JP2010188405A - Method for reducing amount of residual steel in ladle - Google Patents

Method for reducing amount of residual steel in ladle Download PDF

Info

Publication number
JP2010188405A
JP2010188405A JP2009037846A JP2009037846A JP2010188405A JP 2010188405 A JP2010188405 A JP 2010188405A JP 2009037846 A JP2009037846 A JP 2009037846A JP 2009037846 A JP2009037846 A JP 2009037846A JP 2010188405 A JP2010188405 A JP 2010188405A
Authority
JP
Japan
Prior art keywords
ladle
molten steel
steel
hot water
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037846A
Other languages
Japanese (ja)
Other versions
JP5312090B2 (en
Inventor
Takashi Kobayashi
高 小林
Tsutomu Yoshimoto
努 吉本
Norihisa Sakaguchi
典央 坂口
Kunio Nosaka
国夫 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009037846A priority Critical patent/JP5312090B2/en
Publication of JP2010188405A publication Critical patent/JP2010188405A/en
Application granted granted Critical
Publication of JP5312090B2 publication Critical patent/JP5312090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the amount of residual steel in a ladle, in which the amount of residual steel can be sufficiently reduced even without tilting the ladle as much as possible in continuous casting, without causing the peeling of a molten metal collision part and an opening defect in the case molten steel is made to flow out. <P>SOLUTION: In a ladle 1 having a capacity of 200 to 300 ton, and used in a steel making process, regarding a bottom part 16, a molten steel collision part 20 against which the molten steel charged from the upper side is collided has a circular part more elevated than the other bottom part 16. The height h of the circular part is set to 105 to 120 mm, and further, the radius R of the circular part is set to 800 to 900 mm. The distance from the edge part of the circular part to the edge part of an injection hole 17 is set to 1,000 to 1,200 mm. When the molten steel in the ladle 1 is injected into a tundish 3, the ladle 1 is tilted by 1 to 2 degrees. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、取鍋内の残鋼量の低減方法に関する。   The present invention relates to a method for reducing the amount of remaining steel in a ladle.

従来より、製鋼工程にて使用される取鍋は、転炉からの溶鋼を受鋼して二次精錬工程へ搬送したり、二次精錬工程を終了した溶鋼を連続鋳造工程に搬送するのに用いられている。 このように、取鍋は、一次精錬〜二次精錬〜連続鋳造にわたって広く用いられるため、内部に施工される耐火物には様々な工夫がなされているのが実情である。例えば、転炉からの溶鋼を受鋼する際は、上方から落下する溶鋼を受けるため、取鍋の底部の耐火物は、他の部分に比べて消耗し易い状態にある。
そこで、この点に着目して、取鍋の底部の耐火物を予め盛り上げるという技術が開示されている(例えば、特許文献1、特許文献2)。
Conventionally, ladle used in the steelmaking process receives molten steel from the converter and transports it to the secondary refining process, or transports molten steel that has finished the secondary refining process to the continuous casting process. It is used. Thus, since the ladle is widely used over primary refining-secondary refining-continuous casting, it is the actual situation that various devices are made to the refractory constructed inside. For example, when receiving the molten steel from the converter, the refractory at the bottom of the ladle is more easily consumed than the other parts because it receives the molten steel falling from above.
Then, paying attention to this point, the technique of raising beforehand the refractory of the bottom part of a ladle is disclosed (for example, patent document 1, patent document 2).

特許文献1では、取鍋の底部の湯落ち部を、なめらかに湾曲した凸状とし、湯落ち部の寿命が長くなるようにしている。
特許文献2では、取鍋敷部のうち溶鋼による損傷が激しい部位、特に、製鋼炉からの出鋼流が衝突する所謂、湯当たり部には、煉瓦の目地無し構造とするために耐火性のプレキャストブロックを配置して高くしている。
特許文献1及び特許文献2に示すように、転炉からの溶鋼が衝突する湯落ち部や湯当たり部を凸状にしたものではないが、取鍋の底部を高くしたものとして特許文献3に示すものがある。この特許文献3には、不定形耐火物層の層厚230mmに対して敷部の湯当たり部を150mm嵩上げし380mmとすることが開示されている。
In patent document 1, the hot water dropping part of the bottom part of a ladle is made into the convex shape curved smoothly, so that the lifetime of a hot water dropping part may become long.
In Patent Document 2, a part of the ladle laying part, which is severely damaged by molten steel, in particular, a so-called hot water hitting part where a steel flow from a steelmaking furnace collides has a refractory structure in order to have a brick jointless structure. Precast blocks are placed and raised.
As shown in Patent Document 1 and Patent Document 2, although the hot water falling part and the hot water hitting part where the molten steel from the converter collides are not convex, Patent Document 3 assumes that the bottom of the ladle is raised. There is something to show. Patent Document 3 discloses that the hot water contact portion of the laying portion is raised by 150 mm to 380 mm with respect to the layer thickness of 230 mm of the amorphous refractory layer.

さて、取鍋内の溶鋼の残量を少なくするために連続鋳造装置において取鍋を傾けるものとして特許文献4に示すものがある。特許文献4では、鍋受台上に、鍋受金物の下部に配設される駆動部品を上下動するジャッキ装置と、駆動部品を鍋ノズル方向に傾動する傾動シリンダとからなる複数個の鍋受台駆動装置とを設けて、これらの装置により取鍋を連続鋳造を行う際に最大で5度傾けることによって、取鍋内の残鋼量を少なくしている。   Now, in order to reduce the remaining amount of molten steel in the ladle, there exists what is shown in patent document 4 as what inclines a ladle in a continuous casting apparatus. In Patent Document 4, a plurality of pot holders comprising a jack device that moves up and down a driving component disposed on a lower portion of a pot holder and a tilting cylinder that tilts the driving component in the direction of a pan nozzle on a pot holder. A stand driving device is provided, and when the ladle is continuously cast by these devices, the remaining steel amount in the ladle is reduced by tilting the ladle by 5 degrees at the maximum.

実開昭59−85667号公報Japanese Utility Model Publication No.59-85667 特開平9−174230号公報JP 9-174230 A 特開平9−141419号公報JP-A-9-141419 実開昭63−116158号公報Japanese Utility Model Publication No. 63-116158

特許文献1や特許文献2は、湯落ち部や湯当たり部を凸状にすることで、溶鋼が衝突する耐火物の部位における寿命を長くするということが開示されているものの、湯落ち部や湯当たり部の大きさなどの詳細な説明はなされておらず、実際の操業にこれらの技術を用いることができないのが実情である。一方で、特許文献3では、取鍋の底部に設けた凸部の大きさを開示しているものの、その大きさは溶鋼が衝突するという観点から規定されていないため、この技術を用いることもできないのが実情である。
即ち、特許文献1〜特許文献3には、取鍋の底部の形状について開示されているが、これらの文献には取鍋内の残鋼量を低減させるという考えはない。
Patent Document 1 and Patent Document 2 disclose that the hot water drop portion and the hot water contact portion are convex, thereby prolonging the life in the part of the refractory that the molten steel collides with. There is no detailed description of the size of the hot water contact area, and the fact is that these techniques cannot be used in actual operations. On the other hand, although Patent Document 3 discloses the size of the convex portion provided at the bottom of the ladle, the size is not defined from the viewpoint that the molten steel collides, so this technique may be used. The reality is that you can't.
That is, Patent Documents 1 to 3 disclose the shape of the bottom of the ladle, but these documents do not have the idea of reducing the amount of remaining steel in the ladle.

一方で、特許文献4には、特許文献1〜特許文献3とは異なり、連続鋳造において取鍋を傾けることによって取鍋内の残鋼量を低減するという考えがあるものの、この技術では連続鋳造にて取鍋を5度も傾けなければならず、このような角度にて取鍋を傾けることは、実質的に危険であると言わざる得ない。
そこで、本発明は、上記問題点に鑑み、溶鋼が衝突する湯当たり部についての大きさを規定した上で、出来る限り連続鋳造にて取鍋を傾けなくても十分に残鋼量を低減することのできる取鍋内の残鋼量の低減方法を提供することを目的とする。
On the other hand, unlike Patent Documents 1 to 3, Patent Document 4 has an idea of reducing the amount of remaining steel in the ladle by tilting the ladle in continuous casting, but in this technique, continuous casting is performed. The ladle must be tilted as much as 5 degrees, and it can be said that tilting the ladle at such an angle is substantially dangerous.
Therefore, in view of the above problems, the present invention reduces the amount of remaining steel sufficiently even if the ladle is not tilted by continuous casting as much as possible after defining the size of the hot metal contact portion where the molten steel collides. An object of the present invention is to provide a method for reducing the amount of remaining steel in a ladle.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、容量が200ton以上300ton以下となる取鍋を製鋼工程にて使用するに際して、前記取鍋内の溶鋼の残鋼量を低減する方法において、前記取鍋の底部の内面に関して、上側から装入された溶鋼が衝突する湯当たり部を、他の底部よりも高くした円形部とし、前記円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下としたうえで、前記取鍋内の溶鋼をタンディッシュ内に注入する際には、取鍋を1〜2度傾斜させる点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention is a method for reducing the amount of residual steel in the molten steel in the ladle when the ladle having a capacity of 200 ton or more and 300 ton or less is used in the steel making process. Regarding the inner surface of the bottom part of the ladle, the hot water impingement part where the molten steel charged from above collides with a circular part made higher than the other bottom part, and the height of the circular part is 105 mm or more and 120 mm or less, When the radius of the circular portion is set to 800 mm or more and 900 mm or less and the distance from the end portion of the circular portion to the end portion of the injection hole is set to 1000 mm or more and 1200 mm or less, the molten steel in the ladle is poured into the tundish. Is in the point of tilting the ladle 1-2 degrees.

発明者は、取鍋内の残鋼量を低減するための方法について、様々な角度から検証を行った。その中で、発明者は、まず、転炉から出鋼した時などに上側から装入された溶鋼が底部に衝突することが繰り返されると、次第に底部が凹み、その凹部の大きさも次第に大きくなり、凹部が次第に大きくなると、取鍋から溶鋼を流出した場合には、凹部に溜まった溶鋼が流出できなくなり、取鍋に残る溶鋼の残鋼量が多くなることに着目した。
そこで、発明者は、溶鋼の残鋼量を少なくするという観点から、湯当た部の大きさを検証したところ、当該湯当たり部を他の底部よりも高くした円形部とし、円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下にすることによって、転炉からの溶鋼を受鋼する際に凹みを形成できなくすることによって、取鍋内の残鋼量を出来る限り少なくできることを見出した。
The inventor verified the method for reducing the amount of remaining steel in the ladle from various angles. Among them, the inventor firstly, when the molten steel charged from the upper side is repeatedly collided with the bottom when the steel is discharged from the converter, the bottom is gradually dented, and the size of the concave gradually increases. When the molten steel gradually flows out from the ladle when the concave portion gradually increases, the molten steel accumulated in the concave portion cannot flow out, and attention is paid to the fact that the remaining amount of molten steel remaining in the ladle increases.
Therefore, the inventor examined the size of the hot-watered part from the viewpoint of reducing the amount of remaining steel in the molten steel, and found that the hot-water contact part was a circular part higher than the other bottom part, and the height of the circular part was high. The molten steel from the converter is made to have a thickness of 105 mm to 120 mm, a radius of the circular portion of 800 mm to 900 mm, and a distance from the end of the circular portion to the end of the injection hole of 1000 mm to 1200 mm. It has been found that the amount of steel remaining in the ladle can be reduced as much as possible by making it impossible to form a recess when receiving steel.

しかも、湯当たり部の大きさの検証の中では、残鋼の残鋼量を少なくするだけでなく、湯当たり部(底部)の剥離や溶鋼を流出させる場合の開口不良などが発生しないものとした。
さらに、発明者は、上述したように取鍋の底部の形状を検証することに加えて、取鍋内の溶鋼をタンディッシュ内に注入する際の角度を検証した。その結果、取鍋を1〜2度傾斜させるだけで、十分に溶鋼の残鋼量が低減できることを見出した。
なお、上述したような問題は、容量(溶鋼の貯留する量)が200ton以上300ton以下となる取鍋で発生することから、このクラスの取鍋を対象としている。
Moreover, in the verification of the size of the hot water contact part, not only the amount of remaining steel in the remaining steel is reduced, but also there is no occurrence of defective opening when the hot metal contact part (bottom part) is peeled off or the molten steel flows out. did.
Furthermore, in addition to verifying the shape of the bottom part of a ladle as above-mentioned, the inventor verified the angle at the time of pouring the molten steel in a ladle into a tundish. As a result, it has been found that the amount of the remaining steel of the molten steel can be sufficiently reduced only by tilting the ladle 1 to 2 degrees.
In addition, since the problem as described above occurs in a ladle having a capacity (amount of molten steel stored) of 200 ton or more and 300 ton or less, this type of ladle is targeted.

本発明によれば、湯当たり部の剥離や溶鋼を流出させる場合の開口不良が発生することなく、出来る限り連続鋳造にて取鍋を傾けなくても十分に残鋼量を低減することができる。   According to the present invention, the amount of remaining steel can be reduced sufficiently without tilting the ladle by continuous casting as much as possible without causing the occurrence of defective opening when peeling the molten metal portion or causing the molten steel to flow out. .

製鋼工程を示したものである。The steel making process is shown. 取鍋の断面側面図を示した図である。It is the figure which showed the cross-sectional side view of a ladle. 取鍋の平面図である。It is a top view of a ladle. 取鍋を設置する設置台の側面図である。It is a side view of the installation stand which installs a ladle. 取鍋の使用後の状態を示す図である。It is a figure which shows the state after use of a ladle.

以下、本発明の実施の形態を、図面に基づき説明する。
図1は、本発明の取鍋内の残鋼量の低減方法において、当該取鍋が用いられる製鋼工程を示したものである。
図1に示すように、この製鋼工程は、溶湯の脱炭処理を行う一次精錬工程と、一次精錬工程での処理が終了した溶湯(溶鋼)に対して介在物の分離浮上や成分調整等を行う二次精錬工程と、二次精錬工程での処理が終了した溶湯を鋳造する連続鋳造工程とからなる。この取鍋1は、一次精錬工程、二次精錬工程、連続鋳造工程にて使用され、連続鋳造工程後に溶鋼が空になった取鍋1は、一次精錬工程に戻されて再び使用されることになる。一次精錬工程〜連続鋳造工程までを1サイクルとすると、取鍋1の使用回数は、80サイクル〜90サイクルである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a steel making process in which the ladle is used in the method for reducing the amount of remaining steel in the ladle according to the present invention.
As shown in FIG. 1, the steelmaking process includes a primary refining process for decarburizing the molten metal, and separation and flotation of inclusions and component adjustment with respect to the molten metal (molten steel) that has been processed in the primary refining process. It consists of a secondary refining process to be performed and a continuous casting process for casting the molten metal that has been processed in the secondary refining process. The ladle 1 is used in the primary refining process, the secondary refining process, and the continuous casting process, and the ladle 1 in which the molten steel is emptied after the continuous casting process is returned to the primary refining process and used again. become. If the cycle from the primary refining process to the continuous casting process is one cycle, the number of uses of the ladle 1 is 80 cycles to 90 cycles.

一次精錬工程では、転炉2にて溶湯の脱炭処理が完了後、脱炭処理が終了した溶鋼を出鋼する。このとき、本発明の取鍋1にて溶鋼を受鋼し、当該取鍋1にて二次精錬工程に搬送する。二次精錬工程では、RH装置、LF装置、CAS装置等の二次精錬装置3にて、取鍋1内の溶鋼に対して成分の微調整や介在物の浮上分離を行う。二次精錬工程が終了すると溶鋼が入った取鍋1を連続鋳造工程に搬送する。
連続鋳造工程では、二次精錬工程から搬送された取鍋1を、連続鋳造装置4のタンディッシュ5の上方側に配置して、当該取鍋1内の溶鋼をタンディッシュ5に装入してタンディッシュ5内の溶鋼を鋳型6に注入することにより、溶鋼の鋳造を行う。連続鋳造工程にて取鍋1内の溶鋼が空になると、当該取鍋1は、一次精錬工程、即ち、転炉1まで搬送され、一次精錬工程にて転炉1から出鋼した溶鋼を受鋼する。
In the primary refining process, after the decarburization process of the molten metal is completed in the converter 2, the molten steel after the decarburization process is completed. At this time, molten steel is received by the ladle 1 of the present invention, and conveyed to the secondary refining process by the ladle 1. In the secondary refining process, fine adjustment of components and floating separation of inclusions are performed on the molten steel in the ladle 1 in the secondary refining apparatus 3 such as an RH apparatus, an LF apparatus, and a CAS apparatus. When the secondary refining process is completed, the ladle 1 containing molten steel is conveyed to the continuous casting process.
In the continuous casting process, the ladle 1 conveyed from the secondary refining process is arranged on the upper side of the tundish 5 of the continuous casting apparatus 4, and the molten steel in the ladle 1 is charged into the tundish 5. The molten steel in the tundish 5 is poured into the mold 6 to cast the molten steel. When the molten steel in the ladle 1 is emptied in the continuous casting process, the ladle 1 is transported to the primary refining process, that is, the converter 1 and receives the molten steel discharged from the converter 1 in the primary refining process. Steel.

まず、溶鋼の残鋼量が低減できる取鍋について詳しく説明する。
図2、図3に示すように、容量(溶鋼の貯留する量)が200ton以上300ton以下となる取鍋1を対象としている。取鍋1は、主に、取鍋1の本体を構成する有底状の鉄皮10と、この鉄皮10に施工された耐火物11により構成されている。図2の矢印Aは、転炉1から溶鋼を取鍋1内に出鋼した際に溶鋼の軌道を示したものである。
鉄皮10は、大別して、円形状となっている底壁部12と、この底壁部12から一方向(例えば、上方)に立ち上がる胴壁部13とを備えている。底壁部12には、定形の定形耐火物(耐火レンガ)14が設けられ、当該定形耐火物14の内面側に不定形耐火物15が設けられている。鉄皮10の底壁部12と、この底壁部12に設けた定形耐火物14と、この定形耐火物14の内面側に設けられた不定形耐火物15により、取鍋1の底部16が構成されている。なお、胴壁部13にも、定形耐火物が設けられ、この定形耐火物の内面側に不定形耐火物が設けられたものとなっている。また、胴壁部13及び底壁部12に設けられる耐火物は、定形耐火物14であっても不定形耐火物15であってもよく、その順番や種類等は限定されない。
First, a ladle that can reduce the amount of molten steel remaining will be described in detail.
As shown in FIGS. 2 and 3, the ladle 1 whose capacity (amount of molten steel is stored) is 200 ton or more and 300 ton or less. The ladle 1 is mainly composed of a bottomed iron skin 10 constituting the main body of the ladle 1 and a refractory 11 constructed on the iron skin 10. An arrow A in FIG. 2 shows the trajectory of the molten steel when the molten steel is taken out from the converter 1 into the ladle 1.
The iron skin 10 is roughly divided and includes a bottom wall portion 12 having a circular shape and a body wall portion 13 rising from the bottom wall portion 12 in one direction (for example, upward). A fixed refractory (refractory brick) 14 is provided on the bottom wall portion 12, and an irregular refractory 15 is provided on the inner surface side of the fixed refractory 14. The bottom 16 of the ladle 1 is formed by the bottom wall 12 of the iron shell 10, the regular refractory 14 provided on the bottom wall 12, and the irregular refractory 15 provided on the inner surface side of the regular refractory 14. It is configured. The body wall portion 13 is also provided with a regular refractory, and an irregular refractory is provided on the inner surface side of the regular refractory. Moreover, the refractory provided in the trunk wall part 13 and the bottom wall part 12 may be the regular refractory 14 or the irregular refractory 15, and the order and type thereof are not limited.

取鍋1の底部16において、当該底部16を貫通することにより構成された注入孔17が設けられている。例えば、この注入孔17は、溶鋼をタンディッシュ等に注入する際に用いられるもので、底壁部12と、この底壁部12に設けた定形耐火物14及び不定形耐火物15を貫通状して構成されている。
取鍋1における底部16の内面側に関して、上側から装入された溶鋼が衝突する部分20(以降、湯当たり部20という)を、他の底部16よりも高くした円形(以降、円形部ということがある)としている。
In the bottom portion 16 of the ladle 1, an injection hole 17 configured by penetrating the bottom portion 16 is provided. For example, the injection hole 17 is used when pouring molten steel into a tundish or the like, and penetrates the bottom wall portion 12 and the regular refractory 14 and the irregular refractory 15 provided on the bottom wall portion 12. Configured.
Regarding the inner surface side of the bottom portion 16 in the ladle 1, a circular shape (hereinafter referred to as a circular portion) in which a portion 20 (hereinafter referred to as a hot water hitting portion 20) where molten steel charged from above collides is higher than the other bottom portion 16. There is).

