanoparticles having an average particle diameter of 40 nm in the phenol resin, and the copper nanoparticles were uniformly dispersed.

上記銅ナノ粒子含有フェノール樹脂溶液を170℃で15分間加熱して硬化させ、その塗膜導電性を測定した。その結果、抵抗率は3.7×10−4 Ω・cmであり、導電回路用インキとして使用できる性能であった。 The copper nanoparticle-containing phenol resin solution was cured by heating at 170 ° C. for 15 minutes, and the coating film conductivity was measured. As a result, the resistivity was 3.7 × 10 −4 Ω · cm, which was a performance that could be used as a conductive circuit ink.

<実施例3>
[第1工程]
メチルアルコール388gにレゾール型フェノール樹脂12gを溶解したフェノール樹脂含有量3質量%の溶液を調整し、その液温を20℃とする。
<Example 3>
[First step]
A solution having a phenol resin content of 3% by mass in which 12 g of a resole type phenol resin is dissolved in 388 g of methyl alcohol is prepared, and the liquid temperature is set to 20 ° C.

[第2工程]
第1工程で得られた溶液に水酸化銅50gを加え、撹拌分散する。
[Second step]
Add 50 g of copper hydroxide to the solution obtained in the first step and stir and disperse.

[第3工程]
第2工程で得られた水酸化銅の分散溶液を攪拌しながら、50%ヒドラジン水溶液を100ml添加したところ、直ちに銅ナノ粒子が析出しはじめ、3分後に反応が停止した。その後、還元反応停止後2時間放置冷却し、沈殿した銅ナノ粒子含有フェノール樹脂溶液を回収した。
[Third step]
When 100 ml of a 50% aqueous hydrazine solution was added while stirring the copper hydroxide dispersion obtained in the second step, copper nanoparticles started to precipitate immediately and the reaction was stopped after 3 minutes. Thereafter, the reaction was allowed to cool for 2 hours after the reduction reaction was stopped, and the precipitated copper nanoparticle-containing phenol resin solution was recovered.

<実施例3の結果>
得られた銅ナノ粒子含有フェノール樹脂溶液は、フェノール樹脂中に平均粒径40nmの銅ナノ粒子を90質量%含有し、その銅ナノ粒子を均一に分散していた。
<Results of Example 3>
The obtained copper nanoparticle containing phenol resin solution contained 90 mass% of copper nanoparticles having an average particle diameter of 40 nm in the phenol resin, and the copper nanoparticles were uniformly dispersed.

上記銅ナノ粒子含有フェノール樹脂溶液を170℃で15分間加熱して硬化させ、その塗膜導電性を測定した。その結果、抵抗率は1.0×10−4 Ω・cmであり、導電回路用インキとして使用できる性能であった。 The copper nanoparticle-containing phenol resin solution was cured by heating at 170 ° C. for 15 minutes, and the coating film conductivity was measured. As a result, the resistivity was 1.0 × 10 −4 Ω · cm, which was a performance that could be used as a conductive circuit ink.

<実施例4>
[第1工程]
メチルアルコール392gにレゾール型フェノール樹脂8gを溶解したフェノール樹脂含有量2質量%の溶液を調整し、その液温を20℃とする。
<Example 4>
[First step]
A solution having a phenol resin content of 2% by mass in which 392 g of methyl alcohol is dissolved in 8 g of a resol type phenol resin is prepared, and the liquid temperature is set to 20 ° C.

[第2工程]
第1工程で得られた溶液に水酸化銅50gを加え、撹拌分散する。
[Second step]
Add 50 g of copper hydroxide to the solution obtained in the first step and stir and disperse.

[第3工程]
第2工程で得られた水酸化銅の分散溶液を攪拌しながら、50%ヒドラジン水溶液を100ml添加したところ、直ちに銅ナノ粒子が析出しはじめ、3分後に反応が停止した。その後、還元反応停止後2時間放置冷却し、沈殿した銅ナノ粒子含有フェノール樹脂溶液を回収した。
[Third step]
When 100 ml of a 50% aqueous hydrazine solution was added while stirring the copper hydroxide dispersion obtained in the second step, copper nanoparticles started to precipitate immediately and the reaction was stopped after 3 minutes. Thereafter, the reaction was allowed to cool for 2 hours after the reduction reaction was stopped, and the precipitated copper nanoparticle-containing phenol resin solution was recovered.

