JPH1046383A - Method for electroplating ni-fe alloy and ni-fe electroplating film - Google Patents

Method for electroplating ni-fe alloy and ni-fe electroplating film

Info

Publication number
JPH1046383A
JPH1046383A JP19995496A JP19995496A JPH1046383A JP H1046383 A JPH1046383 A JP H1046383A JP 19995496 A JP19995496 A JP 19995496A JP 19995496 A JP19995496 A JP 19995496A JP H1046383 A JPH1046383 A JP H1046383A
Authority
JP
Japan
Prior art keywords
alloy
current density
plating
electroplated film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19995496A
Other languages
Japanese (ja)
Other versions
JP2901549B2 (en
Inventor
Yoshihiko Yasue
義彦 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Ibaraki Ltd
Original Assignee
NEC Ibaraki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Ibaraki Ltd filed Critical NEC Ibaraki Ltd
Priority to JP19995496A priority Critical patent/JP2901549B2/en
Publication of JPH1046383A publication Critical patent/JPH1046383A/en
Application granted granted Critical
Publication of JP2901549B2 publication Critical patent/JP2901549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an Fe-Ni alloy plating layer high in magnetic permeability and low in coercive force and anisotropic magnetic field by using a plating soln. of specified composition contg. Fe and Ni ions and conducting electrolysis at a specific current density. SOLUTION: A glass substrate sputtered with a permalloy as the plating substrate is clipped in a plating soln. contg. the Ni and Fe ions of nickel sulfate and ferrous sulfate, boric acid as a pH buffer, saccharine as a stress buffer and sodium lauryl sulfate as a surfactant, and a current is applied at 1-5mA/cm<2> and ON/OFF=2/1 sea pulse to electroplate the substrate. As a result, an Fe-Ni alloy having Fe/(Fe+Ni)=55±1% composition, <6.6×10<-6> saturation magnetostriction and 1-5μm thickness, with the crystal structure (100) oriented and excellent as a magnetic recording thin-film head is obtained on the substrate surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni−Fe合金電
気めっき方法およびNi−Fe合金めっき膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni--Fe alloy electroplating method and a Ni--Fe alloy plating film.

【0002】[0002]

【従来の技術】従来より、磁気記録用薄膜ヘッドのコア
部には、NiおよびFeの合計重量に対するFeの重量
比が約18%の、Ni−Fe合金(以下、パーマロイと
略す)等の軟磁性材料が使用されている。
2. Description of the Related Art Conventionally, a core portion of a thin film head for magnetic recording is made of a soft material such as a Ni—Fe alloy (hereinafter abbreviated as “permalloy”) having a weight ratio of Fe to about 18% of the total weight of Ni and Fe. Magnetic materials are used.

【0003】これらの軟磁性材料は、透磁率が高く、保
磁力および異方性磁界が小さいことから、磁気記録用ヘ
ッドの材料としては、理想的な特性を有している。
Since these soft magnetic materials have high magnetic permeability and small coercive force and small anisotropic magnetic field, they have ideal characteristics as a material for a magnetic recording head.

【0004】しかし、より高密度記録に対応するため、
高飽和磁束密度の特性を有する材料が求められている。
この例として、NiおよびFeの合計の重量に対するF
eの重量の比が、約55%のNi−Fe合金(以下、4
5Ni−Feと略す)が挙げられる。このNi−Fe合
金膜を形成する方法として、従来は、パーマロイめっき
浴でFeイオンのみを増加し、パーマロイめっき膜形成
と同様のめっき方法で形成していた。
However, in order to support higher density recording,
Materials having characteristics of high saturation magnetic flux density are required.
As an example of this, F with respect to the total weight of Ni and Fe
e is about 55% by weight of a Ni—Fe alloy (hereinafter referred to as 4%).
5Ni-Fe). As a method of forming this Ni—Fe alloy film, conventionally, only Fe ions are increased in a permalloy plating bath, and the Ni—Fe alloy film is formed by a plating method similar to the formation of the permalloy plating film.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の方法で
形成された45Ni−Fe合金電気めっき膜は、高飽和
磁束密度の特性を持つ反面、飽和磁歪値が、1×10-5
〜2×10-5程度と、パーマロイの飽和磁歪値−2×1
-6〜−3×10-6と比較して一桁高い値を示してお
り、磁化すると外形が変形し易い性質を有する。その理
由は、比較的低温でめっき膜が形成されるので、めっき
膜の結晶構造は極めて微細となり、結晶の成長も低い温
度で容易にでき、その結晶構造が(111)配向とな
り、それに伴って、磁気特性が劣化するからである。
The 45Ni-Fe alloy electroplated film formed by the above-mentioned conventional method has a characteristic of high saturation magnetic flux density, but has a saturation magnetostriction value of 1 × 10 -5.
~ 2 × 10 -5 and saturation value of permalloy -2 × 1
It shows a value one order of magnitude higher than 0 -6 to -3 × 10 -6, and has a property that the outer shape is easily deformed when magnetized. The reason is that, since the plating film is formed at a relatively low temperature, the crystal structure of the plating film becomes extremely fine, and the crystal can be easily grown at a low temperature, and the crystal structure becomes (111) -oriented. This is because the magnetic characteristics deteriorate.

