JP6192604B2 - Ladle operation method - Google Patents

Ladle operation method Download PDF

Info

Publication number
JP6192604B2
JP6192604B2 JP2014131436A JP2014131436A JP6192604B2 JP 6192604 B2 JP6192604 B2 JP 6192604B2 JP 2014131436 A JP2014131436 A JP 2014131436A JP 2014131436 A JP2014131436 A JP 2014131436A JP 6192604 B2 JP6192604 B2 JP 6192604B2
Authority
JP
Japan
Prior art keywords
ladle
molten steel
slag
tap
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014131436A
Other languages
Japanese (ja)
Other versions
JP2016007641A (en
Inventor
大喜 高橋
大喜 高橋
宏忠 新井
宏忠 新井
上山 泰一
泰一 上山
晴記 飛松
晴記 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014131436A priority Critical patent/JP6192604B2/en
Publication of JP2016007641A publication Critical patent/JP2016007641A/en
Application granted granted Critical
Publication of JP6192604B2 publication Critical patent/JP6192604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、スラグの流出を抑制しつつ取鍋内の溶鋼を出湯させる取鍋操業方法に関する。   The present invention relates to a ladle operating method for discharging molten steel in a ladle while suppressing the outflow of slag.

従来より、製鋼工程においては、上注ぎ法や下注ぎ法などの造塊法を利用して取鍋内の溶鋼を鋳型に出湯し、鋳型内で溶鋼を凝固させる造塊法が行われている。上注ぎ法は、取鍋から注入された溶鋼を、真空チャンバー上部に設置された中間鍋に受け、中間鍋から真空チャンバー内の鋳型に溶鋼を供給する造塊法である。
また、下注ぎ法は、予め定盤上に台盤を配置し、台盤上に鋳型を配置した装置構成となっている。そして、該定盤から台盤にかけて湯道用の貫通孔を形成しておき、該貫通孔の内壁には耐火煉瓦を内張りして丸孔状湯道を形成する。そして、下注ぎ法では、この丸孔状湯道を通った溶鋼が湯道の先端口から鋳型内に吐出されることで、上注ぎ法と同様に鋳型に溶鋼が供給される。
Conventionally, in the steel making process, an ingot-making method is used in which molten steel in a ladle is poured into a mold using an ingot-making method such as an upper pouring method or a lower pouring method, and the molten steel is solidified in the mold. . The top pouring method is an ingot-making method in which molten steel injected from a ladle is received by an intermediate pan installed in the upper part of the vacuum chamber, and the molten steel is supplied from the intermediate pan to a mold in the vacuum chamber.
In addition, the bottom pouring method has an apparatus configuration in which a base is previously disposed on a surface plate and a mold is disposed on the base. Then, a through hole for a runner is formed from the surface plate to the base plate, and a refractory brick is lined on the inner wall of the through hole to form a round hole runner. In the down-pour method, the molten steel that has passed through the round hole-like runner is discharged into the mold from the leading end of the runner, so that the molten steel is supplied to the mold in the same manner as the top-pour method.

上述した上注ぎ法でも下注ぎ法でも、取鍋内の溶鋼は、取鍋の底部に形成された出湯口から出湯される。また、連続鋳造設備などでも、取鍋内の溶鋼をタンディッシュに出湯する取鍋操業が行われている。このような取鍋からの溶鋼の出湯が行われると、その度に取鍋内の溶鋼の湯面が低下する。
そして、溶鋼の湯面が所定の湯面高さまで低下すると、湯面に浮遊するスラグが溶鋼に巻き込まれて混入し、出湯口から出湯される可能性が高くなる。このスラグは、溶鋼の精錬段階で発生するものであり、溶鋼の表面(湯面)に浮遊状態となっており、次工程に排出されると鋳塊品質に悪影響を及ぼす可能性がある。そのため、スラグを浮遊させたまま出湯を完了させた後、残ったスラグを回収容器などに排出する。
In both the above-described top pouring method and the bottom pouring method, the molten steel in the ladle is poured out from a tapping outlet formed at the bottom of the ladle. In addition, ladle operation is also performed in continuous casting equipment, etc., in which the molten steel in the ladle is poured out into the tundish. When the molten steel is poured out from the ladle, the molten steel level in the ladle is lowered each time.
And when the molten steel surface falls to a predetermined molten metal surface height, the possibility that slag floating on the molten steel surface is caught and mixed in the molten steel and is likely to be discharged from the hot water outlet. This slag is generated at the refining stage of the molten steel, is in a floating state on the surface (molten surface) of the molten steel, and if discharged to the next process, it may adversely affect the ingot quality. Therefore, after the hot water is completed with the slag floating, the remaining slag is discharged into a collection container or the like.

ところで、この排出されるスラグにも、鉄源が多く混合されている。そのため、鋳造などの生産性や採算性を向上させるためには、出湯時のスラグの流出を抑制しつつも取鍋内の溶鋼を可能な限り最後まで鋳型などに出湯するようにし、回収容器に排出されるスラグ中の有価な鉄源(残鋼)を低減するのが好ましい。
そのため、このようにスラグの流出を抑制しつつ取鍋内の溶鋼を出湯させる技術としては、次の特許文献1〜4に示すような技術が既に開発されている。
By the way, a lot of iron sources are also mixed in this discharged slag. Therefore, in order to improve productivity and profitability such as casting, the molten steel in the ladle is discharged to the mold as far as possible while suppressing the outflow of slag at the time of pouring, and the recovery container It is preferable to reduce valuable iron sources (remaining steel) in the discharged slag.
Therefore, as shown in the following Patent Documents 1 to 4, techniques have already been developed as techniques for pouring molten steel in the ladle while suppressing the outflow of slag.

例えば、特許文献1には、取鍋の溶鋼をタンディッシュに出湯する際に取鍋スラグがタンディッシュに流出することを防止するため、取鍋からの溶鋼注入が終了する前段階で、取鍋を注入ノズル側に1〜10°傾動させ、注入ノズルから不活性ガスを1〜300L/minで吹き込みつつ出湯を行う取鍋の操業方法が開示されている。
また、特許文献2には、取鍋底を出湯口に向けて勾配を有する形状に形成すると共に、出湯口を下方に向けて凸面状に湾曲した形状に形成し、この出湯口に溶鋼を集めるようにして注入終了後の取鍋の残鋼量を減少させる技術が知られている。
For example, in Patent Document 1, in order to prevent ladle slag from flowing out into the tundish when the molten steel in the ladle is poured into the tundish, the ladle is introduced at the stage before the end of the molten steel injection from the ladle. The ladle operation method in which the hot water is discharged while the inert gas is blown from the injection nozzle at a rate of 1 to 300 L / min is disclosed.
In Patent Document 2, the bottom of the ladle is formed in a shape having a gradient toward the tap, and the tap is formed in a curved shape facing downward, so that molten steel is collected at the tap. A technique for reducing the amount of steel remaining in the ladle after pouring is known.

さらに、特許文献3には、200〜300tonの取鍋の底面に、取鍋に装入される溶鋼が衝突する湯当たり部を設け、さらに取鍋を傾斜しつつ出湯を行う技術が開示されている。この特許文献3の湯当たり部は、他の底部よりも105〜120mm高く形成されており、半径が800〜900mmの円形部とされており、円形部端部から注入孔端部までの距離が1000〜1200mmとなるように形成されている。特許文献3では、このような湯当たり部を設けた上で、取鍋を1〜2°傾斜させることで、スラグの流出を抑制しつつ出湯を行うことができるとしている。   Furthermore, Patent Document 3 discloses a technique for providing a hot water impingement portion on which the molten steel charged into the ladle collides on the bottom surface of a 200 to 300 ton ladle, and further performing tapping while tilting the ladle. Yes. The hot water hitting part of Patent Document 3 is formed to be 105 to 120 mm higher than the other bottom part, is a circular part with a radius of 800 to 900 mm, and the distance from the end of the circular part to the end of the injection hole is It is formed to be 1000 to 1200 mm. In patent document 3, after providing such a hot water contact part, it is supposed that a hot water can be discharged | emitted, suppressing the outflow of slag by inclining a ladle 1-2 degrees.

さらにまた、特許文献4には、取鍋からタンディッシュに溶鋼を注入する際に、取鍋の形状から導かれる特定の関係式を満足する傾動角度に取鍋を傾動することで、操業に支障をきたすことなく、取鍋の溶鋼残存量を可及的に低減できることが開示されている。具体的には、この特許文献4の関係式は、取鍋を傾動させる傾動角度を、取鍋の上端開口部の面積、取鍋の底部の面積、取鍋の平均高さ、取鍋の直径(半径)、取鍋の注入口の中心から内壁までの距離、取鍋の半径などを用いて示したものとなっている。   Furthermore, in Patent Document 4, when molten steel is poured from a ladle into a tundish, the ladle is tilted at a tilt angle that satisfies a specific relational expression derived from the shape of the ladle, which hinders operation. It has been disclosed that the amount of molten steel remaining in the ladle can be reduced as much as possible without causing any problems. Specifically, the relational expression of this Patent Document 4 shows the tilt angle for tilting the ladle, the area of the top opening of the ladle, the area of the bottom of the ladle, the average height of the ladle, and the diameter of the ladle. (Radius), the distance from the center of the ladle inlet to the inner wall, the radius of the ladle, etc.

特開平8−117934号公報JP-A-8-117934 特表2002−500956号公報Japanese translation of PCT publication No. 2002-50056 特開2011−36827号公報JP 2011-36827 A 特開2009−202194号公報JP 2009-202194 A

上述した特許文献1〜4の技術は、いずれも取鍋を所定の傾動角度まで傾動させたり、取鍋の内底壁に所定角度の勾配を設けたりして、出湯する溶鋼へのスラグ流出を防止している。しかし、出湯する溶鋼にスラグが流出するかどうかは、取鍋からの溶鋼の出湯速度やスラグの粘度といった操業条件にも影響されるし、取鍋の内底壁において取鍋の中心から出湯口がどの程度外側に形成されるかといった取鍋の形状にも影響される。ところが、特許文献1〜特許文献4の技術は、いずれもこのような操業条件や取鍋形状の影響を考慮しておらず、溶鋼へのスラグ流出を効果的に抑制するものとなっていなかった。   In any of the techniques of Patent Documents 1 to 4 described above, the ladle is tilted to a predetermined tilting angle, or the inner bottom wall of the ladle is provided with a predetermined angle of gradient so that the slag flows into the molten steel to be poured out. It is preventing. However, whether or not slag flows into the molten steel is affected by the operating conditions such as the molten steel discharge speed from the ladle and the viscosity of the slag, and the outlet from the center of the ladle on the inner bottom wall of the ladle. It is also influenced by the shape of the ladle such as how much is formed on the outside. However, none of the techniques of Patent Documents 1 to 4 considers the influence of such operating conditions and ladle shape, and have not effectively suppressed slag outflow to molten steel. .

加えて、特許文献1の技術では、湯面が低い状態で溶鋼に不活性ガスを吹き込むことで、溶鋼とスラグが混合されてかえってスラグの流出が助長される可能性がある。
本発明は、上記事情に鑑みてなされたものであって、操業条件や取鍋形状が変更された場合にも、出湯する溶鋼に取鍋内のスラグが流出することを防止して、取鍋内の残鋼量を確実に低減することが可能となる取鍋操業方法を提供することを目的とする。
In addition, in the technique of Patent Document 1, there is a possibility that the outflow of slag is promoted by mixing the molten steel and slag by blowing an inert gas into the molten steel in a state where the molten metal surface is low.
The present invention has been made in view of the above circumstances, and prevents the slag in the ladle from flowing out to the molten steel to be poured out even when the operating conditions and the shape of the ladle are changed. An object of the present invention is to provide a ladle operating method that can surely reduce the amount of steel remaining in the ladle.

上記課題を解決するため、本発明の取鍋操業方法は以下の技術的手段を講じている。
即ち、底部に出湯口が形成された取鍋から当該出湯口を介して溶鋼を出湯するにおいて、前記取鍋の内底壁の勾配角度であって出湯口の周囲の内底壁が水平方向に対して為す勾配角度がθ1であるに際しては、前記取鍋の出湯口が下がる方向に向かって、前記取鍋を式(1)を満足する傾斜角度θ2で傾動させることを特徴とする。
In order to solve the above problems, the ladle operating method of the present invention takes the following technical means.
That is, when pouring molten steel from a ladle having a pouring gate formed at the bottom through the pouring gate, the inner bottom wall around the pouring tap is in a horizontal direction with a gradient angle of the inner bottom wall of the ladle. On the other hand, when the gradient angle is θ1, the ladle is tilted at an inclination angle θ2 satisfying the expression (1) in the direction in which the tap of the ladle is lowered.

本発明の取鍋操業方法によれば、操業条件や取鍋形状が変更された場合にも、出湯する溶鋼に取鍋内のスラグが流出することを防止して、取鍋内の残鋼量を確実に低減することが可能となる。   According to the ladle operation method of the present invention, even when the operation conditions and the shape of the ladle are changed, the amount of remaining steel in the ladle is prevented by preventing the slag in the ladle from flowing out to the molten steel to be tapped. Can be reliably reduced.

本実施形態の取鍋操業方法が行われる造塊装置を示した模式図である。It is the schematic diagram which showed the ingot forming apparatus with which the ladle operating method of this embodiment is performed. 本実施形態の取鍋操業方法を示した模式図である。It is the schematic diagram which showed the ladle operation method of this embodiment. 出湯口が取鍋中心からR=836mmの取鍋で、0.05Pa・sの粘度の溶鋼を出湯させた際の評価結果を、取鍋の傾斜角度及び溶鋼の流出速度についてまとめた図である。It is the figure which put together the evaluation result at the time of letting out molten steel with a viscosity of 0.05 Pa.s with a ladle of R = 836mm from the ladle center about the tilt angle of the ladle and the outflow speed of the molten steel. 出湯口が取鍋中心からR=836mmの取鍋で、0.13Pa・sの粘度の溶鋼を出湯させた際の評価結果を、取鍋の傾斜角度及び溶鋼の流出速度についてまとめた図である。It is the figure which put together the evaluation result at the time of letting out molten steel with a viscosity of 0.13 Pa.s with a ladle of R = 836mm from the ladle center about the tilt angle of the ladle and the outflow speed of the molten steel. 出湯口が取鍋中心からR=836mmの取鍋で、0.86Pa・sの粘度の溶鋼を出湯させた際の評価結果を、取鍋の傾斜角度及び溶鋼の流出速度についてまとめた図である。It is the figure which put together the evaluation result at the time of letting out molten steel with a viscosity of 0.86 Pa.s with a ladle of R = 836mm from the ladle center about the tilt angle of the ladle and the outflow speed of the molten steel. 出湯口が取鍋中心からR=836mmの取鍋で、溶鋼を出湯速度0.359m/sで出湯させた際の評価結果を、取鍋の傾斜角度及びスラグの粘度についてまとめた図である。It is the figure which put together the evaluation result at the time of letting out the molten steel with a tapping speed of 0.359 m / s about the tilt angle of the ladle and the viscosity of the slag in the ladle from the ladle center at a ladle of R = 836 mm. 溶鋼を出湯速度0.359m/sで出湯させた際の評価結果を、取鍋の傾斜角度及びノズル中心からの距離についてまとめた図である。It is the figure which put together the evaluation result at the time of pouring molten steel with the pouring speed of 0.359 m / s about the inclination angle of a ladle and the distance from a nozzle center.

以下、図を参照しながら、本実施形態による取鍋操業方法について説明する。
まず、図1を参照して、本実施形態の取鍋操業方法が適用される造塊装置1(下注ぎ造塊装置)について説明する。なお、図1は下注ぎ造塊を行う造塊装置1の概略構成を示したものであるが、本実施形態の取鍋操業方法は、図1とは装置構成が異なる上注ぎ造塊装置や連続鋳造装置における取鍋3にも適用可能である。
Hereinafter, the ladle operating method according to the present embodiment will be described with reference to the drawings.
First, with reference to FIG. 1, the ingot forming apparatus 1 (bottom pouring ingot apparatus) to which the ladle operating method of this embodiment is applied will be described. In addition, although FIG. 1 shows schematic structure of the ingot-making apparatus 1 which performs bottom pouring ingot, the ladle operation method of this embodiment differs from FIG. It is applicable also to the ladle 3 in a continuous casting apparatus.

図1に示すように、造塊装置1は、取鍋3内の溶鋼が注入される注入管4と、この注入管4を介して取鍋3の溶鋼が装入される鋳型2と、鋳型2が上面に載置される定盤5とを備えている。
具体的には、注入管4は定盤5の中央側から上方に向かって立つように設けられた塔状の部材であり、この注入管4の内部には溶鋼が通る湯道6が上下方向に沿って形成されている。この注入管4の湯道6は、耐火煉瓦を内張りして円形の断面となるように形成されており、この湯道6を通じて取鍋3の溶鋼を取り込むことができるようになっている。
As shown in FIG. 1, the agglomeration apparatus 1 includes an injection pipe 4 into which molten steel in the ladle 3 is injected, a mold 2 into which the molten steel in the ladle 3 is inserted via the injection pipe 4, and a mold 2 is provided with a surface plate 5 placed on the upper surface.
Specifically, the injection pipe 4 is a tower-like member provided so as to stand upward from the center side of the surface plate 5, and a runner 6 through which molten steel passes is vertically located inside the injection pipe 4. It is formed along. The runner 6 of the injection pipe 4 is formed so as to have a circular cross section by lining a refractory brick, and the molten steel of the ladle 3 can be taken in through the runner 6.

定盤5は、注入管4及び鋳型2の下側に形成された平板状の部材であり、注入管4及び鋳型2を下方から支持可能となっている。定盤5の内部には、溶鋼が通る湯道6が、注入管4の下側と、鋳型2の下側との2点間を結ぶように形成されていて、注入管4に注入された溶鋼を鋳型2内に送ることができるようになっている。鋳型2は、溶鋼を鋳込むことができるように鋳鉄で形成された容器である。鋳型2の上側は上方に向かって開口しており、また鋳型2の下側には定盤5の湯道6から溶鋼を注入可能な下注入口7(溶鋼吐出口)が形成されている。   The surface plate 5 is a flat member formed below the injection tube 4 and the mold 2 and can support the injection tube 4 and the mold 2 from below. Inside the surface plate 5, a runner 6 through which molten steel passes is formed so as to connect between the lower side of the injection pipe 4 and the lower side of the mold 2, and was injected into the injection pipe 4. Molten steel can be fed into the mold 2. The mold 2 is a container formed of cast iron so that molten steel can be cast. The upper side of the mold 2 is opened upward, and a lower injection port 7 (molten steel discharge port) through which molten steel can be injected from the runner 6 of the surface plate 5 is formed on the lower side of the mold 2.

上述したような造塊装置1にて造塊を行うにあたっては、まず、取鍋3を注入管4の上方にクレーンで配置する。その後、取鍋3の底部の出湯口に設けられたスライドバルブ10を開状態とすることで、出湯口9を介して、取鍋3内の溶鋼を注入管4の湯道6に導き入れ、定盤5の湯道6を経由して鋳型2に送る。このようにして鋳型2に達した溶鋼は、鋳型2の下注入口7から鋳型2内に入り込み、鋳型2内の上部の押湯部まで達し、適切な量の押湯となったところで溶鋼の流入は停止される。その後、鋳型2内で冷却されてインゴット等の鋳塊となる。このような造塊方法においては、例えば船舶用部品などに用いられる大型鍛造品等の素材のように鋳鍛鋼品用の鋼塊を製造することができる。   In ingoting with the ingot making apparatus 1 as described above, first, the ladle 3 is arranged above the injection pipe 4 with a crane. Then, the molten steel in the ladle 3 is introduced into the runner 6 of the pouring pipe 4 through the tap 9 by opening the slide valve 10 provided at the bottom of the ladle 3. It is sent to the mold 2 via the runner 6 of the surface plate 5. The molten steel that has reached the mold 2 in this way enters the mold 2 from the lower injection port 7 of the mold 2, reaches the upper feeder in the mold 2, and when the molten steel reaches an appropriate amount, Inflow is stopped. Then, it cools in the casting_mold | template 2 and becomes ingots, such as an ingot. In such an ingot-making method, a steel ingot for cast and forged steel products can be produced, for example, as a material such as a large forged product used for marine parts and the like.

ところで、上述した造塊装置1で造塊を行う際には、取鍋3の底部に形成された出湯口9から取鍋3内の溶鋼を適宜出湯する必要がある。このような溶鋼の出湯が行われると、取鍋3内の湯面が下がり、やがて湯面に浮遊するスラグと出湯口の距離が小さくなって、出湯口9から出湯する溶鋼の流れに浮遊するスラグが巻き込まれる可能性が高くなる。
一般の取鍋操業方法では、取鍋内にスラグを残したまま出湯を完了させ、残ったスラグを回収容器などに排出している。
By the way, when performing ingot making with the above-described ingot making apparatus 1, it is necessary to appropriately pour molten steel in the ladle 3 from the tap 9 formed at the bottom of the ladle 3. When such molten steel is poured out, the molten metal surface in the ladle 3 is lowered, and the distance between the slag floating on the molten metal surface and the outlet becomes small, and floats in the flow of molten steel discharged from the outlet 9. The possibility that slag is caught increases.
In the general ladle operation method, the hot water is completed while leaving the slag in the ladle, and the remaining slag is discharged into a collection container or the like.

しかし、この排出されるスラグには、鉄源も多く混入しており、鋳造などの生産性や採算性を高くするためには、回収容器に排出されるスラグ中から有価な鉄源(残鋼)をできる限り低減するのが好ましい。
そこで、本発明の取鍋操業方法では、底部に出湯口9が形成された取鍋3から当該出湯口9を介して溶鋼を出湯するにおいて、取鍋3の内底壁11の勾配角度がθ1であるに際
しては、取鍋3の出湯口9が下方に下がるように、取鍋3を式(1)を満足する傾斜角度θ2で傾動させている。
However, this discharged slag contains a lot of iron sources, and in order to increase productivity and profitability such as casting, a valuable iron source (residual steel) from the slag discharged to the recovery container. ) Is preferably reduced as much as possible.
Therefore, in the ladle operation method of the present invention, when the molten steel is poured out from the ladle 3 having the pouring hole 9 formed at the bottom through the pouring hole 9, the gradient angle of the inner bottom wall 11 of the ladle 3 is θ. When it is 1 , the ladle 3 is tilted at an inclination angle θ 2 that satisfies the expression (1) so that the tap 9 of the ladle 3 is lowered.

なお、上述した式(1)に用いられるθ1は、取鍋3の内底壁11の勾配角度を示すものであり、実際には出湯口9の周囲の内底壁11が水平方向に対して為す勾配角度を意味している。このような取鍋3の内底壁11の勾配は、取鍋3を施工する際に予め内底壁11を傾けた状態に施工することで付与することができる。
また、θ2は、取鍋3を傾動させる角度を示すものである。このθ2は、実際にクレーンなどで吊り上げて取鍋3を傾ける際の角度であり、例えば傾動後の取鍋3の角度から傾動前の取鍋3の角度を差し引くことで求めることができる。
Incidentally, theta 1 used in the equation (1) described above, which shows the slope angle of the inner bottom wall 11 of the ladle 3, in fact, with respect to the inner bottom wall 11 in the horizontal direction around the tap hole 9 This means the gradient angle. Such a gradient of the inner bottom wall 11 of the ladle 3 can be imparted by constructing the inner bottom wall 11 in an inclined state in advance when constructing the ladle 3.
Θ 2 indicates an angle at which the ladle 3 is tilted. This θ 2 is an angle when the ladle 3 is actually tilted by being lifted by a crane or the like, and can be obtained, for example, by subtracting the angle of the ladle 3 before tilting from the angle of the ladle 3 after tilting.

本発明の取鍋操業方法では、これら2つの角度の和を、取鍋半径R、出湯口位置までの距離L、スラグ粘度P、溶鋼の流出速度Vにより決定される下限値f(P,V,L,R)及び上限値g(P,V,L,R)の間に保持することで、出湯口9からのスラグの流出抑制と溶鋼の効率的な出湯とを双方可能としている。これらの下限値及び上限値に溶鋼表面のスラグの粘度P、出湯口9からの溶鋼の流出速度V、取鍋3中心から出湯口9の中心までの距離L、取鍋3の内底壁11の半径Rから導かれる数値を用いる理由は、次の通りである。   In the ladle operation method of the present invention, the sum of these two angles is set to the lower limit f (P, V determined by the ladle radius R, the distance L to the tap outlet position, the slag viscosity P, and the outflow speed V of the molten steel. , L, R) and the upper limit value g (P, V, L, R), it is possible to suppress both the outflow of slag from the hot water outlet 9 and the efficient hot water of molten steel. The lower limit value and the upper limit value include the viscosity P of the slag on the surface of the molten steel, the outflow velocity V of the molten steel from the tap 9, the distance L from the center of the ladle 3 to the center of the tap 9, and the inner bottom wall 11 of the ladle 3. The reason for using the numerical value derived from the radius R of is as follows.

例えば、出湯口9の位置を取鍋3の中心に近くしすぎると、取鍋3を大きく傾動させた際に、取鍋3の傾動により低くなった側(取鍋3の内底壁11における出湯口9より外側の部分)に大量の溶鋼が偏って集まり、大量の残鋼が生じてしまう可能性がある。とはいえ、出湯口9の位置を取鍋3の中心から遠くしすぎれば、溶鋼がかえって出湯口9に集まらず、残鋼量が増えてしまう。それゆえ、上述2つの角度の和は、取鍋3中心から出湯口9の中心までの距離L及び取鍋3の内底壁11の半径Rより導かれる上限値及び下限値の間に規定されるのが好ましい。   For example, if the position of the tap 9 is too close to the center of the ladle 3, when the ladle 3 is largely tilted, the side lowered by the tilt of the ladle 3 (in the inner bottom wall 11 of the ladle 3). There is a possibility that a large amount of molten steel will be concentrated on the outer side of the tap 9 and a large amount of remaining steel will be produced. However, if the position of the tap 9 is too far from the center of the pan 3, the molten steel is changed and does not collect at the tap 9, and the amount of remaining steel increases. Therefore, the sum of the above two angles is defined between the upper limit value and the lower limit value derived from the distance L from the center of the ladle 3 to the center of the tap 9 and the radius R of the inner bottom wall 11 of the ladle 3. It is preferable.

また、出湯口9から出湯する溶鋼の流出速度を大きくしすぎる場合には、流出する溶鋼の流れに湯面に浮遊するスラグが引き込まれ、スラグが出湯口9から鋳型2側に流出してしまう可能性がある。ところが、出湯口9から出湯する溶鋼の流出速度を小さくしすぎると、スラグ流出の可能性は低くなるが、取鍋3から溶鋼が流出するのに長大な時間が必要となり、取鍋3操業の効率が低下してしまう。それゆえ、上述した2つの角度の和は、出湯口9から出湯する溶鋼の流出速度より導かれる上限値及び下限値の間に規定されるのが好ましい。   In addition, when the outflow speed of the molten steel discharged from the hot water outlet 9 is excessively increased, slag floating on the molten metal surface is drawn into the flow of the molten steel, and the slag flows out from the hot water outlet 9 to the mold 2 side. there is a possibility. However, if the outflow rate of the molten steel discharged from the tap 9 is too small, the possibility of slag outflow is reduced, but it takes a long time for the molten steel to flow out of the ladle 3 and Efficiency will decrease. Therefore, it is preferable that the sum of the two angles described above is defined between an upper limit value and a lower limit value derived from the outflow speed of the molten steel discharged from the tap 9.