この湯当たり部20とは、図2に示すように、転炉1から溶鋼を出鋼したときに、上方から落下する溶鋼が直接衝突する部分である。この実施形態では、底部16の中央部分に落下してきた溶鋼が衝突することから、その中央部分を湯当たり部20としている。そして、この円形状の湯当たり部20(前記円形部)は、鉄皮10の底壁部12上に設けた不定形耐火物15において、その中央部付近を円形状に盛り上げることによって構成されている。この実施形態では、盛り上げ後の上面は、一定の高さにて平坦にしている。
また、この実施形態では、湯当たり部20を平面視したときに、湯当たり部20の中心は取鍋1の中心と一致しているが、これに限らず、湯当たり部20の中心は取鍋1の中心から径方向にずれた位置であってもよく、湯当たり部20の位置は、図2及び図3に示した位置に限定されない。
As shown in FIG. 2, the hot water contact portion 20 is a portion where the molten steel falling from above directly collides when the molten steel is discharged from the converter 1. In this embodiment, since the molten steel that has fallen on the central portion of the bottom portion 16 collides, the central portion is used as the hot water contact portion 20. The circular hot water contact portion 20 (the circular portion) is formed by raising the vicinity of the center of the amorphous refractory 15 provided on the bottom wall portion 12 of the iron shell 10 into a circular shape. Yes. In this embodiment, the raised upper surface is flat at a constant height.
Further, in this embodiment, when the hot water contact portion 20 is viewed in plan, the center of the hot water contact portion 20 coincides with the center of the ladle 1. The position shifted in the radial direction from the center of the pan 1 may be used, and the position of the hot water contact portion 20 is not limited to the position shown in FIGS.

耐火物の施工を終了した時点(湯当たり部20の施工終了直後)において、円形部(湯当たり部20)の高さhは、105mm以上120mm以下となっている。円形部の高さhとは、不定形耐火物15を盛り上げている部分の高さである(湯当たり部20と、当該湯当たり部が形成されていない非湯当たり部21との段差)。
湯当たり部20の高さhが105mm未満であると、取鍋1の使用回数が増えてくると、湯当たり部20にも凹み(溶鋼が溜まる凹み)が形成されて、湯当たり部20の効果が少なくなり残鋼量が増加するという傾向にある。
At the time when the construction of the refractory is finished (immediately after the construction of the hot water contact portion 20), the height h of the circular portion (the hot water contact portion 20) is 105 mm or more and 120 mm or less. The height h of the circular portion is the height of the portion where the irregular refractory 15 is raised (step difference between the hot water contact portion 20 and the non-hot water contact portion 21 where the hot water contact portion is not formed).
If the height h of the hot water contact portion 20 is less than 105 mm, when the number of uses of the ladle 1 increases, a dent (a dent in which molten steel accumulates) is also formed in the hot water contact portion 20, and The effect tends to decrease and the amount of remaining steel tends to increase.

一方で、円形部(湯当たり部20)の高さhが120mmを超えてしまうと、取鍋1の使用回数が少ない初期段階において、転炉1からの溶鋼を受鋼した際に、不定形耐火物15が剥離し易くなる。
耐火物の施工を終了した時点において、円形部(湯当たり部20)の半径Rは800mm以上900mm以下となっている。湯当たり部20の800mm未満であると、湯当たり部20が小さ過ぎるため、溶鋼を受鋼した際に湯当たり部20以外の部分(非湯当たり部21)にも溶鋼が衝突してしまい、湯当たり部20以外の部分(非湯当たり部21)に凹みが生じて、残鋼量が増加する傾向にある。
On the other hand, when the height h of the circular portion (hot water contact portion 20) exceeds 120 mm, when the molten steel from the converter 1 is received in the initial stage where the number of times of use of the ladle 1 is small, the irregular shape is obtained. The refractory 15 is easily peeled off.
At the time when the construction of the refractory is finished, the radius R of the circular portion (hot water contact portion 20) is 800 mm or more and 900 mm or less. If the hot water hitting portion 20 is less than 800 mm, the hot water hitting portion 20 is too small, so when the molten steel is received, the molten steel collides with a portion other than the hot water hitting portion 20 (non-hot water hitting portion 21), A dent is generated in a portion other than the hot water contact portion 20 (non-hot water contact portion 21), and the amount of remaining steel tends to increase.

一方で、円形部(湯当たり部20)の半径Rが900mmよりも大きいと、湯当たり部20が大きすぎるため、図2の矢印Bに示すように、湯当たり部20の中心付近にある溶鋼が、当該湯当たり部20の全体に広がる時間と非湯当たり部21の全体に広がる時間とに若干の時間差が生じる。即ち、円形部の半径Rが900mmよりも大きいと、溶鋼の受鋼の際に、底部16を全体の温度分布を見ると湯当たり部20と非湯当たり部21との温度不均一や湯当たり部20内での温度不均一が生じやすくなり、温度分布のバラツキにより耐火物(不定形耐火物15)の剥離が生じやすくなる。   On the other hand, if the radius R of the circular portion (hot water contact portion 20) is larger than 900 mm, the hot water contact portion 20 is too large, so that the molten steel near the center of the hot water contact portion 20 is shown in FIG. However, there is a slight time difference between the time spanning the entire hot water contact portion 20 and the time spanning the entire non-hot water portion 21. That is, when the radius R of the circular portion is larger than 900 mm, when receiving the molten steel, the temperature distribution of the bottom portion 16 and the non-hot water contact portion 21 is not uniform or hot water contact when the bottom 16 is viewed in the entire temperature distribution. Temperature non-uniformity is likely to occur within the portion 20, and the refractory (unshaped refractory 15) is liable to peel off due to variations in temperature distribution.

耐火物の施工を終了した時点において、円形部(湯当たり部20)の端部(外縁部)21aから注入孔17の端部(外縁部)17aまでの直線距離(注入孔間距離ということがある)Lは1000mm以上1200mm以下となっている。言い換えれば、注入孔間距離Lは、湯当たり部20と非湯当たり部21の境界部から注入孔17の上端部17aまでの水平最短距離である。
注入孔間距離Lが1000mm未満であると、円形部(湯当たり部20)と注入孔17との距離が短すぎるために、円形部から注入孔17に向けて流れる溶鋼が勢い良く注入孔17に達するため、注入孔17を塞いでいる詰め砂を流し出してしまうことがある。その結果、取鍋1を連続鋳造装置4に設置してタンディッシュ5に溶鋼を注入する際、取鍋1の注入孔17に設けたノズル22を開いても注入孔17から溶鋼が流出しないという開口不良が発生する場合がある。
When the construction of the refractory is finished, the linear distance (distance between the injection holes) from the end portion (outer edge portion) 21a of the circular portion (hot water contact portion 20) to the end portion (outer edge portion) 17a of the injection hole 17 is called. L) is not less than 1000 mm and not more than 1200 mm. In other words, the inter-injection hole distance L is the shortest horizontal distance from the boundary between the hot water contact portion 20 and the non-hot water contact portion 21 to the upper end portion 17a of the injection hole 17.
If the distance L between the injection holes is less than 1000 mm, the distance between the circular portion (hot water contact portion 20) and the injection hole 17 is too short, so that the molten steel flowing from the circular portion toward the injection hole 17 is vigorously injected. Therefore, the filling sand blocking the injection hole 17 may be washed out. As a result, when the ladle 1 is installed in the continuous casting apparatus 4 and molten steel is injected into the tundish 5, the molten steel does not flow out of the injection hole 17 even if the nozzle 22 provided in the injection hole 17 of the ladle 1 is opened. Opening defects may occur.

一方で、注入孔間距離Lが1200mmよりも大きくなると、円形部(湯当たり部20)と注入孔17との距離が長すぎるため、湯当たり部20の中心付近にある溶鋼が、当該湯当たり部20を通って注入孔17に向けて流れるまでに多少時間がかかる。即ち、注入孔間距離Lが1200mmよりも大きくなると、溶鋼の受鋼の際に、底部16を全体の温度分布を見ると、湯当たり部20の温度よりも注入孔17の温度が低いという温度不均一が生じやすくなり、その結果、注入孔17の付近の溶鋼が固まりやすく、開口不良が発生する場合がある。   On the other hand, if the distance L between the injection holes is greater than 1200 mm, the distance between the circular portion (hot water contact portion 20) and the injection hole 17 is too long, so the molten steel near the center of the hot water contact portion 20 It takes some time to flow through the portion 20 toward the injection hole 17. That is, when the distance L between the injection holes is larger than 1200 mm, the temperature of the injection hole 17 is lower than the temperature of the hot water contact part 20 when the entire temperature distribution of the bottom part 16 is seen when receiving the molten steel. As a result, non-uniformity is likely to occur, and as a result, the molten steel near the injection hole 17 tends to harden, and an opening defect may occur.

このように、取鍋1の底部16に関して、湯当たり部20を円形部とし、円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下とすることによって、取鍋1を繰り返し使用しても、底部16が可及的に凹まないようにし、これにより、取鍋2内の残鋼量が増加しないようにしている。しかも、単に取鍋2内の残鋼量が低減するだけでなく、開口不良もなく、耐火物の剥離も十分に防止している。   Thus, regarding the bottom 16 of the ladle 1, the hot water contact portion 20 is a circular portion, the height of the circular portion is 105 mm or more and 120 mm or less, the radius of the circular portion is 800 mm or more and 900 mm or less, and the end of the circular portion By making the distance from the part to the end of the injection hole 1000 mm or more and 1200 mm or less, even if the ladle 1 is used repeatedly, the bottom 16 is prevented from being recessed as much as possible. The amount of remaining steel is kept from increasing. Moreover, not only the amount of remaining steel in the ladle 2 is reduced, but there is no defective opening and the refractory is sufficiently prevented from peeling off.

このように取鍋1を構成した上で、取鍋1内の溶鋼をタンディッシュ5内に注入する際には、取鍋1を1〜2度傾斜させている。ここで、取鍋を1〜2度傾斜させる連続鋳造装置について詳しく説明する。
図1、図4に示すように、連続鋳造装置4は、タンディッシュ5や鋳型6の他に、取鍋2を支持して所定の角度で一定に傾動する載置台25を備えている。この載置台25には、取鍋1(鉄皮10)の外壁(外周面)に設けられた支持ブロック体26と係合する支持体27が設けられている。この支持体27の上部の外周面(支持ブロック体26と対向する面)は傾斜(1度〜2度程度)していて、当該傾斜した傾斜面27aに、下方に凹む係合凹部28が形成されている。
Thus, when the ladle 1 is comprised, when the molten steel in the ladle 1 is inject | poured in the tundish 5, the ladle 1 is inclined 1-2 degree | times. Here, the continuous casting apparatus which makes a ladle incline 1-2 degree | times is demonstrated in detail.
As shown in FIGS. 1 and 4, the continuous casting apparatus 4 includes a mounting table 25 that supports the ladle 2 and tilts at a predetermined angle in addition to the tundish 5 and the mold 6. The mounting table 25 is provided with a support body 27 that engages with a support block body 26 provided on the outer wall (outer peripheral surface) of the ladle 1 (iron skin 10). The outer peripheral surface (surface facing the support block body 26) of the upper portion of the support 27 is inclined (about 1 to 2 degrees), and an engaging recess 28 that is recessed downward is formed on the inclined surface 27a. Has been.

一方で、支持ブロック体26の下部には、係合凹部28に係合する係合凸部29を備え、係合凸部29を係合凹部28に係合することによって、取鍋1がタンディッシュ5の内側(ノズル22に向かって傾斜)に向けて所定の角度で傾く(傾動)ものとなっている。取鍋1の傾斜角度θ(傾動角度)は支持体27の傾斜面27aの傾斜角度によって決まるものとなっている。なお、支持ブロック体27にはトラニオン軸が設けられている。
タンディッシュ5上、即ち、載置台25上において、クレーンで吊っている取鍋1を当該クレーンによって下降させ、当該取鍋1の支持ブロック体26を支持体27に係止することによって、取鍋1を載置台25に載置することができる。取鍋1の支持ブロック体26を支持体27に係止したとき、取鍋1は1〜2度(例えば、1度)で傾斜した状態にあり、この状態で取鍋1内の溶鋼が取鍋1の注入孔17に設けられたノズル22を介してタンディッシュ5内に注入されるものとなっている。
On the other hand, an engaging convex portion 29 that engages with the engaging concave portion 28 is provided at the lower portion of the support block body 26, and the ladle 1 is attached to the tongue by engaging the engaging convex portion 29 with the engaging concave portion 28. It is inclined (tilted) at a predetermined angle toward the inside of the dish 5 (inclined toward the nozzle 22). The inclination angle θ (tilt angle) of the ladle 1 is determined by the inclination angle of the inclined surface 27 a of the support 27. The support block 27 is provided with a trunnion shaft.
On the tundish 5, that is, on the mounting table 25, the ladle 1 suspended by the crane is lowered by the crane, and the support block body 26 of the ladle 1 is locked to the support body 27, whereby the ladle 1 can be mounted on the mounting table 25. When the support block body 26 of the ladle 1 is locked to the support body 27, the ladle 1 is inclined at 1 to 2 degrees (for example, 1 degree), and the molten steel in the ladle 1 is taken up in this state. It is injected into the tundish 5 through a nozzle 22 provided in the injection hole 17 of the pan 1.