【0006】従って、従来の方法で形成される45Ni
−Fe合金電気めっき膜は、飽和磁歪値が大きいため、
磁気記録用ヘッドの材料として不適である。
[0006] Therefore, 45Ni formed by a conventional method.
-Fe alloy electroplated film has a large saturation magnetostriction value,
It is not suitable as a material for a magnetic recording head.

【0007】本発明は、上記問題点を解決しようとする
ものであり、その目的とするところは、特に、磁気記録
用ヘッドで使用される軟磁性材料として有用な、飽和磁
歪値の低いNi−Fe合金電気めっき膜を提供すること
にある。
The present invention is intended to solve the above-mentioned problems, and it is an object of the present invention to provide a Ni—Ni alloy having a low saturation magnetostriction value, which is particularly useful as a soft magnetic material used in a magnetic recording head. An object of the present invention is to provide an Fe alloy electroplated film.

【0008】さらに、上記Ni−Fe合金電気めっき膜
を形成する方法を提供することにある。
Another object of the present invention is to provide a method for forming the above-mentioned Ni-Fe alloy electroplated film.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、NiイオンおよびFeイオンを含むめ
っき浴において、めっき浴にめっき形成用の基板を浸積
して1.0〜5.0mA/cm2 (ON/OFF=2/
1秒パルス)の電流密度で電気分解を行うことによっ
て、その結晶構造が(100)配向となるNi−Fe合
金電気めっき膜を形成した。
In order to achieve the above object, according to the present invention, in a plating bath containing Ni ions and Fe ions, a substrate for plating is immersed in a plating bath for 1.0 to 5 minutes. 2.0 mA / cm 2 (ON / OFF = 2 /
Electrolysis was performed at a current density of 1 second pulse) to form a Ni—Fe alloy electroplated film having a (100) crystal structure.

【0010】形成されたNi−Fe合金電気めっき膜
は、Ni−Feの合計重量に対するFeの重量の比が、
55±1%で、45Ni−Fe合金電気めっき膜である
ことが好ましい。
The formed Ni—Fe alloy electroplated film has a ratio of the weight of Fe to the total weight of Ni—Fe,
It is preferably 55 ± 1% and a 45Ni—Fe alloy electroplated film.

【0011】また、飽和磁歪値は、6.6×10-6以下
であれば好ましく、磁気記録用ヘッドとしては充分であ
る。
The saturation magnetostriction value is preferably 6.6 × 10 -6 or less, which is sufficient for a magnetic recording head.

【0012】さらに、その膜厚は1μm〜5μmである
のが好ましい。
Further, the thickness is preferably 1 μm to 5 μm.

【0013】めっき条件としては、上記の電流密度1.
0〜5.0mA/cm2 であれば、(100)配向のめ
っき膜を形成できるが、特に、3.5mA/cm2 であ
ることが好ましいめっき浴の組成は、硫酸ニッケル,硫
酸第一鉄,ホウ酸,サッカリン,ラウリル硫酸ナトリウ
ムである。
The plating conditions are as follows.
If 0~5.0mA / cm 2, (100) can form a plated film of oriented, in particular, the composition of it is preferred plating bath is a 3.5mA / cm 2, the nickel sulfate, ferrous sulfate , Boric acid, saccharin, and sodium lauryl sulfate.

【0014】本発明のNi−Fe合金電気めっき方法に
よれば、めっき膜の結晶構造が変化することを利用し、
電流密度を1.0〜5.0mA/cm2 の範囲に調整す
ることにより、Ni−Fe電気めっき膜の結晶構造が
(100)配向となる。これにより、飽和磁歪値が充分
に小さく、磁気記録用ヘッドで使用される軟磁性材料と
して有用なNi−Fe合金電気めっき膜が形成される。
According to the Ni—Fe alloy electroplating method of the present invention, the fact that the crystal structure of the plating film changes is utilized.
By adjusting the current density in the range of 1.0 to 5.0 mA / cm 2 , the crystal structure of the Ni—Fe electroplated film has a (100) orientation. As a result, a Ni—Fe alloy electroplated film having a sufficiently small saturation magnetostriction value and useful as a soft magnetic material used in a magnetic recording head is formed.

【0015】[0015]

【発明の実施の形態】本発明によるNi−Fe合金電気
めっき方法およびNi−Fe合金電気めっき膜の実施例
について、図面を参照にして説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a Ni--Fe alloy electroplating method and a Ni--Fe alloy electroplating film according to the present invention will be described with reference to the drawings.

【0016】まず、本発明のNi−Fe合金電気めっき
膜を形成する過程を説明すると、ガラス基板上に、薄膜
磁気記録用ヘッドで使用される軟磁性材料めっきの下地
として、パーマロイ合金をスパッタリングで1000Å
の厚さに形成する。パーマロイ合金を使用する理由は、
その磁歪定数がほぼ零付近にあることと、異方性磁界が
低く、保持力が低いことから透磁率が高いことによっ
て、薄膜磁気記録用ヘッドの材料として適しているから
である。次に、めっき槽内で電気めっきを行い、めっき
膜を形成する。その際、めっき浴の組成およびめっき条
件は、以下の通りである。
First, the process of forming the Ni—Fe alloy electroplated film of the present invention will be described. 1000Å
Formed to a thickness of The reason for using permalloy is
This is because the material is suitable as a material for a thin-film magnetic recording head because its magnetostriction constant is approximately zero and its anisotropic magnetic field is low and its coercive force is low, and its magnetic permeability is high. Next, electroplating is performed in a plating tank to form a plating film. At that time, the composition of the plating bath and the plating conditions are as follows.

【0017】[めっき浴組成] 硫酸ニッケル 90g/l(リットル) 硫酸第一鉄 10g/l ホウ酸 25g/l サッカリン 1.5g/l ラウリル硫酸ナトリウム 0.1g/l ここで、ホウ酸はpH緩衝剤,サッカリンは応力緩和
剤,ラウリル硫酸ナトリウムは界面活性剤として使用す
る。
[Plating bath composition] Nickel sulfate 90 g / l (liter) Ferrous sulfate 10 g / l Boric acid 25 g / l Saccharin 1.5 g / l Sodium lauryl sulfate 0.1 g / l Here, boric acid is pH buffered Saccharin is used as a stress relieving agent, and sodium lauryl sulfate is used as a surfactant.

【0018】[めっき条件] 電流密度 3.5mA/cm2 (ON/OFF=2/1
秒パルス) 通電時間 60分間 電流密度は、従来の方法と比較して、小さくしている
が、これは、電流密度を大きくするにつれて、全重量に
対するFeの重量の比が大きくなり、結晶構造が、(1
00)配向から(111)配向となるからである。
[Plating conditions] Current density 3.5 mA / cm 2 (ON / OFF = 2/1
The current density is reduced compared to the conventional method. However, as the current density increases, the ratio of the weight of Fe to the total weight increases, and the crystal structure is reduced. , (1
This is because the orientation changes from the (00) orientation to the (111) orientation.

【0019】実際に、このNi−Fe合金電気めっき膜
を分析した結果、NiおよびFeの合計重量に対するF
eの重量比は55%であり、膜厚は2μmであった。ま
た、Ni−Fe合金電気めっき膜について、結晶構造を
X線回折装置により調査した。その結果、形成されたN
i−Fe合金電気めっき膜は、(111)配向のピーク
強度I2 (X線ビームのピーク強度を示す。以下同様)
=552cps(サイクル/秒)に対し、(100)配
向のピーク強度I2 =580cpsとなり、ピーク強度
比I2 /I1 =105%となった。(100)配向と
(111)配向がランダムに配列したランダム配向時に
おけるピーク強度比I2 /I1 =80%なので、このN
i−Fe合金電気めっき膜の結晶構造は、(100)配
向であることが確認できた。さらに、この試料のNi−
Fe合金電気めっき膜の飽和磁歪値を飽和磁歪測定器に
より測定したところ、2.5×10-6であり、6.6×
10 -6以下であった。
Actually, the Ni—Fe alloy electroplated film
As a result of analysis, F was calculated based on the total weight of Ni and Fe.
The weight ratio of e was 55%, and the film thickness was 2 μm. Ma
The crystal structure of the Ni—Fe alloy electroplated film was
Investigation was performed using an X-ray diffractometer. As a result, the formed N
The i-Fe alloy electroplated film has a peak of (111) orientation.
Strength ITwo (Shows the peak intensity of the X-ray beam. The same applies hereinafter.)
= 552 cps (cycles / sec), (100) distribution
Direction peak intensity ITwo = 580 cps, peak intensity
Ratio ITwo / I1 = 105%. (100) orientation
At the time of random orientation in which (111) orientation is randomly arranged
Peak intensity ratio ITwo / I1 = 80%, so this N
The crystal structure of the i-Fe alloy electroplated film is (100)
Direction was confirmed. Further, the Ni-
Saturation magnetostriction value of Fe alloy electroplated film to saturation magnetostriction measuring instrument
2.5 × 10-6And 6.6 ×
10 -6It was below.

【0020】上述した実施例では、電流密度3.5mA
/cm2 で行ったが、さらに、電流密度を変えて実験を
行い、その結晶構造をX線回折装置により調査してピー
ク強度比を求めて、電流密度とピーク強度比との関係を
示したものが図1である。従って、図1は、本発明によ
るNi−Fe合金電気めっき膜を形成するときの電流密
度と、形成されためっき膜のピーク強度比との関係を示
すグラフである。図中、電流密度(mA/cm2 )を横
軸で示し、(100)配向のピーク強度をI1,(11
1)配向のピーク強度をI2 としたとき、その強度比I
2 /I1 を%で示したものを縦軸に示している。そし
て、ランダム配向時の強度比I2 /I1 が80%である
ので、80%以上を(100)配向、80%以下を(1
11)配向とする。曲線は、曲線1の(100)配向領
域から、境界点2を通過して、曲線3の(111)配向
領域に移っている。
In the above embodiment, the current density was 3.5 mA.
/ Cm 2 , but the experiment was further performed by changing the current density, and the crystal structure was examined with an X-ray diffractometer to determine the peak intensity ratio, and the relationship between the current density and the peak intensity ratio was shown. This is shown in FIG. Therefore, FIG. 1 is a graph showing the relationship between the current density when forming the Ni—Fe alloy electroplated film according to the present invention and the peak intensity ratio of the formed plated film. In the figure, the current density (mA / cm 2 ) is shown on the horizontal axis, and the peak intensity of the (100) orientation is represented by I 1, (11).
1) When the peak intensity of the orientation is I 2 , the intensity ratio I
2 / I 1 in% is shown on the vertical axis. Since the intensity ratio I 2 / I 1 at the time of random orientation is 80%, 80% or more is (100) orientation and 80% or less is (1).
11) Orientation. The curve moves from the (100) orientation region of curve 1 through boundary point 2 to the (111) orientation region of curve 3.

【0021】図1のデータによると、45Ni−Fe合
金の電気めっき膜の結晶構造は、電流密度により変化し
て、電流密度5.0mA以下の範囲では(100)配向
となっている。一方、電流密度5.0mA/cm2 以上
の範囲では(111)配向となっている。この結果、電
流密度は、5.0mA/cm2 以下でなくてはならな
い。しかし、電流密度1.0mA/cm2 以下の範囲で
は、Ni−Fe合金の電気めっき膜の成膜に要する時間
が、非常に長くなり量産には適さない。従って、電流密
度の範囲は、1.0mA/cm2 〜5.0mA/cm2
が最適であるという結果となった。
According to the data shown in FIG. 1, the crystal structure of the electroplated film of the 45Ni—Fe alloy changes according to the current density, and has a (100) orientation in the range of the current density of 5.0 mA or less. On the other hand, when the current density is in the range of 5.0 mA / cm 2 or more, the orientation is (111). As a result, the current density must be less than 5.0 mA / cm 2 . However, when the current density is 1.0 mA / cm 2 or less, the time required for forming the Ni—Fe alloy electroplated film becomes extremely long, which is not suitable for mass production. Therefore, the range of the current density is 1.0 mA / cm 2 to 5.0 mA / cm 2.
Was optimal.

【0022】次に、電流密度を変化させて形成しためっ
き膜の飽和磁歪値を測定した結果、図2のような電流密
度と飽和磁歪値との関係を示すグラフができた。図2に
よると、電流密度5.0mA/cm2 以下の範囲では、
飽和磁歪値が6.6×10-6以下となっている。一方、
電流密度5.0mA以上の範囲では、6.6×10-6
上である。
Next, as a result of measuring the saturation magnetostriction value of the plating film formed by changing the current density, a graph showing the relationship between the current density and the saturation magnetostriction value as shown in FIG. 2 was obtained. According to FIG. 2, in the range of the current density of 5.0 mA / cm 2 or less,
The saturation magnetostriction value is 6.6 × 10 −6 or less. on the other hand,
When the current density is 5.0 mA or more, the current density is 6.6 × 10 -6 or more.

【0023】この磁歪値は、磁化に伴う、強磁性体の長
さの変化、より一般的には、強磁性体のひずみがその磁
化の方向と大きさに依存するもので、これが大きくなる
原因は、結晶磁気異方性エネルギーが結晶格子の歪みに
依存することによる。結晶の変形(例えばのび)に伴う
異方性エネルギーの低下が弾性エネルギーの増加よりも
大きいと、歪んだ状態の方が優先的に実現する。ニッケ
ルの場合、磁化に平行な方向の格子間隔が垂直なそれよ
りも大きい。従って、軟磁性材料では、格子のひずみに
よって生じる磁気異方性を小さくするために、磁歪値を
なるべく小さくしなければならない。
The magnetostriction value is a change in the length of the ferromagnetic material due to magnetization, more generally, the strain of the ferromagnetic material depends on the direction and magnitude of the magnetization. Is due to the fact that the magnetocrystalline anisotropic energy depends on the distortion of the crystal lattice. If the decrease in anisotropic energy due to crystal deformation (e.g., growth) is greater than the increase in elastic energy, the distorted state is realized preferentially. In the case of nickel, the lattice spacing in the direction parallel to the magnetization is larger than that in the perpendicular direction. Therefore, in a soft magnetic material, the magnetostriction value must be reduced as much as possible in order to reduce magnetic anisotropy caused by lattice distortion.

【0024】以上の結果によって、Ni−Fe合金電気
めっき膜において、結晶構造が(100)配向、飽和磁
歪値が6.6×10-6以下のものを形成するためには、
電流密度が、5.0mA/cm2 以下の範囲であること
が解った。そして、時間的,経済的な面から、電流密度
1.0mA/cm2 が電流密度の下限となる。このよう
にして形成した結晶構造が(100)配向、飽和磁歪値
が6.6×10-6以下のNi−Fe合金電気めっき膜
は、磁気特性に優れ、磁気記録ヘッドの材料として適し
ている。
From the above results, in order to form a Ni—Fe alloy electroplated film having a crystal structure of (100) orientation and a saturation magnetostriction value of 6.6 × 10 −6 or less,
It was found that the current density was in the range of 5.0 mA / cm 2 or less. In terms of time and economy, the lower limit of the current density is 1.0 mA / cm 2 . The thus formed Ni—Fe alloy electroplated film having a crystal structure of (100) orientation and a saturation magnetostriction value of 6.6 × 10 −6 or less has excellent magnetic properties and is suitable as a material for a magnetic recording head. .

【0025】[0025]

【発明の効果】本発明のNi−Fe合金電気めっき方法
で形成されるNi−Fe合金電気めっき膜の結晶構造
は、(100)配向となる。従って、飽和磁歪値が充分
小さいNi−Fe合金電気めっき膜形成方法およびNi
−Fe合金電気めっき膜を提供することができる。
The crystal structure of the Ni—Fe alloy electroplated film formed by the Ni—Fe alloy electroplating method of the present invention has a (100) orientation. Therefore, the method for forming the Ni—Fe alloy electroplated film having a sufficiently small saturation magnetostriction value and the Ni
-It is possible to provide an Fe alloy electroplated film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のNi−Fe合金電気めっき方法におけ
る、電流密度と、形成されたNi−Fe合金電気めっき
膜のピーク強度比との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a current density and a peak intensity ratio of a formed Ni—Fe alloy electroplated film in a Ni—Fe alloy electroplating method of the present invention.

【図2】本発明のNi−Fe合金電気めっき方法におけ
る、電流密度と、形成されたNi−Fe合金電気めっき
膜の飽和磁歪値との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a current density and a saturation magnetostriction value of a formed Ni—Fe alloy electroplated film in the Ni—Fe alloy electroplating method of the present invention.

【符号の説明】[Explanation of symbols]

1 (100)配向領域 2 境界点 3 (111)配向領域 4 (100)配向領域 5 境界点 6 (111)配向領域 Reference Signs List 1 (100) orientation region 2 Boundary point 3 (111) orientation region 4 (100) orientation region 5 Boundary point 6 (111) orientation region

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】NiイオンおよびFeイオンを含むめっき
浴中に、基板を浸漬して、一定の電流密度で電気分解を
行うことによって、前記基板上にめっきを行う、Ni−
Fe合金電気めっき方法において、 前記電流密度を、1.0〜5.0mA/cm2 (ON/
OFF=2/1秒パルス)として、前記電気分解を行う
ことによって、その結晶構造が(100)配向となるN
i−Fe合金電気めっき膜を形成する、Ni−Fe合金
電気めっき方法。
1. A plating method comprising the steps of: immersing a substrate in a plating bath containing Ni ions and Fe ions to perform electrolysis at a constant current density to perform plating on the substrate;
In the Fe alloy electroplating method, the current density may be 1.0 to 5.0 mA / cm 2 (ON /
OFF = 2/1 second pulse), and the above-mentioned electrolysis is performed, whereby the crystal structure becomes (100) oriented N
An Ni-Fe alloy electroplating method for forming an i-Fe alloy electroplated film.
【請求項2】前記Ni−Fe合金電気めっき膜におい
て、Ni−Feの合計重量に対するFeの重量の比が、
55±1%であることを特徴とする、請求項1に記載の
Ni−Fe合金電気めっき方法。
2. The Ni—Fe alloy electroplated film according to claim 1, wherein the ratio of the weight of Fe to the total weight of Ni—Fe is:
The Ni-Fe alloy electroplating method according to claim 1, wherein the content is 55 ± 1%.
【請求項3】前記Ni−Fe合金電気めっき膜の飽和磁
歪値が、6.6×10-6以下であることを特徴とする、
請求項1または2に記載のNi−Fe合金電気めっき方
法。
3. The Ni—Fe alloy electroplated film has a saturation magnetostriction value of 6.6 × 10 −6 or less.
The Ni-Fe alloy electroplating method according to claim 1.
【請求項4】前記Ni−Fe合金電気めっき膜の厚さ
が、1μm〜5μmであることを特徴とする、請求項1
〜3のいずれかに記載のNi−Fe合金電気めっき方
法。
4. The method according to claim 1, wherein the thickness of the Ni—Fe alloy electroplated film is 1 μm to 5 μm.
The Ni-Fe alloy electroplating method according to any one of Items 1 to 3, wherein
【請求項5】前記電流密度が、3.5mA/cm2 であ
ることを特徴とする、請求項1〜4のいずれかに記載の
Ni−Fe合金電気めっき方法。
5. The Ni—Fe alloy electroplating method according to claim 1, wherein said current density is 3.5 mA / cm 2 .
【請求項6】前記めっき浴の組成が、硫酸ニッケル,硫
酸第一鉄,ホウ酸,サッカリン,ラウリル硫酸ナトリウ
ムであることを特徴とする、請求項1〜5のいずれかに
記載のNi−Fe合金電気めっき方法。
6. The Ni-Fe according to claim 1, wherein the composition of the plating bath is nickel sulfate, ferrous sulfate, boric acid, saccharin, and sodium lauryl sulfate. Alloy electroplating method.
【請求項7】NiイオンおよびFeイオンを含むめっき
浴中に、基板を浸漬して、一定の電流密度で電気分解を
行うことによって、前記基板上にめっきされるNi−F
e合金電気めっき膜において、 前記電流密度を、1.0〜5.0mA/cm2 (ON/
OFF=2/1msパルス)として、前記電気分解を行
うことによって、その結晶構造が(100)配向となる
ことを特徴とするNi−Fe合金電気めっき膜。
7. A Ni—F plated on the substrate by immersing the substrate in a plating bath containing Ni ions and Fe ions and performing electrolysis at a constant current density.
In the e-alloy electroplated film, the current density is set to 1.0 to 5.0 mA / cm 2 (ON /
OFF = 2/1 ms pulse), and by performing the electrolysis, the crystal structure of the Ni-Fe alloy electroplated film is (100) oriented.
JP19995496A 1996-07-30 1996-07-30 Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film Expired - Lifetime JP2901549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19995496A JP2901549B2 (en) 1996-07-30 1996-07-30 Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19995496A JP2901549B2 (en) 1996-07-30 1996-07-30 Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film

Publications (2)

Publication Number Publication Date
JPH1046383A true JPH1046383A (en) 1998-02-17
JP2901549B2 JP2901549B2 (en) 1999-06-07

Family

ID=16416370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19995496A Expired - Lifetime JP2901549B2 (en) 1996-07-30 1996-07-30 Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film

Country Status (1)

Country Link
JP (1) JP2901549B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352313B1 (en) * 1999-09-02 2002-09-12 알프스 덴키 가부시키가이샤 Thin film magnetic head and method for fabricating the same
KR100858507B1 (en) 2007-04-02 2008-09-12 충남대학교산학협력단 Preparation method for soft magnetic ni-fe permalloy thin film and soft magnetic ni-fe permalloy thin film using thereof
JP2010150622A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352313B1 (en) * 1999-09-02 2002-09-12 알프스 덴키 가부시키가이샤 Thin film magnetic head and method for fabricating the same
KR100858507B1 (en) 2007-04-02 2008-09-12 충남대학교산학협력단 Preparation method for soft magnetic ni-fe permalloy thin film and soft magnetic ni-fe permalloy thin film using thereof
JP2010150622A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same

Also Published As

Publication number Publication date
JP2901549B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US7333295B1 (en) Magnetic recording head with high saturation magnetic flux density CoNiFe thin film composition
US4242710A (en) Thin film head having negative magnetostriction
US6776891B2 (en) Method of manufacturing an ultra high saturation moment soft magnetic thin film
US4661216A (en) Electrodepositing CoNiFe alloys for thin film heads
JPH0443989B2 (en)
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP5459938B2 (en) Method for controlling magnetic properties of electroplated layer, method for electroplating magnetic layer, method for producing magnetic layer, and method for producing magnetic head
EP0076152A1 (en) Method of producing a continuous thin film magnetic medium
JPH073489A (en) Soft magnetic thin film
JP2901549B2 (en) Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film
Liao Electrodeposition of magnetic materials for thin-film heads
US7267757B2 (en) Magnetic head utilizing a CoNiFe alloy with 60-80 weight percent Fe and method for production therefor
Liu et al. High moment FeCoNi alloy thin films fabricated by pulsed-current electrodeposition
US4990225A (en) Method of manufacturing high magnetic flux density electrodeposited quaternary alloy thin film
US6794063B2 (en) Thin film magnetic head and method of fabricating the head
EP0396227B1 (en) Magnetic devices with enhanced poles
JP3211815B2 (en) Soft magnetic thin film and method for manufacturing the same
US3691032A (en) Permalloy film plated wires having superior nondestructive read-out characteristics and method of forming
EP1821289A2 (en) Soft magnetic thin film, method of producing the same, and magnetic head
US20030085131A1 (en) Electro-deposition of high saturation magnetization Fe-Ni-Co films
US5830587A (en) Magnetic devices with enhanced poles
JP3432667B2 (en) Soft magnetic thin film for high density magnetic recording head
JPS59139138A (en) Magnetic recording medium and its production
Daimon et al. Co-P electrodeposited alumite films with in-plane magnetization
JPH06136589A (en) Iron-nickel alloy plated film and its formation