さらに、溶鋼の湯面に形成されるスラグの粘度も、スラグの流出のされやすさに大きな影響を及ぼす。このようなスラグの粘度は、溶鋼の組成や鋼種により大きく変動し、それに伴い上述したθ1+θ2の上限値及び下限値も大きく変化する。それゆえ、上述した2つ
の角度の和は、スラグの粘度より導かれる上限値及び下限値の間に規定されるのが好ましい。
Furthermore, the viscosity of the slag formed on the molten steel surface also greatly affects the ease of slag flow. The viscosity of such slag varies greatly depending on the composition of the molten steel and the steel type, and the upper limit value and lower limit value of θ 1 + θ 2 described above change greatly accordingly. Therefore, the sum of the two angles described above is preferably defined between an upper limit value and a lower limit value derived from the viscosity of the slag.

以上のことから、本発明の取鍋操業方法では、2つの角度の和の上限値及び下限値に、式(1)に示すように、取鍋半径R、出湯口9の位置までの距離L、スラグ粘度P、溶鋼の流出速度Vにより決定される値を用いているのである。
なお、式(1)に用いられるRは、取鍋3の内底壁11の半径を示しており、また距離Lは、取鍋3の内底壁11の中心から出湯口9の中心までの距離を示している。また、粘度Pは、溶鋼の表面に浮遊するスラグの粘度を示している。そして、溶鋼の流出速度Vは、取鍋3内から流出する溶鋼の量を、出湯口9の開口面積で除したものである。この流出速度Vの下限値は、取鍋3内の溶鋼が凝固して出湯口9のノズルが詰まることがないような値であって、溶鋼の出湯効率が著しく低くならないような値に設定されている。また、流出速度Vの上限値は、出湯口9からの溶鋼が短時間で流出するような場合でも、スラグと溶鋼との区別が十分に可能となるような値に設定されている。
From the above, in the ladle operation method of the present invention, the upper limit value and the lower limit value of the sum of the two angles are represented by the formula (1), the ladle radius R, the distance L to the position of the tap 9 The value determined by the slag viscosity P and the outflow speed V of the molten steel is used.
In addition, R used for Formula (1) has shown the radius of the inner bottom wall 11 of the ladle 3, and distance L is from the center of the inner bottom wall 11 of the ladle 3 to the center of the tap 9. Shows the distance. Moreover, the viscosity P has shown the viscosity of the slag which floats on the surface of molten steel. The outflow speed V of the molten steel is obtained by dividing the amount of molten steel flowing out of the ladle 3 by the opening area of the tap 9. The lower limit value of the outflow speed V is set to such a value that the molten steel in the ladle 3 does not solidify and the nozzle of the outlet 9 is not clogged, and the molten steel outlet efficiency is not significantly lowered. ing. In addition, the upper limit value of the outflow speed V is set to a value that makes it possible to sufficiently distinguish between the slag and the molten steel even when the molten steel from the outlet 9 flows out in a short time.

また、式(1)の関係では、「θ1」が0°、つまり取鍋3の内底壁11に勾配を付けず、取鍋3を傾斜させるのみでも、本発明の作用効果は得られる。加えて、「θ2」が0°、つまり取鍋3を傾斜させずに、取鍋3の内底壁11に勾配を付けるのみでも、本発明の作用効果は得られる。
さらに、本発明の取鍋操業方法は、式(1)の関係を満足するように、取鍋3を最初から傾斜させたままで操業を行っても良いが、最初は取鍋3を水平に保持しておいて、残った溶鋼を一度に排出する直前に取鍋3を傾動させ、このときに式(1)の関係を満足するような操業を行っても良い。この「残った溶鋼を一度に排出する直前」とは、例えば、取鍋3に残される溶鋼の相当高さが200mm以内になった場合を挙げることができる。
Further, in the relationship of the formula (1), “θ 1 ” is 0 °, that is, the effect of the present invention can be obtained only by inclining the ladle 3 without giving a gradient to the inner bottom wall 11 of the ladle 3. . In addition, even if “θ 2 ” is 0 °, that is, the inner bottom wall 11 of the ladle 3 is only inclined without tilting the ladle 3, the effect of the present invention can be obtained.
Furthermore, the ladle operation method of the present invention may be operated with the ladle 3 inclined from the beginning so as to satisfy the relationship of the formula (1), but initially the ladle 3 is held horizontally. In this case, the ladle 3 may be tilted immediately before the remaining molten steel is discharged at one time, and at this time, an operation that satisfies the relationship of the expression (1) may be performed. This “immediately before the remaining molten steel is discharged at once” can be exemplified, for example, when the equivalent height of the molten steel remaining in the ladle 3 is within 200 mm.

なお、上述した式(1)の関係はさまざまなサイズの取鍋3に対して成立するが、特に受鋼可能な溶鋼の重量が10〜300tの取鍋3に対して上述した関係が成立することを、本発明の発明者らは確認している。
また、取鍋3の内底壁11に勾配をつけて施工しようとしても、勾配の大きさが1〜2°と小さい場合には施工が困難になる場合がある。このような場合は、内底壁の勾配を1〜2°より大きくして施工を確実に行い、勾配角度を大きくした分だけ取鍋3を傾動する際の傾動角度を小さくするといった操業を行うと良い。
In addition, although the relationship of Formula (1) mentioned above is materialized with respect to the ladle 3 of various sizes, especially the relationship mentioned above is materialized with respect to the ladle 3 whose weight of the molten steel which can receive steel is 10-300t. The inventors of the present invention have confirmed this.
Moreover, even if it tries to construct with the gradient in the inner bottom wall 11 of the ladle 3, when the magnitude | size of a gradient is as small as 1-2 degrees, construction may become difficult. In such a case, the slope of the inner bottom wall is made larger than 1 to 2 °, the construction is performed reliably, and the tilt angle when tilting the ladle 3 is reduced by the amount of the increased slope angle. And good.

さらに、取鍋3で溶鋼を受鋼する際に、受鋼した溶鋼が取鍋3内の1点(湯当たり部の1点)に集中して注がれると、取鍋3の内底壁11が溶損しやすくなって取鍋3の破損が起きやすくなったり、取鍋3の容積が大きくなって式(1)の関係が成立しにくくなったりする可能性がある。このような場合は、受鋼した溶鋼が取鍋3の内底壁11の1点に集中しないように、取鍋3の傾動角度を優先的に変化させる操業を行うのが好ましい。   Furthermore, when receiving the molten steel with the ladle 3, if the molten steel received is concentrated and poured into one point in the ladle 3 (one point of the hot water contact portion), the inner bottom wall of the ladle 3 11 may be easily melted and damage to the ladle 3 may easily occur, or the volume of the ladle 3 may increase and the relationship of formula (1) may not be established. In such a case, it is preferable to perform an operation that preferentially changes the tilt angle of the ladle 3 so that the received molten steel does not concentrate on one point on the inner bottom wall 11 of the ladle 3.

次に、本発明の取鍋操業方法が備える作用効果を、実施例及び比較例を用いて、さらに詳しく説明する。
実施例及び比較例は、取鍋3から溶鋼を下注ぎ造塊法によって鋳型2内に鋳込む際に、取鍋3の傾動角度θ(=θ2)[deg.]、出湯口9からの溶鋼の流出速度V[m/s]、スラグの粘度P[Pa・s]、取鍋3の中心から出湯口9の中心までの距離L[m]、取鍋3の底部の半径R[m]などの条件を変更しつつ操業を行って、取鍋3に残った鉄源の量(残鋼量)及び鋳込み作業の作業性を評価したものである。
Next, the effect provided by the ladle operating method of the present invention will be described in more detail using Examples and Comparative Examples.
In Examples and Comparative Examples, when the molten steel is poured from the ladle 3 into the mold 2 by the downward pouring and ingot casting method, the tilt angle θ (= θ 2 ) [deg.] Of the ladle 3 is measured from the tap 9. Outflow velocity V [m / s] of molten steel, viscosity P [Pa · s] of slag, distance L [m] from the center of ladle 3 to the center of tap 9, radius R [m] of the bottom of ladle 3 The operation was carried out while changing the conditions such as], and the amount of iron source remaining in the ladle 3 (the amount of remaining steel) and the workability of the casting work were evaluated.

なお、実施例及び比較例に用いた溶鋼は、100tの電気炉(交流式アーク炉)でスクラップを1次精錬し、1次精錬で溶解されたスクラップ由来の溶湯を、取鍋3へ傾注したものである。
この取鍋3に傾注された溶鋼に対しては、LF(Ladle Furnace)法により脱ガス処理を2次精錬として行った。具体的には、取鍋3を蓋で覆い、取鍋3内を70Pa程度の真空状態にした後、底吹き用プラグからArガスを吹込み、20分間真空脱水素処理を行った。
In addition, the molten steel used for the Example and the comparative example primarily refined the scrap with a 100 t electric furnace (AC arc furnace), and poured the molten metal derived from the scrap melted by the primary refining to the ladle 3. Is.
The molten steel poured into the ladle 3 was degassed as secondary refining by the LF (Ladle Furnace) method. Specifically, the ladle 3 was covered with a lid, the inside of the ladle 3 was evacuated to about 70 Pa, Ar gas was then blown from the bottom blowing plug, and vacuum dehydrogenation was performed for 20 minutes.

このようにして2次精錬を行った溶鋼を、下注ぎ造塊法により鋳型2に出湯した。すなわち、取鍋3から湯道6を通じて鋳型2内に溶鋼を鋳込み、鋳塊を完全凝固させ、完全凝
固した鋳塊を脱型し、鍛造などの下工程に移行させた。
このような出湯の操作を行い、取鍋3内の溶鋼の相当高さが小さくなった段階で、取鍋3内に残る溶鋼の量である「残鋼量」と、出湯の操業の作業性を示す「作業性」とを評価した。
The molten steel subjected to the secondary refining in this manner was poured out into the mold 2 by the bottom pouring and ingot casting method. That is, molten steel was cast into the mold 2 from the ladle 3 through the runner 6, the ingot was completely solidified, the completely solidified ingot was demolded, and transferred to a lower process such as forging.
When such a tapping operation is performed and the equivalent height of the molten steel in the ladle 3 is reduced, the amount of molten steel remaining in the ladle 3 and the workability of the tapping operation The “workability” indicating was evaluated.

なお、「残鋼量」は、取鍋3内に残った溶鋼をすべて一度に排出する際に、取鍋3内に残っている溶鋼の量を示したものである。具体的には、本実施形態では、取鍋3に残った溶鋼の量を判断するのに、「残鋼相当高さ」を用いている。この「残鋼相当高さ」は、サイズが異なる取鍋3に対しても同じ評価が可能となるように、残鋼量を溶鋼密度と取鍋3の断面積とで除したものである。   The “remaining steel amount” indicates the amount of molten steel remaining in the ladle 3 when all the molten steel remaining in the ladle 3 is discharged at once. Specifically, in this embodiment, the “remaining steel equivalent height” is used to determine the amount of molten steel remaining in the ladle 3. This “remaining steel equivalent height” is obtained by dividing the amount of remaining steel by the molten steel density and the cross-sectional area of the ladle 3 so that the same evaluation is possible for the ladle 3 having different sizes.

また、「作業性」は、取鍋3から出湯する溶鋼の流出速度Vが、0.25[m/s]≦V≦4.0[m/s]を満足するかどうかで評価した。すなわち、溶鋼の流出速度Vが0.25[m/s]以下の場合は、残鋼の排出に時間がかかりすぎるので、「作業性」が×の評価となる。
一方、実施例及び比較例における操業条件については、取鍋3から取鍋3の傾動角度θについては、θの値を0°,1°,2°,4°,6°,8°,10°,12°の8水準で変化させた。また、出湯口9からの溶鋼の流出速度Vについては、Vの値を0.179m/s,0.359m/s,0.478m/s,1.196 m/s,2.391m/s,3.587 m/sの6水準で変化させ、スラグの粘度Pについては、Pの値を0.05Pa・s,0.13Pa・s,0.86Pa・sの3水準で変化させた。さらに、取鍋3の中心から出湯口9の中心までの距離Lについては、Lの値を460mm,600mm,200mmの3水準で変化させた。なお、取鍋3の底部の半径Rについては、1672mmとした。
In addition, “workability” was evaluated based on whether or not the outflow speed V of the molten steel discharged from the ladle 3 satisfies 0.25 [m / s] ≦ V ≦ 4.0 [m / s]. That is, when the outflow velocity V of the molten steel is 0.25 [m / s] or less, it takes too much time to discharge the remaining steel, and therefore “workability” is evaluated as x.
On the other hand, regarding the operating conditions in the examples and comparative examples, the tilt angle θ from the ladle 3 to the ladle 3 is set to 0 °, 1 °, 2 °, 4 °, 6 °, 8 °, 10 It was changed at 8 levels of ° and 12 °. Moreover, about the outflow velocity V of the molten steel from the tap 9, the values of V are 0.179 m / s, 0.359 m / s, 0.478 m / s, 1.196 m / s, 2.391 m / s, 3.587 m / s. The slag viscosity P was changed at three levels of 0.05 Pa · s, 0.13 Pa · s, and 0.86 Pa · s. Further, for the distance L from the center of the ladle 3 to the center of the tap 9, the value of L was changed at three levels of 460 mm, 600 mm, and 200 mm. In addition, about the radius R of the bottom part of the ladle 3, it was 1672 mm.

上述した実験の結果を表1及び図3〜図7に示す。   The results of the above-described experiment are shown in Table 1 and FIGS.

表1及び図3の結果を見ると、実験No.1〜実験No.36は、いずれもスラグの粘度が0.05Pa・sであると共に、取鍋3の半径Rが836mm(表1では2Rとして示されているので、1672mm
)となる実験結果を示している。図3に示すように、これら実験No.1〜実験No.37の結果を、横軸に取鍋3の傾斜角度θ、縦軸に取鍋3からの溶鋼の流出速度Vをとったグラフ上に示すと、判定結果が合格(残鋼量及び作業性とも合格(○)の評価となったもの)である○の実験結果は、いずれも図中に示される直線で囲まれた領域内に含まれており、領域外の結果は不合格を示す×の結果となっている。
Looking at the results of Table 1 and FIG. 3, in Experiment No. 1 to Experiment No. 36, the viscosity of the slag is 0.05 Pa · s, and the radius R of the ladle 3 is 836 mm (in Table 1, 2R) As shown, 1672mm
) Shows the experimental results. As shown in FIG. 3, the results of Experiment No. 1 to Experiment No. 37 are plotted on the graph in which the horizontal axis represents the tilt angle θ of the ladle 3 and the vertical axis represents the outflow velocity V of the molten steel from the ladle 3. The results of the test with a test result of pass (both the remaining steel amount and workability are evaluated as pass (○)) are all within the area surrounded by the straight line shown in the figure. It is included, and the result outside the region is a result of x indicating failure.

このような判定結果が合格となる領域(図中にグレーで示す領域、以降「合格領域G」という)は、スラグの粘度が0.13Pa・sである実験No.38〜実験No.54の結果をプロットした図4でも、スラグの粘度が0.86Pa・sである実験No.55〜実験No.69の結果をプロットした図5でも同様に見られ、合格領域Gの内外で判定結果の合格・不合格が別れる結果となった。   The region in which such a determination result is acceptable (region shown in gray in the figure, hereinafter referred to as “accepted region G”) is the result of Experiment No. 38 to Experiment No. 54 in which the viscosity of the slag is 0.13 Pa · s. 4 in which the results of Experiment No. 55 to Experiment No. 69 in which the viscosity of the slag is 0.86 Pa · s is plotted in the same manner. The result was a failure.

図3〜図5を見れば明らかなように、上述した合格領域Gは、スラグの粘度や取鍋3の形状などが変化しても、取鍋3からの溶鋼の流出速度が0.25≦V≦4.0の範囲に必ず含まれる。このことから、判定結果を合格とするためには、取鍋3からの溶鋼の流出速度を0.25≦V≦4.0の範囲に維持する必要があることが分かる。
なお、図中の合格領域Gを区切る境界線の内、合格領域の左側を区切る境界線GL、言い換えれば傾斜角度θの下限値を示す境界線GLは、スラグの粘度や取鍋3の形状が変化すると直線の位置や傾きも変化する。また、図中の合格領域Gの右側を区切る境界線GR、言い換えれば傾斜角度θの上限値を示す境界線GRも、下限値を示す境界線GLと同様に直線の位置や傾きが変化する。このことから、傾斜角度θの上限値及び下限値は、取鍋3からの溶鋼の流出速度Vの変数となっていることが分かる。
As apparent from FIGS. 3 to 5, in the above-mentioned pass region G, the flow rate of molten steel from the ladle 3 is 0.25 ≦ V ≦ V, even if the viscosity of the slag or the shape of the ladle 3 changes. Always included in the 4.0 range. From this, it turns out that in order to pass the determination result, it is necessary to maintain the outflow rate of the molten steel from the ladle 3 in the range of 0.25 ≦ V ≦ 4.0.
In addition, the boundary line GL that divides the left side of the pass area among the boundary lines that divide the pass area G in the figure, in other words, the boundary line GL that indicates the lower limit value of the inclination angle θ, the viscosity of the slag and the shape of the ladle 3 are If it changes, the position and inclination of the straight line also change. Further, the boundary line GR that delimits the right side of the pass area G in the drawing, in other words, the boundary line GR that indicates the upper limit value of the inclination angle θ, also changes the position and inclination of the straight line in the same manner as the boundary line GL that indicates the lower limit value. From this, it is understood that the upper limit value and the lower limit value of the inclination angle θ are variables of the outflow speed V of the molten steel from the ladle 3.

一方、操業条件として流出速度Vを0.359m/sで一定とすると共に取鍋3の半径Rを836mmで一定とした場合には、図6に示すような結果が得られる。
図6に示すように、横軸に取鍋3の傾斜角度θ、縦軸にスラグの粘度Pをとったグラフ上に、実験No.9〜実験No.15、実験No.38〜実験No.44、実験No.55〜実験No.60、実験No.70〜実験No.80の結果を示すと、傾斜角度θの上限値及び下限値を示す境界線GR、GLは、流出速度Vの場合と同様に直線の位置や傾きが変化したものとなっている。このことから、傾斜角度θの上限値及び下限値は、スラグの粘度Pの変数ともなっていると判断される。
On the other hand, when the outflow speed V is made constant at 0.359 m / s and the radius R of the ladle 3 is made constant at 836 mm as operating conditions, the result shown in FIG. 6 is obtained.
As shown in FIG. 6, Experiment No. 9 to Experiment No. 15, Experiment No. 38 to Experiment No. are plotted on the graph in which the horizontal axis represents the inclination angle θ of the ladle 3 and the vertical axis represents the viscosity P of the slag. 44. When the results of Experiment No. 55 to Experiment No. 60 and Experiment No. 70 to Experiment No. 80 are shown, the boundary lines GR and GL indicating the upper limit value and the lower limit value of the inclination angle θ are in the case of the outflow velocity V. As with, the position and inclination of the straight line are changed. From this, it is determined that the upper limit value and the lower limit value of the inclination angle θ are also variables of the viscosity P of the slag.

さらに、操業条件として流出速度Vを0.359m/sで一定とした場合には、図7に示すような結果が得られる。図7に示すように、横軸に取鍋3の傾斜角度θ、縦軸に出湯口9の相対位置(取鍋3の底部の中心から出湯口9の中心までの距離を、取鍋3の底部の径Rで除した値)をとったグラフ上に、流出速度Vが0.359m/sの各実験結果を示すと、傾斜角度θの上限値及び下限値を示す境界線GR、GLは、流出速度Vやスラグの粘度Pの場合と同様に直線の位置や傾きが変化する。   Furthermore, when the outflow velocity V is constant at 0.359 m / s as the operation condition, the result as shown in FIG. 7 is obtained. As shown in FIG. 7, the horizontal axis represents the inclination angle θ of the ladle 3, and the vertical axis represents the relative position of the tap 9 (the distance from the center of the bottom of the ladle 3 to the center of the tap 9, On the graph taking the value divided by the diameter R of the bottom part), when showing the experimental results when the outflow velocity V is 0.359 m / s, the boundary lines GR, GL indicating the upper limit value and the lower limit value of the inclination angle θ are: Similar to the case of the outflow speed V and the slag viscosity P, the position and inclination of the straight line change.

つまり、上述した図3〜図7の結果から総合的に判断すれば、傾斜角度θの上限値及び下限値は、流出速度V、スラグの粘度P、出湯口9の相対位置L/Rの変数として表現される。それゆえ、表1の結果を最小二乗法などを用いて処理すれば、式(1)に示すような傾斜角度θの下限値f(P,V,L,R)及び上限値g(P,V,L,R)を上述した変数の関係式として導き出すことが可能となる。   That is, if it comprehensively judges from the results of FIGS. 3 to 7 described above, the upper limit value and the lower limit value of the inclination angle θ are the variables of the outflow speed V, the slag viscosity P, and the relative position L / R of the tap 9. Is expressed as Therefore, if the results in Table 1 are processed using the least square method or the like, the lower limit value f (P, V, L, R) and the upper limit value g (P, V, L, R) can be derived as a relational expression of the variables described above.

なお、上述した実施例は、取鍋3を傾斜させた例(θ=θ2)を記載するものであるが、取鍋3の内底壁11に勾配を付けた場合(θ=θ1)であっても、同様な結果が得られることを本発明の発明者らは確認している。
また、上述して実施例は下注ぎ造塊法での例を記載するものであるが、上注ぎ造塊法であっても結果は同様である。
In addition, although the Example mentioned above describes the example ((theta) = (theta) 2 ) which inclined the ladle 3, When the gradient is given to the inner bottom wall 11 of the ladle ((theta) = (theta) 1 ). Even so, the inventors of the present invention have confirmed that similar results can be obtained.
Moreover, although an Example describes the example in the bottom pouring ingot method mentioned above, a result is the same also in the top pouring ingot method.

以上、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   As mentioned above, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 造塊装置
2 鋳型
3 取鍋
4 注入管
5 定盤
6 湯道
7 下注入口
9 出湯口(チェンジノズル)
10 スライドバルブ
11 内底壁
θ 取鍋の内底壁の勾配角度
θ2 取鍋の傾動角度
G 合格領域
GL 傾斜角度の下限値を示す境界線
GR 傾斜角度の上限値を示す境界線
L 取鍋の中心から出湯口の中心までの距離
P スラグの粘度
R 取鍋の底部の半径
V 出湯口からの溶鋼の流出速度
DESCRIPTION OF SYMBOLS 1 Ingot making apparatus 2 Mold 3 Ladle 4 Injection pipe 5 Surface plate 6 Runway 7 Lower injection port 9 Outlet (change nozzle)
10 Slide valve 11 Inner bottom wall θ 1 Gradient angle of the inner bottom wall of the ladle θ 2 Tilt angle of the ladle G Accepted region GL Boundary line indicating the lower limit value of the tilt angle GR Boundary line indicating the upper limit value of the tilt angle L Distance from the center of the pan to the center of the tap P Viscosity of the slag R Radius of the bottom of the ladle V Flow rate of molten steel from the tap

Claims (1)

底部に出湯口が形成された取鍋から当該出湯口を介して溶鋼を出湯するにおいて、
前記取鍋の内底壁の勾配角度であって出湯口の周囲の内底壁が水平方向に対して為す勾配角度がθ1であるに際しては、前記取鍋の出湯口が下がる方向に向かって、前記取鍋を式(1)を満足する傾斜角度θ2で傾動させる
ことを特徴とする取鍋操業方法。
In discharging molten steel from the ladle in which the tap is formed at the bottom through the tap,
When the inclination angle of the inner bottom wall of the ladle and the inner bottom wall around the tap is in the horizontal direction is θ1, toward the direction in which the tap of the ladle goes down, The ladle operation method is characterized in that the ladle is tilted at an inclination angle θ2 satisfying the formula (1).
JP2014131436A 2014-06-26 2014-06-26 Ladle operation method Expired - Fee Related JP6192604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131436A JP6192604B2 (en) 2014-06-26 2014-06-26 Ladle operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131436A JP6192604B2 (en) 2014-06-26 2014-06-26 Ladle operation method

Publications (2)

Publication Number Publication Date
JP2016007641A JP2016007641A (en) 2016-01-18
JP6192604B2 true JP6192604B2 (en) 2017-09-06

Family

ID=55225606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131436A Expired - Fee Related JP6192604B2 (en) 2014-06-26 2014-06-26 Ladle operation method

Country Status (1)

Country Link
JP (1) JP6192604B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321576A1 (en) * 1983-06-15 1984-12-20 Mannesmann AG, 4000 Düsseldorf METHOD FOR OPERATING A METALLURGICAL MELTING FURNACE AND METALLURGICAL MELTING FURNACE
JPS6152968A (en) * 1984-08-22 1986-03-15 Nippon Kokan Kk <Nkk> Pouring method of molten metal in continuous casting
JPH08117934A (en) * 1994-10-18 1996-05-14 Sumitomo Metal Ind Ltd Method for preventing outflow of ladle slab in continuous casting
WO2003072285A1 (en) * 2002-02-05 2003-09-04 Vesuvius Crucible Company Ladle bottom
JP4725244B2 (en) * 2005-08-24 2011-07-13 Jfeスチール株式会社 Ladle for continuous casting and method for producing slab
JP5361212B2 (en) * 2008-02-27 2013-12-04 株式会社神戸製鋼所 Method of pouring molten steel into tundish
EP2758194A4 (en) * 2011-09-22 2015-04-01 Vesuvius Crucible Co Double entry channel ladle bottom

Also Published As

Publication number Publication date
JP2016007641A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP7035872B2 (en) Melting method of high-clean steel
EP3338913B1 (en) Annular weir
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
JP4772798B2 (en) Method for producing ultra-low carbon slab
JP6188632B2 (en) Bottom pouring method
JP6192604B2 (en) Ladle operation method
JP7035873B2 (en) Melting method of high-clean steel
JP7238275B2 (en) Continuous casting method
JP5082700B2 (en) Steel continuous casting method
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP2017166053A (en) Melting production method for high refined steel
RU2605729C2 (en) Mould for reception of slag and metal
JP6188642B2 (en) Bottom pouring method
JP2018051598A (en) Bottom pouring ingot-making equipment
JP6527069B2 (en) Operating method of intermediate container for molten steel
JP6818980B2 (en) Bottom pouring ingot equipment
EP2193861A1 (en) Tundish Impact pad.
Gushchin et al. Technical solutions for controlling flows of melts in the tundishes of continuous casters.
JP4264291B2 (en) Steel continuous casting method
JP7364893B2 (en) Method of supplying molten steel
JP7200811B2 (en) Steel continuous casting method
US20210323055A1 (en) Method of molten metal casting utilizing an impact pad in the tundish
JP5361212B2 (en) Method of pouring molten steel into tundish
JP7269480B2 (en) Continuous casting method
JP7035870B2 (en) Melting method of high-clean steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees