JP2006294407A - Manufacturing method of separator for fuel cell and separator for fuel cell - Google Patents

Manufacturing method of separator for fuel cell and separator for fuel cell Download PDF

Info

Publication number
JP2006294407A
JP2006294407A JP2005113427A JP2005113427A JP2006294407A JP 2006294407 A JP2006294407 A JP 2006294407A JP 2005113427 A JP2005113427 A JP 2005113427A JP 2005113427 A JP2005113427 A JP 2005113427A JP 2006294407 A JP2006294407 A JP 2006294407A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
tablet
cell separator
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005113427A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Masaru Yoneyama
勝 米山
Hiroshi Obara
広 小原
Hiroshi Hasebe
浩 長谷部
Toshihide Sakuta
俊秀 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005113427A priority Critical patent/JP2006294407A/en
Publication of JP2006294407A publication Critical patent/JP2006294407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a separator for a fuel cell, and the separator for the fuel cell wherein shortage of mechanical characteristics and defective molding are suppressed and prevented, wherein conductivity and productivity are improved, and wherein residual materials of the separator for the fuel cell can be prevented from being eluted during operation of the fuel cell. <P>SOLUTION: This is provided with a process of preparing a molding material by mixing pulverized thermoplastic resin and graphite particles without fusing, a process of compression molding a block by using the molding material and forming a thin-plate shaped tablet by wire-cutting the block, and a process of manufacturing the separator for the fuel cell by compression molding and heating and pressurizing the tablet and afterwards cooling and releasing the molded body, and an average particle diameter of the thermoplastic resin is set within a range of 0.1 to 3 times the average particle diameter of the graphite particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地球の温暖化防止や省エネルギー等に資することのできる燃料電池用セパレータの製造方法及び燃料電池用セパレータに関するものである。   The present invention relates to a fuel cell separator manufacturing method and a fuel cell separator that can contribute to prevention of global warming, energy saving, and the like.

近年、クリーン性や静粛性に優れる燃料電池が注目されているが、この燃料電池用セパレータは、従来、樹脂と黒鉛とを用いた成形品が提案され、広く使用されている(特許文献1、2、3、4参照)。
特開2003‐100313号公報 特開2004‐152589号公報 特開2003‐346827号公報 特開2001‐085030号公報
In recent years, fuel cells that are excellent in cleanliness and quietness have attracted attention. However, as this separator for fuel cells, conventionally, a molded product using a resin and graphite has been proposed and widely used (Patent Document 1, 2, 3, 4).
JP 2003-100313 A JP 2004-152589 A Japanese Patent Laid-Open No. 2003-346827 Japanese Patent Laid-Open No. 2001-085030

ところで、燃料電池用セパレータで所定の導電性を得る場合には、黒鉛の比率を高める必要があるが、黒鉛の比率を高めると、成形材料の流動性が悪化することとなる。この結果、成形時に燃料電池用セパレータの凹凸や端部に成形材料を十分に充填することができず、機械的特性が不足したり、成形不良を生じやすいという問題がある。   By the way, in order to obtain predetermined conductivity with the fuel cell separator, it is necessary to increase the ratio of graphite. However, when the ratio of graphite is increased, the fluidity of the molding material is deteriorated. As a result, there is a problem in that the molding material cannot be sufficiently filled in the unevenness and the end of the fuel cell separator at the time of molding, resulting in insufficient mechanical properties and molding defects.

また、樹脂に熱可塑性樹脂を使用して黒鉛と溶融混練する特許文献1、2記載の方法で燃料電池用セパレータで製造する場合には、混練時に熱可塑性樹脂が黒鉛粒子の周辺に過度に付着し、導電性を低下させるおそれが少なくない。また、熱硬化性樹脂を使用する特許文献3、4記載の方法で燃料電池用セパレータで製造する場合には、熱硬化性樹脂の硬化に時間がかかり、生産性に支障を来たすという問題がある。   In addition, when the fuel cell separator is manufactured by the method described in Patent Documents 1 and 2 in which a thermoplastic resin is used as the resin and melt-kneaded with graphite, the thermoplastic resin is excessively adhered around the graphite particles during kneading. However, there is a high possibility that the conductivity is lowered. Moreover, when manufacturing with the separator for fuel cells by the method of the patent documents 3 and 4 which uses a thermosetting resin, there exists a problem that hardening of a thermosetting resin takes time and has a problem in productivity. .

さらに、未硬化成分や反応生成物が燃料電池用セパレータ中に残留しやすいので、燃料電池の運転中に燃料電池用セパレータ中の残留物が溶出し、燃料電池の耐久性が低下するという問題が生じる。この欠点の解消には、後加熱による残留物の除去が提案されているが、これでは、十分な効果を得ることができず、生産性の低下を招くおそれもある。   Further, since uncured components and reaction products are likely to remain in the fuel cell separator, there is a problem in that the residue in the fuel cell separator is eluted during operation of the fuel cell and the durability of the fuel cell is reduced. Arise. In order to eliminate this defect, removal of the residue by post-heating has been proposed, but with this, a sufficient effect cannot be obtained and the productivity may be reduced.

本発明は上記に鑑みなされたもので、機械的特性の不足や成形不良を抑制防止し、導電性や生産性を向上させ、燃料電池の運転中に燃料電池用セパレータの残留物が溶出するのを防ぐことのできる燃料電池用セパレータの製造方法及び燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above, and suppresses and prevents shortage of mechanical properties and molding defects, improves conductivity and productivity, and the residue of the fuel cell separator is eluted during the operation of the fuel cell. It is an object of the present invention to provide a fuel cell separator manufacturing method and a fuel cell separator capable of preventing the above.

本発明においては上記課題を解決するため、成形材料を使用して燃料電池のセパレータを製造する製造方法であって、
成形材料を、粉末化された熱可塑性樹脂と黒鉛粒子とを溶融させることなく混合することにより調製し、熱可塑性樹脂の平均粒径を黒鉛粒子の平均粒径の0.1〜3倍の範囲とすることを特徴としている。
なお、成形材料を用いて略板状のタブレットを形成し、このタブレットを圧縮成形して燃料電池のセパレータを製造することができる。
In order to solve the above problems in the present invention, a manufacturing method for manufacturing a fuel cell separator using a molding material,
The molding material is prepared by mixing the powdered thermoplastic resin and the graphite particles without melting them, and the average particle size of the thermoplastic resin is in the range of 0.1 to 3 times the average particle size of the graphite particles. It is characterized by that.
In addition, a substantially plate-shaped tablet can be formed using a molding material, and this tablet can be compression molded to produce a fuel cell separator.

また、本発明においては上記課題を解決するため、請求項1又は2記載の燃料電池用セパレータの製造方法により燃料電池用セパレータを製造することを特徴としている。   In order to solve the above-mentioned problems, the present invention is characterized in that a fuel cell separator is manufactured by the method for manufacturing a fuel cell separator according to claim 1 or 2.

また、熱可塑性樹脂と黒鉛粒子とから調製した成形材料を用いてブロックを圧縮成形するとともに、このブロックを分割して略薄板形のタブレットを形成し、このタブレットを圧縮成形して加熱加圧し、その後、冷却して燃料電池用セパレータを製造するようにしても良い。   In addition, the block is compression molded using a molding material prepared from a thermoplastic resin and graphite particles, and the block is divided to form a substantially thin tablet, and the tablet is compression molded and heated and pressurized. Thereafter, it may be cooled to produce a fuel cell separator.

さらに、熱可塑性樹脂と黒鉛粒子とから調製した成形材料を用いてタブレットを圧縮成形し、このタブレットを圧縮成形して加熱加圧し、その後、冷却して燃料電池用セパレータを製造するようにしても良い。   Furthermore, a tablet is compression-molded using a molding material prepared from a thermoplastic resin and graphite particles, and the tablet is compression-molded and heated and pressurized, and then cooled to produce a fuel cell separator. good.

ここで、特許請求の範囲における成形材料は、主に粉末化された熱可塑性樹脂と黒鉛粒子とからなるが、これらのみに限定されるものではなく、例えば炭素繊維やカーボンナノチューブ等を含有しても良い。熱可塑性樹脂と黒鉛粒子は、それぞれ所定量をタンブラーやヘンシェルミキサー等で混合すれば良い。その際、熱可塑性樹脂の融点以下の温度で混合すれば、黒鉛粒子の表面に対する熱可塑性樹脂の過度の付着を防ぐことができる。   Here, the molding material in the claims is mainly composed of powdered thermoplastic resin and graphite particles, but is not limited thereto, and includes, for example, carbon fibers and carbon nanotubes. Also good. A predetermined amount of the thermoplastic resin and the graphite particles may be mixed with a tumbler or a Henschel mixer. At that time, if mixing is performed at a temperature lower than the melting point of the thermoplastic resin, excessive adhesion of the thermoplastic resin to the surface of the graphite particles can be prevented.

熱可塑性樹脂は、特に限定されるものではなく、耐水性、溶出物、黒鉛粒子への濡れ性等の化学的性質、耐熱性、機械的特性等からなる物理的性質、融点、流動性等からなる成形性を勘案して選択される。黒鉛粒子は、粉末状、棒状、球状、人造、天然、膨張黒鉛等を特に問うものではない。   The thermoplastic resin is not particularly limited. From the viewpoint of water resistance, eluate, chemical properties such as wettability to graphite particles, physical properties such as heat resistance, mechanical properties, melting point, fluidity, etc. Is selected in consideration of formability. The graphite particles are not particularly limited to powder, rod, sphere, artificial, natural, expanded graphite and the like.

成形材料を用いて略板形のタブレットを形成する方法としては、金型に成形材料を充填してブロック体を圧縮成形し、このブロック体をカットしてタブレットを形成する方法と、金型に成形材料を充填して圧縮成形し、タブレットを直接形成する方法のいずれもが含まれる。さらに、燃料電池用セパレータが2mm以下の薄型、200cm以上の面積の場合には、成形材料の流動性不足による不具合が生じ易いので、略板状のタブレットを成形して黒鉛粒子間に熱可塑性能樹脂を充填した後、燃料電池用セパレータを製造すると良い。 As a method of forming a substantially plate-shaped tablet using a molding material, a molding material is filled with a molding material, a block body is compression-molded, and the block body is cut to form a tablet. Any of the methods of filling the molding material and compression molding to directly form the tablet is included. Furthermore, when the fuel cell separator is 2 mm or less thin and has an area of 200 cm 2 or more, problems due to insufficient fluidity of the molding material are likely to occur. After filling the active resin, a fuel cell separator may be manufactured.

本発明によれば、成形材料を、粉末化された熱可塑性樹脂と黒鉛粒子とを溶融させることなく混合することにより調製し、熱可塑性樹脂の平均粒径を黒鉛粒子の平均粒径の0.1〜3倍の範囲とするので、機械的特性の不足や成形不良を抑制あるいは防止し、導電性や生産性を向上させることができるという効果がある。また、燃料電池の運転中に燃料電池用セパレータの残留物が溶出するのを防ぐことができる。   According to the present invention, the molding material is prepared by mixing the powdered thermoplastic resin and the graphite particles without melting them, and the average particle size of the thermoplastic resin is set to an average particle size of 0. 0 of the graphite particles. Since it is in the range of 1 to 3 times, there is an effect that the shortage of mechanical properties and molding defects can be suppressed or prevented, and the conductivity and productivity can be improved. Further, it is possible to prevent the residue of the fuel cell separator from eluting during the operation of the fuel cell.

また、成形材料を用いて略板状のタブレットを形成し、このタブレットを圧縮成形して燃料電池のセパレータを製造するようにすれば、例え黒鉛粒子が多量でも、電気的性質と機械的性質が両立する良好な燃料電池用セパレータを得ることができる。さらに、成形材料の流動があまり期待できない薄型、大面積の燃料電池のセパレータを従来よりも容易に得ることができる。   In addition, if a substantially plate-like tablet is formed using a molding material, and this tablet is compression-molded to produce a fuel cell separator, even if the amount of graphite particles is large, the electrical properties and mechanical properties are improved. A good fuel cell separator can be obtained. Furthermore, a thin and large-area fuel cell separator in which the flow of the molding material cannot be expected so much can be obtained more easily than in the past.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における燃料電池用セパレータの製造方法は、図1ないし図12に示すように、熱可塑性樹脂1と黒鉛粒子2とから成形材料3を調製する工程と、この成形材料3を用いてブロック12を圧縮成形し、このブロック12をワイヤカットして薄板形のタブレット21を形成する工程と、このタブレット21を圧縮成形して加熱加圧し、その後、冷却、脱型して燃料電池用セパレータ40を製造する工程とを備えている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. A method for producing a fuel cell separator in the present embodiment includes a thermoplastic resin 1 and graphite particles 2 as shown in FIGS. The step of preparing the molding material 3 from the above, the step of compression-molding the block 12 using the molding material 3, the wire cutting of the block 12 to form a thin plate-shaped tablet 21, and the compression molding of the tablet 21 Heating and pressurizing, and then cooling and demolding to manufacture the fuel cell separator 40.

成形材料3は、樹脂の過度の付着を防止する観点から、粉末化された熱可塑性樹脂1と導電性に優れる黒鉛粒子2とが溶融されたり、混練(kneading)されることなく、混合されることにより調製される。熱可塑性樹脂1の平均粒径は、黒鉛粒子2の平均粒径の0.1〜3倍、好ましくは0.2〜2.5倍の範囲とされる。   The molding material 3 is mixed without melting or kneading the powdered thermoplastic resin 1 and the graphite particles 2 having excellent conductivity from the viewpoint of preventing excessive adhesion of the resin. It is prepared by. The average particle diameter of the thermoplastic resin 1 is 0.1 to 3 times, preferably 0.2 to 2.5 times the average particle diameter of the graphite particles 2.

熱可塑性樹脂1の平均粒径が黒鉛粒子2の平均粒径の0.1〜3倍なのは、平均粒径が黒鉛粒子2の平均粒径の0.1未満の場合には、熱可塑性樹脂1の粒子数が多くなりすぎ、熱可塑性樹脂1の黒鉛粒子2への過度の付着により導電性が低下するからである。また、飛散等により作業環境が悪化したり、粒子の製造に手間取り、コスト高を招くからである。   The average particle diameter of the thermoplastic resin 1 is 0.1 to 3 times the average particle diameter of the graphite particles 2 when the average particle diameter is less than 0.1 of the average particle diameter of the graphite particles 2. This is because the number of particles becomes too large, and the conductivity is lowered due to excessive adhesion of the thermoplastic resin 1 to the graphite particles 2. Moreover, it is because a working environment deteriorates by scattering etc., time is required for manufacture of particle | grains, and a high cost is caused.

逆に、熱可塑性樹脂1の平均粒径が黒鉛粒子2の平均粒径の3倍を超える場合には、熱可塑性樹脂1の数が減少し、燃料電池用セパレータ40中の熱可塑性樹脂量に濃淡が生じ、結果的に機械的強度が低下するからである。   On the contrary, when the average particle diameter of the thermoplastic resin 1 exceeds three times the average particle diameter of the graphite particles 2, the number of the thermoplastic resins 1 decreases, and the amount of the thermoplastic resin in the fuel cell separator 40 is reduced. This is because shading occurs, resulting in a decrease in mechanical strength.

熱可塑性樹脂1や黒鉛粒子2の平均粒径の求め方としては、例えばX線を用いた散漫散乱により求めるX線小角散乱法、透過型電子顕微鏡を使用する方法、動的光散乱法、微分型電気移動度測定法、飛行時間型質量分析法等により求めることができる。   The average particle size of the thermoplastic resin 1 and the graphite particles 2 can be obtained by, for example, a small-angle X-ray scattering method obtained by diffuse scattering using X-rays, a method using a transmission electron microscope, a dynamic light scattering method, differentiation It can be determined by a type electric mobility measurement method, time-of-flight mass spectrometry, or the like.

熱可塑性樹脂1は、加熱により溶融軟化して流動性を示す粉末タイプであれば、特に限定されるものではないが、例えばポリフェニレンスルフィド(PPS)、ポリプロピレン(PP)、ポリエチレン(PE)、液晶ポリマー(LCP)、ポリフェニレンエーテル(PPE)、変性PPE等が使用される。   The thermoplastic resin 1 is not particularly limited as long as it is a powder type that melts and softens by heating and exhibits fluidity. For example, polyphenylene sulfide (PPS), polypropylene (PP), polyethylene (PE), liquid crystal polymer (LCP), polyphenylene ether (PPE), modified PPE and the like are used.

熱可塑性樹脂1の流動性(MFR値)は、所定の測定条件下で10〜2000cc/10分、好ましくは100〜1200cc/10分が良い。これは、10cc/10分未満の場合には、流動性が悪化して黒鉛粒子2間の空隙を十分に埋めることができないからである。   The fluidity (MFR value) of the thermoplastic resin 1 is 10 to 2000 cc / 10 minutes, preferably 100 to 1200 cc / 10 minutes under predetermined measurement conditions. This is because if it is less than 10 cc / 10 minutes, the fluidity deteriorates and the gaps between the graphite particles 2 cannot be sufficiently filled.

逆に、2000cc/10分を超える場合には、流動性が必要以上に良くなり、黒鉛粒子2の表面に熱可塑性樹脂1が過度に付着したり、燃料電池用セパレータ40の表面にスキン層が発生し、このスキン層の発生に伴い燃料電池用セパレータ40の厚さ方向における導電性が低下してしまうからである。
所定の測定条件としては、ダイス流路径:1mmφ、ランド長さ10mm、温度:燃料電池用セパレータ40の圧縮成形温度、圧力:100kg/cmがあげられる。
On the other hand, when it exceeds 2000 cc / 10 minutes, the fluidity is improved more than necessary, and the thermoplastic resin 1 is excessively adhered to the surface of the graphite particles 2, or the skin layer is formed on the surface of the fuel cell separator 40. This is because the electrical conductivity in the thickness direction of the fuel cell separator 40 decreases with the generation of the skin layer.
Predetermined measurement conditions include a die channel diameter: 1 mmφ, a land length of 10 mm, temperature: compression molding temperature of the fuel cell separator 40, and pressure: 100 kg / cm 2 .

黒鉛粒子2は、10〜200μm、好ましくは30〜150μmの平均粒径とされ、必要量が秤取される。この黒鉛粒子2の平均粒径が10〜200μmの範囲なのは、10μm未満の場合には、黒鉛粒子2が熱可塑性樹脂1との混合時に舞い上がり、作業環境や電気的特性が悪化するからである。逆に、200μmを超える場合には、機械的特性が低下したり、薄型に適用するのが困難化するからである。成形材料3中の黒鉛粒子2の比率は、60〜90vol%、好ましくは70〜85vol%の範囲とされる。   The graphite particles 2 have an average particle diameter of 10 to 200 μm, preferably 30 to 150 μm, and a necessary amount is weighed. The reason why the average particle diameter of the graphite particles 2 is in the range of 10 to 200 μm is that when the graphite particles 2 are less than 10 μm, the graphite particles 2 rise when mixed with the thermoplastic resin 1 and the working environment and electrical characteristics deteriorate. On the contrary, when it exceeds 200 μm, the mechanical properties are deteriorated or it is difficult to apply to a thin shape. The ratio of the graphite particles 2 in the molding material 3 is in the range of 60 to 90 vol%, preferably 70 to 85 vol%.

上記において、燃料電池用セパレータ40を製造する場合には、先ず、粒子化された熱可塑性樹脂1と黒鉛粒子2とをそれぞれ所定量タンブラー4により混合(図1参照)して成形材料3を調製する(図2参照)。この際の混合は、熱可塑性樹脂1の融点以下の温度、好ましくは常温で行なうと良い。混合機としては、タンブラー4の他、ヘンシェルミキサーや羽根型攪拌機等を使用することができる。   In the above, when the fuel cell separator 40 is manufactured, first, the molded thermoplastic resin 1 and the graphite particles 2 are mixed by a predetermined amount of the tumbler 4 (see FIG. 1) to prepare the molding material 3. (See FIG. 2). The mixing at this time may be performed at a temperature not higher than the melting point of the thermoplastic resin 1, preferably at room temperature. As the mixer, in addition to the tumbler 4, a Henschel mixer, a blade-type stirrer, or the like can be used.

成形材料3を調製したら、加熱加圧機10に加圧されるブロック成形型11に成形材料3を充填(図3参照)して熱可塑性樹脂1の融点以上の温度に加熱、加圧し、熱可塑性樹脂1を溶融、流動させてブロック12を圧縮成形し、その後、冷却(図4参照)してブロック成形型11からブロック12を取り出す(図5参照)。   When the molding material 3 is prepared, the molding material 3 is filled in the block molding die 11 pressed by the heating and pressurizing machine 10 (see FIG. 3), and heated to a temperature equal to or higher than the melting point of the thermoplastic resin 1 to be thermoplastic. The block 1 is compression molded by melting and flowing the resin 1, and then cooled (see FIG. 4) and taken out from the block mold 11 (see FIG. 5).

ブロック成形型11における加圧圧力は、100〜1000kg/cm、好ましくは300〜600kg/cmが良い。これは、100kg/cm未満の場合には、粉末の熱可塑性樹脂1と黒鉛粒子2との間に空隙が残存し、空隙を十分に埋めきれないという理由に基づく。 Pressurizing pressure in the block mold 11, 100~1000kg / cm 2, preferably from 300~600kg / cm 2. This is based on the reason that in the case of less than 100 kg / cm 2 , voids remain between the powdered thermoplastic resin 1 and the graphite particles 2 and the voids cannot be sufficiently filled.

逆に、1000kg/cmを超える場合には、黒鉛粒子2の表面に熱可塑性樹脂1が過度に付着し、燃料電池用セパレータ40の厚さ方向における導電性が低下してしまうという理由に基づく。また、1000kg/cmを超える場合には、ブロック成形型11の変形を招きやすく、これを回避するため、ブロック成形型11の大型化すると、加熱、冷却効率の低下を招くという理由に基づく。また、ブロック成形型11における加熱温度は、熱可塑性樹脂1の融点以下の温度で、かつ流動性が所定の測定条件下で10〜2000cc/10分となる温度を選択すると良い。 On the contrary, when it exceeds 1000 kg / cm 2 , it is based on the reason that the thermoplastic resin 1 is excessively adhered to the surface of the graphite particle 2 and the conductivity in the thickness direction of the fuel cell separator 40 is lowered. . Moreover, when exceeding 1000 kg / cm < 2 >, it is easy to cause the deformation | transformation of the block shaping | molding die 11, and in order to avoid this, when the block shaping die 11 is enlarged, it is based on the reason for causing a fall of a heating and cooling efficiency. Moreover, the heating temperature in the block mold 11 is preferably selected to be a temperature below the melting point of the thermoplastic resin 1 and a fluidity of 10 to 2000 cc / 10 minutes under predetermined measurement conditions.

次いで、ブロック12をワイヤカット装置20により所定の厚さにワイヤカットして平坦な薄板のタブレット21を一度に複数切削形成し、各タブレット21の表裏両面から黒鉛粒子2をそれぞれ露出させる(図6、図7参照)。ワイヤカット装置20は、切削油の供給を受けるカット用のワイヤ22を上下動可能に巻張状態に備え、このエンドレスのワイヤ22が図6の奥方向に所定の間隔で並設されており、各ワイヤ22を下降させてブロック12をワイヤカットし、ブロック12を大量生産する。   Next, the block 12 is wire-cut to a predetermined thickness by the wire-cutting device 20, and a plurality of flat thin tablets 21 are cut and formed at a time to expose the graphite particles 2 from both the front and back surfaces of each tablet 21 (FIG. 6). FIG. 7). The wire cutting device 20 is provided with a cutting wire 22 that receives a supply of cutting oil in a wound state so as to be movable up and down, and the endless wires 22 are juxtaposed at predetermined intervals in the depth direction of FIG. Each wire 22 is lowered to wire-cut the block 12, and the block 12 is mass-produced.

各タブレット21は、その重量が燃料電池用セパレータ40の重量+5〜30%の範囲となるよう切削形成される。また、タブレット21の切り出し方向は、加圧方向でも良いし、加圧方向と直角の方向でも良い。
但し、加圧方向に切り出した場合には、燃料電池用セパレータ40の厚さ方向の導電性が向上し、加圧方向と直角の方向に切り出した場合には、燃料電池用セパレータ40の曲げ強度や曲げ歪が大きくなるので、これらの特徴に留意してタブレット21を切り出す必要がある。
Each tablet 21 is cut and formed so that its weight is in the range of the weight of the fuel cell separator 40 + 5 to 30%. Further, the cutting direction of the tablet 21 may be a pressing direction or a direction perpendicular to the pressing direction.
However, when cut in the pressurizing direction, the conductivity in the thickness direction of the fuel cell separator 40 is improved, and when cut in the direction perpendicular to the pressurizing direction, the bending strength of the fuel cell separator 40 is increased. In addition, since the bending strain becomes large, it is necessary to cut out the tablet 21 in consideration of these characteristics.

タブレット21は、燃料電池用セパレータ40の中央部の溝形成領域23とその周辺の平板領域24の充填量に相違があるのを考慮し、溝形成領域23の板厚が後加工により薄く削られ、凹むことが燃料電池用セパレータ40の寸法精度を向上させる観点から好ましい(図8参照)。   In consideration of the difference in filling amount between the groove forming region 23 at the center of the fuel cell separator 40 and the flat plate region 24 around the tablet 21, the plate thickness of the groove forming region 23 is thinned by post-processing. From the viewpoint of improving the dimensional accuracy of the fuel cell separator 40, it is preferable (see FIG. 8).

タブレット21を形成したら、溝付きの本成形用金型30にタブレット21をインサートして加熱圧縮成形機31により加熱加圧(図9参照)した後、冷却(図10参照)して脱型(図11参照)すれば、燃料電池用セパレータ40を製造することができる(図12参照)。   After the tablet 21 is formed, the tablet 21 is inserted into a grooved main molding die 30 and heated and pressurized by a heat compression molding machine 31 (see FIG. 9), then cooled (see FIG. 10) and demolded (see FIG. 10). 11), the fuel cell separator 40 can be manufactured (see FIG. 12).

加熱加圧の際、燃料電池用セパレータ40の強度を向上させたり、抵抗値を低下させたい場合には、加減圧を数回繰り返し(バンピング)、黒鉛粒子2をさらに充填すれば良い。また、冷却に際しては、スプリングバック防止の観点から、加圧冷却機32に移載して加圧冷却する。
なお、本成形用金型30にタブレット21をインサートしたら、本成形用金型30ごと熱風加熱炉、蒸気加熱炉、電磁誘導加熱等の方法で加熱し、加熱冷却機で加圧、冷却することもできる。
In order to improve the strength of the fuel cell separator 40 or reduce the resistance value at the time of heating and pressurization, the pressurization and depressurization may be repeated several times (bumping), and the graphite particles 2 may be further filled. Further, when cooling, from the viewpoint of preventing spring back, it is transferred to the pressure cooler 32 and is cooled by pressure.
When the tablet 21 is inserted into the main molding die 30, the whole molding die 30 is heated by a method such as a hot air heating furnace, a steam heating furnace, or electromagnetic induction heating, and is pressurized and cooled by a heating / cooling machine. You can also.

こうして製造された燃料電池用セパレータ40は、図12に示すように、ガス不透過性、導電性、耐食性等を満足する平面矩形の薄板に成形され、表裏面の中央部に複数の溝41がパターン形成されており、これら複数の溝41がサーペインタイプの流路を形成する。   The fuel cell separator 40 manufactured in this way is formed into a flat rectangular thin plate that satisfies gas impermeability, conductivity, corrosion resistance, etc., as shown in FIG. 12, and a plurality of grooves 41 are formed at the center of the front and back surfaces. A pattern is formed, and the plurality of grooves 41 form a surpain type flow path.

上記構成によれば、粉末化された熱可塑性樹脂1と黒鉛粒子2とを溶融させることなく混合することにより調製するとともに、熱可塑性樹脂1の平均粒径を黒鉛粒子2の平均粒径の3倍以下とし、射出成形等のような大きな流動を要しない圧縮成形により燃料電池用セパレータ40を製造するので、黒鉛粒子2の表面に熱可塑性樹脂1が過度に付着してしまうことがなく、燃料電池用セパレータ40の厚さ方向における導電性を著しく向上させることができる。   According to the above configuration, the powdered thermoplastic resin 1 and the graphite particles 2 are prepared by mixing without melting, and the average particle size of the thermoplastic resin 1 is 3 of the average particle size of the graphite particles 2. The fuel cell separator 40 is manufactured by compression molding that does not require a large flow such as injection molding or the like, so that the thermoplastic resin 1 does not adhere excessively to the surface of the graphite particles 2 and the fuel The conductivity in the thickness direction of the battery separator 40 can be remarkably improved.

また、射出成形ではなく、圧縮成形を二度行い、黒鉛粒子2の間に熱可塑性樹脂1を過不足なく充填するので、機械的強度を著しく向上させることができる。また、ブロック12をワイヤカットしてタブレット21の表裏両面から黒鉛粒子2をそれぞれ露出させるので、タブレット21を成形して燃料電池用セパレータ40を製造する際、スキン層の発生が少なく、厚さ方向の導電性に優れる燃料電池用セパレータ40を得ることができる。   In addition, since the compression molding is performed twice instead of the injection molding and the thermoplastic resin 1 is filled between the graphite particles 2 without excess or deficiency, the mechanical strength can be remarkably improved. Further, the block 12 is wire-cut to expose the graphite particles 2 from both the front and back surfaces of the tablet 21, so that when the tablet 21 is molded to produce the fuel cell separator 40, the generation of the skin layer is less and the thickness direction A fuel cell separator 40 having excellent electrical conductivity can be obtained.

また、熱硬化性樹脂ではなく、熱可塑性樹脂1を使用するので、樹脂硬化の時間や成形サイクルを短縮して生産性の大幅な向上を図ることが可能になる。また、未硬化成分や反応生成物が燃料電池用セパレータ40中に残留しにくいので、後加熱や洗浄作業を省略することができ、しかも、燃料電池の運転中に燃料電池用セパレータ40中の残留物が溶出したり、燃料電池の耐久性や寿命が低下するのを抑制防止することが可能になる。   In addition, since the thermoplastic resin 1 is used instead of the thermosetting resin, it is possible to shorten the resin curing time and the molding cycle and to greatly improve the productivity. In addition, since uncured components and reaction products are unlikely to remain in the fuel cell separator 40, post-heating and cleaning operations can be omitted, and the remaining in the fuel cell separator 40 during operation of the fuel cell. It is possible to prevent or suppress the elution of the objects or the deterioration of the durability and life of the fuel cell.

また、タブレット21を圧縮成形して燃料電池用セパレータ40を製造するので、成形材料3により高い流動性が求められる薄型、大面積の燃料電池用セパレータ40を容易に製造することが可能になる。さらに、ブロック12から一枚のタブレット21を一々形成するのではなく、ワイヤカット装置20によりワイヤカットして複数のタブレット21を一度に形成するので、生産性や量産性の大幅な向上が期待できる。   In addition, since the fuel cell separator 40 is manufactured by compression-molding the tablet 21, it is possible to easily manufacture a thin and large-area fuel cell separator 40 that requires high fluidity by the molding material 3. Furthermore, since one tablet 21 is not formed one by one from the block 12, but a plurality of tablets 21 are formed at a time by wire cutting by the wire cutting device 20, a significant improvement in productivity and mass productivity can be expected. .

次に、図13ないし図17は本発明の第2の実施形態を示すもので、この場合には、熱可塑性樹脂1と黒鉛粒子2とから成形材料3を調製する工程と、この成形材料3を用いてタブレット21を直接成形する工程と、このタブレット21を圧縮成形して加熱加圧した後、冷却、脱型して燃料電池用セパレータ40を製造する工程とを備えるようにしている。   Next, FIGS. 13 to 17 show a second embodiment of the present invention. In this case, the step of preparing the molding material 3 from the thermoplastic resin 1 and the graphite particles 2, and the molding material 3 The step of directly molding the tablet 21 using the above and the step of manufacturing the fuel cell separator 40 by compressing and heating and pressurizing the tablet 21 and then cooling and demolding the tablet 21 are provided.

上記において、燃料電池用セパレータ40を製造するには、先ず、粒子化された熱可塑性樹脂1と黒鉛粒子2とをそれぞれ所定量タンブラー4により混合して成形材料3を調製し、この成形材料3をタブレット成形型50に均一に充填し、タブレット成形型50に充填した成形材料3の充填面が平滑になるようスクレーバ51でならす(図13参照)。この際、スクレーバ51でならすのは、成形材料3の流動性が低いので、スクレーバ51でならさないと、成形材料3の充填量が充填箇所により不均一となり、燃料電池用セパレータ40の厚さ精度に不良を来たすからである。   In the above, in order to manufacture the fuel cell separator 40, first, the particulate thermoplastic resin 1 and the graphite particles 2 are mixed with a predetermined amount of the tumbler 4 to prepare the molding material 3. Is uniformly filled in the tablet mold 50 and smoothed by the scraper 51 so that the filling surface of the molding material 3 filled in the tablet mold 50 becomes smooth (see FIG. 13). At this time, since the fluidity of the molding material 3 is low by the scraper 51, the filling amount of the molding material 3 becomes uneven depending on the filling location unless the scraper 51 is used, and the thickness of the fuel cell separator 40 is increased. This is because the accuracy is deteriorated.

成形材料3をスクレーバ51でならしたら、加熱圧縮成形機52にタブレット成形型50をセット(図14参照)し、熱可塑性樹脂1の融点以上の温度に加熱、加圧(図15参照)し、熱可塑性樹脂1を溶融、流動させてタブレット21を圧縮成形し、その後、冷却してタブレット成形型50からタブレット21を取り出す(図16、図17参照)。   When the molding material 3 is arranged with the scraper 51, the tablet mold 50 is set in the heat compression molding machine 52 (see FIG. 14), heated to a temperature equal to or higher than the melting point of the thermoplastic resin 1 (see FIG. 15), The tablet 21 is compression molded by melting and flowing the thermoplastic resin 1, and then cooled and taken out from the tablet mold 50 (see FIGS. 16 and 17).

タブレット成形型50における加圧圧力は、100〜1000kg/cm、好ましくは300〜600kg/cmが良い。これは、100kg/cm未満の場合には、粉末の熱可塑性樹脂1と黒鉛粒子2との間に空隙が残存し、空隙を十分に埋めきれないからである。逆に、1000kg/cmを超える場合には、黒鉛粒子2の表面に熱可塑性樹脂1が過度に付着したり、スキン層が生じて燃料電池用セパレータ40の厚さ方向における導電性が低下してしまうからである。 Pressurizing pressure in the tablet molding mold 50, 100~1000kg / cm 2, preferably from 300~600kg / cm 2. This is because when the amount is less than 100 kg / cm 2 , voids remain between the powdered thermoplastic resin 1 and the graphite particles 2 and the voids cannot be sufficiently filled. Conversely, if it exceeds 1000 kg / cm 2 , the thermoplastic resin 1 excessively adheres to the surface of the graphite particles 2, or a skin layer is formed, resulting in a decrease in conductivity in the thickness direction of the fuel cell separator 40. Because it will end up.

タブレット21を形成したら、溝付きの本成形用金型30にタブレット21をインサートして加熱圧縮成形機31により加熱加圧した後、冷却して脱型すれば、燃料電池用セパレータ40を製造することができる。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、製造工程の多様化が期待できるのは明らかである。
Once the tablet 21 is formed, the fuel cell separator 40 is manufactured by inserting the tablet 21 into the grooved main molding die 30 and heating and pressurizing it with the heat compression molding machine 31 and then cooling and removing the mold. be able to. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
In the present embodiment, it is obvious that the same effect as the above embodiment can be expected, and diversification of the manufacturing process can be expected.

なお、上記実施形態のタブレット21を本成形用金型30にインサートして加熱圧縮した後、脱型する場合、燃料電池用セパレータ40の熱膨張係数(線膨張係数)が本成形用金型30の熱膨張係数(線膨張係数)よりも小さくなるよう設定し、金型のテーパを利用して燃料電池用セパレータ40の脱型の容易化を図るようにしても良い。さらに、燃料電池のアノードやカソードに対する燃料電池用セパレータ40の弾性の接触領域をフラットではなく、鋭利あるいは湾曲した凸形に突出形成し、接触抵抗を減少させるようにしても良い。   In addition, when the tablet 21 of the above embodiment is inserted into the main mold 30 and heat-compressed and then removed, the thermal expansion coefficient (linear expansion coefficient) of the fuel cell separator 40 is the main mold 30. The thermal expansion coefficient (linear expansion coefficient) of the fuel cell may be set to be smaller, and the mold of the fuel cell separator 40 may be easily removed using a taper of the mold. Further, the elastic contact region of the fuel cell separator 40 with respect to the anode or cathode of the fuel cell may be formed to be not a flat but a sharp or curved convex shape to reduce the contact resistance.

以下、本発明に係る燃料電池用セパレータの製造方法及び燃料電池用セパレータの実施例を比較例と共に説明する。
実施例1
EXAMPLES Hereinafter, the manufacturing method of the separator for fuel cells which concerns on this invention, and the Example of the separator for fuel cells are described with a comparative example.
Example 1

先ず、粒子化した熱可塑性樹脂と人造の黒鉛粒子とをそれぞれ所定量タンブラーにより混合して成形材料を調製した。熱可塑性樹脂と人造の黒鉛粒子との混合は、熱可塑性樹脂1に対して黒鉛粒子5.4(質量比)をそれぞれ計量して混合した。熱可塑性樹脂は、重量平均分子量36100、数平均分子量10900のリニアタイプポリフェニレンサスフィド(PPS)の顆状粒子(平均粒径1mm)を冷凍粉砕し、♯150のメッシュでふるった平均粒径75μmの樹脂とした。また、黒鉛粒子は、平均粒径が145μmで略棒状と略塊状の混合物を使用した。   First, a molding material was prepared by mixing a predetermined amount of a particulate thermoplastic resin and artificial graphite particles with a tumbler. For mixing the thermoplastic resin and the artificial graphite particles, the graphite particles 5.4 (mass ratio) were respectively weighed and mixed with the thermoplastic resin 1. The thermoplastic resin has a mean particle size of 75 μm, which is obtained by freeze-pulverizing linear type polyphenylene sulfide (PPS) conical particles (average particle size: 1 mm) having a weight average molecular weight of 36,100 and a number average molecular weight of 10,900, and sieving with a # 150 mesh. Resin was used. Moreover, the graphite particle used the mixture of a substantially rod shape and a substantially lump shape with an average particle diameter of 145 micrometers.

次いで、成形材料を80g計量してタブレット成形型に投入し、投入した成形材料の投入面をスクレーバで平滑に均した。タブレット成形型は、タブレットの溝形成領域における厚さを平板領域における厚さの1/2とする構造とした。また、タブレット成形型のキャビティは、l:150mm×w:150mm×t:2.1mmの寸法としたが、溝形成部の厚さについては1.05mmとした。   Next, 80 g of the molding material was weighed and charged into a tablet mold, and the charged molding material input surface was smoothed with a scraper. The tablet mold has a structure in which the thickness in the groove forming region of the tablet is ½ of the thickness in the flat plate region. The cavity of the tablet mold was l: 150 mm × w: 150 mm × t: 2.1 mm, but the thickness of the groove forming portion was 1.05 mm.

次いで、加熱圧縮成形機によりタブレット成形型を400℃、500kg/cmの条件で加熱加圧し、加圧冷却機にタブレット成形型ごと移載し、180℃まで冷却してタブレット成形型からタブレットを取り出した。 Next, the tablet mold is heated and pressurized by a heat compression molding machine under the conditions of 400 ° C. and 500 kg / cm 2 , transferred to the pressure cooler together with the tablet mold, cooled to 180 ° C., and the tablet is removed from the tablet mold. I took it out.

こうしてタブレットを形成したら、溝付きの本成形用金型にタブレットをインサートして加熱圧縮成形機により400℃、500kg/cmの条件で加熱加圧し、加圧冷却機にタブレット成形型ごと移載し、その後、180℃まで冷却して脱型し、燃料電池用セパレータを製造した。本成形用金型のキャビティは、縦148mm×横148mm×厚さ2mmの寸法であり、中央部100mm×100mmの範囲に、幅1mm、深さ0.7mmの溝がピッチ2mmで燃料電池用セパレータの表裏両面にそれぞれ成形できる構造とした。 After the tablet is formed in this way, the tablet is inserted into a grooved main molding die, heated and pressurized by a heat compression molding machine at 400 ° C. and 500 kg / cm 2 , and transferred to the pressure cooling machine together with the tablet molding die. Then, it was cooled to 180 ° C. and demolded to produce a fuel cell separator. The cavity of this molding die has dimensions of 148 mm long × 148 mm wide × 2 mm thick, and is a fuel cell separator with a groove of 1 mm width and 0.7 mm depth in the range of 100 mm × 100 mm in the center and a pitch of 2 mm. The structure can be formed on both the front and back surfaces.

製造した燃料電池用セパレータについて観察したところ、溝への未充填、表面のあばた、欠け、反り、曲がり等の欠点がなく、厚さ寸法精度も2mm±20μmと良好であるのを確認した。
また、燃料電池用セパレータの厚さ方向の導電性(mΩ・cm)、曲げ強度(MPa)、曲げ歪(%)についても試験を実施して表1にまとめ、評価したが、いずれも良好であるのを確認した。厚さ方向の導電性試験と曲げ試験は以下の内容とした。
厚さ方向の導電性試験
Observation of the manufactured fuel cell separator confirmed that there were no defects such as unfilled grooves, fluttering of the surface, chipping, warping, and bending, and that the thickness dimensional accuracy was as good as 2 mm ± 20 μm.
In addition, tests were conducted on the conductivity (mΩ · cm), bending strength (MPa), and bending strain (%) in the thickness direction of the fuel cell separator, and the results were summarized and evaluated in Table 1. I confirmed that there was. The thickness direction conductivity test and bending test were as follows.
Conductivity test in thickness direction

先ず、燃料電池用セパレータの平板領域の四辺から20mm×100mm(20cm)の板4枚を切り出してこれらの板を積層し、この4枚の板を金メッキ処理された2枚の銅板の間に挟んで20kg/cmの圧力で5分間加圧保持し、その後、2枚の銅板間の電気抵抗値をデジタルマルチメータ〔商品名HIOKI3540‐03〕により測定電圧9Vの条件で測定し、測定値をR1(mΩ)とした。 First, four plates of 20 mm × 100 mm (20 cm 2 ) are cut out from the four sides of the flat plate region of the fuel cell separator, and these plates are laminated, and these four plates are placed between two gold-plated copper plates. The pressure is held at 20 kg / cm 2 for 5 minutes, and then the electrical resistance between the two copper plates is measured with a digital multimeter (trade name HIOKI 3540-03) at a measurement voltage of 9 V. Was R1 (mΩ).

次いで、4枚の板を2枚に減らして積層し、この2枚の板を上記2枚の銅板間に挟んで上記と同様に測定し、測定値をR2(mΩ)とした。こうして測定値R1(mΩ)、R2(mΩ)を得たら、燃料電池用セパレータの厚さ方向の導電性を、導電性(mΩ・cm)=(R1−R2)/2×20/0.2の式により算出した。
曲げ試験
燃料電池用セパレータの平板領域の四辺から測定用の試験片をそれぞれ切り出し、JIS K6911の内容に準拠した。
実施例2
Subsequently, the four plates were reduced to two and laminated, and the two plates were sandwiched between the two copper plates and measured in the same manner as described above, and the measured value was R2 (mΩ). When the measured values R1 (mΩ) and R2 (mΩ) are thus obtained, the conductivity in the thickness direction of the fuel cell separator is determined as follows: conductivity (mΩ · cm) = (R1−R2) /2×20/0.2 It was calculated by the following formula.
Bending test Test pieces for measurement were cut out from the four sides of the flat plate region of the fuel cell separator, and conformed to the contents of JIS K6911.
Example 2

実施例1と同様の成形材料4.5kgをブロック成形型に常温で押し固めながら充填し、加熱加圧機により400℃、500kg/cmの条件で加熱、加圧した後、放冷してブロック成形型からブロックを取り出した。 4.5 kg of the same molding material as in Example 1 was filled into a block mold while being pressed and hardened at room temperature, heated and pressurized with a heating and pressing machine at 400 ° C. and 500 kg / cm 2 , and then allowed to cool and block The block was removed from the mold.

次いで、ブロックをワイヤカット装置により2.1mmの厚さにワイヤカットしてタブレットを切り出し、各タブレットの表裏両面から黒鉛粒子をそれぞれ露出させた。ワイヤカット装置は、ムサシノ電子製の装置〔商品名RTS480〕とし、ブロックの加圧方向と直角の方向にワイヤカットした。タブレットを切り出したら、タブレットの溝形成領域を汎用のミーリング機により切削して凹ませ、1.05mmの厚さとした。   Next, the block was wire-cut to a thickness of 2.1 mm using a wire-cutting device, and the tablets were cut out to expose the graphite particles from both the front and back surfaces of each tablet. The wire cutting device was a device made by Musashino Electronics [trade name RTS480], and the wire was cut in a direction perpendicular to the pressing direction of the block. When the tablet was cut out, the tablet groove formation area was cut and recessed by a general-purpose milling machine to a thickness of 1.05 mm.

タブレットを形成したら、実施例1と同様に燃料電池用セパレータを製造し、この燃料電池用セパレータについて実施例1と同様の評価、試験を実施したところ、良好な結果を確認した。
比較例1
When a tablet was formed, a fuel cell separator was produced in the same manner as in Example 1. The fuel cell separator was evaluated and tested in the same manner as in Example 1, and good results were confirmed.
Comparative Example 1

実施例1の熱可塑性樹脂の平均粒径を1mmとし、その他は実施例1と同様にして燃料電池用セパレータを製造した。
製造した燃料電池用セパレータについて観察したところ、燃料電池用セパレータの表面に、熱可塑性樹脂の濃淡に起因するしみを発見した。また、曲げ強度も不十分であった。
比較例2
A fuel cell separator was produced in the same manner as in Example 1 except that the thermoplastic resin of Example 1 had an average particle size of 1 mm.
Observation of the manufactured fuel cell separator revealed that the surface of the fuel cell separator was spotted due to the density of the thermoplastic resin. Also, the bending strength was insufficient.
Comparative Example 2

実施例1と同様の熱可塑性樹脂と人造の黒鉛粒子とをそれぞれ所定量加圧ニーダーに投入し、400℃の条件で混練して凝集物の混在した混合物を調製した。そして、混合物をボールミルに投入して凝集物を除去し、成形材料を調製し、その他は実施例1と同様とした。   A predetermined amount of the same thermoplastic resin as in Example 1 and artificial graphite particles were put into a pressure kneader and kneaded at 400 ° C. to prepare a mixture containing aggregates. Then, the mixture was put into a ball mill to remove agglomerates, and a molding material was prepared.

製造した燃料電池用セパレータについて観察したところ、溝への未充填、表面のあばた、欠け、反り、曲がり等の欠点がなく、厚さ寸法精度も2mm±20μmと良好であった。
これに対し、燃料電池用セパレータの厚さ方向の導電性、曲げ強度、曲げ歪について試験を実施したところ、厚さ方向の導電性が不足し、実用可能なレベルに達しなかった。
比較例3
Observation of the manufactured fuel cell separator revealed no defects such as unfilled grooves, fluttering of the surface, chipping, warping, and bending, and the thickness dimensional accuracy was 2 mm ± 20 μm.
On the other hand, when tests were conducted on the conductivity, bending strength, and bending strain in the thickness direction of the fuel cell separator, the conductivity in the thickness direction was insufficient and did not reach a practical level.
Comparative Example 3

実施例1、比較例2同様の成形材料をそれぞれ調製して燃料電池用セパレータを射出成形しようとした。射出成形用の金型は、サイドゲートを備えた100mm×50mm×2mmの大きさの溝付きセパレータ用金型を用いた。また、射出成形の際の射出成形圧力は1500kg/cmとし、金型温度は200℃とした。
射出成形しようとしたところ、いずれの成形材料も未充填となり、燃料電池用セパレータを射出成形により製造することができなかった。
The same molding materials as those of Example 1 and Comparative Example 2 were prepared, and an attempt was made to injection-mold a fuel cell separator. As a mold for injection molding, a mold for a grooved separator having a size of 100 mm × 50 mm × 2 mm provided with a side gate was used. The injection molding pressure during the injection molding was 1500 kg / cm 2 and the mold temperature was 200 ° C.
As a result of injection molding, none of the molding materials were filled, and the fuel cell separator could not be manufactured by injection molding.

Figure 2006294407
Figure 2006294407

本発明に係る燃料電池用セパレータの製造方法の実施形態における粒子化された熱可塑性樹脂と黒鉛粒子とをそれぞれ所定量タンブラーにより混合する状態を示す説明図である。It is explanatory drawing which shows the state which mixes the particle-ized thermoplastic resin and graphite particle | grains by predetermined amount tumbler in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態における成形材料を示す説明図である。It is explanatory drawing which shows the molding material in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるブロック成形型に成形材料を充填する状態を示す説明図である。It is explanatory drawing which shows the state which fills the molding material in the block shaping | molding die in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるブロックを冷却する状態を示す説明図である。It is explanatory drawing which shows the state which cools the block in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるブロックを示す説明図である。It is explanatory drawing which shows the block in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるブロックをワイヤカットする状態を示す説明図である。It is explanatory drawing which shows the state which wire-cuts the block in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態における複数のタブレットを切り出し形成する状態を示す斜視説明図である。It is a perspective explanatory view showing the state where a plurality of tablets are cut out and formed in an embodiment of a method for producing a fuel cell separator according to the present invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態におけるタブレットを示す斜視説明図である。It is a perspective explanatory view showing a tablet in an embodiment of a manufacturing method of a separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの製造方法の実施形態における本成形用金型にタブレットをインサートして加熱圧縮成形機により加熱加圧する状態を示す説明図である。It is explanatory drawing which shows the state which inserts a tablet in the metal mold | die for this shaping | molding in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention, and heat-presses with a heat compression molding machine. 図9のタブレットを冷却加圧する状態を示す説明図である。It is explanatory drawing which shows the state which cools and pressurizes the tablet of FIG. 本発明に係る燃料電池用セパレータの製造方法の実施形態における本成形用金型から成形品を脱型する状態を示す説明図である。It is explanatory drawing which shows the state which demolds from the metal mold | die for this shaping | molding in embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの実施形態を示す平面説明図である。It is a plane explanatory view showing an embodiment of a separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの製造方法の第2の実施形態における成形材料をタブレット成形型に充填し、成形材料の充填面をならす状態を示す説明図である。It is explanatory drawing which shows the state which fills the molding material in 2nd Embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention in a tablet shaping | molding die, and smooth | fills the filling surface of a molding material. 本発明に係る燃料電池用セパレータの製造方法の第2の実施形態における加熱圧縮成形機にタブレット成形型をセットする状態を示す説明図である。It is explanatory drawing which shows the state which sets the tablet shaping | molding die to the heat compression molding machine in 2nd Embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの製造方法の第2の実施形態におけるタブレット成形型を加熱、加圧する状態を示す説明図である。It is explanatory drawing which shows the state which heats and pressurizes the tablet shaping | molding die in 2nd Embodiment of the manufacturing method of the separator for fuel cells which concerns on this invention. 図15のタブレットを冷却加圧する状態を示す説明図である。It is explanatory drawing which shows the state which cools and pressurizes the tablet of FIG. 脱型したタブレットを示す斜視説明図である。It is an isometric view explanatory drawing which shows the removed tablet.

符号の説明Explanation of symbols

1 熱可塑性樹脂
2 黒鉛粒子
3 成形材料
4 タンブラー
12 ブロック
21 タブレット
23 溝形成領域
24 平板領域
40 燃料電池用セパレータ
41 溝
51 スクレバー
DESCRIPTION OF SYMBOLS 1 Thermoplastic resin 2 Graphite particle 3 Molding material 4 Tumbler 12 Block 21 Tablet 23 Groove formation area 24 Flat plate area 40 Fuel cell separator 41 Groove 51 Scraper

Claims (3)

成形材料を使用して燃料電池のセパレータを製造する燃料電池用セパレータの製造方法であって、
成形材料を、粉末化された熱可塑性樹脂と黒鉛粒子とを溶融させることなく混合することにより調製し、熱可塑性樹脂の平均粒径を黒鉛粒子の平均粒径の0.1〜3倍の範囲とすることを特徴とする燃料電池用セパレータの製造方法。
A fuel cell separator manufacturing method for manufacturing a fuel cell separator using a molding material,
The molding material is prepared by mixing the powdered thermoplastic resin and the graphite particles without melting them, and the average particle size of the thermoplastic resin is in the range of 0.1 to 3 times the average particle size of the graphite particles. The manufacturing method of the separator for fuel cells characterized by these.
成形材料を用いて略板状のタブレットを形成し、このタブレットを圧縮成形して燃料電池のセパレータを製造する請求項1記載の燃料電池用セパレータの製造方法。   The manufacturing method of the separator for fuel cells of Claim 1 which forms a substantially plate-shaped tablet using a molding material, and manufactures the separator of a fuel cell by compression-molding this tablet. 請求項1又は2記載の燃料電池用セパレータの製造方法により製造されたことを特徴とする燃料電池用セパレータ。

A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to claim 1.

JP2005113427A 2005-04-11 2005-04-11 Manufacturing method of separator for fuel cell and separator for fuel cell Pending JP2006294407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113427A JP2006294407A (en) 2005-04-11 2005-04-11 Manufacturing method of separator for fuel cell and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113427A JP2006294407A (en) 2005-04-11 2005-04-11 Manufacturing method of separator for fuel cell and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2006294407A true JP2006294407A (en) 2006-10-26

Family

ID=37414745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113427A Pending JP2006294407A (en) 2005-04-11 2005-04-11 Manufacturing method of separator for fuel cell and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2006294407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176070A (en) * 2005-12-28 2007-07-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
JP2010153311A (en) * 2008-12-26 2010-07-08 Shin Etsu Polymer Co Ltd Method of manufacturing fuel cell separator, and fuel cell separator
WO2010116674A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
WO2015181238A1 (en) * 2014-05-27 2015-12-03 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing a composite bipolar plate, composite bipolar plate, uses thereof and fuel cell comprising such a composite bipolar plate
JP2016110724A (en) * 2014-12-02 2016-06-20 新日鉄住金マテリアルズ株式会社 Carbon composite material for pefc separator and manufacturing method for the same
WO2018131566A1 (en) 2017-01-13 2018-07-19 信越ポリマー株式会社 Separator for fuel cells and method for producing same
WO2023286332A1 (en) 2021-07-16 2023-01-19 信越ポリマー株式会社 Fuel cell separator and method for manufacturing same
WO2023002560A1 (en) 2021-07-20 2023-01-26 信越ポリマー株式会社 Separator and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176070A (en) * 2005-12-28 2007-07-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
JP2010153311A (en) * 2008-12-26 2010-07-08 Shin Etsu Polymer Co Ltd Method of manufacturing fuel cell separator, and fuel cell separator
US9789634B2 (en) 2009-03-30 2017-10-17 Showa Denko K.K. Sheet press molding method and method of manufacturing fuel cell separator
WO2010116674A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
WO2015181238A1 (en) * 2014-05-27 2015-12-03 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing a composite bipolar plate, composite bipolar plate, uses thereof and fuel cell comprising such a composite bipolar plate
FR3021811A1 (en) * 2014-05-27 2015-12-04 Commissariat Energie Atomique METHOD FOR MANUFACTURING COMPOSITE BIPOLAR PLATE, COMPOSITE BIPOLAR PLATE, USES THEREOF, AND FUEL CELL COMPRISING SUCH COMPOSITE BIPOLAR PLATE
US10418644B2 (en) 2014-05-27 2019-09-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a composite bipolar plate, composite bipolar plate, uses thereof and fuel cell comprising such a composite bipolar plate
JP2016110724A (en) * 2014-12-02 2016-06-20 新日鉄住金マテリアルズ株式会社 Carbon composite material for pefc separator and manufacturing method for the same
WO2018131566A1 (en) 2017-01-13 2018-07-19 信越ポリマー株式会社 Separator for fuel cells and method for producing same
WO2023286332A1 (en) 2021-07-16 2023-01-19 信越ポリマー株式会社 Fuel cell separator and method for manufacturing same
KR20230173711A (en) 2021-07-16 2023-12-27 신에츠 폴리머 가부시키가이샤 Separator for fuel cells and method of manufacturing the same
WO2023002560A1 (en) 2021-07-20 2023-01-26 信越ポリマー株式会社 Separator and method for producing same
KR20230170760A (en) 2021-07-20 2023-12-19 신에츠 폴리머 가부시키가이샤 Separator and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
WO2006049159A1 (en) Method of injection compression molding and molded item
JP3978429B2 (en) Conductive resin molding
KR102123282B1 (en) Carbon plate, and composite carbon plate
EP1280217A3 (en) Fuel-cell separator, production of the same, and fuel cell
JP5349267B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP6944330B2 (en) Fuel cell separator
JP5424637B2 (en) Manufacturing method of fuel cell separator
CN109804492B (en) Resin composition for dense separator of fuel cell
JP5465091B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP2008078023A (en) Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP2006103099A (en) Method for producing molded article, and molded article
JP2006019227A (en) Polyphenylene sulfide (pps) resin composition, fuel cell separator, fuel cell, and manufacturing method for fuel cell separator
JP2006252815A (en) Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP3715642B2 (en) Manufacturing method of fuel cell separator
JP4896488B2 (en) Manufacturing method of conductive separator for fuel cell by cold pressing method
JP2004235137A (en) Method of manufacturing fuel cell separator and molding
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP4860142B2 (en) Manufacturing method of fuel cell separator
JP6370494B2 (en) Manufacturing method of bipolar plate for redox flow battery
JP6865147B2 (en) Fuel cell separator
JP3549765B2 (en) Fuel cell separator and method of manufacturing the same
JP2004216756A (en) Mold for molding preform and method for producing fuel cell separator using the preform
JP2006310021A (en) Conductive material and separator for fuel cell
JP2019204601A (en) Fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109