<実施例4の結果>
得られた銅ナノ粒子含有フェノール樹脂溶液は、フェノール樹脂中に平均粒径40nmの銅ナノ粒子を92質量%含有し、その銅ナノ粒子を均一に分散していた。
<Results of Example 4>
The obtained copper nanoparticle containing phenol resin solution contained 92 mass% of copper nanoparticles having an average particle size of 40 nm in the phenol resin, and the copper nanoparticles were uniformly dispersed.

上記銅ナノ粒子含有フェノール樹脂溶液を170℃で15分間加熱して硬化させ、その塗膜導電性を測定した。その結果、抵抗率は8.0×10−5 Ω・cmであり、導電回路用インキとして使用できる性能であった。 The copper nanoparticle-containing phenol resin solution was cured by heating at 170 ° C. for 15 minutes, and the coating film conductivity was measured. As a result, the resistivity was 8.0 × 10 −5 Ω · cm, which was a performance that could be used as a conductive circuit ink.

<実施例5>
[第1工程]
エチルアルコール388gにレゾール型フェノール樹脂12gを溶解したフェノール樹脂含有量3質量%の溶液を調整し、その液温を20℃とする。
<Example 5>
[First step]
A solution having a phenol resin content of 3% by mass in which 388 g of ethyl alcohol is dissolved in 388 g of ethyl alcohol is prepared, and the liquid temperature is set to 20 ° C.

[第2工程]
第1工程で得られた溶液に水酸化銅50gを加え、撹拌分散する。
[Second step]
Add 50 g of copper hydroxide to the solution obtained in the first step and stir and disperse.

[第3工程]
第2工程で得られた水酸化銅の分散溶液を攪拌しながら、50%ヒドラジン水溶液を100ml添加したところ、直ちに銅ナノ粒子が析出しはじめ、3分後に反応が停止した。その後、還元反応停止後2時間放置冷却し、沈殿した銅ナノ粒子含有フェノール樹脂溶液を回収した。
[Third step]
When 100 ml of a 50% aqueous hydrazine solution was added while stirring the copper hydroxide dispersion obtained in the second step, copper nanoparticles started to precipitate immediately and the reaction was stopped after 3 minutes. Thereafter, the reaction was allowed to cool for 2 hours after the reduction reaction was stopped, and the precipitated copper nanoparticle-containing phenol resin solution was recovered.

<実施例5の結果>
得られた銅ナノ粒子含有フェノール樹脂溶液は、フェノール樹脂中に平均粒径15nmの銅ナノ粒子を90質量%含有し、その銅ナノ粒子を均一に分散していた。
<Results of Example 5>
The obtained copper nanoparticle-containing phenol resin solution contained 90% by mass of copper nanoparticles having an average particle diameter of 15 nm in the phenol resin, and the copper nanoparticles were uniformly dispersed.

上記銅ナノ粒子含有フェノール樹脂溶液を170℃で15分間加熱して硬化させ、その塗膜導電性を測定した。その結果、抵抗率は8.7×10−5 Ω・cmであり、導電回路用インキとして使用できる性能であった。 The copper nanoparticle-containing phenol resin solution was cured by heating at 170 ° C. for 15 minutes, and the coating film conductivity was measured. As a result, the resistivity was 8.7 × 10 −5 Ω · cm, which was a performance that could be used as a conductive circuit ink.

[表1]実験条件および実験結果の一覧

Figure 2010196087
[Table 1] List of experimental conditions and experimental results
Figure 2010196087

(まとめ)
実施例1乃至5の結果によると、得られた銅ナノ粒子含有フェノール樹脂溶液には、いずれもフェノール樹脂中に平均粒径40nm以下の銅ナノ粒子が含有率78質量%以上で、均一に分散していることが確認された。また、その塗膜の導電性は、いずれも抵抗率が10のマイナス3乗台以下のオーダーであり、極めて導電性が高いことも確認された。特に、実施例5の結果得られた銅ナノ粒子含有フェノール樹脂溶液では、フェノール樹脂中に平均粒径15nmの銅ナノ粒子が含有率90質量%で均一に分散し、その塗膜の抵抗率が8.7×10−5 Ω・cmであるため、超ファインパターン等の導電性インキとして十分な優れた特性を備えているものであった。
(Summary)
According to the results of Examples 1 to 5, all of the obtained copper nanoparticle-containing phenol resin solutions were uniformly dispersed with a content of 78% by mass or more of copper nanoparticles having an average particle size of 40 nm or less in the phenol resin. It was confirmed that In addition, the conductivity of the coating film was in the order of resistivity minus 10 or less, and it was confirmed that the conductivity was extremely high. In particular, in the copper resin-containing phenol resin solution obtained as a result of Example 5, copper nanoparticles having an average particle size of 15 nm are uniformly dispersed in the phenol resin at a content of 90% by mass, and the resistivity of the coating film is Since it was 8.7 × 10 −5 Ω · cm, it had excellent characteristics sufficient as a conductive ink for ultra-fine patterns and the like.

従って、この銅ナノ粒子含有フェノール樹脂溶液をベースとして、使用目的の印刷条件に合わせて樹脂組成、溶剤、助剤などを微調整することで、容易に性能要求を満たす印刷適性と塗布乾燥後の導電性に優れた導電性インキを製造することができる。また、従来のように高粘度のビヒクルに銅ナノ粒子を混練分散する工程が不要となるため、従来よりも安価で短時間に製造ができる。さらに、銅ナノ粒子を全て溶液中で扱うため、銅ナノ粒子の飛散による粉塵爆発や吸引による人体への毒性などの危険性も回避できる利点もある。   Therefore, based on this copper nanoparticle-containing phenol resin solution, by finely adjusting the resin composition, solvent, auxiliaries, etc. according to the intended printing conditions, it is easy to meet printability and performance after coating and drying. A conductive ink excellent in conductivity can be produced. In addition, the conventional process of kneading and dispersing copper nanoparticles in a high-viscosity vehicle is not required, so that it can be manufactured at a lower cost and in a shorter time than the conventional one. Furthermore, since all the copper nanoparticles are handled in the solution, there is an advantage that dangers such as dust explosion due to scattering of copper nanoparticles and toxicity to the human body due to suction can be avoided.

本発明に係る金属超微粒子分散インキは、超ファインパターンの高密度印刷回路に使用できるほか、マイグレーションの問題がないため、ジャンパー回路やタッチパネルなどの微細な線幅描写に使用できる。また、インクジェット印刷用インキとしても使用できるなど、産業上の利用可能性は極めて大きい。   The metal ultrafine particle-dispersed ink according to the present invention can be used for high-density printed circuits with ultrafine patterns, and can be used for drawing fine line widths such as jumper circuits and touch panels because there is no migration problem. In addition, it can be used as ink for ink jet printing, and thus the industrial applicability is very large.

S1 溶液調整工程
S2 水酸化銅分散工程
S3 銅ナノ粒子還元分離工程
S1 Solution adjustment step S2 Copper hydroxide dispersion step S3 Copper nanoparticle reduction separation step

Claims (4)

フェノール樹脂溶液中に一次粒子径が100nm以下である銅ナノ粒子の分散体を含み、それぞれの一次粒子がフェノール樹脂で被覆され、前記フェノール樹脂溶液中に分散保持されていることを特徴とする金属超微粒子分散インキ。   A metal comprising a dispersion of copper nanoparticles having a primary particle diameter of 100 nm or less in a phenol resin solution, each primary particle being coated with a phenol resin, and being dispersed and held in the phenol resin solution Ultra fine particle dispersion ink. 有機溶剤にフェノール樹脂を溶解させる工程(S1)と、
前記フェノール樹脂を溶解させた有機溶剤の溶液に水酸化銅を攪拌分散させる工程(S2)と、
前記水酸化銅を攪拌分散させた分散液に還元剤を加えて、一次粒子径が100nm以下である銅ナノ粒子を均一に分散させたフェノール樹脂溶液を前記溶液中に沈殿させる工程(S3)と、
を具備する金属超微粒子分散インキの製造方法。
A step (S1) of dissolving a phenol resin in an organic solvent;
A step (S2) of stirring and dispersing copper hydroxide in a solution of an organic solvent in which the phenol resin is dissolved;
Adding a reducing agent to the dispersion obtained by stirring and dispersing the copper hydroxide to precipitate a phenol resin solution in which copper nanoparticles having a primary particle diameter of 100 nm or less are uniformly dispersed in the solution (S3); ,
A method for producing a metal ultrafine particle dispersed ink comprising:
前記有機溶剤がアルコールであることを特徴とする請求項2記載の金属超微粒子分散インキの製造方法。   The method for producing ultrafine metal particle dispersed ink according to claim 2, wherein the organic solvent is alcohol. 前記フェノール樹脂の含有率が0.5〜15質量%であることを特徴とする請求項2記載の金属超微粒子分散インキの製造方法。   The method for producing an ultrafine metal particle-dispersed ink according to claim 2, wherein the content of the phenol resin is 0.5 to 15% by mass.
JP2009039693A 2009-02-23 2009-02-23 Ultrafine metal particle dispersed ink and method for producing the same Active JP5466862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039693A JP5466862B2 (en) 2009-02-23 2009-02-23 Ultrafine metal particle dispersed ink and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039693A JP5466862B2 (en) 2009-02-23 2009-02-23 Ultrafine metal particle dispersed ink and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010196087A true JP2010196087A (en) 2010-09-09
JP5466862B2 JP5466862B2 (en) 2014-04-09

Family

ID=42821105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039693A Active JP5466862B2 (en) 2009-02-23 2009-02-23 Ultrafine metal particle dispersed ink and method for producing the same

Country Status (1)

Country Link
JP (1) JP5466862B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489876A (en) * 1990-08-01 1992-03-24 Tokai Rubber Ind Ltd Electroconductive coating material
JPH09255900A (en) * 1996-03-21 1997-09-30 Hitachi Powdered Metals Co Ltd Thermosetting type carbon-based electroconductive coating material
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
JP2002338850A (en) * 2001-05-21 2002-11-27 Nippon Paint Co Ltd Metal colloidal solution, method for producing the same, coating membrane obtained from metal colloidal solution
JP2005019028A (en) * 2003-06-23 2005-01-20 Bando Chem Ind Ltd Metal colloid liquid, and conductive ink using it
JP2007240815A (en) * 2006-03-08 2007-09-20 Canon Inc Toner and image forming method
JP2008169474A (en) * 2006-12-13 2008-07-24 Tohoku Univ Copper powder having excellent dispersibility in liquid and corrosion resistance, and method for producing the same
JP2010135140A (en) * 2008-12-03 2010-06-17 Fukuda Metal Foil & Powder Co Ltd Flaky metal fine powder of conductive paint, and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489876A (en) * 1990-08-01 1992-03-24 Tokai Rubber Ind Ltd Electroconductive coating material
JPH09255900A (en) * 1996-03-21 1997-09-30 Hitachi Powdered Metals Co Ltd Thermosetting type carbon-based electroconductive coating material
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
JP2002338850A (en) * 2001-05-21 2002-11-27 Nippon Paint Co Ltd Metal colloidal solution, method for producing the same, coating membrane obtained from metal colloidal solution
JP2005019028A (en) * 2003-06-23 2005-01-20 Bando Chem Ind Ltd Metal colloid liquid, and conductive ink using it
JP2007240815A (en) * 2006-03-08 2007-09-20 Canon Inc Toner and image forming method
JP2008169474A (en) * 2006-12-13 2008-07-24 Tohoku Univ Copper powder having excellent dispersibility in liquid and corrosion resistance, and method for producing the same
JP2010135140A (en) * 2008-12-03 2010-06-17 Fukuda Metal Foil & Powder Co Ltd Flaky metal fine powder of conductive paint, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梅田謙治、他3名: "フェノール誘導体−金ナノ粒子ハイブリッド", 高分子学会予稿集, vol. Vol.57 No.2 Disk1, JPN6013031152, 9 September 2008 (2008-09-09), JP, pages 3 - 012, ISSN: 0002567939 *

Also Published As

Publication number Publication date
JP5466862B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
JP3858902B2 (en) Conductive silver paste and method for producing the same
CN102675960B (en) A kind of Nanometer Copper tin alloy electrically conductive ink and preparation method thereof and using method
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JPWO2014185073A1 (en) Metal bonding composition
JP2007100155A (en) Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder
JP2007254845A (en) Flake silver powder and its production method
TWI661012B (en) Method for manufacturing core-shell type metal fine particle, core-shell type metal fine particle, conductive ink, and method for manufacturing substrate
JP2007227156A (en) Conductive paste, and printed wiring board using it
CN108367927A (en) The coating graphite particle of silver, the coating graphite mixed powder of silver and its manufacturing method and electrocondution slurry
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2013161544A (en) Conductive material and manufacturing method of the same
TWI582793B (en) Standardization of conductive paste and conductive paste
CN1437200A (en) Low-content nanometer conducting silver paste and its prepn
TWI565838B (en) Copper powder and the use of its copper paste, conductive paint, conductive film, and copper powder manufacturing methods
JPWO2012161201A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2005285673A (en) Silver paste
JP2012243655A (en) Copper particulate for paste for firing and method for forming fired copper film
JP2005044798A (en) Conductive powder and its production method
JP5466862B2 (en) Ultrafine metal particle dispersed ink and method for producing the same
WO2020153101A1 (en) Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
JP2017084587A (en) Silver oxide slurry, and conductive paste and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5466862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250