JP2010150622A - Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same - Google Patents

Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same Download PDF

Info

Publication number
JP2010150622A
JP2010150622A JP2008331838A JP2008331838A JP2010150622A JP 2010150622 A JP2010150622 A JP 2010150622A JP 2008331838 A JP2008331838 A JP 2008331838A JP 2008331838 A JP2008331838 A JP 2008331838A JP 2010150622 A JP2010150622 A JP 2010150622A
Authority
JP
Japan
Prior art keywords
surfactant
plating
metal structure
convex
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008331838A
Other languages
Japanese (ja)
Inventor
Masatoshi Sugimasa
昌俊 杉政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008331838A priority Critical patent/JP2010150622A/en
Publication of JP2010150622A publication Critical patent/JP2010150622A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating liquid capable of forming a projecting metallic structure on the surface of a conductive body substrate by a direct plating method and the plated conductive body substrate. <P>SOLUTION: The plating liquid is for forming the projecting metallic structure 106 two-dimensionally grown on the surface of the conductive body substrate and contains a metallic salt containing ions of metal such as Cu, Ni, a surfactant having a hydrophobic group containing hydrocarbon and a hydrophilic group on the terminal of the hydrophobic group and an aqueous solution in which the metallic salt and the surfactant are dissolved. The conductive body substrate has the projecting metallic structure 106 formed by using the plating liquid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、凸状金属構造体を形成するためのめっき液と、該めっき液を用いて作製した凸状金属構造体を有する導電体基板、及び、その製造方法に関する。   The present invention relates to a plating solution for forming a convex metal structure, a conductor substrate having a convex metal structure manufactured using the plating solution, and a method for manufacturing the same.

二次電池や二重層キャパシターなどの蓄電装置は、自然エネルギー発電所の負荷平準設備やハイブリッド自動車および電気自動車の動力源として注目されている。広範囲な普及に向けては蓄電装置の更なる充電容量増大が課題となっている。課題解決の手段の一つとしては電極の高比表面積化が挙げられる。ニッケル水素電池の活物質である酸化ニッケルや、集電極として広く用いられている銅箔の高比表面積化は充電容量増加,高出力化に効果的であり、これまでも広く研究が進められている。   Power storage devices such as secondary batteries and double layer capacitors are attracting attention as a power source for load leveling facilities of natural energy power plants, hybrid vehicles, and electric vehicles. For further widespread use, a further increase in the charging capacity of power storage devices has become an issue. One means for solving the problem is to increase the specific surface area of the electrode. Increasing the specific surface area of nickel oxide, which is an active material for nickel metal hydride batteries, and copper foil, which is widely used as a collector electrode, is effective for increasing the charging capacity and increasing the output. Yes.

またニッケルは電気分解電極としても広く用いられており、高比表面積化は装置の小型化に必須である。プリント基板配線用の銅箔の高比表面積化は樹脂との密着性向上のため、センサー用として用いられる金や銀電極の高比表面積化は感度向上のために必要とされている。さらに反射防止膜や吸着剤など様々な分野でも金属の高比表面積化技術が必要とされている。   Nickel is also widely used as an electrolysis electrode, and a high specific surface area is essential for miniaturization of the apparatus. Increasing the specific surface area of the copper foil for printed circuit board wiring is required to improve the adhesion to the resin, and increasing the specific surface area of the gold or silver electrode used for the sensor is required to improve the sensitivity. Furthermore, techniques for increasing the specific surface area of metals are required in various fields such as antireflection films and adsorbents.

高比表面積の金属表面を形成する技術としては、特許文献1に示したような微細化した金属粒子をバインダーにより固定化する方法が一般的である。また、蒸着プロセスやナノフィラー,ナノ微粒子などのナノ構造体をドライプロセスにより表面処理する方式の開発も行われており、特許文献2では、アークプレーティングによる電極製造が提案されている。その他にもエッチングなどによる表面粗化技術や機械加工など多くの技術が開発されている。   As a technique for forming a metal surface having a high specific surface area, a method of fixing fine metal particles as shown in Patent Document 1 with a binder is generally used. In addition, a method of surface-treating a nanostructure such as a vapor deposition process, nanofiller, or nanoparticle by a dry process has been developed, and Patent Document 2 proposes electrode production by arc plating. Many other techniques such as surface roughening techniques such as etching and machining have been developed.

特開2002−317289号公報JP 2002-317289 A 特開2005−15818号公報Japanese Patent Laid-Open No. 2005-15818

しかしながら、いずれの手法も特定の金属にしか適用できない、比表面積の向上割合が低い,制御が難しい,工程数が多くプロセスコストがかかるなどの問題がある。特にナノ粒子などを用いた場合は、構造体が点接触で形成されるため機械強度や導電性の向上が課題である。そのため、より簡便なプロセスで金属の高比表面積化が可能であり、機械的強度や導電性等の特性に優れた金属の高比表面積化技術が求められている。   However, any of these methods can be applied only to specific metals, there are problems such as a low specific surface area improvement rate, difficulty in control, and a large number of processes and high process costs. In particular, when nanoparticles or the like are used, the structure is formed by point contact, so that improvement in mechanical strength and conductivity is a problem. Therefore, it is possible to increase the specific surface area of the metal by a simpler process, and there is a demand for a technology for increasing the specific surface area of the metal that is excellent in properties such as mechanical strength and conductivity.

本発明は、導電体基板の表面に直接めっき法によって凸状金属構造体を形成できるめっき液を提供することを目的とする。また、該めっき液を用いて作製した機械強度が強く、高い伝導性を有する高比表面積の凸状金属構造体を有する導電体基板、及び、その製造方法を提供することを目的とする。   An object of the present invention is to provide a plating solution capable of forming a convex metal structure directly on the surface of a conductor substrate by a plating method. It is another object of the present invention to provide a conductive substrate having a high specific surface area convex metal structure, which has a high mechanical strength and high conductivity, and a method for producing the same.

上記課題を達成するための本発明の第1の手段は、導電体基板の表面に二次元的に成長した凸状金属構造体を形成するためのめっき液であって、金属塩,界面活性剤,前記金属塩と界面活性剤を溶解した水溶液とを含み、前記界面活性剤が炭化水素からなる疎水基と前記疎水基の末端に親水基を有することを特徴とするめっき液である。   The first means of the present invention for achieving the above object is a plating solution for forming a convex metal structure grown two-dimensionally on the surface of a conductor substrate, comprising a metal salt and a surfactant. A plating solution comprising the metal salt and an aqueous solution in which a surfactant is dissolved, wherein the surfactant has a hydrophobic group composed of a hydrocarbon and a hydrophilic group at the end of the hydrophobic group.

上記課題を達成するための本発明の第2の手段は、第1の手段のめっき液を用いためっき法により形成された凸状金属構造体が導電体の基材表面に二次元的に成長していることを特徴とする導電体基板である。   The second means of the present invention for achieving the above object is that the convex metal structure formed by the plating method using the plating solution of the first means grows two-dimensionally on the surface of the conductor substrate. It is the conductor board | substrate characterized by the above-mentioned.

上記課題を達成するための本発明の第3の手段は、第1の手段のめっき液を用いためっき法により、導電体の基材表面に二次元的に成長した凸状金属構造体を形成することを特徴とする導電体基板の製造方法である。   The third means of the present invention for achieving the above object is to form a convex metal structure that is two-dimensionally grown on the surface of the base material of the conductor by the plating method using the plating solution of the first means. A method for manufacturing a conductor substrate.

本発明によれば、導電体基板表面から直接めっき法によって凸状金属構造体を形成するため、機械強度が強く、高い伝導性を有する高比表面積の金属膜の形成が可能である。また、めっき法を用いるため、多種類の金属の高比表面積化に適用することができる。さらに必要なプロセスが界面活性剤の添加のみであるため、少ない工程数および低いプロセスコストでの製造が可能となる。   According to the present invention, since the convex metal structure is formed directly from the surface of the conductor substrate by a plating method, it is possible to form a metal film having high mechanical strength and high conductivity and high specific surface area. Further, since the plating method is used, it can be applied to increase the specific surface area of many kinds of metals. Furthermore, since the only necessary process is addition of a surfactant, it is possible to manufacture with a small number of steps and a low process cost.

本発明は、導電体基板の表面上に二次元的に成長した凸状金属構造体を形成するめっき手法に用いるめっき液として、疎水基と親水基を有し、疎水基は炭化水素からなり、疎水基の末端に親水基が存在する界面活性剤を添加剤として含むことを特徴とするめっき液とそれを用いて製造しためっき膜を特徴とする。   The present invention has a hydrophobic group and a hydrophilic group as a plating solution used in a plating technique for forming a convex metal structure that is two-dimensionally grown on the surface of a conductive substrate, and the hydrophobic group is composed of a hydrocarbon, A plating solution characterized in that it contains a surfactant having a hydrophilic group at the end of a hydrophobic group as an additive, and a plating film produced using the same.

本発明のめっき液及びめっき方法について以下説明する。   The plating solution and plating method of the present invention will be described below.

本発明のめっき液は、金属塩,界面活性剤,金属塩と界面活性剤を溶解させる水溶液を必須成分とし、それ以外の添加剤および支持塩が含まれていてもよい。本発明によれば導電体基板の表面上に二次元的に成長した凸状金属構造体をめっきによって形成することが可能となる。これは、めっき液中で析出する金属構造体の表面に界面活性剤が吸着し、めっき膜の成長に異方性を付与するためであり、界面活性剤の選択は非常に重要である。   The plating solution of the present invention contains a metal salt, a surfactant, and an aqueous solution in which the metal salt and the surfactant are dissolved, and may contain other additives and supporting salts. According to the present invention, a convex metal structure grown two-dimensionally on the surface of a conductor substrate can be formed by plating. This is because the surfactant is adsorbed on the surface of the metal structure precipitated in the plating solution and imparts anisotropy to the growth of the plating film, and the selection of the surfactant is very important.

本発明のめっき液に使用する界面活性剤は、疎水基と親水基を有しており、疎水基は炭化水素からなる有機化合物であることが好ましい。炭化水素の構造式は特に規定するものではなく、飽和分子でも不飽和分子でもよい。炭化水素鎖は直鎖,分岐鎖,芳香族,環状のいずれでもよい。また炭化水素鎖を複数有していてもよい。炭素数は5〜20程度であることが望ましい。これは炭素数が20よりも多ければ水に不溶となり、5よりも少なければ界面活性剤の効果がなくなるためである。疎水基の構造として炭素および水素以外の元素が含まれていてもよいが、非分極性であることが望ましい。これは分極性の元素が存在すると疎水性が低下し、界面活性剤の効果が悪化するためである。   The surfactant used in the plating solution of the present invention has a hydrophobic group and a hydrophilic group, and the hydrophobic group is preferably an organic compound comprising a hydrocarbon. The structural formula of hydrocarbon is not particularly specified, and may be a saturated molecule or an unsaturated molecule. The hydrocarbon chain may be linear, branched, aromatic or cyclic. Moreover, you may have two or more hydrocarbon chains. The number of carbon atoms is desirably about 5 to 20. This is because if the carbon number is more than 20, it is insoluble in water, and if it is less than 5, the effect of the surfactant is lost. Elements other than carbon and hydrogen may be included as the structure of the hydrophobic group, but it is preferably nonpolarizable. This is because if the polarizable element is present, the hydrophobicity is lowered and the effect of the surfactant is deteriorated.

親水基は界面活性剤の効果が最大となるよう、疎水基の末端に位置することが望ましい。親水基の種類はアニオン性もしくはカチオン性であればよく特に制限はなく、好ましい例としては分極の大きな硫酸イオン,カルボン酸イオン,アンモニウムイオン,リン酸イオン,スルホン酸イオンなどが挙げられる。分極の大きな親水基を使用する理由として、金属表面への強い吸着性が挙げられる。特定の金属面に界面活性剤が強く吸着すると、その面への金属の析出が阻害され、めっき膜の成長に異方性が生じやすくなる。そのため、異方性の高い凸状金属構造体を形成するためには分極の強い親水基を使用することが好ましい。吸着の選択性に関しては特に制限するものではないが、FCC結晶を有する金属の場合、一般的に(111)面が最密充填となり安定となるため、界面活性剤としては(110)面か(100)面に選択的に吸着し、(111)面方向の異方成長を促進することが望ましい。   The hydrophilic group is desirably located at the end of the hydrophobic group so that the effect of the surfactant is maximized. The type of the hydrophilic group is not particularly limited as long as it is anionic or cationic, and preferable examples include sulfate ions, carboxylate ions, ammonium ions, phosphate ions, sulfonate ions and the like with large polarization. As a reason for using a hydrophilic group having a large polarization, there is a strong adsorptivity to a metal surface. When the surfactant is strongly adsorbed on a specific metal surface, the deposition of the metal on the surface is inhibited, and anisotropy is likely to occur in the growth of the plating film. Therefore, in order to form a convex metal structure having high anisotropy, it is preferable to use a highly polarized hydrophilic group. The selectivity of adsorption is not particularly limited. However, in the case of a metal having an FCC crystal, the (111) plane is generally close-packed and stable, so that the surfactant is (110) plane ( It is desirable to selectively adsorb to the (100) plane and promote anisotropic growth in the (111) plane direction.

以上の条件を満足すれば界面活性剤の種類は特に規定しない。ただし、価格,溶解度,扱いやすさ,入手しやすさなどを考慮に入れると、ドデシル硫酸ナトリウム,デシル硫酸ナトリウム,セチルトリメチルアンモニウムクロライド,セチルトリメチルアンモニウムブロミド,テトラオクチルアンモニウムブロミド,オクチルトリメチルブロミド,オクチルトリメチルクロライド,ドデシルホスファチジルエタノールアミンなどの界面活性剤を用いることが好ましい。   If the above conditions are satisfied, the type of surfactant is not particularly specified. However, considering price, solubility, ease of handling, and availability, sodium dodecyl sulfate, sodium decyl sulfate, cetyl trimethyl ammonium chloride, cetyl trimethyl ammonium bromide, tetraoctyl ammonium bromide, octyl trimethyl bromide, octyl trimethyl It is preferable to use a surfactant such as chloride or dodecylphosphatidylethanolamine.

金属塩の種類に関しては、水溶液中でめっき可能なものであれば特に制限はない。金属元素としては、例えばCu,Ag,Au,Zn,Sn,In,Cd,Ni,Pd,Pt,Rh,Ir,Re,Ru,Coなどの金属及びこれらの合金を用いることができる。この中でもPd,Pt,Rh,Ir,Re,Ruの白金族は優れた触媒特性を示すため高比表面積化することが強く望まれている。ただし触媒性能の高さから界面活性剤の分解などが生じるため、白金族めっきの利用は限定される。Cu,Ag,Au,Zn,Sn,Niなどは電極材やセンサーなどに広く用いられておりめっき金属としてより重要である。   The type of metal salt is not particularly limited as long as it can be plated in an aqueous solution. Examples of the metal element include metals such as Cu, Ag, Au, Zn, Sn, In, Cd, Ni, Pd, Pt, Rh, Ir, Re, Ru, and Co, and alloys thereof. Among these, the platinum group of Pd, Pt, Rh, Ir, Re, and Ru shows an excellent catalytic property, so that it is strongly desired to increase the specific surface area. However, the use of platinum group plating is limited because of the decomposition of the surfactant due to the high catalytic performance. Cu, Ag, Au, Zn, Sn, Ni and the like are widely used for electrode materials and sensors and are more important as plating metals.

本発明のめっき液を用いためっき法により、導電体基板の表面に凸状の金属構造体を形成することが出来る。また、本発明の凸状金属構造体は二次元的な形状を有することが特徴である。二次元構造物は球状の粒子や一次元的なフィラーより機械強度が強く、電気伝導の面でメリットがある。また三次元的な構造に比べ単位面積あたりでより多くの構造体が構築できるため高比表面積化に有利である。具体的な形状については特に制限するものではないが、本発明のめっき液を用いためっき法では、添加剤である界面活性剤の種類や濃度などの条件を変更するだけで、板状,フィルム状,木の葉状,リボン状などの様々な形状の構造体を形成することが可能である。   A convex metal structure can be formed on the surface of the conductor substrate by the plating method using the plating solution of the present invention. The convex metal structure of the present invention is characterized by having a two-dimensional shape. Two-dimensional structures have higher mechanical strength than spherical particles and one-dimensional fillers, and are advantageous in terms of electrical conduction. In addition, more structures can be constructed per unit area than a three-dimensional structure, which is advantageous for increasing the specific surface area. The specific shape is not particularly limited, but in the plating method using the plating solution of the present invention, it is only necessary to change the conditions such as the type and concentration of the surfactant, which is an additive, to form a plate or film. It is possible to form structures having various shapes such as a leaf shape, a leaf shape, and a ribbon shape.

本発明において、凸状金属構造体を形成する目的は比表面積の向上であるため、凸状金属構造体のサイズは小さければ小さいほど好ましい。しかしながら、小さくなりすぎると材料強度が低下する。このため比表面積と材料強度のバランスを考慮に入れると、凸状金属構造体の突起(凸部)の厚さが5〜100nm、基板である導電体表面からの高さが500〜5000nmであることが好ましい。幅に関しては特に規定はないが機械強度を高めるため厚さと高さとの間であることが好ましく、具体的には100〜1000nm程度であることがより好ましい。凸状金属構造体の突起同士の間隔(突起の中心間の距離)に関しても特に規定はないが、高比表面積化の観点からは、幅の3倍以下程度とすることが好ましく、50〜3000nmであることが好ましい。   In the present invention, since the purpose of forming the convex metal structure is to improve the specific surface area, the smaller the size of the convex metal structure, the better. However, if it becomes too small, material strength will fall. For this reason, when the balance between the specific surface area and the material strength is taken into consideration, the thickness of the protrusion (convex portion) of the convex metal structure is 5 to 100 nm, and the height from the surface of the conductor as the substrate is 500 to 5000 nm. It is preferable. The width is not particularly defined, but is preferably between the thickness and the height in order to increase the mechanical strength, and more specifically about 100 to 1000 nm. There is no particular restriction on the distance between the protrusions of the convex metal structure (the distance between the centers of the protrusions), but from the viewpoint of increasing the specific surface area, it is preferably about 3 times or less the width, and is preferably 50 to 3000 nm. It is preferable that

本発明による凸状金属構造体はめっき法により形成されることを特徴とする。めっき法では導電体の表面と凸状構造体が化学結合しているため、バインダーなどの接着剤を使用するナノ構造体の塗布に比べて接合強度が強く、剥離しにくく、長寿命が可能となる。また本発明の凸状金属構造体は、めっき水溶液を利用しためっき法単独で製造が可能であるため、導電体基板の形状自由度が大きい。鋳型を使用した構造体製造法では平坦な基板しか使用できず、また片面のみの形成となる。本発明の凸状金属構造体は、導電体表面ならば形状も材質も特に制限はない。さらに両面でも片面でも必要に応じて、凸状金属構造体を形成する位置を選択できる。このため、本発明では板やフィルムに加えて、金網や多孔体などのメッシュ構造の表面にも凸状構造体を形成することが可能であり、広い応用分野に適用できる。   The convex metal structure according to the present invention is formed by a plating method. In the plating method, the surface of the conductor and the convex structure are chemically bonded, so the bonding strength is stronger compared to the application of nanostructures that use an adhesive such as a binder, it is difficult to peel off, and long life is possible. Become. Moreover, since the convex metal structure of the present invention can be produced by a plating method using a plating aqueous solution, the shape of the conductor substrate is high. In the structure manufacturing method using a mold, only a flat substrate can be used, and only one side is formed. The convex metal structure of the present invention is not particularly limited in shape and material as long as it is a conductor surface. Furthermore, the position which forms a convex-shaped metal structure can be selected as needed on both sides or one side. Therefore, in the present invention, a convex structure can be formed on the surface of a mesh structure such as a wire mesh or a porous body in addition to a plate or a film, and can be applied to a wide range of applications.

めっきの条件については、特に制限はない。電解,無電解,置換のいずれでもめっき可能である。界面活性剤の添加に関しては、不溶物がめっき液中に存在すると欠陥の原因となるため完全に溶解することが望ましい。そこで、界面活性剤の添加は利用する界面活性剤のクラフト点以上で行うことが必要である。ただし、めっき液の昇温は界面活性剤の特異吸着の阻害要因となるため好ましくない。そのため、めっきを行う時の浴温度は10〜30℃程度がよい。クラフト点がめっき温度より高い界面活性剤を使用する場合は、浴調製時に昇温した後、10〜30℃まで冷却してめっきを行うとよい。   There are no particular restrictions on the plating conditions. Plating can be performed by electrolysis, electroless, or substitution. Regarding the addition of the surfactant, it is desirable that the surfactant be completely dissolved because insoluble substances cause defects when they are present in the plating solution. Therefore, it is necessary to add the surfactant at or above the Kraft point of the surfactant to be used. However, it is not preferable to raise the temperature of the plating solution because it inhibits the specific adsorption of the surfactant. Therefore, the bath temperature when plating is preferably about 10 to 30 ° C. In the case of using a surfactant having a Kraft point higher than the plating temperature, it is preferable that the temperature is raised during preparation of the bath and then cooled to 10 to 30 ° C. for plating.

本発明によれば、疎水基と親水基を有し、疎水基は炭化水素からなり、疎水基の末端に親水基が存在する界面活性剤を添加剤として含むことを特徴とするめっき液を使用することにより、導電体基板表面上に二次元的に成長した凸状金属構造体を作製することが可能であり、めっき法により製造した比表面積が大きく、機械的強度,導電性に優れる金属めっき膜を提供できる。本発明により製造した高比表面積金属めっき膜は、表面にナノレベルの二次元的に成長した凸状金属構造体が無数に存在するため、平坦表面に比べ100倍以上の表面積を有する。また機械強度が強く導伝性も良好なため、二次電池の集電極として好適である。   According to the present invention, there is used a plating solution characterized in that it has a hydrophobic group and a hydrophilic group, the hydrophobic group is composed of a hydrocarbon, and contains a surfactant having a hydrophilic group at the end of the hydrophobic group as an additive. By doing so, it is possible to produce a convex metal structure that grows two-dimensionally on the surface of a conductor substrate, and has a large specific surface area produced by a plating method, and has excellent mechanical strength and conductivity. A membrane can be provided. The high specific surface area metal plating film produced according to the present invention has a surface area that is 100 times or more that of a flat surface because there are innumerable convex metal structures grown two-dimensionally at the nano level on the surface. In addition, since it has high mechanical strength and good conductivity, it is suitable as a collector electrode for a secondary battery.

また、本発明の金属めっき膜をプリント基板用の銅箔として用いれば樹脂との密着性を高めることが出来る。また、本発明のめっき手法により銅めっき膜を形成し、凸状金属構造体のサイズを制御することにより、光の反射を抑えた黒色めっき膜の作製も可能であり、反射防止膜などへの適用も可能である。   Moreover, if the metal plating film of this invention is used as copper foil for printed circuit boards, adhesiveness with resin can be improved. In addition, by forming a copper plating film by the plating method of the present invention and controlling the size of the convex metal structure, it is possible to produce a black plating film that suppresses reflection of light. Application is also possible.

また、本発明のめっき手法により製造したニッケルめっき膜は、Cuなどに比べ触媒活性が高いため、触媒として好適である。特に、導電性が高いため電気分解反応や電解合成など電気化学的反応における触媒電極として最適である。また、二次電池用の電極、特にニッケル水素電池用の電極材料としても高い性能を発揮できる。さらに耐食性も高いためセンサーなどの基材としても有効である。   Moreover, since the nickel plating film manufactured by the plating method of the present invention has higher catalytic activity than Cu or the like, it is suitable as a catalyst. In particular, since it has high conductivity, it is optimal as a catalyst electrode in electrochemical reactions such as electrolysis and electrolytic synthesis. Further, high performance can be exhibited as an electrode material for a secondary battery, particularly an electrode material for a nickel metal hydride battery. Furthermore, since it has high corrosion resistance, it is also effective as a base material for sensors.

以下、本発明の実施形態を実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an embodiment of the present invention is described using an example, the present invention is not limited to the following example.

実施例1は本発明のめっき液およびめっき方法とそれにより作製しためっき膜の一例である。   Example 1 is an example of the plating solution and plating method of the present invention and a plating film produced thereby.

図1は、本発明のめっき液に添加する界面活性剤101の分子構造モデルの一例を示した模式図である。界面活性剤101は疎水部102と親水部103からなる。疎水部102は炭化水素からなり、図1の模式図に示したように直線的な形状をとる。親水部103は疎水部102の端部に位置している。本発明のめっき液には、必ず金属塩と界面活性剤101が含まれる。   FIG. 1 is a schematic diagram showing an example of a molecular structure model of a surfactant 101 added to the plating solution of the present invention. The surfactant 101 includes a hydrophobic portion 102 and a hydrophilic portion 103. The hydrophobic portion 102 is made of hydrocarbon and takes a linear shape as shown in the schematic diagram of FIG. The hydrophilic portion 103 is located at the end of the hydrophobic portion 102. The plating solution of the present invention always contains a metal salt and a surfactant 101.

図2は、本発明のめっき液を用いためっき過程における導電体基板表面の模式図である。本発明のめっき液を用いためっき過程では、界面活性剤101が析出した金属の表面に吸着する。特に親水部103は疎水部102より吸着力が強いため、図2に示すように親水部103が金属表面に向いた状態で吸着する。吸着した界面活性剤101によって金属の析出方向が強く制限される。このため、金属の析出方向が一方向に制限され、析出した金属の形状が凸状構造となる。本発明のめっき液を用いためっき方法では、上述のように界面活性剤101の析出金属表面への吸着を利用して形状を制御しているため、電解めっき法,無電解めっき法に関係なく、導電体基板105の表面に二次元的に成長した凸状金属構造体104を容易に得ることが出来る。   FIG. 2 is a schematic view of the surface of the conductor substrate in the plating process using the plating solution of the present invention. In the plating process using the plating solution of the present invention, the surfactant 101 is adsorbed on the surface of the deposited metal. In particular, since the hydrophilic portion 103 has a stronger adsorption force than the hydrophobic portion 102, the hydrophilic portion 103 is adsorbed with the hydrophilic portion 103 facing the metal surface as shown in FIG. The adsorbing surfactant 101 strongly restricts the metal deposition direction. For this reason, the deposition direction of the metal is limited to one direction, and the shape of the deposited metal becomes a convex structure. In the plating method using the plating solution of the present invention, since the shape is controlled by utilizing the adsorption of the surfactant 101 to the surface of the deposited metal as described above, regardless of the electrolytic plating method or the electroless plating method. The convex metal structure 104 grown two-dimensionally on the surface of the conductor substrate 105 can be easily obtained.

図3は、本発明のめっき液を用いて作製したCuめっき膜107の走査型電子顕微鏡(SEM)による観察像の一例である。Cuめっき膜107は無数の凸状金属構造体106からなる。凸状金属構造体106は円板状であり、二次元的に成長していることが確認できた。大きさは厚さが30nm程度、幅が300〜500nm程度、高さが500〜1000nm程度であった。凸状金属構造体106の成長方向は〔111〕面方向に選択的に成長しており、基板からまっすぐに成長していた。エネルギー分散型X線分析装置(EDX)による組成分析では表面にごくわずかに酸化物の形成が見られるほかは、銅で形成されており、めっき膜内部には添加剤などが含まれないことが明らかとなった。   FIG. 3 is an example of an image observed by a scanning electron microscope (SEM) of the Cu plating film 107 produced using the plating solution of the present invention. The Cu plating film 107 is composed of an infinite number of convex metal structures 106. It was confirmed that the convex metal structure 106 has a disk shape and has grown two-dimensionally. As for the size, the thickness was about 30 nm, the width was about 300 to 500 nm, and the height was about 500 to 1000 nm. The growth direction of the convex metal structure 106 was selectively grown in the [111] plane direction and grew straight from the substrate. In the composition analysis using an energy dispersive X-ray analyzer (EDX), the surface is formed of copper except for the slight oxide formation on the surface, and the plating film may contain no additives. It became clear.

Cuめっき膜107は本発明のめっき液を用いる電解めっきにより作製した。ここで使用した電解めっき液の組成は、0.5M硫酸銅水溶液と添加剤である50mMドデシル硫酸ナトリウムとした。硫酸銅およびドデシル硫酸ナトリウムは和光純薬製の特級試薬を使用した。めっき液の調製は、まず純水を60℃まで昇温した後、攪拌しながら硫酸銅を規定濃度になるまで加え、硫酸銅がすべて溶解した後ドデシル硫酸ナトリウムを添加した。
ドデシル硫酸ナトリウムの溶解を確認した後、室温まで冷却し、めっき液とした。めっきを施す基板には圧延銅箔を選択した。電解めっきは3極で行い、対極にはニッケルメッシュを、参照極には銀/塩化銀電極を使用した。−1V定電圧条件で100秒間めっきを施した。めっき終了後の銅箔表面は黒く、金属光沢は見られなかった。
The Cu plating film 107 was produced by electrolytic plating using the plating solution of the present invention. The composition of the electrolytic plating solution used here was a 0.5 M aqueous copper sulfate solution and 50 mM sodium dodecyl sulfate as an additive. For copper sulfate and sodium dodecyl sulfate, special grade reagents manufactured by Wako Pure Chemicals were used. In the preparation of the plating solution, first, the temperature of pure water was raised to 60 ° C., then copper sulfate was added to the specified concentration while stirring, and after all the copper sulfate was dissolved, sodium dodecyl sulfate was added.
After confirming dissolution of sodium dodecyl sulfate, the solution was cooled to room temperature to obtain a plating solution. A rolled copper foil was selected as the substrate to be plated. Electrolytic plating was performed with three electrodes, a nickel mesh was used for the counter electrode, and a silver / silver chloride electrode was used for the reference electrode. Plating was performed for 100 seconds under the condition of -1V constant voltage. The surface of the copper foil after plating was black and no metallic luster was observed.

本発明のめっき液とめっき方法を用いることにより、導電体表面に金属が二次元的に成長したナノサイズの凸状金属構造体を形成できることが確認できた。   It has been confirmed that by using the plating solution and the plating method of the present invention, a nano-sized convex metal structure in which metal is two-dimensionally grown on the surface of the conductor can be formed.

実施例2では、実施例1のめっき液の金属塩を硫酸ニッケルに、添加剤をデシル硫酸ナトリウム(いずれも和光純薬、特級)に変更し、電解めっき処理を行った。基板はニッケルメッシュとした。金属塩および添加剤の濃度,電解めっき条件は実施例1と同様である。   In Example 2, the metal salt of the plating solution of Example 1 was changed to nickel sulfate, and the additive was changed to sodium decyl sulfate (both Wako Pure Chemicals, special grade), and electrolytic plating was performed. The substrate was a nickel mesh. The metal salt and additive concentrations and the electroplating conditions are the same as in Example 1.

めっき終了後のニッケルメッシュは黒く変色し、金属光沢は見られなかった。表面をSEMで観察したところ、実施例1と同様の円盤状の凸状金属構造体が観察できた。大きさは厚さが50nm程度、幅が500〜800nm程度、高さが1000〜1500nm程度であった。また、凸状金属構造体の成長方向は実施例1と同様に〔111〕面方向に選択的に成長しており、基板であるメッシュに対してまっすぐ成長していた。これより、本めっき法によりNiが二次元的に成長したナノサイズの凸状金属構造体を形成できることが確認できた。また平坦な基板でなく、メッシュのように立体的な基板でも凸状金属構造体の形成が可能であることが判明した。   The nickel mesh after plating was discolored black and no metallic luster was observed. When the surface was observed by SEM, the same disk-like convex metal structure as Example 1 was observed. As for the size, the thickness was about 50 nm, the width was about 500 to 800 nm, and the height was about 1000 to 1500 nm. Further, the growth direction of the convex metal structure was selectively grown in the [111] plane direction as in Example 1, and was growing straight with respect to the mesh as the substrate. From this, it was confirmed that a nano-sized convex metal structure in which Ni was two-dimensionally grown could be formed by this plating method. It has also been found that a convex metal structure can be formed not only on a flat substrate but also on a three-dimensional substrate such as a mesh.

実施例3では、実施例1のめっき液の金属塩を硝酸銀に、添加剤をセチルトリメチルアンモニウムブロミド(いずれも和光純薬、特級)に変更し、電解めっき処理を行った。金属塩および添加剤の濃度は実施例1と同様である。基板の種類はAg板とし、めっき条件は定電流とした。   In Example 3, the metal salt of the plating solution of Example 1 was changed to silver nitrate, and the additive was changed to cetyltrimethylammonium bromide (both Wako Pure Chemicals, special grade), and electrolytic plating was performed. The concentrations of the metal salt and additive are the same as in Example 1. The substrate type was an Ag plate, and the plating conditions were constant current.

めっき終了後のAg板は黒く変色しており、金属光沢は見られなかった。表面をSEMで観察したところ、帯状の構造体が観察できた。大きさは厚さが10nm程度、幅が50nm程度、長さが1500nm程度であった。これより、本めっき法によりAgが二次元的に成長したナノサイズの凸状金属構造体を形成できることが確認できた。   The Ag plate after plating was discolored black and no metallic luster was observed. When the surface was observed with SEM, a band-shaped structure was observed. As for the size, the thickness was about 10 nm, the width was about 50 nm, and the length was about 1500 nm. From this, it was confirmed that a nano-sized convex metal structure in which Ag was two-dimensionally grown could be formed by this plating method.

実施例4では、実施例1のめっき液に還元剤を添加し、無電解めっき処理を行った。金属塩の種類,金属塩および添加剤の濃度は実施例1と同様である。還元剤には水素化ホウ素ナトリウムを使用した。めっき条件としては、めっき液温度を10℃とし、攪拌しためっき液に水素化ホウ素ナトリウム水溶液を添加していき、水素化ホウ素ナトリウムの濃度が最終的に0.1Mとなるように徐々に加えていった。   In Example 4, a reducing agent was added to the plating solution of Example 1, and an electroless plating process was performed. The kind of metal salt, the concentration of the metal salt and the additive are the same as in Example 1. Sodium borohydride was used as the reducing agent. As plating conditions, the plating solution temperature was set to 10 ° C., and an aqueous sodium borohydride solution was added to the stirred plating solution, and gradually added so that the concentration of sodium borohydride finally became 0.1M. It was.

めっき終了後の銅箔表面は黒く、金属光沢は見られなかった。表面をSEMで観察したところ、実施例1と同様の円盤状の凸状金属構造体が観察できた。大きさは厚さが50nm程度、幅が100〜300nm程度、高さが500nm程度であった。凸状構造体は銅箔表面に対し、まっすぐ成長していた。これより、本めっき液を用いることで無電解めっきでも二次元的に成長した凸状金属構造体を作製できることが確認できた。   The surface of the copper foil after plating was black and no metallic luster was observed. When the surface was observed by SEM, the same disk-like convex metal structure as Example 1 was observed. As for the size, the thickness was about 50 nm, the width was about 100 to 300 nm, and the height was about 500 nm. The convex structure was growing straight with respect to the copper foil surface. From this, it has been confirmed that by using this plating solution, it is possible to produce a convex metal structure grown two-dimensionally even by electroless plating.

実施例5では、実施例1と同様の条件で銅箔表面に凸状金属構造体を形成し、樹脂との密着性向上を試みた。図4にプロセス図を示す。銅箔201の片面をめっき液202に浸漬し、対極203に対して定電流の条件で電解めっきを行い、凸状金属構造体204を形成した。凸状金属構造体204の形状は先端に行くほど細くなる木の葉状構造であった。
大きさは厚さが30〜60nm程度、幅が100〜200nm程度、長さが1000〜1500nm程度であった。めっき終了後、水洗・乾燥した銅箔をエポキシ樹脂のプリプレグ205の上に載せ、真空ポンプ中で昇温・加圧成形し、片面銅張積層板206を作成した。銅箔は良好な接着性を示した。これより本めっき液,めっき法により形成した銅箔は樹脂との密着性向上に寄与することが確認できた。
In Example 5, a convex metal structure was formed on the surface of the copper foil under the same conditions as in Example 1, and an attempt was made to improve adhesion with the resin. FIG. 4 shows a process diagram. One surface of the copper foil 201 was immersed in a plating solution 202, and electrolytic plating was performed on the counter electrode 203 under a constant current condition to form a convex metal structure 204. The shape of the convex metal structure 204 was a leaf-like structure that narrowed toward the tip.
As for the size, the thickness was about 30 to 60 nm, the width was about 100 to 200 nm, and the length was about 1000 to 1500 nm. After the completion of plating, the washed and dried copper foil was placed on an epoxy resin prepreg 205 and heated and pressurized in a vacuum pump to prepare a single-sided copper-clad laminate 206. The copper foil showed good adhesion. From this, it was confirmed that the copper foil formed by the present plating solution and plating method contributes to the improvement of adhesion with the resin.

実施例6では、実施例2と同様の条件で、ニッケルメッシュ表面に凸状金属構造体を形成し、高比表面積電極の試作を行った。図4にプロセス図を示す。ニッケルメッシュ301をめっき液302に浸漬し、ニッケルメッシュ対極303に対し−1.2V定電圧,300sの条件で電解めっきを行った。   In Example 6, a convex metal structure was formed on the nickel mesh surface under the same conditions as in Example 2, and a high specific surface area electrode was prototyped. FIG. 4 shows a process diagram. The nickel mesh 301 was immersed in the plating solution 302, and electrolytic plating was performed on the nickel mesh counter electrode 303 under the condition of -1.2V constant voltage and 300s.

めっき終了後のニッケルメッシュは黒く変色し、金属光沢は見られなかった。SEMで観察したところ凸状金属構造体304が観察された。形状,大きさは実施例2と同等であった。比表面積の増大効果を知るため、0.1M水酸化ナトリウム水溶液中で高比表面積Ni電極305に電圧を印加し、表面酸化に伴う電荷量測定を行った。その結果、基板に用いたニッケルメッシュに比べて表面積が100倍以上増大していることが判明した。この結果より、本めっき液とめっき法を用いることにより、高比表面積のNi電極が製造できることが確認できた。   The nickel mesh after plating was discolored black and no metallic luster was observed. When observed by SEM, convex metal structures 304 were observed. The shape and size were the same as in Example 2. In order to know the effect of increasing the specific surface area, a voltage was applied to the high specific surface area Ni electrode 305 in a 0.1 M aqueous sodium hydroxide solution, and the charge amount associated with the surface oxidation was measured. As a result, it was found that the surface area increased 100 times or more compared to the nickel mesh used for the substrate. From this result, it was confirmed that a Ni electrode having a high specific surface area can be produced by using the present plating solution and the plating method.

本発明の界面活性剤の分子構造モデルの一例を示した模式図である。It is the schematic diagram which showed an example of the molecular structure model of surfactant of this invention. 本発明のめっき過程における導電体基板表面の模式図である。It is a schematic diagram of the conductor board | substrate surface in the plating process of this invention. 実施例1で作製したCuめっき膜の走査型電子顕微鏡による観察像である。2 is an image observed by a scanning electron microscope of a Cu plating film produced in Example 1. FIG. 実施例5の片面銅張積層板の製造工程を示す図である。It is a figure which shows the manufacturing process of the single-sided copper clad laminated board of Example 5. FIG. 実施例6の高比表面積Ni電極の製造工程を示す図である。6 is a view showing a production process of a high specific surface area Ni electrode of Example 6. FIG.

符号の説明Explanation of symbols

101 界面活性剤
102 疎水部
103 親水部
104 凸状金属構造体
105 導電体基板
106 凸状金属構造体
107 Cuめっき膜
201 銅箔
202 めっき液
203 対極
204 凸状金属構造体
205 プリプレグ
206 片面銅張積層板
301 ニッケルメッシュ
302 めっき液
303 ニッケルメッシュ対極
304 凸状金属構造体
305 高比表面積Ni電極
DESCRIPTION OF SYMBOLS 101 Surfactant 102 Hydrophobic part 103 Hydrophilic part 104 Convex metal structure 105 Conductive substrate 106 Convex metal structure 107 Cu plating film 201 Copper foil 202 Plating solution 203 Counter electrode 204 Convex metal structure 205 Prepreg 206 Single-sided copper clad Laminated plate 301 Nickel mesh 302 Plating solution 303 Nickel mesh counter electrode 304 Convex metal structure 305 High specific surface area Ni electrode

Claims (10)

導電体基板の表面に二次元的に成長した凸状金属構造体を形成するためのめっき液であって、
金属塩,界面活性剤,前記金属塩と界面活性剤を溶解した水溶液とを含み、
前記界面活性剤は、炭化水素からなる疎水基と前記疎水基の末端に親水基を有することを特徴とするめっき液。
A plating solution for forming a convex metal structure grown two-dimensionally on the surface of a conductor substrate,
A metal salt, a surfactant, and an aqueous solution in which the metal salt and the surfactant are dissolved,
The plating solution, wherein the surfactant has a hydrophobic group composed of a hydrocarbon and a hydrophilic group at the end of the hydrophobic group.
請求項1において、前記界面活性剤の親水基がカルボン酸イオン,硫酸イオン,アンモニウムイオン,リン酸イオンのいずれかひとつもしくは複数を有することを特徴とするめっき液。   2. The plating solution according to claim 1, wherein the hydrophilic group of the surfactant has one or more of carboxylate ion, sulfate ion, ammonium ion, and phosphate ion. 請求項1において、前記金属塩は、Cu,Ni,Ag,Zn,Snの少なくともひとつの金属イオンを含むことを特徴とするめっき液。   The plating solution according to claim 1, wherein the metal salt contains at least one metal ion of Cu, Ni, Ag, Zn, and Sn. 金属塩,界面活性剤,前記金属塩と界面活性剤を溶解した水溶液とを含有し、前記界面活性剤が炭化水素からなる疎水基と前記疎水基の末端に親水基を有するめっき液を用いためっき法により形成された凸状金属構造体が導電体の基材表面に二次元的に成長していることを特徴とする導電体基板。   A plating solution containing a metal salt, a surfactant, and an aqueous solution in which the metal salt and the surfactant are dissolved, wherein the surfactant has a hydrophobic group composed of a hydrocarbon and a hydrophilic group at the end of the hydrophobic group was used. A conductive substrate, wherein a convex metal structure formed by a plating method is two-dimensionally grown on a surface of a conductive material. 請求項4において、二次元的に成長した凸状金属構造体が板状,フィルム状,木の葉状,リボン状のいずれかの形態を有し、前記凸状金属構造体の成長方向が〔111〕面方向であることを特徴とする導電体基板。   5. The convex metal structure grown two-dimensionally has one of a plate shape, a film shape, a leaf shape, and a ribbon shape, and the growth direction of the convex metal structure is [111]. A conductor substrate characterized by being in a plane direction. 請求項4において、二次元的に成長した凸状金属構造体の突起部の厚さが5nm〜100nmの範囲であり、高さが500nm〜5000nmの範囲であり、幅が厚さと高さとの間にあることを特徴とする導電体基板。   5. The protrusion of the convex metal structure grown two-dimensionally has a thickness in the range of 5 nm to 100 nm, a height in the range of 500 nm to 5000 nm, and a width between the thickness and the height. A conductive substrate, characterized in that 請求項4において、前記凸状金属構造体を構成する金属が銅であることを特徴とする導電体基板。   5. The conductor substrate according to claim 4, wherein the metal constituting the convex metal structure is copper. 請求項4において、前記凸状金属構造体を構成する金属がニッケルであることを特徴とする導電体基板。   5. The conductor substrate according to claim 4, wherein the metal constituting the convex metal structure is nickel. 請求項4において、前記導電体の基材がメッシュ構造であることを特徴とする導電体基板。   5. The conductor substrate according to claim 4, wherein the base material of the conductor has a mesh structure. 凸状金属構造体を表面に有する導電体基板の製造方法であって、
金属塩,界面活性剤,前記金属塩と界面活性剤を溶解した水溶液とを含有し、前記界面活性剤が炭化水素からなる疎水基と前記疎水基の末端に親水基を有するめっき液を用いためっき法により、導電体の基材表面に二次元的に成長した凸状金属構造体を形成することを特徴とする導電体基板の製造方法。
A method for producing a conductor substrate having a convex metal structure on its surface,
A plating solution containing a metal salt, a surfactant, and an aqueous solution in which the metal salt and the surfactant are dissolved, wherein the surfactant has a hydrophobic group composed of a hydrocarbon and a hydrophilic group at the end of the hydrophobic group was used. A method for producing a conductor substrate, comprising forming a convex metal structure grown two-dimensionally on the surface of a base material of a conductor by plating.
JP2008331838A 2008-12-26 2008-12-26 Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same Pending JP2010150622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331838A JP2010150622A (en) 2008-12-26 2008-12-26 Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331838A JP2010150622A (en) 2008-12-26 2008-12-26 Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010150622A true JP2010150622A (en) 2010-07-08

Family

ID=42570014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331838A Pending JP2010150622A (en) 2008-12-26 2008-12-26 Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010150622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014819A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal film, electrode, current collector, electrochemical sensor, power storage device and sliding member as well as method for producing porous metal film
JP2013014814A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Metal film, electrochemical sensor, power storage device, and sliding member, as well as method for producing metal film
JP2013023709A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Porous metal film, electrode, current collector, electrochemical sensor, electricity storage device, sliding member, and method for manufacturing the porous metal film
KR20170137355A (en) * 2016-06-03 2017-12-13 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and method of preparing the same
JP2021517933A (en) * 2018-11-14 2021-07-29 ワイエムティー カンパニー リミテッド Plated laminate and printed circuit board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232390A (en) * 1988-12-21 1990-09-14 Internatl Business Mach Corp <Ibm> Copper plating for hardly-plating metal
JPH09296274A (en) * 1996-01-30 1997-11-18 Nagano Pref Gov Aqueous solution for formation of metal complex, tin-silver alloy plating bath and production of plated material using the plating bath
JPH1046383A (en) * 1996-07-30 1998-02-17 Nec Ibaraki Ltd Method for electroplating ni-fe alloy and ni-fe electroplating film
JPH10140364A (en) * 1996-09-10 1998-05-26 Denso Corp Electroless plating solution
JP2002506485A (en) * 1997-06-27 2002-02-26 ユニヴァーシティ オブ サウサンプトン Porous film and its preparation method
JP2006233272A (en) * 2005-02-24 2006-09-07 Univ Waseda Method for producing film of mesoporous metal
JP2007092141A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd Method for producing composite plated material
WO2008029160A2 (en) * 2006-09-08 2008-03-13 Nanotecture Ltd Liquid crystal templated deposition method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232390A (en) * 1988-12-21 1990-09-14 Internatl Business Mach Corp <Ibm> Copper plating for hardly-plating metal
JPH09296274A (en) * 1996-01-30 1997-11-18 Nagano Pref Gov Aqueous solution for formation of metal complex, tin-silver alloy plating bath and production of plated material using the plating bath
JPH1046383A (en) * 1996-07-30 1998-02-17 Nec Ibaraki Ltd Method for electroplating ni-fe alloy and ni-fe electroplating film
JPH10140364A (en) * 1996-09-10 1998-05-26 Denso Corp Electroless plating solution
JP2002506485A (en) * 1997-06-27 2002-02-26 ユニヴァーシティ オブ サウサンプトン Porous film and its preparation method
JP2006233272A (en) * 2005-02-24 2006-09-07 Univ Waseda Method for producing film of mesoporous metal
JP2007092141A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd Method for producing composite plated material
WO2008029160A2 (en) * 2006-09-08 2008-03-13 Nanotecture Ltd Liquid crystal templated deposition method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014819A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal film, electrode, current collector, electrochemical sensor, power storage device and sliding member as well as method for producing porous metal film
JP2013014814A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Metal film, electrochemical sensor, power storage device, and sliding member, as well as method for producing metal film
JP2013023709A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Porous metal film, electrode, current collector, electrochemical sensor, electricity storage device, sliding member, and method for manufacturing the porous metal film
KR20170137355A (en) * 2016-06-03 2017-12-13 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and method of preparing the same
KR102603763B1 (en) * 2016-06-03 2023-11-16 에스케이온 주식회사 Electrode for a lithium secondary battery and method of preparing the same
JP2021517933A (en) * 2018-11-14 2021-07-29 ワイエムティー カンパニー リミテッド Plated laminate and printed circuit board
JP7205027B2 (en) 2018-11-14 2023-01-17 ワイエムティー カンパニー リミテッド Plated laminates and printed circuit boards

Similar Documents

Publication Publication Date Title
Han et al. High-valent nickel promoted by atomically embedded copper for efficient water oxidation
Wang et al. Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting
Wang et al. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance
Fu et al. Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity
WO2013137018A1 (en) Metal nanonetwork and method for producing same, and conductive film and conductive substrate using metal nanonetwork
Kashale et al. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions
Balram et al. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests
Lang et al. Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction
Qin et al. Coupling bimetallic oxides/alloys and N-doped carbon nanotubes as tri-functional catalysts for overall water splitting and zinc–air batteries
Jiang et al. Nanoarchitectonics of metallene materials for electrocatalysis
US20090166209A1 (en) Porous Battery Components Comprising Electrochemically Created Nanocatalysts
Teng et al. Hierarchically structured Ni nanotube array-based integrated electrodes for water splitting
Jadhav et al. Microwave-assisted synthesis of a stainless steel mesh-supported Co3O4 microrod array as a highly efficient catalyst for electrochemical water oxidation
Anantharaj et al. Achieving increased electrochemical accessibility and lowered oxygen evolution reaction activation energy for Co2+ sites with a simple anion preoxidation
Han et al. Atomic thickness catalysts: synthesis and applications
Yin et al. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials
JP2010150622A (en) Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same
Kim et al. Electrodeposition: An efficient method to fabricate self‐supported electrodes for electrochemical energy conversion systems
Mozafari et al. Promoted electrocatalytic performance of palladium nanoparticles using doped-NiO supporting materials toward ethanol electro-oxidation in alkaline media
Burton et al. Three-dimensional nanostructured palladium with single diamond architecture for enhanced catalytic activity
Seok et al. Self-generated nanoporous silver framework for high-performance iron oxide pseudocapacitor anodes
Zhao et al. Engineering the electronic structures of metal–organic framework nanosheets via synergistic doping of metal ions and counteranions for efficient water oxidation
Li et al. Amorphous iron and cobalt based phosphate nanosheets supported on nickel foam as superior catalysts for hydrogen evolution reaction
Kim et al. Construction of a pliable electrode system for effective electrochemical oxygen evolution reaction: direct growth of nickel/iron/selenide nanohybrids on nickel foil
Xie et al. Sn-nanorod-supported Ag nanoparticles as efficient catalysts for electroless deposition of Cu conductive tracks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715