このような装置によって、取鍋1を2度よりも大きく傾けると、溶鋼が取鍋1の上部から流出することがあった。取鍋1を全く傾けない場合(傾斜角度θ)が0度の場合は、取鍋1内の残鋼量が増加する虞がある。
なお、図4では、取鍋1を1〜2度傾斜させる方法として設置台25を示したが、取鍋1を1〜2度傾斜させる装置は図4に示すものに限定されない。
表1〜表2は、本発明における取鍋内の残鋼量の低減方法を行った実施例と、本発明における取鍋内の残鋼量の低減方法を行わなかった比較例とをまとめたものである。
When the ladle 1 is tilted more than 2 degrees by such an apparatus, the molten steel sometimes flows out from the upper portion of the ladle 1. When the ladle 1 is not inclined at all (inclination angle θ) is 0 degree, the amount of remaining steel in the ladle 1 may increase.
In addition, in FIG. 4, although the installation stand 25 was shown as a method of inclining the ladle 1 1-2 degree | times, the apparatus which inclines the ladle 1 1-2 degree | times is not limited to what is shown in FIG.
Tables 1 and 2 summarize the examples in which the method for reducing the amount of remaining steel in the ladle in the present invention and the comparative examples in which the method for reducing the amount of remaining steel in the ladle in the present invention was not performed. Is.

実施例及び比較例では、湯当たり部20を含む底部16における不定形耐火物15は、アルミナ(Al23)の重量比が88〜92%、シリカ(SiO2)の重量比が1〜3%、マグネシア(MgO)の重量比が5〜7%の当業者常用のもの(キャスタブル)を使用した(表中、キャスタブル中MgO、キャスタブル中SiO2、キャスタブル中Al23、キャスタブル中その他)。
なお、表中のキャスタブル厚みは、湯あたり部を除く部分の不定形耐火物15の厚みを示している(底部16において湯あたり部を除く部分)。
In the examples and comparative examples, the amorphous refractory 15 in the bottom portion 16 including the hot water contact portion 20 has an alumina (Al 2 O 3 ) weight ratio of 88 to 92% and a silica (SiO 2 ) weight ratio of 1 to 1. 3%, magnesia (in the table using a weight ratio of 5-7% of those skilled in the art regular use (castable) of (MgO), castable in MgO, castable in SiO 2, castable in Al 2 O 3, other in castable ).
The castable thickness in the table indicates the thickness of the amorphous refractory 15 in the portion excluding the hot water perimeter (the portion excluding the hot water perimeter in the bottom 16).

実施例及び比較例では、使用後の取鍋1を反転することで内部に残留したスラグと地金を外部に排出し、これを冷却後にスラグと地金に分別し、地金のみを秤量することで残鋼量を求めた。そして、実施例及び比較例では、残鋼量が取鍋1の使用回数の増加に伴い増加した場合を取鍋1内残鋼量増が有りとし、変化しなかったもの(増加経過しなかったもの)を取鍋1内残鋼量増が無しとした(表中、取鍋1内残鋼量増、有り「×」、無し「○」)。
実施例及び比較例では、取鍋1のノズル22を開いても注入孔17から溶鋼が流出しない場合を開口不良発生が有りとし、ノズル22を開いて溶鋼が流出した場合を開口不良発生が無しとした(表中、開口不良発生、有り「×」、無し「○」)。開口不良発生の場合は、操業者(オペレータ)が、鉄パイプ等を用いてノズル22の内部に酸素を流入させることで、ノズル22の内部で溶鋼流の障害となっている地金などを溶解するという強制的な方法を用いて流出させた。
In Examples and Comparative Examples, the slag and bullion remaining inside are discharged to the outside by inverting the ladle 1 after use, and after cooling, this is separated into slag and bullion, and only the bullion is weighed. The amount of remaining steel was calculated. And in an Example and a comparative example, when the amount of remaining steel increased with the increase in the use frequency of the ladle 1, there was an increase in the amount of remaining steel in the ladle 1 and it did not change (the increase did not progress). No.) No increase in the remaining steel in the ladle 1 (in the table, the increase in the remaining steel in the ladle 1 is present, “X” is present, “○” is absent).
In Examples and Comparative Examples, when the molten steel does not flow out from the injection hole 17 even when the nozzle 22 of the ladle 1 is opened, there is an occurrence of defective opening, and when the molten steel flows out when the nozzle 22 is opened, no defective opening occurs. (In the table, the occurrence of defective opening, presence “×”, absence “◯”). In the case of a defective opening, the operator (operator) uses oxygen pipes or the like to cause oxygen to flow into the nozzle 22 to dissolve the bullion that has obstructed the molten steel flow inside the nozzle 22. It was leaked using a compulsory method.

図5に示すように、取鍋1は毎回の使用後、耐火物の状態を確認し、敷き部(底部16)の耐火物に剥離がないかを目視にて確認した。敷き部(底部16)の耐火物(不定形耐火物15)に剥離が生じたものを、敷き部の剥離が有りとし、剥離が生じなかったものを無しとした(表中、敷き部の剥離、有り「×」、無し「○」)。
一般的に、取鍋に装入する溶鋼は、出来る限り多くとしたほうが1回当たりの溶鋼の運搬量を多くできるが、一方で、取鍋にあまりにも多くの溶鋼を入れすぎると、取鍋の運搬時の振動などにより、取鍋上部から溶鋼が流出する可能性がある。そのため、転炉から連続鋳造まで溶鋼を運搬する際には、当業者常用の取鍋では、静止状態にて取鍋の湯面から取鍋の上端部までの範囲を350mm〜800mmの間である。そこで、取鍋の湯面から取鍋の上端部までを上記下限値の350mmとし、取鍋1を連続鋳造装置4にクレーンによって据え付けた際に、据え付けよる傾きと振動等により取鍋1内の湯面(溶鋼湯面)が揺れ、取鍋1の上部から溶鋼が流出した場合を、取鍋上部からの溶鋼流出が有りとし、流出が無かった場合を、取鍋上部からの溶鋼流出が無しとした(表中、取鍋上部からの溶鋼流出、有り「×」、無し「○」)。
As shown in FIG. 5, the ladle 1 checked the state of the refractory after each use, and visually confirmed whether the refractory on the laying portion (bottom portion 16) was peeled off. The refractory material (unshaped refractory 15) in the laying part (bottom part 16) was peeled off, and the laying part was peeled off, and the refractory was not peeled off (the peeling of the laying part in the table). , Yes “×”, No “○”).
In general, the amount of molten steel charged in the ladle can be increased as much as possible to increase the amount of molten steel transported at one time. On the other hand, if too much molten steel is placed in the ladle, There is a possibility that the molten steel flows out from the upper part of the ladle due to vibrations during transportation. Therefore, when transporting molten steel from the converter to continuous casting, the ladle used by those skilled in the art is between 350 mm and 800 mm in the stationary state from the hot water surface of the ladle to the upper end of the ladle. . Therefore, when the ladle from the surface of the ladle to the upper end of the ladle is set to 350 mm, which is the above lower limit, when the ladle 1 is installed on the continuous casting apparatus 4 with a crane, When the molten steel surface (molten steel surface) fluctuates and the molten steel flows out from the upper part of the ladle 1, there is no molten steel outflow from the upper part of the ladle. (In the table, molten steel spilled from the top of the ladle, with “×”, without “○”).

実施例1〜実施例18に示すように、湯当たり部20を円形部とし、円形部の高さhを105mm以上120mm以下とすると共に、円形部の半径Rを800mm以上900mm以下とし、円形部の端部から注入孔17の端部までの距離を1000mm以上1200mm以下としたうえで、取鍋1内の溶鋼をタンディッシュ5内に注入する際には、取鍋1を1〜2度の範囲で傾斜(取鍋傾斜角度θが1度以上2度以下)させた場合は、取鍋1の使用回数が増加しても、取鍋1の残鋼が増加するという傾向はなく、開口不良や底部16における耐火物の剥離も全く発生しなかった(表中、取鍋内残鋼増、評価「○」、開口不良発生、評価「○」、敷き部の剥離、評価「○」)。さらに、取鍋1を連続鋳造装置4にクレーンによって据え付けた際には、取鍋1の上部からの溶鋼の流出は無かった(表中、取鍋上部からの溶鋼流出、評価「○」)。   As shown in Examples 1 to 18, the hot water contact portion 20 is a circular portion, the height h of the circular portion is 105 mm or more and 120 mm or less, the radius R of the circular portion is 800 mm or more and 900 mm or less, and the circular portion When the molten steel in the ladle 1 is poured into the tundish 5 after the distance from the end of the ladle to the end of the injection hole 17 is set to 1000 mm or more and 1200 mm or less, the ladle 1 is set to 1 to 2 degrees. When the ladle is tilted within the range (the ladle inclination angle θ is 1 degree or more and 2 degrees or less), even if the number of times the ladle 1 is used increases, there is no tendency for the remaining steel of the ladle 1 to increase, and the opening is poor. Also, no refractory peeling occurred at the bottom 16 (in the table, the remaining steel in the ladle increased, evaluation “◯”, defective opening, evaluation “◯”, laying peeling, evaluation “◯”). Furthermore, when the ladle 1 was installed on the continuous casting apparatus 4 by a crane, there was no outflow of molten steel from the upper portion of the ladle 1 (in the table, molten steel outflow from the upper portion of the ladle, evaluation “◯”).

一方で、比較例19及び比較例21に示すように、円形部の高さhが105mm未満であると、取鍋1の使用回数が増加するにつれて、取鍋1の残鋼が増加するという傾向があった(表中、取鍋内残鋼増、評価「×」)。また、比較例20、比較例22及び比較例23に示すように、円形部の高さhが120mmを超えると、底部16において耐火物の剥離が発生した(表中、敷き部の剥離、評価「×」)。
比較例24、比較例26及び比較例28に示すように、円形部の半径Rが800mm未満であると、取鍋1の使用回数が増加するにつれて、取鍋1の残鋼が増加するという傾向があった(表中、取鍋内残鋼増、評価「×」)。また、比較例25及び比較例27に示すように、円形部の半径Rが900mmを超えると、底部16において耐火物の剥離が発生した(表中、敷き部の剥離、評価「×」)。
On the other hand, as shown in Comparative Example 19 and Comparative Example 21, when the height h of the circular portion is less than 105 mm, the remaining steel of the ladle 1 tends to increase as the number of uses of the ladle 1 increases. (In the table, the remaining steel in the ladle increased, evaluation “×”). Moreover, as shown in Comparative Example 20, Comparative Example 22 and Comparative Example 23, when the height h of the circular portion exceeded 120 mm, refractory peeling occurred at the bottom 16 (in the table, peeling of the laying portion, evaluation) “×”).
As shown in Comparative Example 24, Comparative Example 26, and Comparative Example 28, when the radius R of the circular portion is less than 800 mm, the remaining steel of the ladle 1 tends to increase as the number of uses of the ladle 1 increases. (In the table, the remaining steel in the ladle increased, evaluation “×”). Further, as shown in Comparative Example 25 and Comparative Example 27, when the radius R of the circular portion exceeded 900 mm, the refractory was peeled off at the bottom 16 (in the table, peeling of the laying portion, evaluation “×”).

比較例29及び比較例32に示すように、円形部の端部から注入孔17の端部までの距離が1200mmを超えると、開口不良が生じた(表中、開口不良発生、評価「×」)。比較例30、比較例31及び比較例33に示すように、円形部の端部から注入孔17の端部までの距離が1000mm未満であると、開口不良が生じた(表中、開口不良発生、評価「×」)。
比較例34及び比較例35に示すように、取鍋1内の溶鋼をタンディッシュ5内に注入する際に取鍋1を2度よりも大きく3度傾けると(取鍋傾斜角度θが3度)、取鍋1の上部から溶鋼の流出が見受けられた(表中、取鍋上部からの溶鋼流出、評価「×」)。
As shown in Comparative Example 29 and Comparative Example 32, when the distance from the end of the circular portion to the end of the injection hole 17 exceeded 1200 mm, an opening failure occurred (in the table, the occurrence of an opening failure, evaluation “x”). ). As shown in Comparative Example 30, Comparative Example 31, and Comparative Example 33, an opening failure occurred when the distance from the end of the circular portion to the end of the injection hole 17 was less than 1000 mm (the occurrence of an opening failure in the table). , Rating "x").
As shown in Comparative Example 34 and Comparative Example 35, when pouring the molten steel in the ladle 1 into the tundish 5, if the ladle 1 is tilted 3 degrees larger than 2 degrees (the ladle inclination angle θ is 3 degrees) ), Outflow of molten steel was observed from the upper part of the ladle 1 (in the table, molten steel outflow from the upper part of the ladle, evaluation “×”).

比較例36〜比較例38に示すように、取鍋1内の溶鋼をタンディッシュ5内に注入する際に取鍋1を傾けずに溶鋼を注入すると(取鍋傾斜角度θが0度)、取鍋1の残鋼が増加するという傾向があった(表中、取鍋内残鋼増、評価「×」)。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
As shown in Comparative Examples 36 to 38, when the molten steel in the ladle 1 is poured into the tundish 5 and the molten steel is poured without tilting the ladle 1 (the ladle inclination angle θ is 0 degree), There was a tendency for the remaining steel in the ladle 1 to increase (in the table, the remaining steel in the ladle increased, evaluation “×”).
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 取鍋
2 転炉
3 二次精錬装置
4 連続鋳造装置
5 タンディッシュ
6 鋳型
10 鉄皮
11 底壁部
12 胴壁部
13 定形耐火物
14 不定形耐火物
15 底部
16 注入孔
20 湯当たり部
21 非湯当たり部
22 ノズル
DESCRIPTION OF SYMBOLS 1 Ladle 2 Converter 3 Secondary refining apparatus 4 Continuous casting apparatus 5 Tundish 6 Mold 10 Iron skin 11 Bottom wall part 12 Body wall part 13 Shaped refractory 14 Amorphous refractory 15 Bottom 16 Injection hole 20 Hot water contact part 21 Non-bath area 22 nozzle

Claims (1)

容量が200ton以上300ton以下となる取鍋を製鋼工程にて使用するに際して、前記取鍋内の溶鋼の残鋼量を低減する方法において、
前記取鍋の底部の内面に関して、上側から装入された溶鋼が衝突する湯当たり部を、他の底部よりも高くした円形部とし、
前記円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下としたうえで、
前記取鍋内の溶鋼をタンディッシュ内に注入する際には、取鍋を1〜2度傾斜させることを特徴とする取鍋内の残鋼量の低減方法。
In using the ladle having a capacity of 200 ton or more and 300 ton or less in the steel making process, in the method of reducing the amount of residual steel of the molten steel in the ladle,
Regarding the inner surface of the bottom part of the ladle, the hot water impingement part where the molten steel charged from the upper side is a circular part made higher than the other bottom part,
The height of the circular part is 105 mm or more and 120 mm or less, the radius of the circular part is 800 mm or more and 900 mm or less, and the distance from the end of the circular part to the end of the injection hole is 1000 mm or more and 1200 mm or less,
When pouring the molten steel in the ladle into the tundish, the ladle is inclined by 1 to 2 degrees, and the method for reducing the amount of remaining steel in the ladle is characterized in that:
JP2009037846A 2009-02-20 2009-02-20 Reducing the amount of steel remaining in the ladle Active JP5312090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037846A JP5312090B2 (en) 2009-02-20 2009-02-20 Reducing the amount of steel remaining in the ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037846A JP5312090B2 (en) 2009-02-20 2009-02-20 Reducing the amount of steel remaining in the ladle

Publications (2)

Publication Number Publication Date
JP2010188405A true JP2010188405A (en) 2010-09-02
JP5312090B2 JP5312090B2 (en) 2013-10-09

Family

ID=42815032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037846A Active JP5312090B2 (en) 2009-02-20 2009-02-20 Reducing the amount of steel remaining in the ladle

Country Status (1)

Country Link
JP (1) JP5312090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949629A (en) * 2014-04-16 2014-07-30 张家港联峰钢铁研究所有限公司 Ladle bottom structure capable of reducing continuous casting ladle cast residues
WO2020036179A1 (en) * 2018-08-14 2020-02-20 日本製鉄株式会社 Ladle for molten metal
US11529670B2 (en) 2017-10-27 2022-12-20 Sms Group Gmbh Method for cutting a cast strand or intermediate strip using shears
JP7406095B2 (en) 2020-03-24 2023-12-27 日本製鉄株式会社 Molten steel pot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102246U (en) * 1982-12-24 1984-07-10 株式会社神戸製鋼所 Ladle tilting device in continuous casting equipment
JPH0544358U (en) * 1991-11-27 1993-06-15 川崎製鉄株式会社 Ladle support device in continuous casting equipment
JPH076693U (en) * 1993-07-06 1995-01-31 住友金属工業株式会社 Precast blocks for containers for molten metal
JPH09174230A (en) * 1995-12-27 1997-07-08 Nkk Corp Method for lining bed part of ladle
JPH1128561A (en) * 1997-07-04 1999-02-02 Toshiba Ceramics Co Ltd Molten metal impact block and reusing method for, slide gate plate
JP2004106000A (en) * 2002-09-17 2004-04-08 Tokyo Yogyo Co Ltd Bottom block in ladle
JP2006225195A (en) * 2005-02-17 2006-08-31 Nisshin Steel Co Ltd Monolithic refractory

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102246U (en) * 1982-12-24 1984-07-10 株式会社神戸製鋼所 Ladle tilting device in continuous casting equipment
JPH0544358U (en) * 1991-11-27 1993-06-15 川崎製鉄株式会社 Ladle support device in continuous casting equipment
JPH076693U (en) * 1993-07-06 1995-01-31 住友金属工業株式会社 Precast blocks for containers for molten metal
JPH09174230A (en) * 1995-12-27 1997-07-08 Nkk Corp Method for lining bed part of ladle
JPH1128561A (en) * 1997-07-04 1999-02-02 Toshiba Ceramics Co Ltd Molten metal impact block and reusing method for, slide gate plate
JP2004106000A (en) * 2002-09-17 2004-04-08 Tokyo Yogyo Co Ltd Bottom block in ladle
JP2006225195A (en) * 2005-02-17 2006-08-31 Nisshin Steel Co Ltd Monolithic refractory

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949629A (en) * 2014-04-16 2014-07-30 张家港联峰钢铁研究所有限公司 Ladle bottom structure capable of reducing continuous casting ladle cast residues
US11529670B2 (en) 2017-10-27 2022-12-20 Sms Group Gmbh Method for cutting a cast strand or intermediate strip using shears
WO2020036179A1 (en) * 2018-08-14 2020-02-20 日本製鉄株式会社 Ladle for molten metal
KR20200108480A (en) * 2018-08-14 2020-09-18 닛폰세이테츠 가부시키가이샤 Ladle for molten metal
TWI716065B (en) * 2018-08-14 2021-01-11 日商日本製鐵股份有限公司 Ladle for molten metal
KR102410966B1 (en) 2018-08-14 2022-06-22 닛폰세이테츠 가부시키가이샤 ladle for molten metal
JP7406095B2 (en) 2020-03-24 2023-12-27 日本製鉄株式会社 Molten steel pot

Also Published As

Publication number Publication date
JP5312090B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP6465854B2 (en) Metal flow impact pad and tundish diffuser
JP5312090B2 (en) Reducing the amount of steel remaining in the ladle
JP6575355B2 (en) Continuous casting machine
KR0142664B1 (en) Tundish turbulence suppressor
JP5082700B2 (en) Steel continuous casting method
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
KR101484630B1 (en) Apparatus for molten metal treatment and the method thereof
JP5312089B2 (en) Ladle with excellent residual steel reduction
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5361212B2 (en) Method of pouring molten steel into tundish
JP2011245491A (en) Device and method for pouring molten steel
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
JP7364893B2 (en) Method of supplying molten steel
JP3305951B2 (en) Ladle for refining molten metal
CN202639314U (en) Long-life seating brick of steel ladle ventilation brick
JP3386794B2 (en) Container for molten metal for metallurgy
JP6874904B2 (en) Top bottom blown converter type refining container
JP4357343B2 (en) Molten steel stirring method
WO2021106120A1 (en) Dip tube for molten steel processing
JP4765770B2 (en) Swirl suppression method, converter, and hot metal or steel manufacturing method
JPH0734119A (en) Immersion pipe for vacuum degassing device
JP6192604B2 (en) Ladle operation method
JP4522375B2 (en) Measuring pan for anode casting
KR101536918B1 (en) Tea pot ladle
JPS62230930A (en) Method for discharging molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150