JP2010183353A - 撮影装置 - Google Patents

撮影装置 Download PDF

Info

Publication number
JP2010183353A
JP2010183353A JP2009025024A JP2009025024A JP2010183353A JP 2010183353 A JP2010183353 A JP 2010183353A JP 2009025024 A JP2009025024 A JP 2009025024A JP 2009025024 A JP2009025024 A JP 2009025024A JP 2010183353 A JP2010183353 A JP 2010183353A
Authority
JP
Japan
Prior art keywords
image
area
unit
acquisition unit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009025024A
Other languages
English (en)
Inventor
Hideki Kanbayashi
秀樹 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009025024A priority Critical patent/JP2010183353A/ja
Publication of JP2010183353A publication Critical patent/JP2010183353A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

【課題】 好適な撮影が可能な撮像装置を提供する。
【解決手段】 装置の振れを検出し検出信号を出力する検出部(28)と、第1画像(P)と、第1画像が取得された時刻とは異なる時刻に取得された第2画像(P)とを取得する第1画像取得部(52)と、第1画像及び第2画像とは異なる第3画像を取得する第2画像取得部(51)と、第1画像に含まれる第1領域(TM1)に対応する第2領域(TM1’’)を、検出信号を用いて第2画像から特定し、第1領域の情報と第2領域の情報とを用いて動きベクトルを取得する動きベクトル取得部(84)と、動きベクトルを用いて前記装置の振れを補正する補正部(25)と、を含むことを特徴とする。
【選択図】 図4

