JP4587177B2 - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP4587177B2
JP4587177B2 JP2005187805A JP2005187805A JP4587177B2 JP 4587177 B2 JP4587177 B2 JP 4587177B2 JP 2005187805 A JP2005187805 A JP 2005187805A JP 2005187805 A JP2005187805 A JP 2005187805A JP 4587177 B2 JP4587177 B2 JP 4587177B2
Authority
JP
Japan
Prior art keywords
mold
molding
cavity
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005187805A
Other languages
Japanese (ja)
Other versions
JP2007007868A (en
Inventor
克士 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2005187805A priority Critical patent/JP4587177B2/en
Publication of JP2007007868A publication Critical patent/JP2007007868A/en
Application granted granted Critical
Publication of JP4587177B2 publication Critical patent/JP4587177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池のセパレータの製造に好適な金型、および、この金型を用いた燃料電池セパレータの製造方法に関する。   The present invention relates to a mold suitable for manufacturing a separator for a fuel cell, and a method for manufacturing a fuel cell separator using the mold.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、自動車の電源をはじめ小型分散型電源などとして期待されている。   A fuel cell directly converts chemical energy contained in fuel into electric energy, has high conversion efficiency into electric energy, and is expected as a power source for automobiles and small distributed power sources.

例えば、固体高分子形燃料電池は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給するためのガス流路を設けたセパレータ、などからなる単セルを積層したスタック、及びその外側に設けた集電体などから構成されている。   For example, a polymer electrolyte fuel cell is generally composed of an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode in which a catalyst such as platinum is supported on both surfaces thereof. And a stack of single cells, each having a gas flow path for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to each electrode, and a stack provided outside the stack. It is composed of electrical objects.

セパレータには直線状または格子状の複数のガス流路が形成され、カソードとの間に形成される空間を酸化剤ガス(例えば空気などの酸素含有ガス)流路とし、アノードとの間に形成される空間を燃料ガス(例えば水素ガスや水素ガスを主成分とする混合ガス)流路として、燃料ガスと酸化剤ガスとが電極に接触して起こる電気化学反応を利用して電極間から電流を取り出すものである。   The separator is formed with a plurality of linear or grid gas flow paths, and the space formed between the cathode and the oxidant gas (for example, oxygen-containing gas such as air) is formed between the anode and the anode. Space is used as a fuel gas (for example, hydrogen gas or mixed gas containing hydrogen gas as a main component) flow path, and an electric current is generated between the electrodes using an electrochemical reaction that occurs when the fuel gas and the oxidant gas contact the electrodes. To take out.

したがって、セパレータには燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給する必要があるために、高度のガス不透過性が必要であり、また発電効率を高くするためには電池の内部抵抗を小さくすることが有効であり、高い導電性が要求される。更に、電池スタックの組み立て時に接触抵抗を極力小さく抑えるために平坦で厚さ精度が高いこと、また、電池組み立て時に破損や欠損が生じないように材質強度が高く、電池の作動温度においても十分な材質強度を備えることなども要求される。   Therefore, since it is necessary for the separator to supply the electrode with the fuel gas and the oxidant gas completely separated from each other, a high degree of gas impermeability is required, and in order to increase power generation efficiency, a battery is required. It is effective to reduce the internal resistance of the film, and high conductivity is required. Furthermore, it is flat and has high thickness accuracy in order to keep the contact resistance as low as possible when assembling the battery stack, and the material strength is high so that no damage or chipping will occur during battery assembly. It is also required to have material strength.

このような材質特性が要求されるセパレータ材には、従来から炭素質系の材料が用いられており、黒鉛粉を熱硬化性樹脂を結合材として成形して結着、一体化した黒鉛/樹脂硬化成形体が好適に使用されている。そして、成形は黒鉛粉と熱硬化性樹脂とを混合し、混合物を成形用の金型に充填して熱圧成形する方法により製造される。   For separator materials that require such material properties, carbonaceous materials have been used in the past, and graphite / resin in which graphite powder is molded and bonded using a thermosetting resin as a binder. A cured molded body is preferably used. And shaping | molding is manufactured by the method of mixing graphite powder and a thermosetting resin, filling the mixture in the metal mold | die for shaping | molding, and carrying out hot-pressure shaping | molding.

すなわち、熱圧成形は黒鉛粉と熱硬化性樹脂を混合した原料混合物を粉砕したり造粒して、粉粒状あるいはタブレット状などに成形して成形粉を作製し、成形粉を成形用の金型に充填して、所定の温度および圧力に加熱、加圧することにより行われる。   That is, in the hot pressing, a raw material mixture obtained by mixing graphite powder and a thermosetting resin is pulverized or granulated, and formed into a granular shape or a tablet shape to produce a molded powder. It is performed by filling a mold and heating and pressurizing to a predetermined temperature and pressure.

図4は従来の熱圧成形用の金型を例示したもので、上型1と下型2との間に形成する空間をセパレータ成形用のキャビティAとし、上型1と下型2が形成する間隙である金型クリアランス4を金型内の空気や熱圧成形時に発生するガスを排出するための通路としている。   FIG. 4 exemplifies a conventional mold for hot pressing, and a space formed between the upper mold 1 and the lower mold 2 is a cavity A for molding a separator, and the upper mold 1 and the lower mold 2 are formed. The mold clearance 4 that is a gap is used as a passage for discharging air in the mold and gas generated during hot-pressure molding.

この場合、セパレータの厚さや組織の性状を均一化するために、通常、キャビティA内には黒鉛粉と熱硬化性樹脂とを混合した原料混合物をやや多めに充填している。したがって、余剰分の原料混合物は熱圧成形時に金型クリアランス4に流出して固化し、最終的にはバリとなって残ることになる。その結果、セパレータの厚さや組織が不均一化する難点がある。   In this case, in order to make the thickness of the separator and the properties of the structure uniform, the cavity A is usually filled with a slightly larger amount of a raw material mixture in which graphite powder and a thermosetting resin are mixed. Therefore, the surplus raw material mixture flows out into the mold clearance 4 and solidifies at the time of hot pressing, and finally remains as burrs. As a result, there is a problem that the thickness and structure of the separator are not uniform.

そこで、特許文献1には、複数の金型と、これら金型の間に形成される燃料電池セパレータ成形用の空所とを有する燃料電池セパレータ製造用の金型において、上記金型の少なくとも1つに上記空所と連通するバリ溜用空所を形成したことを特徴とする燃料電池セパレータ製造用金型が提案されている。   Therefore, Patent Document 1 discloses that at least one of the above-mentioned molds in a mold for manufacturing a fuel cell separator having a plurality of molds and a cavity for forming a fuel cell separator formed between the molds. In addition, there has been proposed a mold for manufacturing a fuel cell separator characterized by forming a burr reservoir space communicating with the above-mentioned space.

また、特許文献2には、キャビティに連通した材料流動部と、材料流動部によりキャビティと連通した材料滞留部を有することを特徴とする圧縮成形用金型が提案されている。   Patent Document 2 proposes a compression molding die characterized by having a material flow part communicating with the cavity and a material retaining part communicating with the cavity through the material flow part.

これらの先行技術では、厚さ精度の優れた成形品を得るために、金型クリアランスに連通するバリ溜用空所を設けるものであるが、金型クリアランス内に原料混合物が強固に付着するため、成形後に金型からこれを除去しなければならないという問題点がある。
特開2001−198921号公報 特開2003−170459号公報
In these prior arts, in order to obtain a molded product with excellent thickness accuracy, a burr reservoir space communicating with the mold clearance is provided, but the raw material mixture adheres firmly within the mold clearance. There is a problem in that this must be removed from the mold after molding.
JP 2001-198921 A JP 2003-170459 A

本発明は、上記問題点の解消を図り、圧縮成形時に発生するバリが金型に固着することなく成形品と一体となって金型から離型でき、金型の清掃が容易で、かつ成形品に組織斑が少なく、成形品の外周部に低密度組織である、いわゆる巣ができ難い燃料電池セパレータ製造用金型およびこの金型を用いた燃料電池セパレータの製造方法を提供することを目的とする。   The present invention solves the above-described problems, and burrs generated during compression molding can be released from the mold integrally with the molded product without being fixed to the mold, and the mold can be easily cleaned and molded. An object of the present invention is to provide a mold for manufacturing a fuel cell separator that is less likely to form a nest and has a low density structure on the outer periphery of the molded article, and a method for producing a fuel cell separator using the mold. And

上記の目的を達成する本発明の燃料電池セパレータの製造方法は、
上型1と下型2もしくはそれらに加えて中型3とからなる金型を用いて燃料電池セパレータを製造する方法であって、
前記上型1は、その押圧面の中央部に成形面が形成されてなるとともに該成形面の外周部に階段状の2段の段部による勾配が形成されてなり、
前記下型2は、その押圧面が前記上型1の押圧面に対応する形状を有するものであって、その押圧面の中央部に成形面が形成されてなるとともに該成形面の外周部に階段状の2段の段部による勾配が形成されてなり、
前記金型は、上型1の押圧面と下型2の押圧面とを相対させつつ押圧するときに、
前記上型1の成形面と下型2の成形面とが相対してなる空間がセパレータ成形用のキャビティAをなし、
キャビティAの直近外周に、前記上型1の成形面に隣接する段部と前記下型2の成形面に隣接する段部とが、各段部を構成する互いの角部を近接させつつ相対してキャビティAと連通する空所Bを形成するとともに、
空所Bの外側全周に、前記上型1の押圧面の外端部に位置する段部と前記下型2の押圧面の外端部に位置する段部とが、各段部を構成する互いの角部を近接させつつ相対して空所Bと連通するバリ溜用空所Cを形成してなる
ものであって、
黒鉛粉と熱硬化性樹脂とを混合し、粉砕して成形粉を作製し、成形粉を前記金型のキャビティAおよび空所Bに充填して、熱圧成形することを構成上の特徴とする。
The manufacturing method of the fuel cell separator of the present invention that achieves the above object is as follows.
A method of manufacturing a fuel cell separator using a mold composed of an upper mold 1 and a lower mold 2 or a middle mold 3 in addition thereto,
The upper mold 1 is formed with a molding surface at the center of the pressing surface and a gradient with two stepped steps on the outer periphery of the molding surface.
The lower mold 2 has a shape in which the pressing surface corresponds to the pressing surface of the upper mold 1, and a molding surface is formed at the center of the pressing surface and at the outer periphery of the molding surface. A gradient is formed by two stepped steps,
When the mold presses the pressing surface of the upper mold 1 and the pressing surface of the lower mold 2 relative to each other,
A space formed by the molding surface of the upper mold 1 and the molding surface of the lower mold 2 facing each other forms a cavity A for molding a separator,
The step adjacent to the molding surface of the upper mold 1 and the step adjacent to the molding surface of the lower mold 2 are relatively close to the immediate outer periphery of the cavity A while bringing the corners of each step close to each other. And forming a void B communicating with the cavity A,
Steps located at the outer end of the pressing surface of the upper die 1 and steps located at the outer end of the pressing surface of the lower die 2 constitute each step on the entire outer periphery of the void B. A burr reservoir space C is formed which communicates with the space B while facing the corners of each other.
And
A graphite powder and the thermosetting resin were mixed to prepare a molding powder was pulverized by filling the molding powder into the cavity A and voids B of the die, and characteristics of the structure to be hot press molded To do.

また、成形粉を予備成形した予備成形体を燃料電池セパレータ製造用金型のキャビティAおよび空所Bに装入して充填することが好ましい。   Moreover, it is preferable to insert and fill a preformed body obtained by preforming the molding powder into the cavity A and the cavity B of the mold for manufacturing the fuel cell separator.

本発明によれば、熱圧成形の過程において、充填した成形粉がキャビティAから流出する現象が抑制されるので、成形品の外周部において組織が低密度化して巣を発生する現象を効果的に抑制することができる。そして、厚さ精度が高く、また、セパレータ成形品はバリと一体となって金型から離型されるので、金型に固着するバリの発生は大幅に減少する。その結果、熱圧成形後に金型の清掃に要する時間は著しく短縮され、成形サイクルの改善が図られる。   According to the present invention, the phenomenon that the filled molding powder flows out of the cavity A is suppressed in the process of hot pressing, so the phenomenon that the density of the structure is reduced and the nest is generated in the outer periphery of the molded product is effective. Can be suppressed. Since the thickness accuracy is high and the separator molded product is released from the mold integrally with the burr, the occurrence of burr that adheres to the mold is greatly reduced. As a result, the time required for cleaning the mold after hot pressing is remarkably shortened, and the molding cycle is improved.

図1は本発明の燃料電池セパレータ製造用金型の側断面図で、上型1、下型2および中型3からなる金型を例示したものである。図1において、上型1と下型2とから形成される空間はセパレータ成形用キャビティAであり、キャビティAに隣接する直近の外周面の全面には空所Bが形成され、更に空所Bに隣接してその外周全周にバリ溜用空所Cが形成されている。   FIG. 1 is a side sectional view of a mold for producing a fuel cell separator according to the present invention, which illustrates a mold including an upper mold 1, a lower mold 2 and a middle mold 3. In FIG. 1, a space formed by the upper mold 1 and the lower mold 2 is a separator molding cavity A, and a void B is formed on the entire surface of the nearest outer peripheral surface adjacent to the cavity A. A burr storage space C is formed on the entire outer periphery adjacent to the outer periphery.

なお、下型2と中型3はボルトで締結して固定されており、燃料電池のセパレータの厚さを変更しない場合には、下型2と中型3とを一体構造の下型として構成することもできる。   The lower mold 2 and the middle mold 3 are fastened and fixed with bolts, and when the thickness of the separator of the fuel cell is not changed, the lower mold 2 and the middle mold 3 are configured as a lower mold with an integral structure. You can also.

また、図2は図1における上型1、下型2および中型3とで形成されたセパレータ成形用キャビティA、空所B、バリ溜用空所Cを部分拡大図として示したものである。   FIG. 2 is a partially enlarged view of separator molding cavity A, void B, and burr reservoir void C formed by upper mold 1, lower mold 2, and middle mold 3 in FIG.

セパレータ成形用キャビティA、空所B、およびバリ溜用空所Cは、上下の金型の角部を僅かな間隙で近接させることにより形成することができ、例えば、図3に示すように上型1と下型2の角部同士を僅かにずらして近接させ、例えば、0.05〜0.15mmのクリアランスで近接させて区切ることにより、形成される。   The separator molding cavity A, the cavity B, and the burr reservoir cavity C can be formed by bringing the corners of the upper and lower molds close to each other with a slight gap. For example, as shown in FIG. The corners of the mold 1 and the lower mold 2 are slightly shifted and brought close to each other, for example, separated by a clearance of 0.05 to 0.15 mm.

このクリアランスを狭くすると熱圧成形時に原料混合物の流動抵抗が増大して、成形品の厚さ精度が低下したり、原料中に取り込まれたガス成分の排出が上手くいかず、ガスが残留して巣を発生させる原因になる。また広くすると熱圧成形時に原料混合物へ圧力が十分に掛からず、成形品の密度低下や強度低下を招くことになる。   If this clearance is narrowed, the flow resistance of the raw material mixture will increase during hot-press molding, the thickness accuracy of the molded product will be reduced, and the gas components incorporated in the raw material will not be discharged well, leaving gas remaining. Causes the formation of nests. On the other hand, if it is wide, pressure is not sufficiently applied to the raw material mixture at the time of hot-pressure molding, resulting in a decrease in density and strength of the molded product.

燃料電池セパレータは、黒鉛粉と熱硬化性樹脂とを混合し、混合物を粉砕したり、あるいは造粒して成形粉を作製し、成形粉をこの金型の上記キャビティAおよび空所Bに充填して、熱圧成形することにより製造される。   The fuel cell separator is a mixture of graphite powder and thermosetting resin, and the mixture is pulverized or granulated to produce a molding powder, and the molding powder is filled into the cavity A and void B of the mold. Then, it is manufactured by hot pressing.

黒鉛粉としては人造黒鉛、天然黒鉛、膨張黒鉛、あるいは、これらの混合物などが用いられ、適宜な粉砕機により粉砕し、篩分けして粒度調整した黒鉛粉を使用することが好ましい。なお、黒鉛粉の粒度は、セパレータにガス溝を設ける際に黒鉛粉粒子の脱落や粒子間クラックの発生を防止するために、例えば平均粒子径は50μm以下に、最大粒子径は100μm以下に粒度調整することが好ましい。   As the graphite powder, artificial graphite, natural graphite, expanded graphite, a mixture thereof, or the like is used, and it is preferable to use graphite powder that has been pulverized with an appropriate pulverizer and sieved to adjust the particle size. The particle size of the graphite powder is, for example, an average particle size of 50 μm or less and a maximum particle size of 100 μm or less in order to prevent the graphite powder particles from falling off and the generation of cracks between particles when the gas grooves are provided in the separator. It is preferable to adjust.

黒鉛粉と混合する熱硬化性樹脂にはフェノール樹脂、フラン樹脂などの常用される樹脂類が用いられ、黒鉛粉と熱硬化性樹脂は適宜な混合比、例えば黒鉛粉:熱硬化性樹脂の混合比(重量比)を90:10〜35:65に設定することが好ましい。樹脂分の混合比が10重量%未満では樹脂分が少ないので成形時の流動性が低下し、均一組織の混合物を得ることが難しく、一方、樹脂固形分が35重量%を越えると成形性は向上するが、黒鉛/樹脂硬化成形体の電気抵抗が大きくなり、電池性能の低下を招くことになる。   Commonly used resins such as phenol resin and furan resin are used for the thermosetting resin to be mixed with the graphite powder. The graphite powder and the thermosetting resin have an appropriate mixing ratio, for example, a mixture of graphite powder and thermosetting resin. The ratio (weight ratio) is preferably set to 90:10 to 35:65. If the resin content is less than 10% by weight, the resin content is small, so the fluidity during molding is reduced and it is difficult to obtain a mixture with a uniform structure. On the other hand, if the resin solid content exceeds 35% by weight, the moldability is low. Although improved, the electrical resistance of the graphite / resin cured molded body is increased, leading to a decrease in battery performance.

黒鉛粉と熱硬化性樹脂を混合して、混合物を適宜な粒度に粉砕あるいは造粒して成形粉を作製する。この成形粉を、上記金型のキャビティAおよび空所Bに充填して、例えば圧力20〜50MPa、温度150〜250℃で熱圧成形することにより燃料電池セパレータが製造される。   Graphite powder and a thermosetting resin are mixed, and the mixture is pulverized or granulated to an appropriate particle size to produce a molding powder. A fuel cell separator is manufactured by filling the molding powder into the cavity A and the void B of the mold and hot-pressure molding at a pressure of 20 to 50 MPa and a temperature of 150 to 250 ° C., for example.

成形粉を充填する範囲をキャビティAおよび空所Bとするのは、熱圧成形時にキャビティA内に充填した成形粉の流出は、空所B内に充填した成形粉により抑制されるためである。すなわち、成形時の圧縮によるキャビティAから流出する成形粉は、空所B内に充填した成形粉により抑止されるので、バリ溜用空所Cに流出する量を相対的に低減することができる。   The reason why the range in which the molding powder is filled is the cavity A and the void B is that the molding powder filled in the cavity A at the time of hot pressing is suppressed by the molding powder filled in the void B. . That is, since the molding powder flowing out from the cavity A due to compression at the time of molding is suppressed by the molding powder filled in the space B, the amount flowing out into the burr reservoir space C can be relatively reduced. .

そのため、キャビティAに充填した成形粉は、熱圧成形の過程において、キャビティAの外周部近辺にある成形粉がキャビティから溢れ出て、流出する現象が抑制される。したがって、成形品の外周部において組織が低密度化して巣を発生する現象を効果的に抑制することができる。   For this reason, the molding powder filled in the cavity A is suppressed from overflowing and flowing out of the molding powder in the vicinity of the outer peripheral portion of the cavity A in the process of hot pressing. Therefore, it is possible to effectively suppress the phenomenon that the structure is reduced in density and the nest is generated in the outer peripheral portion of the molded product.

更に、熱圧成形後に成形品を金型から取り出す際、成形品はバリと一体となって離型されるので、金型に固着するバリの発生は大幅に減少する。その結果、熱圧成形後に金型の清掃に要する時間は著しく短縮され、成形サイクルの改善が図られる。   Furthermore, when the molded product is taken out from the mold after hot pressing, the molded product is released from the mold together with the burrs, so the occurrence of burrs that adhere to the mold is greatly reduced. As a result, the time required for cleaning the mold after hot pressing is remarkably shortened, and the molding cycle is improved.

なお、成形粉をキャビティAおよび空所Bに充填する場合、予め、成形粉を予備成形型のキャビティに均一に充填して、樹脂の融点以上の温度、例えば、樹脂融点+10℃程度に加熱して1〜10MPaの圧力で成形して板状の予備成形体を作製して、この予備成形体を金型に装入すると、均一に充填することができるので、好ましい。   In addition, when filling the molding powder into the cavity A and the void B, the molding powder is uniformly filled in the cavity of the preforming mold in advance and heated to a temperature higher than the melting point of the resin, for example, the resin melting point + 10 ° C. It is preferable that a plate-shaped preform is produced by molding at a pressure of 1 to 10 MPa, and the preform is inserted into a mold, so that it can be uniformly filled.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

実施例
黒鉛粉には平均粒子径40μm、最大粒子径100μm以下に粒度調整した人造黒鉛粉末を使用し、熱硬化性樹脂にはフェノール樹脂を使用して、黒鉛粉とフェノール樹脂の樹脂固形分とを重量比で75:25の混合比でニーダーに入れて1時間混練した。混練物を粉砕した後、粒度調整して0.1〜0.5mmの成形粉を作製した。この成形粉を予備成形型に入れて、80℃で3MPaの圧力で10秒間プレスして、220×220×1.8mmの予備成形体を作製した。
Example An artificial graphite powder having an average particle size of 40 μm and a maximum particle size of 100 μm or less is used for the graphite powder, a phenol resin is used for the thermosetting resin, and the graphite solid and the resin solid content of the phenol resin are used. Was kneaded for 1 hour in a kneader at a mixing ratio of 75:25 by weight. After the kneaded product was pulverized, the particle size was adjusted to produce a molding powder of 0.1 to 0.5 mm. This molding powder was put in a preforming mold and pressed at 80 ° C. and a pressure of 3 MPa for 10 seconds to prepare a 220 × 220 × 1.8 mm preform.

この予備成形体を、図1に示した金型に充填した。また、金型はセパレータ成形用キャビティAの寸法として200×200×1.5mm、その表裏に幅2mm、深さ0.5mmの溝を2mmのピッチで複数配置し、また中型は下型と一体化したものを使用した。なお、空所Bの水平方向距離は10mmである。   This preform was filled in the mold shown in FIG. In addition, the mold is 200 × 200 × 1.5 mm as the size of the separator molding cavity A, and a plurality of grooves with a width of 2 mm and a depth of 0.5 mm are arranged on the front and back sides at a pitch of 2 mm, and the middle mold is integrated with the lower mold I used it. The horizontal distance of the void B is 10 mm.

この金型のキャビティAと空所Bとに亘って予備成形体を配置、装入して、40MPaの圧力を加えながら180℃の温度に加熱して、5分間熱圧成形した。   The preform was placed and charged over the cavity A and the cavity B of this mold, heated to a temperature of 180 ° C. while applying a pressure of 40 MPa, and hot-press molded for 5 minutes.

その後、上下金型を分割して離型したところ、キャビティAによる成形品と空所Bによる枠形状の成形品および余剰原料がバリ溜用空所Cに流出してできたバリが一体となっており、これからキャビティAの成形品を分離してセパレータ成形品を製造した。   Thereafter, when the upper and lower molds are divided and released, the molded product by the cavity A, the frame-shaped molded product by the void B, and the burrs formed by the surplus raw material flowing out into the burr reservoir space C are integrated. From this, the molded product of the cavity A was separated to produce a separator molded product.

セパレータ成形品の中央部と端部の厚さ寸法差は15μmであり、組織斑である巣の発生は認められなかった。また、成形後の金型表面に固着したバリはなく、エアブローもしくは刷毛で簡単に除去することができ、金型の清掃に要する時間が短縮化できた。   The difference in thickness between the central portion and the end portion of the molded product of the separator was 15 μm, and the formation of nests as tissue spots was not observed. Further, there was no burr fixed on the mold surface after molding, and it could be easily removed by air blow or brush, and the time required for mold cleaning could be shortened.

比較例1
実施例1において、予備成形体を金型のキャビティAにのみ装入して、その他は実施例1と同じ方法でセパレータ成形品を製造した。
Comparative Example 1
In Example 1, the preform was charged only into the cavity A of the mold, and a separator molded product was produced in the same manner as in Example 1.

比較例2
図4に示した金型を用いて予備成形体を金型のキャビティAにのみ装入した他は、実施例1と同じ方法でセパレータ成形品を製造した。
Comparative Example 2
A separator molded product was manufactured in the same manner as in Example 1 except that the preform was charged only into the cavity A of the mold using the mold shown in FIG.

このようにしてセパレータ成形品を製造した場合の、付着したバリの除去に要する金型清掃時間、また、成形品の組織の斑である巣の発生状況および厚さの寸法差を、表1に示した。   Table 1 shows the mold cleaning time required to remove the attached burrs when the separator molded product is manufactured in this way, and the state of occurrence of the nests that are spots of the structure of the molded product and the dimensional difference in thickness. Indicated.

Figure 0004587177
Figure 0004587177

本発明の燃料電池セパレータ製造用金型の側断面図である。It is a sectional side view of the metal mold | die for fuel cell separator manufacture of this invention. 図1における上型1、下型2および中型3とで形成されたセパレータ成形用キャビティA、空所B、バリ溜用空所Cを部分拡大図である。FIG. 2 is a partially enlarged view of a separator molding cavity A, a cavity B, and a burr reservoir cavity C formed by the upper mold 1, the lower mold 2, and the middle mold 3 in FIG. セパレータ成形用キャビティA、空所B、およびバリ溜用空所Cを形成する説明図である。It is explanatory drawing which forms the cavity A for separator shaping | molding, the cavity B, and the cavity C for burrs. 従来の熱圧成形用の金型を例示した側断面図である。It is side sectional drawing which illustrated the metal mold | die for the conventional hot-pressure shaping | molding.

符号の説明Explanation of symbols

1 上型
2 下型
3 中型
4 金型クリアランス
A セパレータ成形用キャビティ
B 空所
C バリ溜用空所
1 Upper mold 2 Lower mold 3 Medium mold 4 Mold clearance A Separator molding cavity B Void C Burr pool void

Claims (2)

上型1と下型2もしくはそれらに加えて中型3とからなる金型を用いて燃料電池セパレータを製造する方法であって、
前記上型1は、その押圧面の中央部に成形面が形成されてなるとともに該成形面の外周部に階段状の2段の段部による勾配が形成されてなり、
前記下型2は、その押圧面が前記上型1の押圧面に対応する形状を有するものであって、その押圧面の中央部に成形面が形成されてなるとともに該成形面の外周部に階段状の2段の段部による勾配が形成されてなり、
前記金型は、上型1の押圧面と下型2の押圧面とを相対させつつ押圧するときに、
前記上型1の成形面と下型2の成形面とが相対してなる空間がセパレータ成形用のキャビティAをなし、
キャビティAの直近外周に、前記上型1の成形面に隣接する段部と前記下型2の成形面に隣接する段部とが、各段部を構成する互いの角部を近接させつつ相対してキャビティAと連通する空所Bを形成するとともに、
空所Bの外側全周に、前記上型1の押圧面の外端部に位置する段部と前記下型2の押圧面の外端部に位置する段部とが、各段部を構成する互いの角部を近接させつつ相対して空所Bと連通するバリ溜用空所Cを形成してなる
ものであって、
黒鉛粉と熱硬化性樹脂とを混合し、粉砕して成形粉を作製し、成形粉を前記金型のキャビティAおよび空所Bに充填して、熱圧成形することを特徴とする燃料電池セパレータの製造方法。
A method of manufacturing a fuel cell separator using a mold composed of an upper mold 1 and a lower mold 2 or a middle mold 3 in addition thereto,
The upper mold 1 is formed with a molding surface at the center of the pressing surface and a gradient with two stepped steps on the outer periphery of the molding surface.
The lower mold 2 has a shape in which the pressing surface corresponds to the pressing surface of the upper mold 1, and a molding surface is formed at the center of the pressing surface and at the outer periphery of the molding surface. A gradient is formed by two stepped steps,
When the mold presses the pressing surface of the upper mold 1 and the pressing surface of the lower mold 2 relative to each other,
A space formed by the molding surface of the upper mold 1 and the molding surface of the lower mold 2 facing each other forms a cavity A for molding a separator,
The step adjacent to the molding surface of the upper mold 1 and the step adjacent to the molding surface of the lower mold 2 are relatively close to the immediate outer periphery of the cavity A while bringing the corners of each step close to each other. And forming a void B communicating with the cavity A,
Steps located at the outer end of the pressing surface of the upper die 1 and steps located at the outer end of the pressing surface of the lower die 2 constitute each step on the entire outer periphery of the void B. A burr reservoir cavity C is formed which communicates with the cavity B in opposition to each other with the corners of each other approaching each other.
And
A graphite powder and the thermosetting resin were mixed to prepare a molding powder was pulverized by filling the molding powder into the cavity A and voids B of the mold, a fuel cell, which comprises hot press molding Separator manufacturing method.
成形粉を予備成形した予備成形体を用いる請求項1記載の燃料電池セパレータの製造方法。 The manufacturing method of the fuel cell separator of Claim 1 using the preforming body which preformed shaping | molding powder.
JP2005187805A 2005-06-28 2005-06-28 Manufacturing method of fuel cell separator Expired - Fee Related JP4587177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187805A JP4587177B2 (en) 2005-06-28 2005-06-28 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187805A JP4587177B2 (en) 2005-06-28 2005-06-28 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2007007868A JP2007007868A (en) 2007-01-18
JP4587177B2 true JP4587177B2 (en) 2010-11-24

Family

ID=37746978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187805A Expired - Fee Related JP4587177B2 (en) 2005-06-28 2005-06-28 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP4587177B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207365A (en) * 2007-02-23 2008-09-11 Yonezawa Densen Kk Antimagnetic sheet and its manufacturing method
JP5408138B2 (en) * 2008-09-19 2014-02-05 東洋製罐株式会社 Compression molding method and apparatus
CN111376466B (en) * 2020-03-25 2021-10-22 新昌县汉尼思机械有限公司 Thermal forming device for processing A column of car

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198921A (en) * 2000-01-20 2001-07-24 Nisshinbo Ind Inc Mold for producing fuel cell separator
JP2003022818A (en) * 2001-07-09 2003-01-24 Honda Motor Co Ltd Molding device of separator for fuel cell
JP2003059501A (en) * 2001-08-10 2003-02-28 Mitsubishi Chemicals Corp Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP2003170459A (en) * 2001-12-06 2003-06-17 Sumitomo Bakelite Co Ltd Compression mold and fuel cell separator molded by using the same
JP2004071334A (en) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd Mold for separator manufacturing of fuel cell, separator for fuel cell, and manufacturing method of separator for fuel cell
JP2004235137A (en) * 2002-12-04 2004-08-19 Shin Etsu Polymer Co Ltd Method of manufacturing fuel cell separator and molding
JP2005153214A (en) * 2003-11-21 2005-06-16 Gp Daikyo Corp Coated resin molded product and mold therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198921A (en) * 2000-01-20 2001-07-24 Nisshinbo Ind Inc Mold for producing fuel cell separator
JP2003022818A (en) * 2001-07-09 2003-01-24 Honda Motor Co Ltd Molding device of separator for fuel cell
JP2003059501A (en) * 2001-08-10 2003-02-28 Mitsubishi Chemicals Corp Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP2003170459A (en) * 2001-12-06 2003-06-17 Sumitomo Bakelite Co Ltd Compression mold and fuel cell separator molded by using the same
JP2004071334A (en) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd Mold for separator manufacturing of fuel cell, separator for fuel cell, and manufacturing method of separator for fuel cell
JP2004235137A (en) * 2002-12-04 2004-08-19 Shin Etsu Polymer Co Ltd Method of manufacturing fuel cell separator and molding
JP2005153214A (en) * 2003-11-21 2005-06-16 Gp Daikyo Corp Coated resin molded product and mold therefor

Also Published As

Publication number Publication date
JP2007007868A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2001325967A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
CN101346841A (en) Separator material for fuel cell and process for producing the same
JP3504910B2 (en) Manufacturing method of fuel cell separator
JP4587177B2 (en) Manufacturing method of fuel cell separator
JP2001198921A (en) Mold for producing fuel cell separator
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP5439160B2 (en) Method for manufacturing solid oxide fuel cell, and method for manufacturing molded body of divided body of cell
JPH11354138A (en) Ribbed fuel-cell separator, its manufacture, and fuel cell
US20110177419A1 (en) Fuel cell separator plate
JP5424637B2 (en) Manufacturing method of fuel cell separator
JP3715642B2 (en) Manufacturing method of fuel cell separator
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP7237710B2 (en) Bipolar plate manufacturing method
JP2008525982A (en) Fuel cell separator plate assembly
JP4430962B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP3549765B2 (en) Fuel cell separator and method of manufacturing the same
JP2003217609A (en) Method for manufacturing separator for solid high polymer type fuel cell
JP2003303598A (en) Mold for molding separator for solid polymer type fuel cell, method of manufacturing the separator, and the separator
KR20100020308A (en) Molding apparatus for fuel cell separator
JP2004192878A (en) Manufacturing method of separator material for solid polymer type fuel cell
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell
JP2004235061A (en) Manufacturing method of separator for fuel cell
JP2007123090A (en) Die for manufacturing fuel cell separator, manufacturing method, and fuel cell separator
KR101193131B1 (en) Mold structure for manufacturing fuelcell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees