JP2010153311A - Method of manufacturing fuel cell separator, and fuel cell separator - Google Patents

Method of manufacturing fuel cell separator, and fuel cell separator Download PDF

Info

Publication number
JP2010153311A
JP2010153311A JP2008332812A JP2008332812A JP2010153311A JP 2010153311 A JP2010153311 A JP 2010153311A JP 2008332812 A JP2008332812 A JP 2008332812A JP 2008332812 A JP2008332812 A JP 2008332812A JP 2010153311 A JP2010153311 A JP 2010153311A
Authority
JP
Japan
Prior art keywords
fuel cell
molding material
molding
cell separator
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332812A
Other languages
Japanese (ja)
Other versions
JP5424637B2 (en
Inventor
Nobuhiro Shinozuka
信裕 篠塚
Masaru Yoneyama
勝 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2008332812A priority Critical patent/JP5424637B2/en
Publication of JP2010153311A publication Critical patent/JP2010153311A/en
Application granted granted Critical
Publication of JP5424637B2 publication Critical patent/JP5424637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a separator for a fuel cell for improving surface accuracy and workability of the separator for the fuel cell by using a molding material containing a thermoplastic resin. <P>SOLUTION: In the manufacturing method of molding the separator 40 for the fuel cell by using the powder molding material 1 containing the thermoplastic resin and a conductive filler, a tablet 20 is formed by adhering a decompressed preliminary molding mold 10 onto the molding material 1 from above, and by preliminary compression molding through suction and filling the molding material 1 into the preliminary molding mold 10, and the separator 40 is manufactured by setting this tablet 20 in the permanent molding mold 30 and carrying out heating compression molding. Since the molding material 1 is suctioned up and filled, the surface accuracy and thickness precision of the separator 40 for the fuel cell are improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用セパレータの重要な特性である厚さ精度や面精度を向上させることのできる燃料電池用セパレータの製造方法及び燃料電池用セパレータに関するものである。   The present invention relates to a method for manufacturing a fuel cell separator and a fuel cell separator capable of improving thickness accuracy and surface accuracy, which are important characteristics of a fuel cell separator.

燃料電池は、燃料ガスと酸化ガスとの反応により、電気エネルギ及び熱エネルギを得る電池である(特許文献1、2、3参照)。この燃料電池は、例えば固体高分子型燃料電池を例に説明すると、複数の単セルが積層してスタックされることにより、所定の出力を発生させる。   A fuel cell is a cell that obtains electric energy and thermal energy by a reaction between a fuel gas and an oxidizing gas (see Patent Documents 1, 2, and 3). For example, this fuel cell will be described by taking a polymer electrolyte fuel cell as an example, and a plurality of single cells are stacked and stacked to generate a predetermined output.

各単セルは、図示しないが、固体電解質膜がガス拡散電極であるアノードとカソードとに挟持され、これらが相対向する一対の燃料電池用セパレータにより外側から挟持されることにより構成される。各燃料電池用セパレータは、基本的には所定の成形材料を使用して平面矩形の板に成形され、例えば中央部の表面に、水素ガス等からなる燃料ガス流路が凹凸の溝に形成されるとともに、中央部の裏面には、酸素ガスや空気等の酸化剤流路が凹凸の溝に形成されており、中央部の周囲の平坦な周縁部には、シリコーンゴム、EPDM、フッ素ゴム等により、ガス漏れ防止のシールパッキンが形成される。   Although not shown, each single cell is configured by sandwiching a solid electrolyte membrane between an anode and a cathode, which are gas diffusion electrodes, and sandwiching them from the outside by a pair of opposed fuel cell separators. Each fuel cell separator is basically formed into a flat rectangular plate using a predetermined molding material. For example, a fuel gas flow path made of hydrogen gas or the like is formed in an uneven groove on the center surface. In addition, an oxidant flow path such as oxygen gas or air is formed on the back surface of the central part in a concave and convex groove, and silicone rubber, EPDM, fluoro rubber, etc. are formed on the flat peripheral edge around the central part. Thus, a seal packing for preventing gas leakage is formed.

燃料電池用セパレータの成形材料は、例えば所定の樹脂(例えば熱可塑性樹脂)と導電性フィラーとが混合して調製され、導電性フィラーの混合比が重量比で熱可塑性樹脂の2〜5倍の量とされる。また、燃料電池用セパレータの中央部、すなわち、流路の単位投影面積当たりの重量は、周縁部の単位投影面積当たりの重量よりも小さいのが一般的である。   The molding material for the fuel cell separator is prepared, for example, by mixing a predetermined resin (for example, a thermoplastic resin) and a conductive filler, and the mixing ratio of the conductive filler is 2 to 5 times that of the thermoplastic resin by weight. It is taken as a quantity. Further, the weight per unit projected area of the central portion of the fuel cell separator, that is, the flow path is generally smaller than the weight per unit projected area of the peripheral portion.

ところで、燃料電池用セパレータに求められる特性としては、燃料ガスや酸化剤ガスを透過させないガス不透過性、導電性、低不純物性、組立上必要な機械的強度、厚さ精度、面精度等があげられるが、これらの中でも、電極との接触面積を確保して接触圧力を均一にし、しかも、燃料ガスや酸化剤ガスの漏れを防止する観点から面精度が厚さ精度と共に重要となる。この面精度は、1枚の燃料電池用セパレータ厚さの最大値から最小値を引いた値であり、この値が大きい場合、すなわち、精度が悪い場合には、シールパッキンの経時的な劣化と相俟ってガス漏れの原因となるので、値が小さいほど良い。   By the way, the characteristics required for a fuel cell separator include gas impermeability that does not allow permeation of fuel gas and oxidant gas, conductivity, low impurity properties, mechanical strength necessary for assembly, thickness accuracy, surface accuracy, and the like. Among these, the surface accuracy is important together with the thickness accuracy from the viewpoint of ensuring a contact area with the electrode to make the contact pressure uniform, and preventing leakage of fuel gas and oxidant gas. This surface accuracy is a value obtained by subtracting the minimum value from the maximum value of the thickness of one fuel cell separator. If this value is large, that is, if the accuracy is poor, the seal packing deteriorates over time. Together, this can cause gas leakage, so a smaller value is better.

上記に鑑み、従来においては、燃料電池用セパレータの面精度を向上させるべく、様々な成形材料投入方式が提案されている(特許文献4、5参照)が、燃料電池用セパレータの凹凸の中央部と平坦な周縁部とを成形する成形材料の投入量を必要に応じて調整していないので、十分な面精度を得ることができないという問題があった。   In view of the above, conventionally, various molding material charging methods have been proposed in order to improve the surface accuracy of the fuel cell separator (see Patent Documents 4 and 5). Since the amount of the molding material that forms the flat peripheral edge is not adjusted as necessary, there is a problem that sufficient surface accuracy cannot be obtained.

これは、成形材料に導電性フィラーが大量に混合され、成形材料の流動性が低いので、燃料電池用セパレータの周縁部の成形量に応じた量の成形材料を単に投入すると、燃料電池用セパレータの中央部を成形する成形材料の投入量が過大となり、中央部が厚くなるからである。逆に、燃料電池用セパレータの中央部の成形量に応じた量の成形材料を単に投入すると、燃料電池用セパレータの周縁部を成形する成形材料の投入量が過少となり、周縁部が薄くなったり、未充填部が生じるからである。
特開2007‐294136号公報 特開2007‐220430号公報 特開2004‐235137号公報 特許第3356728号公報 特許第3900947号公報
This is because a large amount of conductive filler is mixed in the molding material, and the fluidity of the molding material is low. Therefore, if a molding material in an amount corresponding to the molding amount of the peripheral portion of the fuel cell separator is simply added, the fuel cell separator This is because the amount of the molding material for molding the central portion of the material becomes excessive, and the central portion becomes thick. Conversely, if an amount of molding material corresponding to the molding amount of the central portion of the fuel cell separator is simply charged, the amount of molding material that forms the peripheral portion of the fuel cell separator becomes too small, and the peripheral portion becomes thin. This is because an unfilled portion is generated.
JP 2007-294136 A JP 2007-220430 A JP 2004-235137 A Japanese Patent No. 3356728 Japanese Patent No. 3900947

上記に鑑み、ポリフェニレンスルフィドに人造黒鉛を混合した成形材料を金型の下型に計量充填して均一にならし、流路を成形する金型の成形部の成形材料を掻き取り、調整後に成形する方法が提案されている(特開2008‐78023号公報参照)。しかしながら、この方法を採用する場合には、成形材料の投入後の平坦化や掻き取りという2度の調整作業を強いられることとなる。また、金型内で成形材料を粉末のまま処理するので、成形材料の嵩密度が小さく、下型の深さを深くする必要があり、結果的に金型の総厚が厚くなるので、成形時の冷却に長時間を要して生産性の低下を招くという問題がある。   In view of the above, molding material mixed with polyphenylene sulfide and artificial graphite is metered into the lower mold of the mold to make it uniform, scraping the molding material of the molding part of the mold that molds the flow path, molding after adjustment Has been proposed (see Japanese Patent Application Laid-Open No. 2008-78023). However, when this method is employed, two adjustment operations such as flattening and scraping after the molding material is charged are forced. Also, since the molding material is processed as powder in the mold, the bulk density of the molding material is small and the depth of the lower mold needs to be deepened. As a result, the total thickness of the mold is increased. There is a problem in that it takes a long time to cool the time, resulting in a decrease in productivity.

また、熱可塑性樹脂ではなく、フェノール樹脂からなる熱硬化性樹脂を成形材料としてタブレット(中間品)を予備成形し、燃料電池用セパレータの中央部と周縁部との質量の比率を調整する方法も提示されている(特開2004‐235137号公報参照)が、この方法の場合には、熱硬化性樹脂を使用するので、成形後の未硬化部の残留や副生成物の発生等により、不純物が燃料電池用セパレータ内に残留し、燃料電池の経時的な性能低下の原因となる。この不具合を解消するには、燃料電池用セパレータを後加熱したり、洗浄して二次処理すれば良いが、そうすると、生産効率が低下するおそれがある。   There is also a method of pre-molding a tablet (intermediate product) using a thermosetting resin made of a phenol resin instead of a thermoplastic resin as a molding material, and adjusting the mass ratio between the central portion and the peripheral portion of the fuel cell separator. In this method, since a thermosetting resin is used (see Japanese Patent Application Laid-Open No. 2004-235137), impurities due to residual uncured parts after molding, generation of by-products, etc. Remains in the fuel cell separator, which causes a deterioration in the performance of the fuel cell over time. In order to solve this problem, the fuel cell separator may be post-heated or washed and subjected to secondary treatment, but this may reduce production efficiency.

本発明は上記に鑑みなされたもので、熱可塑性樹脂を含む成形材料を使用して燃料電池用セパレータの面精度と作業性とを向上させることのできる燃料電池用セパレータの製造方法及び燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above, and a method for manufacturing a fuel cell separator and a fuel cell that can improve the surface accuracy and workability of a fuel cell separator using a molding material containing a thermoplastic resin. It aims to provide a separator.

本発明においては上記課題を解決するため、熱可塑性樹脂と導電性フィラーとを含む粉末の成形材料を使用して燃料電池用セパレータを成形するものの製造方法であって、
成形材料に減圧した予備成形金型を上方から近接させて成形材料を吸い上げて充填し、予備圧縮成形することによりタブレットを形成し、このタブレットを本成形金型にセットして加熱圧縮成形することを特徴としている。
なお、予備成形金型から食み出た成形材料を除去して平坦化し、その後、予備圧縮成形することができる。
In order to solve the above-mentioned problems in the present invention, there is provided a method for producing a fuel cell separator using a powder molding material containing a thermoplastic resin and a conductive filler,
A preforming mold with reduced pressure is brought close to the molding material from above, the molding material is sucked and filled, and a tablet is formed by precompression molding. This tablet is set in the main molding mold and heat compression molded. It is characterized by.
Note that the molding material protruding from the preforming mold can be removed and flattened, and then precompression molding can be performed.

また、本発明においては上記課題を解決するため、請求項1又は2記載の燃料電池用セパレータの製造方法により燃料電池用セパレータを製造することを特徴としている。   In order to solve the above-mentioned problems, the present invention is characterized in that a fuel cell separator is manufactured by the method for manufacturing a fuel cell separator according to claim 1 or 2.

ここで、特許請求の範囲における予備成形金型は、減圧状態で成形材料に上方から近接するが、この際、成形材料に接触しても良いし、そうでなくても良い。また、予備圧縮成形の成形温度は、熱可塑性樹脂が結晶性樹脂の場合には、融点以下が好ましく、熱可塑性樹脂が非結晶性樹脂の場合には、ガラス転移温度(Tg)以下が良い。   Here, the preforming die in the claims is close to the molding material from above in a reduced pressure state, but at this time, it may be in contact with the molding material or not. Further, the molding temperature of the pre-compression molding is preferably not higher than the melting point when the thermoplastic resin is a crystalline resin, and is preferably not higher than the glass transition temperature (Tg) when the thermoplastic resin is an amorphous resin.

本発明によれば、金型に成形材料を単に充填するのではなく、成形材料に減圧した予備成形金型を近接させ、成形材料を吸い上げて充填するので、燃料電池用セパレータの面精度を厚さ精度と共に向上させることができる。この際、上方の予備成形金型に成形材料を吸い上げるので、予備成形金型の上下位置等を変更して予備成形する必要がなく、成形作業の作業性向上が期待できる。   According to the present invention, since the molding material is not simply filled with the molding material, but the preforming mold having a reduced pressure is brought close to the molding material, and the molding material is sucked and filled, so that the surface accuracy of the fuel cell separator is increased. The accuracy can be improved. At this time, since the molding material is sucked up into the upper preforming mold, it is not necessary to perform preforming by changing the vertical position of the preforming mold and the like, and improvement in workability of the molding operation can be expected.

本発明によれば、熱可塑性樹脂を含む成形材料を使用して燃料電池用セパレータの面精度と作業性とを向上させることができるという効果がある。
また、予備成形金型から食み出た成形材料を除去して平坦化した後、予備圧縮成形すれば、予備成形に不要な成形材料を用いることがないので、面精度や寸法精度に優れるタブレットを得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that the surface precision and workability | operativity of a separator for fuel cells can be improved using the molding material containing a thermoplastic resin.
In addition, if the pre-compression molding is performed after removing the molding material protruding from the pre-molding mold and flattening, no unnecessary molding material is used for the pre-molding. Can be obtained.

以下、図面を参照して本発明に係る燃料電池用セパレータの製造方法の好ましい実施形態を説明すると、本実施形態における燃料電池用セパレータの製造方法は、図1ないし図4に示すように、成形材料1を予備成形金型10内に吸引して予備成形することによりタブレット20を形成し、このタブレット20を本成形金型30にセットして圧縮成形することにより燃料電池用セパレータ40を製造するようにしている。   Hereinafter, a preferred embodiment of a method for manufacturing a fuel cell separator according to the present invention will be described with reference to the drawings. The method for manufacturing a fuel cell separator according to the present embodiment includes molding as shown in FIGS. The material 1 is sucked into the preforming mold 10 and preformed to form the tablet 20, and the tablet 20 is set in the main mold 30 and compression molded to produce the fuel cell separator 40. I am doing so.

成形材料1は、少なくとも粉末の熱可塑性樹脂と導電性フィラーとが混合することにより調製される。熱可塑性樹脂と導電性フィラーの混合比は、重量比で1:2〜1:6の範囲が好ましい。これは、導電性フィラーが1:2未満の場合には、十分な導電性を得ることができず、燃料電池の効率が低下して実用に適さないからである。逆に、1:6を超える場合には、機械的強度や靭性が低下し、組立時や燃料電池の運搬時に燃料電池用セパレータ40が破損したり、亀裂が生じるからである。加えて、成形材料1の流動性が不足し、面精度の確保が困難になるからである。   The molding material 1 is prepared by mixing at least a powdered thermoplastic resin and a conductive filler. The mixing ratio of the thermoplastic resin and the conductive filler is preferably in the range of 1: 2 to 1: 6 by weight. This is because when the conductive filler is less than 1: 2, sufficient conductivity cannot be obtained, and the efficiency of the fuel cell is lowered, which is not suitable for practical use. Conversely, when the ratio exceeds 1: 6, the mechanical strength and toughness are lowered, and the fuel cell separator 40 is damaged or cracked during assembly or transportation of the fuel cell. In addition, the flowability of the molding material 1 is insufficient, and it is difficult to ensure surface accuracy.

熱可塑性樹脂と導電性フィラーとは、溶融することなく、混合されることが好ましい。これは、熱可塑性樹脂と導電性フィラーとを溶融させて混合すると、導電性フィラーの表面に熱可塑性樹脂が過度に付着し、燃料電池用セパレータ40の導電性の低下を招くからである。   The thermoplastic resin and the conductive filler are preferably mixed without melting. This is because when the thermoplastic resin and the conductive filler are melted and mixed, the thermoplastic resin is excessively attached to the surface of the conductive filler, and the conductivity of the fuel cell separator 40 is lowered.

熱可塑性樹脂と導電性フィラーの大きさは、平均粒径がそれぞれ10〜300μmの範囲が好ましい。これは、平均粒径が10μm未満の場合には、熱可塑性樹脂や導電性フィラーが飛散して製造環境を悪化させるという理由に基づく。これに対し、平均粒径が300μmを超える場合には、熱可塑性樹脂の偏在を生じやすく、機械的強度やガス不透過性が低下するという理由に基づく。さらに、燃料電池用セパレータ40の表面が荒れたり、導電性フィラーの脱落を招きやすいという理由に基づく。   As for the magnitude | size of a thermoplastic resin and an electroconductive filler, the range whose average particle diameter is 10-300 micrometers respectively is preferable. This is based on the reason that when the average particle size is less than 10 μm, the thermoplastic resin and the conductive filler are scattered to deteriorate the production environment. On the other hand, when the average particle diameter exceeds 300 μm, the thermoplastic resin is likely to be unevenly distributed, which is based on the reason that the mechanical strength and gas impermeability are reduced. Further, it is based on the reason that the surface of the fuel cell separator 40 is rough and the conductive filler tends to fall off.

熱可塑性樹脂としては、特に限定されるものではないが、例えばポリフェニレンスルフィド(PPS)、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル、飽和ポリエステル、ABS、ポリエーテルサルフォン、ポリサルフォン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン(PEEK)、フッ素樹脂等があげられる。これらの樹脂は、一種類使用しても良いが、求める特性に応じて複数種使用しても良い。   The thermoplastic resin is not particularly limited. For example, polyphenylene sulfide (PPS), polycarbonate, polypropylene, polyethylene, polystyrene, vinyl chloride, saturated polyester, ABS, polyethersulfone, polysulfone, polyimide, polyamideimide, Examples include polyetherimide, polyetheretherketone (PEEK), and fluororesin. One type of these resins may be used, but a plurality of types may be used depending on the desired characteristics.

熱可塑性樹脂は、平均粒径が10〜300μmの粉末の場合には、そのまま用いれば良いが、ペレット状の場合には、粉砕してその平均粒径を10〜300μmにしてから用いると良い。熱可塑性樹脂の粉砕法としては、熱可塑性樹脂と導電性フィラーとの混合性や分散性に優れる冷凍粉砕法や衝突破砕法等があげられる。   The thermoplastic resin may be used as it is in the case of a powder having an average particle diameter of 10 to 300 μm. However, in the case of a pellet, the thermoplastic resin is preferably used after pulverization to have an average particle diameter of 10 to 300 μm. Examples of the pulverization method of the thermoplastic resin include a freeze pulverization method and a collision pulverization method that are excellent in the mixing and dispersibility of the thermoplastic resin and the conductive filler.

導電性フィラーとしては、天然黒鉛、人造黒鉛、カーボン、炭素繊維、各種金属粒子、これらの混合物等があげられる。これらは、一種類使用しても良いが、求める特性に応じて複数種用いても良い。   Examples of the conductive filler include natural graphite, artificial graphite, carbon, carbon fiber, various metal particles, and a mixture thereof. One kind of these may be used, or a plurality of kinds may be used according to desired characteristics.

上記において、燃料電池用セパレータ40を製造する場合には、先ず、用意した粉末の成形材料1に減圧した予備成形金型10を上方から密着させ、予備成形金型10の内部に下方の成形材料1を吸引して圧縮充填(図1参照)し、予備成形金型10から食み出た成形材料1を除去して平坦化し、その後、加熱して予備圧縮成形することにより、燃料電池用セパレータ40のタブレット20を形成する(図2参照)。   In the above, when the fuel cell separator 40 is manufactured, first, the preformed mold 10 having a reduced pressure is brought into intimate contact with the prepared powder molding material 1 from above, and the lower molding material is placed inside the preforming mold 10. 1 is sucked and compressed (see FIG. 1), the molding material 1 protruding from the preforming mold 10 is removed and flattened, and then heated and precompressed to form a fuel cell separator. 40 tablets 20 are formed (see FIG. 2).

予備成形金型10は、例えば減圧用の真空ポンプ11に内部の分岐した減圧路12を介し着脱自在に接続され、燃料電池用セパレータ40の中央部、すなわち流路を成形する成形部が凸部とされる。この凸部の高さは、燃料電池用セパレータ40の流路の幅や深さに応じて決定される。また、凸部の平面寸法は、燃料電池用セパレータ40の流路の平面寸法と同等とされる。   The preforming mold 10 is detachably connected to, for example, a vacuum pump 11 for decompression via an internal branched decompression path 12, and a central portion of the fuel cell separator 40, that is, a molding portion for molding the flow path is a convex portion. It is said. The height of the convex portion is determined according to the width and depth of the flow path of the fuel cell separator 40. Further, the planar dimension of the convex portion is equivalent to the planar dimension of the flow path of the fuel cell separator 40.

予備成形金型10は、加熱したり、冷却する必要がなく、一定の温度であれば良い。また、成形材料1の平坦化に際しては、予備成形金型10の開口した下面から食み出た余剰の成形材料1をスクレーパ13等によりそぎ落として平らにすれば良い。こうすれば、寸法が適切に調整されたタブレット20を得ることができる。   The preforming mold 10 does not need to be heated or cooled, and may be a constant temperature. Further, when the molding material 1 is flattened, the excess molding material 1 protruding from the open lower surface of the preforming mold 10 may be scraped off by the scraper 13 or the like and flattened. If it carries out like this, the tablet 20 by which the dimension was adjusted appropriately can be obtained.

タブレット20を形成したら、予備成形金型10からタブレット20を脱型して本成形金型30にセットし、熱可塑性樹脂の溶融温度以上に加熱して圧縮成形した(図3参照)後、熱可塑性樹脂の溶融温度以下の温度に冷却機等で冷却すれば、燃料電池用セパレータ40を製造することができる(図4参照)。   After the tablet 20 is formed, the tablet 20 is removed from the preforming mold 10 and set in the main molding mold 30, and heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin (see FIG. 3). If it cools with the cooler etc. to the temperature below the melting temperature of a plastic resin, the separator 40 for fuel cells can be manufactured (refer FIG. 4).

上記によれば、金型に成形材料1を単に充填するのではなく、成形材料1に減圧した予備成形金型10を密着させた後、成形材料1を吸い上げて圧縮充填し、成形材料1の嵩密度を向上させるので、燃料電池用セパレータ40の面精度を厚さ精度と共に著しく向上させることができる。また、減圧した予備成形金型10に成形材料1を上方から充填するのではなく、上方の予備成形金型10に下方の成形材料1を吸い上げて充填するので、予備成形金型10の上下位置を変更して予備成形する必要がなく、成形作業の作業性を大幅に向上させることができる。   According to the above, the molding material 1 is not simply filled in the mold, but after the pressure-reduced preforming mold 10 is brought into close contact with the molding material 1, the molding material 1 is sucked up and compressed and filled. Since the bulk density is improved, the surface accuracy of the fuel cell separator 40 can be remarkably improved together with the thickness accuracy. In addition, the molding material 1 is not filled into the decompressed preforming mold 10 from above, but the lower molding material 1 is sucked and filled into the upper preforming mold 10. Therefore, it is not necessary to perform preforming and the workability of the molding work can be greatly improved.

また、タブレット20を本成形金型30にセットするだけで良いので、成形材料1の投入後の平坦化や掻き取りという煩雑な作業を省略することができ、製造作業の円滑化、迅速化、容易化を図ることができる。さらに、予備圧縮成形によりタブレット20の密度が成形材料1の2〜4倍に圧縮されるので、本成形金型30の下型の掘り込み深さを1/2〜1/4にすることができ、金型の総厚を薄くすることが可能となる。したがって、成形時の冷却時間を短縮し、生産性の向上を図ることが可能になる。   Moreover, since it is only necessary to set the tablet 20 in the main molding die 30, the troublesome work of flattening and scraping after the molding material 1 is charged can be omitted, and the manufacturing work can be facilitated and speeded up. Simplification can be achieved. Furthermore, since the density of the tablet 20 is compressed to 2 to 4 times that of the molding material 1 by pre-compression molding, the digging depth of the lower mold of the molding die 30 can be reduced to 1/2 to 1/4. It is possible to reduce the total thickness of the mold. Therefore, it becomes possible to shorten the cooling time at the time of molding and improve productivity.

なお、上記実施形態では熱可塑性樹脂と導電性フィラーとを溶融することなく、混合したが、熱可塑性樹脂と導電性フィラーとを流動性が保たれる温度で混練して混合物を調製し、この混合物を粉砕してその平均粒径を10〜300μmとしてから使用しても良い。この場合、導電性フィラーの表面に熱可塑性樹脂が過度に付着して燃料電池用セパレータ40の導電性を低下させるおそれがあるので、混練条件には留意する必要がある。   In the above embodiment, the thermoplastic resin and the conductive filler are mixed without melting, but the mixture is prepared by kneading the thermoplastic resin and the conductive filler at a temperature at which the fluidity is maintained. You may use it, after grind | pulverizing a mixture and making the average particle diameter into 10-300 micrometers. In this case, since the thermoplastic resin may excessively adhere to the surface of the conductive filler and the conductivity of the fuel cell separator 40 may be reduced, it is necessary to pay attention to the kneading conditions.

また、上記実施形態では成形材料1を粉末の熱可塑性樹脂と導電性フィラーとを混合して調製したが、これ以外のフィラー(例えば補強剤等)を適宜混合して調製しても良い。さらに、燃料電池用セパレータ40は、圧縮成形できるセパレータであれば、特に種類を問うものではない。   In the above embodiment, the molding material 1 is prepared by mixing a powdered thermoplastic resin and a conductive filler, but may be prepared by appropriately mixing other fillers (for example, a reinforcing agent). Further, the fuel cell separator 40 is not particularly limited as long as it is a separator that can be compression-molded.

以下、本発明に係る燃料電池用セパレータの製造方法の実施例を比較例と共に説明するが、本発明に係る燃料電池用セパレータの製造方法は以下の実施例に何ら限定されるものではない。   Examples of the method for producing a fuel cell separator according to the present invention will be described below together with comparative examples. However, the method for producing a fuel cell separator according to the present invention is not limited to the following examples.

実施例1
210mm×296mm×2mmの大きさの燃料電池用セパレータを製造することとし、この燃料電池用セパレータの流路は、略150mm×200mm、幅1mm、深さ0.5mm、ピッチ2mmにすることとした。
Example 1
A fuel cell separator having a size of 210 mm × 296 mm × 2 mm is manufactured, and the flow path of the fuel cell separator is approximately 150 mm × 200 mm, width 1 mm, depth 0.5 mm, and pitch 2 mm. .

先ず、調製した成形材料に真空ポンプで減圧した予備成形金型を上方から密着させ、予備成形金型内に下方の成形材料を吸引充填し、予備成形金型から食み出た余剰の成形材料をスクレーパにより除去して平坦化した。   First, a preforming mold reduced in pressure by a vacuum pump is brought into intimate contact with the prepared molding material from above, and the lower molding material is sucked and filled into the preforming mold, and excess molding material protruding from the preforming mold. Was removed by a scraper and flattened.

成形材料は、結晶性の熱可塑性樹脂であるポリフェニレンスルフィド樹脂1に対して導電性フィラーである人造黒鉛3.5重量比をタンブラーにより1時間混合することにより調製した。ポリフェニレンスルフィド樹脂は、融点が283℃の東レ株式会社製の製品名E2180を使用し、冷凍粉砕法により平均粒径50μmに調整した。人造黒鉛として、平均粒径50μmの人造黒鉛粒子〔オリエンタルカーボン株式会社製:製品名AT‐NO.5S〕を使用した。また、予備成形金型のキャビティは、218mm×294mmの大きさとし、下型の流路を成形する成形部を1mmの凸とした。   The molding material was prepared by mixing the polyphenylene sulfide resin 1 which is a crystalline thermoplastic resin with 3.5 weight ratio of artificial graphite which is a conductive filler by a tumbler for 1 hour. As the polyphenylene sulfide resin, a product name E2180 manufactured by Toray Industries, Inc. having a melting point of 283 ° C. was used, and the average particle size was adjusted to 50 μm by a freeze pulverization method. As artificial graphite, artificial graphite particles having an average particle diameter of 50 μm [manufactured by Oriental Carbon Co., Ltd .: product name AT-NO. 5S] was used. Further, the cavity of the preforming mold was 218 mm × 294 mm in size, and the molding part for molding the flow path of the lower mold was 1 mm convex.

成形材料をスクレーパにより平坦化したら、加熱して予備圧縮成形することにより、燃料電池用セパレータのタブレットを形成した。この際、成形材料やタブレットを計測したところ、スクレーパにより平坦化した成形材料の厚さは11mm、流路の成形材料の厚さは10mmであった。   After the molding material was flattened with a scraper, it was heated and pre-compressed to form a fuel cell separator tablet. At this time, when the molding material and the tablet were measured, the thickness of the molding material flattened by the scraper was 11 mm, and the thickness of the molding material in the flow path was 10 mm.

次いで、予備成形金型からタブレットを脱型して本成形金型にセットするとともに、350℃、500KG/cm、1分間の条件で加熱圧縮成形し、その後、冷却圧縮機に移載して500KG/cm、2分間の条件で200℃まで冷却することにより、燃料電池用セパレータを製造した。この際、燃料電池用セパレータを計測したところ、燃料電池用セパレータの厚さは、平坦部、流路共に2mmだった。 Next, the tablet is removed from the pre-molding die and set in the main molding die, and heat compression molding is performed under conditions of 350 ° C., 500 KG / cm 2 for 1 minute, and then transferred to a cooling compressor. A fuel cell separator was manufactured by cooling to 200 ° C. under conditions of 500 KG / cm 2 for 2 minutes. At this time, when the fuel cell separator was measured, the thickness of the fuel cell separator was 2 mm for both the flat portion and the flow path.

こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面精度や成形評価を検討判定して表1にまとめた。燃料電池用セパレータの面精度は、1枚の燃料電池用セパレータから15点の測定点を選択して測定し、最大値と最小値の差を求めることで測定した。   When the fuel cell separator was manufactured in this way, the surface accuracy and molding evaluation of this fuel cell separator were examined and determined and summarized in Table 1. The surface accuracy of the fuel cell separator was measured by selecting 15 measurement points from one fuel cell separator and determining the difference between the maximum value and the minimum value.

実施例2
先ず、調製した成形材料に真空ポンプで減圧した予備成形金型を上方から密着させ、予備成形金型内に下方の成形材料を吸引充填し、予備成形金型から食み出た余剰の成形材料をスクレーパにより除去して平坦にした。
Example 2
First, a preforming mold reduced in pressure with a vacuum pump is brought into intimate contact with the prepared molding material from above, and the lower molding material is sucked and filled into the preforming mold, so that excess molding material protrudes from the preforming mold. Was removed by a scraper and flattened.

成形材料は、熱可塑性樹脂であるポリエーテルイミド樹脂1に対して導電性フィラーである人造黒鉛3.5重量比をタンブラーにより1時間混合することにより調製した。ポリエーテルイミド樹脂は、ガラス転移温度が214℃のSABIC株式会社製の製品名1010を使用し、冷凍粉砕法により平均粒径50μmに調整した。人造黒鉛は、平均粒径50μmの人造黒鉛粒子〔オリエンタルカーボン株式会社製:製品名AT‐NO.5S〕を用いた。また、予備成形金型のキャビティは実施例1と同様とした。   The molding material was prepared by mixing the polyetherimide resin 1 which is a thermoplastic resin with an artificial graphite 3.5 weight ratio which is a conductive filler by a tumbler for 1 hour. The polyetherimide resin was adjusted to an average particle size of 50 μm by a freeze pulverization method using a product name 1010 manufactured by SABIC Corporation having a glass transition temperature of 214 ° C. Artificial graphite is artificial graphite particles having an average particle diameter of 50 μm [manufactured by Oriental Carbon Co., Ltd .: product name AT-NO. 5S] was used. The cavity of the preforming mold was the same as in Example 1.

成形材料を平坦化後、燃料電池用セパレータのタブレットを形成した。この際、成形材料やタブレットを計測したところ、スクレーパにより平坦化した成形材料の厚さは11mm、流路の成形材料の厚さは10mmであった。   After flattening the molding material, a fuel cell separator tablet was formed. At this time, when the molding material and the tablet were measured, the thickness of the molding material flattened by the scraper was 11 mm, and the thickness of the molding material in the flow path was 10 mm.

次いで、予備成形金型からタブレットを脱型して本成形金型にセットするとともに、350℃、500KG/cm、1分間の条件で加熱圧縮成形した後、冷却圧縮機に移載して500KG/cm、2分間の条件で150℃まで冷却することにより、燃料電池用セパレータを製造した。この際、燃料電池用セパレータを計測したところ、燃料電池用セパレータの厚さは、平坦部、流路共に2mmだった。
燃料電池用セパレータを製造したら、この燃料電池用セパレータの面精度や成形評価を検討判定して表1にまとめた。
Next, the tablet is removed from the preform mold and set in the main mold, and after heat compression molding at 350 ° C. and 500 KG / cm 2 for 1 minute, it is transferred to a cooling compressor and 500 KG. The separator for fuel cells was manufactured by cooling to 150 degreeC on / cm < 2 > and the conditions for 2 minutes. At this time, when the fuel cell separator was measured, the thickness of the fuel cell separator was 2 mm for both the flat portion and the flow path.
When a fuel cell separator was manufactured, the surface accuracy and molding evaluation of this fuel cell separator were examined and determined and summarized in Table 1.

比較例
実施例1、2とは異なり、予備圧縮成形を省略して燃料電池用セパレータを製造した。すなわち、本成形金型に調製した粉末の成形材料を充填して350℃、500KG/cm、1分間の条件で加熱圧縮成形し、冷却圧縮機に移載して500KG/cm、2分間の条件で150℃まで冷却することにより、燃料電池用セパレータを製造した。成形材料については、実施例1と同様とした。
燃料電池用セパレータの製造後、この燃料電池用セパレータの面精度や成形評価を検討判定して表1にまとめた。
Comparative Example Unlike Examples 1 and 2, a pre-compression molding was omitted to produce a fuel cell separator. That is, the powdered molding material prepared in this molding die is filled and heat compression molded at 350 ° C. and 500 KG / cm 2 for 1 minute, and transferred to a cooling compressor to be 500 KG / cm 2 for 2 minutes. The fuel cell separator was manufactured by cooling to 150 ° C. under the conditions described above. The molding material was the same as in Example 1.
After the production of the fuel cell separator, the surface accuracy and molding evaluation of the fuel cell separator were examined and determined and summarized in Table 1.

Figure 2010153311
Figure 2010153311

検討の結果、実施例1、2の燃料電池用セパレータは、比較例の燃料電池用セパレータと異なり、面精度や成形評価に関し、実に良好な結果を得ることができた。   As a result of the examination, the fuel cell separators of Examples 1 and 2 were different from the fuel cell separators of Comparative Examples, and were able to obtain really good results with respect to surface accuracy and molding evaluation.

本発明に係る燃料電池用セパレータの製造方法の実施形態における成形材料に減圧した予備成形金型を上方から密着させ、予備成形金型に成形材料を充填し、予備成形金型から食み出た成形材料を平坦化する状態を模式的に示す断面説明図である。In the embodiment of the method for producing a separator for a fuel cell according to the present invention, a preformed mold that has been decompressed is brought into intimate contact with the molding material, and the preforming mold is filled with the molding material and protrudes from the preforming mold. It is sectional explanatory drawing which shows the state which planarizes a molding material typically. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるタブレットを模式的に示す説明図である。It is explanatory drawing which shows typically the tablet in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるタブレットを本成形金型にセットして圧縮成形する状態を模式的に示す断面説明図である。It is a section explanatory view showing typically the state where a tablet in an embodiment of a manufacturing method of a separator for fuel cells concerning the present invention is set to a main mold, and is compression-molded. 本発明に係る燃料電池用セパレータの製造方法の実施形態における燃料電池用セパレータを模式的に示す説明図である。It is explanatory drawing which shows typically the separator for fuel cells in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention.

符号の説明Explanation of symbols

1 成形材料
10 予備成形金型
13 スクレーパ
20 タブレット
30 本成形金型
40 燃料電池用セパレータ
DESCRIPTION OF SYMBOLS 1 Molding material 10 Preliminary shaping | molding die 13 Scraper 20 Tablet 30 Main shaping die 40 Separator for fuel cells

Claims (3)

熱可塑性樹脂と導電性フィラーとを含む粉末の成形材料を使用して燃料電池用セパレータを成形する燃料電池用セパレータの製造方法であって、
成形材料に減圧した予備成形金型を上方から近接させて成形材料を吸い上げて充填し、予備圧縮成形することによりタブレットを形成し、このタブレットを本成形金型にセットして加熱圧縮成形することを特徴とする燃料電池用セパレータの製造方法。
A method for producing a fuel cell separator, wherein a fuel cell separator is molded using a powder molding material containing a thermoplastic resin and a conductive filler,
A preforming mold with reduced pressure is brought close to the molding material from above, the molding material is sucked and filled, and a tablet is formed by precompression molding. This tablet is set in the main molding mold and heat compression molded. A method for producing a fuel cell separator.
予備成形金型から食み出た成形材料を除去して平坦化し、その後、予備圧縮成形する請求項1記載の燃料電池用セパレータの製造方法。   The manufacturing method of the separator for fuel cells of Claim 1 which removes and planarizes the molding material which protruded from the preforming metal mold | die, and is preliminarily compression-molded after that. 請求項1又は2記載の燃料電池用セパレータの製造方法により製造されたことを特徴とする燃料電池用セパレータ。   A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to claim 1.
JP2008332812A 2008-12-26 2008-12-26 Manufacturing method of fuel cell separator Active JP5424637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332812A JP5424637B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332812A JP5424637B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2010153311A true JP2010153311A (en) 2010-07-08
JP5424637B2 JP5424637B2 (en) 2014-02-26

Family

ID=42572170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332812A Active JP5424637B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP5424637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050855A1 (en) * 2013-10-01 2015-04-09 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
WO2018131566A1 (en) * 2017-01-13 2018-07-19 信越ポリマー株式会社 Separator for fuel cells and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062858A (en) * 1999-08-27 2001-03-13 Nisshinbo Ind Inc Loading device for powdery raw material, manufacture of fuel cell separator, and fuel cell separator
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell
WO2006064912A1 (en) * 2004-12-17 2006-06-22 Matsui Mfg. Co., Ltd. Method and device for filling powder and granular material in compression molding
JP2006173058A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Molding method and molding device of separator for fuel cell, and suction type ejector
JP2006294407A (en) * 2005-04-11 2006-10-26 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell and separator for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062858A (en) * 1999-08-27 2001-03-13 Nisshinbo Ind Inc Loading device for powdery raw material, manufacture of fuel cell separator, and fuel cell separator
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell
WO2006064912A1 (en) * 2004-12-17 2006-06-22 Matsui Mfg. Co., Ltd. Method and device for filling powder and granular material in compression molding
JP2006173058A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Molding method and molding device of separator for fuel cell, and suction type ejector
JP2006294407A (en) * 2005-04-11 2006-10-26 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell and separator for fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050855A1 (en) * 2013-10-01 2015-04-09 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
WO2018131566A1 (en) * 2017-01-13 2018-07-19 信越ポリマー株式会社 Separator for fuel cells and method for producing same
JPWO2018131566A1 (en) * 2017-01-13 2019-11-07 信越ポリマー株式会社 Fuel cell separator and method for producing the same

Also Published As

Publication number Publication date
JP5424637B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP3978429B2 (en) Conductive resin molding
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
JP5424637B2 (en) Manufacturing method of fuel cell separator
KR100988915B1 (en) Fuel cell separator and its manufacturing method
CN115832348B (en) Composite bipolar plate for vanadium battery and preparation method thereof
JP2002298865A (en) Fuel cell separator and manufacturing method therefor
CA2569448A1 (en) Manufacturing method of separator for fuel cell using preform and separator manufactured by the same
JP2004071334A (en) Mold for separator manufacturing of fuel cell, separator for fuel cell, and manufacturing method of separator for fuel cell
CN1391301A (en) Fuel cell and its manufacturing method
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP4587177B2 (en) Manufacturing method of fuel cell separator
JP2002332328A (en) Injection molding compound and process for producing fuel cell separator
JP7237710B2 (en) Bipolar plate manufacturing method
JP4733008B2 (en) Conductive resin molded body and method for producing the same
JP3715642B2 (en) Manufacturing method of fuel cell separator
KR100864681B1 (en) Material for preparing fuel cell separator
JP3549765B2 (en) Fuel cell separator and method of manufacturing the same
JP2006103099A (en) Method for producing molded article, and molded article
JP2006252815A (en) Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP4860142B2 (en) Manufacturing method of fuel cell separator
JP2003297381A (en) Separator for fuel cell
JP2004303453A (en) Manufacturing method of separator for fuel cell
JP2003303598A (en) Mold for molding separator for solid polymer type fuel cell, method of manufacturing the separator, and the separator
JP2004216756A (en) Mold for molding preform and method for producing fuel cell separator using the preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250