Description

本発明は、撮影時に生じるブレを補正するブレ補正機能を備えた撮影装置に関する。
撮影光学系における光軸のブレを補正するブレ補正装置や、そのようなブレ補正装置を備えた撮影装置などが知られている。これらの装置の中には、撮影光学系の一部と撮像素子(またはフィルム)とのいずれかを物理的に移動させることによりブレを補正するものがある。また、この他に、露光時間を分割して繰り返し撮像を行い、該撮像で得られた複数の画像を撮影光学系の光軸のブレとから求められる動きベクトルに基づいて合成する装置も提案されている。
本発明は、好適な撮影が可能な撮影装置を提供することを目的とする。
本発明は、以下のような解決手段により前記課題を解決する。なお、理解を容易にするために、本発明の一実施例を示す図面に対応する符号を付して説明するが、これに限定されるものではない。
請求項1に記載の発明は、装置の振れを検出し検出信号を出力する検出部(28)と、
第1画像(P)と、前記第1画像(P)が取得された時刻とは異なる時刻に取得された第2画像(P)とを取得する第1画像取得部(52)と、
前記第1画像(P)及び前記第2画像(P)とは異なる第3画像を取得する第2画像取得部(51)と、
前記第1画像(P)に含まれる第1領域(TM1)に対応する第2領域(TM1’’)を、前記検出信号を用いて前記第2画像(P)から特定し、前記第1領域(TM1)の情報と前記第2領域(TM1’’)の情報とを用いて動きベクトルを取得する動きベクトル取得部(84)と、
前記動きベクトルを用いて前記装置の振れを補正する補正部(25)とを含むことを特徴とする撮影装置である。
請求項2に記載の発明は、請求項1に記載された撮影装置であって、
前記補正部(25)は、前記第2画像取得部(51)により取得される像を形成する光学系(21)の少なくとも一部、及び、前記第2画像取得部(51)の少なくとも一方を駆動することにより、前記装置の振れを補正することを特徴とする撮影装置である。
請求項3に記載の発明は、請求項1又は請求項2に記載された撮影装置であって、
前記検出信号に含まれるパンニング成分を低減させるフィルタ部と、
撮影者が操作可能な操作部(74)とを含み、
前記動きベクトル取得部(84)は、前記撮影者により前記操作部(74)が操作されたとき、前記フィルタ部から出力された信号を用いて前記第2画像(P)から前記第2領域(TM1’’)を特定することを特徴とする撮影装置である。
請求項4に記載の発明は、請求項1から請求項3までの何れか1項に記載された撮影装置であって、
前記動きベクトル取得部(84)は、前記検出信号に基づいて前記第2画像(P)に前記第1領域(TM1)に対応する設定領域(TM1’)を設定し、前記設定領域(TM1’)と前記第1領域(TM1)との相関が高いときは、前記設定領域(TM1’)を前記第2領域(TM1’’)とすることを特徴とする撮影装置である。
請求項5に記載の発明は、請求項4に記載された撮影装置であって、
前記動きベクトル取得部(84)は、前記設定領域(TM1’)と前記第1領域(TM1)との相関が低い場合、前記設定領域(TM1’)の近傍の領域と前記第1領域(TM1)との相関を演算し、前記設定領域(TM1’)の近傍の領域と前記第1領域(TM1)との相関が前記設定領域(TM1’)と前記第1領域(TM1)との相関よりも高いとき、前記設定領域(TM1’)の近傍の領域を前記第2領域(TM1’’)とすることを特徴とする撮影装置である。
請求項6に記載の発明は、請求項1から請求項5までの何れか1項に記載された撮影装置であって、
前記第3画像に含まれる主要被写体を検出する主要被写体検出部を有し、
前記第1領域(TM1)には、前記主要被写体の少なくとも一部が含まれることを特徴とする撮影装置である。
請求項7に記載の発明は、請求項1から請求項5までの何れか1項に記載された撮影装置であって、
前記第3画像の合焦領域を検出する合焦領域検出部(35)を有し、
前記第1領域(TM1)は、前記合焦領域検出部(35)により検出された前記合焦領域に対応する領域を含むことを特徴とする撮影装置である。
請求項8に記載の発明は、請求項1からから請求項7までの何れか1項に記載された撮影装置であって、
前記第1画像取得部(52)により撮像された前記第1画像(P)及び前記第2画像(P)は、前記第2画像取得部(51)により撮像された前記第3画像よりも被写界深度が深いことを特徴とする撮影装置である。
請求項9に記載の発明は、請求項1から請求項8までの何れか1項に記載された撮影装置であって、
前記第1画像取得部(52)により撮像された前記第1画像(P)及び前記第2画像(P)は、前記第2画像取得部(51)により撮像された前記第3画像よりも広角の画像であることを特徴とする撮影装置である。
請求項10に記載の発明は、請求項1からから請求項9までの何れか1項に記載された撮影装置であって、
前記第1画像取得部(52)は、前記第1画像(P)及び前記第2画像(P)を形成するための第1光学系(41)を有し、
前記第2画像取得部(51)は、前記第1光学系(41)よりも狭角な前記第3画像を形成するための第2光学系(21)を有することを特徴とする撮影装置である。
請求項11に記載の発明は、請求項1から請求項10までの何れか1項に記載された撮影装置であって、
前記第1画像取得部(52)は、前記第2画像(P)を取得した後、前記第1画像(P)、前記第2画像(P)及び前記第3画像とは異なる第4画像を取得し、
前記動きベクトル取得部(84)は、前記第2画像(P)の前記第2領域(TM1’’)に対応する第4領域を、前記検出信号を用いて前記第4画像から特定し、前記第2領域(TM1’’)の情報と前記第4領域の情報とを用いて動きベクトルを取得することを特徴とする撮影装置である。
なお、符号を付して説明した構成は適宜改良してもよく、また、少なくとも一部を他の構成物に代替してもよい。
本発明によれば、好適な撮影が可能な撮影装置を提供することができる。
電子カメラの構成を示す図である。 電子カメラの回路構成を示す図である。 角速度センサにより求められる移動ベクトルを、手ブレ成分とパンニング成分とに分解したときの図である。 第1ズレ補正モードが選択されたときに得られる第1画像及び第2画像における撮影範囲及び被写体の位置を示す図である。 撮影範囲を固定したときに、時間T1から時間T2に変化したときの被写体の位置を示す図である。 第2ズレ補正モードが選択されたときに得られる第1画像及び第2画像における撮影範囲及び被写体の位置を示す図である。 撮影範囲を固定したときに、時間T3から時間T4に変化したときの被写体の位置を示す図である。 撮像時の処理の流れを示すフローチャートである。
図1は、本実施形態の撮影装置の一例としての電子カメラの概略を示す。電子カメラ10は、カメラ本体11と、撮影光学系を収容したレンズユニット12とを有している。カメラ本体11及びレンズユニット12には、雄雌の関係をなす一対のマウント13,14がそれぞれ設けられている。レンズ側のマウント14をバヨネット機構等でカメラ本体11側のマウント13に結合することで、レンズユニット12はカメラ本体11に対して交換可能に装着される。また、上記のマウント13,14にはそれぞれ電気接点(不図示)が設けられている。カメラ本体11とレンズユニット12との接続時には、電気接点間の接触で両者の電気的な接続が確立するようになっている。
まず、レンズユニット12の構成を説明する。レンズユニット12は、撮像光学系21と、ズームエンコーダ22と、レンズ駆動部23と、距離エンコーダ24と、ブレ補正部25と、絞り26と、絞り駆動部27と、角速度センサ28と、レンズマイコン29とを有している。なお、ズームエンコーダ22、レンズ駆動部23、距離エンコーダ24、ブレ補正部25及び絞り駆動部27は、それぞれレンズマイコン29に接続されている。以下、このレンズユニット12に設けられる撮像光学系21を第1撮像光学系21と称して説明する。
第1撮像光学系21は、ズームレンズ21aやフォーカスレンズ21b等、複数のレンズを有している。ズームレンズ21aは焦点距離を調整するためのレンズであって、ズーム環(不図示)の操作に応じて光軸方向に前後移動可能に構成されている。このズームレンズ21aには、レンズの光軸方向位置を検出するズームエンコーダ22が取り付けられている。フォーカスレンズ21bは合焦位置を調節するためのレンズであって、光軸方向に前後移動可能に構成されている。レンズ駆動部23はフォーカスレンズ21bをモータ(不図示)によって駆動させる。このフォーカスレンズ21bには、光軸方向に移動するフォーカスレンズ21bの位置を検出する距離エンコーダ24が取り付けられている。上述したズームエンコーダ22からの検出信号や、距離エンコーダ24からの検出信号は、レンズマイコン29に出力される。これら検出信号より、撮影時の撮影距離や焦点距離が求められる。なお、撮影距離や焦点距離はレンズマイコン29又は後述するCPU58にて求められ、第1撮像光学系21と第2撮像光学系41との視差補正時に用いられる。
ブレ補正部25は、例えば、VCM(ボイスコイルモータ)等のアクチュエータであり、後述する相関演算部86により求められるブレ量に基づいて第1撮像光学系21の少なくとも一部のレンズを光軸方向と直交する方向に移動させ、撮影時に生じるブレを補正する。
絞り26は、カメラ本体11への入射光量を絞り羽根の開閉で調整する。絞り駆動部27は、絞り26の開口度をモータ(不図示)によって制御する。
角速度センサ28は、レンズユニット12の姿勢が変化したときのレンズユニット12の角速度を検出する。例えば動いている被写体を追って電子カメラ10を移動させる、所謂パンニングを行う場合や、ユーザが電子カメラ10を把持する際にカメラ本体11のブレ(手ブレ)が生じた場合に、レンズユニット12の姿勢が変化するので、このような場合に、角速度センサ28により角速度が検出される。つまり、この角速度センサ28によって、レンズユニット12及びカメラ本体11の角速度、言い換えれば第1撮像光学系21の角速度が検出される。この角速度は、第2撮像光学系41の角速度に等しい。
レンズマイコン29は、マウント14の電気接点を介してカメラ本体11との通信を行うとともに、レンズユニット12での各種制御を実行する。また、レンズマイコン29は、ROM(不図示)に記録されたレンズデータなどをカメラ本体11に送信する。
ところで、図1に示すレンズユニット12は一般的なズームレンズユニットの構成の一例にすぎない。そのため、カメラ本体11には、上記のレンズユニット12のほかにも、例えばレンズマイコン29を有しないレンズユニットや、単焦点レンズのレンズユニットなどを装着することが可能である。
また、レンズユニット12がカメラ本体11に着脱自在な、所謂一眼レフタイプの電子カメラの例を取り上げているが、これに限定する必要はなく、レンズユニット12がカメラ本体11に固定される、所謂コンパクトタイプの電子カメラであってもよい。
次に、カメラ本体11の撮影機構の構成を説明する。カメラ本体11は、クイックリターンミラー31と、メカニカルシャッタ32と、第1撮像素子33と、サブミラー34と、焦点検出部35と、ファインダ光学系(36〜39)と、第2撮像光学系41及び第2撮像素子42を有している。
クイックリターンミラー31、メカニカルシャッタ32及び第1撮像素子33は、第1撮像光学系21の光軸に沿って配置される。クイックリターンミラー31の後方にはサブミラー34が配置される。また、カメラ本体11の上部にはファインダ光学系、第2撮像光学系41及び第2撮像素子42が配置されている。さらに、カメラ本体11の下部領域には焦点検出部35が配置されている。
クイックリターンミラー31は、不図示の回動軸によって回動可能に軸支されており、観察状態と退避状態とを切り替え可能となっている。観察状態のクイックリターンミラー31は、メカニカルシャッタ32及び第1撮像素子33の前方で傾斜配置される。この観察状態のクイックリターンミラー31は、第1撮像光学系21を通過した光束を上方へ反射してファインダ光学系に導く。また、クイックリターンミラー31の中央部はハーフミラーとなっている。そして、クイックリターンミラー31を透過した一部の光束は、サブミラー34によって下方に屈折されて焦点検出部35に導かれる。なお、焦点検出部35は、不図示のセパレータレンズで分割された被写体像の像ズレ量を各々のAFエリア毎に検出し、いわゆる位相差検出式の焦点検出を行う。
一方、退避状態のクイックリターンミラー31は、サブミラー34とともに上方に跳ね上げられて撮影光路から外れた位置に回動する。クイックリターンミラー31が退避状態にあるときは、第1撮像光学系21を通過した光束がメカニカルシャッタ32及び第1撮像素子33に導かれる。
ファインダ光学系は、拡散スクリーン(焦点板)36と、コンデンサレンズ37と、ペンタプリズム38と、接眼レンズ39とを有している。拡散スクリーン36はクイックリターンミラー31の上方に位置し、観察状態のクイックリターンミラー31で反射された光束が一旦結像する。拡散スクリーン36上で結像した光束はコンデンサレンズ37及びペンタプリズム38を通過し、ペンタプリズム38の入射面に対して90°の角度を有する射出面に導かれる。そして、ペンタプリズム38の射出面からの光束は、接眼レンズ39を介してユーザの目に到達することとなる。
第2撮像光学系41及び第2撮像素子42は例えばカメラ本体11上部に設けられる。この第2撮像光学系41は、第1撮像光学系21の光軸に平行な直線を光軸とするように配置される。これら第2撮像光学系41及び第2撮像素子42は、後述するブレ量を算出するための画像(以下、演算用画像)を取得する際に用いられる。このため、第2撮像光学系41は、第1撮像光学系21の画角を含有しつつ、第1撮像光学系21よりもイメージサークルの小さい光学系から構成される。なお、第2撮像素子42は、例えば毎秒200枚など、所定間隔毎に演算用画像を取得するように制御される。この第2撮像素子42においては、例えば1万画素など、第1撮像素子33よりも画素数が少ないものが用いられる。
次に、電子カメラ10の回路構成について、図2を用いて説明する。カメラ本体11は、第1画像取得部51、第2画像取得部52、メモリ53、記録I/F54、表示I/F55、メインモニタ56、操作部57、CPU58及びシステムバス59を有している。ここで、第1画像取得部51、メモリ53、記録I/F54、表示I/F55及びCPU58はシステムバス59を介して接続されている。なお、CPU58は、マウント13の電気接点とも接続されている(図示省略)。
第1画像取得部51は、第1撮像素子33、第1アナログ処理部61、第1デジタル処理部62を有している。第1撮像素子33は、記録用画像である撮影画像を生成するためのセンサである。この第1撮像素子33は、レリーズ時に第1撮像光学系21を通過した光束を光電変換して撮影画像のアナログ画像信号を出力する。第1撮像素子33の出力信号は第1アナログ処理部61に入力される。なお、第1撮像素子33は、撮影待機時(非レリーズ時)に所定間隔毎に間引き読み出しでスルー画像を出力することもできる。そのため、クイックリターンミラー31が退避位置にある場合には、CPU58が第1撮像素子33のスルー画像によって撮影条件を決定することも可能である。
第1アナログ処理部61は、CDS回路、ゲイン回路、A/D変換回路などを有するアナログフロントエンド回路である。CDS回路は、相関二重サンプリングによって第1撮像素子33の出力のノイズ成分を低減する。ゲイン回路は入力信号の利得を増幅して出力する。このゲイン回路では、ISO感度に相当する撮像感度の調整を行うことができる。A/D変換回路は第1撮像素子33の出力信号のA/D変換を行う。なお、図2では、第1アナログ処理部61の各々の回路の図示は省略する。
第1デジタル処理部62は、第1アナログ処理部61の出力信号に対して各種の画像処理(欠陥画素補正、色補間、階調変換処理、ホワイトバランス調整、エッジ強調など)を実行して撮影画像のデータを生成する。また、第1デジタル処理部62は、撮影画像のデータの圧縮伸長処理なども実行する。この第1デジタル処理部62はシステムバス59と接続されている。
第2画像取得部52は、第2撮像素子42、第2アナログ処理部63、第2デジタル処理部64を有している。なお、第2画像取得部52の構成は第1画像取得部51の構成にほぼ対応するので、両者の重複部分については説明を一部省略する。第2撮像素子42は、第2撮像光学系41を通過して結像した被写体像を所定間隔毎に光電変換することで、後述するブレ量を算出する際に用いる画像(以下、演算用画像)を取得する。第2撮像素子42の出力信号は、第2アナログ処理部63に入力される。上述したように、第2撮像光学系41は、第1撮像光学系21の画角を含有しつつ、第1撮像光学系21よりもイメージサークルの小さい光学系から構成されることから、この第2画像取得部52により取得される画像(演算用画像)は、第1画像取得部51により取得される撮影画像よりも被写体深度が深く、また、その画角が第1画像取得部51により取得される撮影画像よりも広角となる。
第2アナログ処理部63は、CDS回路、ゲイン回路、A/D変換回路などを有するアナログフロントエンド回路である。第2デジタル処理部64は、演算用画像の色補間処理などを実行する。なお、第2デジタル処理部64から出力された演算用画像のデータはCPU58に入力される。
メモリ53は、第1デジタル処理部62による画像処理の前工程や後工程などで撮影画像のデータを一時的に記録するためのバッファメモリである。記録I/F54には記録媒体66を接続するためのコネクタが形成されている。そして、記録I/F54は、コネクタに接続された記録媒体66に対して撮影画像のデータの書き込み/読み込みを実行する。上記の記録媒体66は、ハードディスクや、半導体メモリを内蔵したメモリカードなどから構成される。
表示I/F55は、CPU58の指示に基づいてメインモニタ56の表示を制御する。メインモニタ56は、例えばカメラ本体11の背面部などに配置される。メインモニタ56は、CPU58及び表示I/F55の指示に応じて各種の画像を表示する。例えば、メインモニタ56には、撮影画像の再生画像やGUI(Graphical User Interface)形式の入力が可能なメニュー画面などを表示できる(上記の各画像の図示は省略する)。
操作部57は、レリーズボタン71、モードダイヤル72、ズームスイッチ73及び補正モード切替スイッチ74など、ユーザの操作を受け付ける複数のスイッチを有している。レリーズボタン71は、撮影前のAF動作開始の指示入力と撮影時の露光動作開始の指示入力とをユーザから受け付ける。モードダイヤル72は、そのダイヤル操作により撮影モードの切替入力をユーザから受け付ける。ズームスイッチ73は、第1撮像素子33により取得されるスルー画像の倍率を光学的または電子的に拡大/縮小する操作をユーザから受け付ける。
補正モード切替スイッチ74は、ブレ補正を行うモード(以下、ブレ補正モード)を選択する操作をユーザから受け付ける。撮影時には、カメラ本体11のブレ(以下、手ブレ成分)、カメラ本体11のパンニング(以下、パンニング成分)及び被写体自体のブレ(以下、被写体ブレ成分)等が発生することにより、取得される撮影画像はブレが生じた画像となる。ブレ補正モードは、これらブレ成分のうち、予めユーザの意図するブレ成分を補正できるように複数のブレ補正モードが設けられている。これらブレ補正モードとしては、第1ブレ補正モード、第2ブレ補正モードとして説明する。第1ブレ補正モードは、手ブレ成分、パンニング成分及び被写体ブレ成分の全てを補正するモードである。一方、第2ブレ補正モードは、手ブレ成分及び被写体ブレ成分を補正するモードである。
以下、補正モード切替スイッチ74の機能について、静止画像を撮影画像として取得する場合を例にして説明する。
図3に示すように、角速度センサ28により検出される角速度の基になる検出信号から、所定時間における第1撮像光学系21の像面上での移動ベクトルAΔTを求めることができる。この検出信号に対してフィルタ処理を行い、高周波成分と、低周波成分とに分離する。このうち、低周波成分はパンニング成分BΔTとなり、高周波成分は手ブレ成分は手ブレ成分CΔTとなる。すなわち、AΔT=BΔT+CΔT(式1)となる。
補正モード切替スイッチ74により、第1ブレ補正モードが選択されているときには、パンニング成分BΔT、手ブレ成分CΔT、及び、被写体ブレ成分DΔT(図4参照)についてブレ補正を行う。一方、補正モード切替スイッチ74により、第2ブレ補正モードが選択されているときには、パンニング成分BΔTは補正せずに、手ブレ成分CΔT、及び、被写体ブレ成分DΔTについてブレ補正を行う。
CPU58は電子カメラ10の各部の統括的な制御を行う。また、CPU58は、不図示のROMに格納されたプログラムによって、シーケンス制御部81、撮影設定部82、視差補正部83及び動きベクトル取得部84として機能する。シーケンス制御部81は、レンズユニット12、クイックリターンミラー31、メカニカルシャッタ32、第1画像取得部51、第2画像取得部52などの動作の制御などを実行する。
撮影設定部82は、オートフォーカス(AF)を行うとともに、自動露出(AE)演算、オートホワイトバランス(AWB)演算などを実行し、第1画像取得部51における撮影条件の各種パラメータ(露光時間、絞り値、撮像感度など)を決定する。また、撮影設定部82は、第2画像取得部52のAE、AWBに関する処理も負担する。なお、第2撮像光学系41にフォーカスレンズを有している場合には、この撮影設定部82によって、第2撮像光学系41におけるAFを行う。
視差補正部83は、第1画像取得部51で取得される画像(撮影画像、スルー画像)と、第2画像取得部52で取得される画像(演算用画像)との間で生じる視差を補正する。第1画像取得部51と第2画像取得部52とは、それぞれの光学系における焦点距離や撮影倍率等の撮影条件が異なる。このため、第1画像取得部51により取得される撮影画像と、第2画像取得部52により取得される演算用画像とでは視差が発生する。視差補正部83は、それぞれの画像取得部51,52における撮影範囲の関係や、それぞれの画像取得部51,52で取得される画像の大きさに対する比率などを算出する。
動きベクトル取得部84は、第2画像取得部52によって所定間隔毎に取得される演算用画像のうち、隣り合う2つの演算用画像(演算用画像P、演算用画像P。図4参照。)を用いて、これら演算用画像において生じる動きベクトルを取得する。この動きベクトル取得部84は、推定部85及び相関演算部86を有している。
次に、電子カメラ10により撮影画像を取得する際の処理の流れを図8のフローチャートに基づいて説明する。なお、図8のフローチャートは、撮影待機状態に移行したことを契機にして実行される。
ステップS110において、CPU58はレリーズボタン71が半押しされたか否かを判断する。CPU58はレリーズボタン71が半押しされていると判断した場合、ステップS111に進む。CPU58はレリーズボタン71が半押しされていないと判断した場合、所定時間経過後に再びステップS110を行う。
ステップS111は、演算用画像P(図示せず)を取得する処理である。CPU58は、第2画像処理部52を制御して演算用画像Pを取得する。ステップS112において、CPU58は演算用画像Pの主要被写体(以下、被写体と称することがある)が存在する被写体領域TM0(図示せず)を決定する。領域TM0は、例えば、人の顔などの主要被写体を含む領域である。被写体領域TM0を決定する方法としては、レリーズボタンを全押しする直前に取得された演算用画像Pにおいてピントが合っている領域、所謂合焦領域とする方法や、特徴量抽出による顔検出などの被写体認識技術を用いて決定する方法や、タッチパネルなどを用いてユーザ自身が直接決定する方法などが挙げられる。
次に、CPU58は、ステップS113において、レリーズボタン71が全押しがされているかを判断し、全押しがされていると判断したらステップS114に進む。全押しがされていないと判断した場合、ステップS111に戻る。ステップS114において、CPU58は第1画像処理部51に電荷の蓄積を開始させ、ステップS121に進む。
ステップS121において、CPU58は、第2画像処理部52を制御して時刻T1に、演算用画像P(図4、図5参照)を取得し、ステップS122に進む。ステップS122において、CPU58は、演算用画像Pのテンプレート領域TM1(図4、図5参照)の画像を取得する。具体的には、CPU58は、時間T1における演算用画像Pから、被写体領域TM0に含まれる主要被写体を含む領域を抽出し、演算用画像Pのテンプレート領域TM1とする(図4、図5参照)。
テンプレート領域TM1は、演算用画像Pの一部であって、演算用画像Pの領域TM0に対応する部分である。例えば、テンプレート領域TM1には、領域TM0に含まれる主要被写体と同一の主要被写体が存在する。
次に、ステップS131(時刻T2)において、CPU58は、演算用画像Pに時間的に連続した演算用画像Pを取得する。なお、CPU58には、第2画像処理部52から演算用画像の基になる画像信号が所定時間毎(例えば、10−5〜10−1秒間隔毎)に入力されており、演算用画像P、演算用画像P、演算用画像P(Mは任意の自然数)を順次に取得可能である。
以下、図4〜図7を参照して、ステップS132〜S134(動きベクトルを取得し、ブレ補正量を算出し、ブレ補正をするステップ)について詳細に説明する。
図4、図5は、補正モード切替スイッチ74(図2参照)により第1ブレ補正モード(手ブレ成分、パンニング成分及び被写体ブレ成分の全てを補正するモード)が選択されている場合を説明する図である。図4は連続した2つの演算用画像(演算用画像P、演算用画像P)のそれぞれの位置関係を示す図、図5は図4に示した状態について、撮影範囲を固定して表現したものである。
図4、図5において、被写体領域(被写体I、I’、I’’)は「△」で示されている。上述したように、時間T1(ステップS121)において演算用画像Pが取得され、ステップS122においてテンプレート領域TM1が取得され、時間T2(ステップS131)において演算用画像Pが取得されている。
ステップS132では、CPU58は、演算用画像Pからテンプレート領域TM1と最も相関の高い領域(テンプレート領域TM1’’)を抽出し、テンプレート領域TM1とテンプレート領域TM1’’との差(ズレ量)から動きベクトルを取得する。
図4、図5において、時間T1から時間T2までの電子カメラ10の姿勢変化(手振れ)により、演算用画像Pの撮影範囲は、演算用画像Pの撮影範囲に対して第2撮像光学系41の像面上の移動ベクトルAΔT分ずれる。このため、CPU58は、時間T2における演算用画像Pの被写体I’の位置を推定するため、角速度センサ28(図1参照)を用いて角速度を検出し、この角速度を第2撮像光学系41の移動ベクトルAΔTに換算する。
次に、CPU58(相関演算部86)は、移動ベクトルAΔTを用いて、領域TM1から−AΔT移動させた位置にテンプレート領域TM1と同一の大きさのテンプレート領域TM1’を設定し、テンプレート領域TM1とテンプレート領域TM1’との相関演算を実行する。相関演算部86は、相関演算の結果、テンプレート領域TM1とテンプレート領域TM1’との相関が高ければ、テンプレート領域TM1’をテンプレート領域TM1’’とする。相関演算としては、例えば、2つの画像を例えば1画素毎にずらしたときの類似度を算出し、該類似度が最も高くなる位置(或いは、ずらし量)を求めるテンプレートマッチング演算が挙げられる。
次に、テンプレート領域TM1とテンプレート領域TM1’との相関が低い場合、相関演算部86は、演算用画像Pのテンプレート領域TM1’の近傍について、テンプレート領域TM1を縦方向(図5の紙面の上下方向)及び横方向(図5の紙面の左右方向)にずらしながら相関演算を実行する。これにより、テンプレート領域TM1に対する類似度が最も高くなるテンプレート領域TM1’’が求まる。
次に、CPU58(動きベクトル取得部84)は、テンプレート領域TM1’’とテンプレート領域TM1’との差(位置ズレ量)である被写体ブレ成分DΔTを求める。
なお、T1〜T2の間に被写体が静止しておらず、被写体ブレが発生していれば、図4、図5に示すように、時間T2における被写体の位置(被写体I’’)は、時間T2における被写体I’からDΔT分ずれた位置にある。また、T1〜T2の間に被写体が静止しており、被写体ブレがないものと仮定すれば、演算用画像Pにおける被写体の位置(被写体I’’)は、時間T2における被写体I’と一致する。
次に、動きベクトル取得部84は、時刻T1〜T2間の全ブレ成分EΔTを動きベクトル(第2撮像光学系41の像面上での動きベクトル)として取得する。第1ブレ補正モードでは、全ブレ成分EΔTは、EΔT=−AΔT+DΔT=−(BΔT+CΔT)+DΔTとなる。上述したように、移動ベクトルAΔTはパンニング成分BΔTと手ブレ成分CΔTである。
次に、ステップS133において、CPU58は、ステップS132で算出された動きベクトルを第1撮像光学系21の像面上での動きベクトルに換算し、第1撮像光学系21の像面上でのブレ補正量を求める。
次に、ステップS134において、CPU58はブレ補正を実行する。具体的には、CPU58は、動きベクトル(ブレ補正量)に基づいて、レンズマイコン29を介してブレ補正部25(図1参照)を駆動することにより、撮影時に生じるブレを補正する。このように、第1ブレ補正モードでは、被写体が撮影範囲の所定位置に固定されるようにブレ補正が実行される。
次に、図6、図7を参照して、補正モード切替スイッチ74(図2参照)により第2ブレ補正モード(手ブレ成分及び被写体ブレ成分を補正するモード)が選択されている場合のステップS132〜S134(動きベクトルを取得し、ブレ補正量を算出し、ブレ補正をするステップ)を詳細に説明する。
図6は連続した2つの演算用画像のそれぞれの位置関係を示す図、図7は撮影範囲を固定したときの被写体のブレを示す図である。図6、図7において、図4、図5の同様の構成には同様の参照符号を付し、詳細な説明を省略する。
図6、図7において、被写体領域(被写体J、J’)は「△」で示されている。図4、図5と同様に、時間T3(ステップS121)において演算用画像Pが取得され、ステップS122においてテンプレート領域TM1が取得され、時間T4(ステップS131)において演算用画像Pが取得されている。また、図6、図7においては、説明を簡単にするため、時間T3から時間T4までのパンニング成分BΔTを横方向のみとし、手振れ成分CΔTを縦方向のみとしている。
ステップS132では、CPU58は、演算用画像Pからテンプレート領域TM1と最も相関の高い領域(テンプレート領域TM1’’)を抽出し、テンプレート領域TM1とテンプレート領域TM1’’との差(ズレ量)から動きベクトルを取得する。
第2ブレ補正モードは、例えば、ユーザが移動している被写体に合わせて電子カメラ10をパンニングさせ被写体の静止画像を撮影画像として取得する際に選択される。この第2ブレ補正モードは、手ブレ成分CΔT及び被写体ブレ成分DΔTを補正し、パンニング成分BΔTに対してはブレ補正を行わないモードである。ここで、被写体ブレ成分とは、移動被写体に合わせてユーザがパンニングしたとき、それでも残る像面上での被写体移動量を指す。
図6、図7において、ユーザによるパンニングにより、演算用画像Pの撮影範囲は、演算用画像Pの撮影範囲に対して第2撮像光学系41の像面上の移動ベクトルAΔT分ずれる。
CPU58は、パンニング対象の被写体が撮影範囲の所定位置に固定されるように、ユーザによるパンニングを考慮して、電子カメラ10が姿勢変化(手振れ)した時間T4における演算用画像Pの被写体J’の位置を推定するため、角速度センサ28(図1参照)を用いて角速度を検出し、この角速度からパンニング成分BΔT分を除外して第2撮像光学系41の移動ベクトルCΔTに換算する。移動ベクトルAΔTのうち、パンニング成分BΔTに対してはブレ補正を行わないからである。
次に、CPU58(相関演算部86)は、移動ベクトルCΔTを用いて、領域TM1から−CΔT移動させた位置にテンプレート領域TM1と同一の大きさのテンプレート領域TM1’を設定し、テンプレート領域TM1とテンプレート領域TM1’との相関演算を実行する。相関演算部86は、テンプレート領域TM1とテンプレート領域TM1’との相関が高ければ、テンプレート領域TM1’をテンプレート領域TM1’’とする。
次に、テンプレート領域TM1とテンプレート領域TM1’との相関が低い場合、相関演算部86は、演算用画像Pのテンプレート領域TM1’の近傍について、テンプレート領域TM1を縦方向(図7の紙面の上下方向)及び横方向(図7の紙面の左右方向)にずらしながら相関演算を実行する。これにより、テンプレート領域TM1に対する類似度が最も高くなるテンプレート領域TM1’’が求まる。次に、動きベクトル取得部84は、テンプレート領域TM1’’とテンプレート領域TM1’との差(位置ズレ量)である被写体ブレ成分DΔTを求める。
なお、T3〜T4の間に被写体ブレ成分(パンニングしても残る像面上での被写体移動量)があれば、図6、図7に示すように、時間T4における被写体の位置(被写体J’’)は、時間T4における被写体J’からDΔT分ずれた位置にある。また、T3〜T4の間に被写体ブレ成分がないものと仮定すれば、演算用画像Pにおける被写体の位置(被写体J’’)は、時間T4における被写体J’と一致する。
次に、動きベクトル取得部84は、時刻T3〜T4間の全ブレ成分EΔTを動きベクトル(第2撮像光学系41の像面上での動きベクトル)として取得する。第2ブレ補正モードでは、全ブレ成分EΔTは、EΔT=−CΔT+DΔTとなる。
次に、ステップS133において、CPU58は、ステップS132で算出された動きベクトルを第1撮像光学系21の像面上での動きベクトルに換算し、第1撮像光学系21の像面上でのブレ補正量を求める。
次に、ステップS134において、CPU58はブレ補正を実行する。具体的には、CPU58は、動きベクトル(ブレ補正量)に基づいて、レンズマイコン29を介してブレ補正部25(図1参照)を駆動することにより、撮影時に生じるブレを補正する。このように、第2ブレ補正モードでは、パンニング対象の被写体が撮影範囲の所定位置に固定されるようにブレ補正が実行される。
再び、図8のフローチャートを参照して、撮影画像を取得する際の処理の流れを説明する。
CPU58は、ステップS134においてブレ補正を実行した後、ステップS135において、第1画像取得部51の露光時間が経過したか否かを判断する。第1画像取得部51の露光時間が経過したときは、ステップS137に進む。
第1画像取得部51の露光時間が経過していないときは、ステップS136において、テンプレート領域TM1’’を領域TM1に設定する。これにより、上述した説明と同様に、再びステップS132において、テンプレート領域TM1と最も相関の高い領域テンプレート領域TM1’’が抽出され、再び動きベクトルが取得され、再び取得された動きベクトルを用いたブレ補正が行われることになる。
ステップS137において、CPU58は、第1画像処理部51に電荷の蓄積を終了させ、ステップS138に進む。ステップS138において、CPU58は、ステップS137にて取得された撮影画像が記憶媒体66に記憶される。
これにより、角速度センサ28から求まる移動ベクトルを用いて連続する2つの演算用画像間の移動方向と移動量を推定し、推定される移動方向と移動量から相関演算を行うので、相関演算に係る演算負荷を低減でき、また、相関演算に係る処理時間を短縮することができる。また、第2画像処理部52により取得される画像の画素数は、第1画像取得部51により得られる画像の画素数に比べて少ないことから、画像を取得する時間が短くできて相関演算に要する演算負荷を少なくできるので、相関演算に係る処理時間を短時間で実行することが可能となる。
本実施形態では、ブレ補正部25を用いて第1撮像光学系21を構成するレンズの一部を、光軸と直交する方向に移動させることでブレ補正を実行しているが、ブレ補正部25と同様のアクチュエータを用いて第1撮像素子33を光軸と直交する方向に移動させることも好ましい。また、アクチュエータを用いて、第1撮像光学系21又は第1撮像素子33をチルトさせることによりブレ補正を実行することも好ましい。また、第1撮像素子33を用いて撮影された撮影画像に生じるブレを電子的に補正することも好ましい。
また、本実施例では、静止画像を撮影画像として取得する場合について説明しているがこれに限定されるものではなく、動画像を撮影する撮影装置に適用することも好ましい。
10…電子カメラ、11…カメラ本体、12…レンズユニット、21…第1撮像光学系、25…ズレ補正部、28…角速度センサ、33…第1撮像素子、41…第2撮像光学系、42…第2撮像素子、51…第1画像取得部、52…第2画像取得部、58…CPU、74…補正モード選択スイッチ、84…動きベクトル取得部、85…推定部、86…相関演算部
特開2006−54518号公報

Claims (11)

  1. 装置の振れを検出し検出信号を出力する検出部と、
    第1画像と、前記第1画像が取得された時刻とは異なる時刻に取得された第2画像とを取得する第1画像取得部と、
    前記第1画像及び前記第2画像とは異なる第3画像を取得する第2画像取得部と、
    前記第1画像に含まれる第1領域に対応する第2領域を、前記検出信号を用いて前記第2画像から特定し、前記第1領域の情報と前記第2領域の情報とを用いて動きベクトルを取得する動きベクトル取得部と、
    前記動きベクトルを用いて前記装置の振れを補正する補正部と、を含むことを特徴とする撮影装置。
  2. 請求項1に記載された撮影装置であって、
    前記補正部は、前記第2画像取得部により取得される像を形成する光学系の少なくとも一部、及び、前記第2画像取得部の少なくとも一方を駆動することにより、前記装置の振れを補正することを特徴とする撮影装置。
  3. 請求項1又は請求項2に記載された撮影装置であって、
    前記検出信号に含まれるパンニング成分を低減させるフィルタ部と、
    撮影者が操作可能な操作部とを含み、
    前記動きベクトル取得部は、前記撮影者により前記操作部が操作されたとき、前記フィルタ部から出力された信号を用いて前記第2画像から前記第2領域を特定することを特徴とする撮影装置。
  4. 請求項1から請求項3までの何れか1項に記載された撮影装置であって、
    前記動きベクトル取得部は、前記検出信号に基づいて前記第2画像に前記第1領域に対応する設定領域を設定し、前記設定領域と前記第1領域との相関が高いときは、前記設定領域を前記第2領域とすることを特徴とする撮影装置。
  5. 請求項4に記載された撮影装置であって、
    前記動きベクトル取得部は、前記設定領域と前記前記第1領域との相関が低い場合、前記設定領域の近傍の領域と前記第1領域との相関を演算し、前記設定領域の近傍の領域と前記第1領域との相関が前記設定領域と前記第1領域との相関よりも高いとき、前記設定領域の近傍の領域を前記第2領域とすることを特徴とする撮影装置。
  6. 請求項1から請求項5までの何れか1項に記載された撮影装置であって、
    前記第3画像に含まれる主要被写体を検出する主要被写体検出部を有し、
    前記第1領域には、前記主要被写体の少なくとも一部が含まれることを特徴とする撮影装置。
  7. 請求項1から請求項5までの何れか1項に記載された撮影装置であって、
    前記第3画像の合焦領域を検出する合焦領域検出部を有し、
    前記第1領域は、前記合焦領域検出部により検出された前記合焦領域を含むことを特徴とする撮影装置。
  8. 請求項1からから請求項7までの何れか1項に記載された撮影装置であって、
    前記第1画像取得部により撮像された前記第1画像及び前記第2画像は、前記第2画像取得部により撮像された前記第3画像よりも被写界深度が深いことを特徴とする撮影装置。
  9. 請求項1から請求項8までの何れか1項に記載された撮影装置であって、
    前記第1画像取得部により撮像された前記第1画像及び前記第2画像は、前記第2画像取得部により撮像された前記第3画像よりも広角の画像であることを特徴とする撮影装置。
  10. 請求項1からから請求項9までの何れか1項に記載された撮影装置であって、
    前記第1画像取得部は、前記第1画像及び前記第2画像を形成するための第1光学系を有し、
    前記第2画像取得部は、前記第1光学系よりも狭角な前記第3画像を形成するための第2光学系を有することを特徴とする撮影装置。
  11. 請求項1から請求項10までの何れか1項に記載された撮影装置であって、
    前記第1画像取得部は、前記第2画像を取得した後、前記第1画像、前記第2画像及び前記第3画像とは異なる第4画像を取得し、
    前記動きベクトル取得部は、前記第2画像の前記第2領域に対応する第4領域を、前記検出信号を用いて前記第4画像から特定し、前記第2領域の情報と前記第4領域の情報とを用いて動きベクトルを取得することを特徴とする撮影装置。
JP2009025024A 2009-02-05 2009-02-05 撮影装置 Withdrawn JP2010183353A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025024A JP2010183353A (ja) 2009-02-05 2009-02-05 撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025024A JP2010183353A (ja) 2009-02-05 2009-02-05 撮影装置

Publications (1)

Publication Number Publication Date
JP2010183353A true JP2010183353A (ja) 2010-08-19

Family

ID=42764534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025024A Withdrawn JP2010183353A (ja) 2009-02-05 2009-02-05 撮影装置

Country Status (1)

Country Link
JP (1) JP2010183353A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034616A (ja) * 2015-08-06 2017-02-09 キヤノン株式会社 画像処理装置及びその制御方法
WO2021117606A1 (ja) * 2019-12-11 2021-06-17 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、システム、画像処理方法、および画像処理プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034616A (ja) * 2015-08-06 2017-02-09 キヤノン株式会社 画像処理装置及びその制御方法
WO2021117606A1 (ja) * 2019-12-11 2021-06-17 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、システム、画像処理方法、および画像処理プログラム
JPWO2021117606A1 (ja) * 2019-12-11 2021-06-17
JP7247371B2 (ja) 2019-12-11 2023-03-28 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、システム、画像処理方法、および画像処理プログラム

Similar Documents

Publication Publication Date Title
JP6405243B2 (ja) 焦点検出装置及びその制御方法
US20120268613A1 (en) Image capturing apparatus and control method thereof
US9955069B2 (en) Control apparatus, storage medium for storing control program, control method, and optical apparatus
JP5263310B2 (ja) 画像生成装置、撮像装置、画像生成方法
JP2009048125A (ja) 撮影装置および撮影装置の制御方法
JP2009192774A (ja) 焦点調節装置および撮像装置
JP2017211487A (ja) 撮像装置及び自動焦点調節方法
CN106470317B (zh) 摄像设备及其控制方法
JP6659100B2 (ja) 撮像装置
JP6932531B2 (ja) 像ブレ補正装置、撮像装置および撮像装置の制御方法
JP6405163B2 (ja) 焦点検出装置及びその制御方法
JP2011217311A (ja) 撮像装置および撮像装置の制御方法
JP2010177860A (ja) 画像合成装置、撮像装置、画像合成方法
US10917556B2 (en) Imaging apparatus
JP2011217334A (ja) 撮像装置および撮像装置の制御方法
US10873701B2 (en) Image pickup apparatus and control method thereof
JP2009229927A (ja) オートフォーカス調節装置及び撮像装置
US20100182488A1 (en) Photographing apparatus and focus detecting method using the same
JP2010183353A (ja) 撮影装置
JP5359150B2 (ja) 撮像装置
JP2012042589A (ja) 像振れ補正機構、レンズ鏡筒、および撮像装置
JP2021132272A (ja) 電子機器
JP2009229732A (ja) カメラ
JP2006050139A (ja) 光学機器
JP2018197845A (ja) フォーカス制御装置および撮像装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501