JP2010126452A - Method for producing hydrogen-containing fluoroolefin compound - Google Patents

Method for producing hydrogen-containing fluoroolefin compound Download PDF

Info

Publication number
JP2010126452A
JP2010126452A JP2008299953A JP2008299953A JP2010126452A JP 2010126452 A JP2010126452 A JP 2010126452A JP 2008299953 A JP2008299953 A JP 2008299953A JP 2008299953 A JP2008299953 A JP 2008299953A JP 2010126452 A JP2010126452 A JP 2010126452A
Authority
JP
Japan
Prior art keywords
trialkylphosphine
reaction
hydrogen
perfluorocycloolefin
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008299953A
Other languages
Japanese (ja)
Other versions
JP5158366B2 (en
Inventor
Tatsuya Sugimoto
達也 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2008299953A priority Critical patent/JP5158366B2/en
Publication of JP2010126452A publication Critical patent/JP2010126452A/en
Application granted granted Critical
Publication of JP5158366B2 publication Critical patent/JP5158366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply substituting one fluorine atom of -CF=CF- group of perfluorocycloolefin with hydrogen under a mild condition. <P>SOLUTION: A hydrogen-containing fluoroolefin compound in which one fluorine atom of a -CF=CF- group is substituted with hydrogen is obtained by bringing a fluorine-containing halogen compound represented by formula (1) (wherein n is an integer of 0-3) into contact with a trialkylphosphine in a water-containing ether-based solvent in a temperature range of -10 to 30°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の製造分野において有用なエッチング、CVD等のプラズマ反応用ガス、含フッ素ポリマーの原料であるモノマー、あるいは、含フッ素医薬中間体、ハイドロフルオロカーボン系溶剤の原料として有用な含水素フルオロオレフィン化合物の製造方法に関する。   The present invention relates to a hydrogen-containing gas useful as a raw material for etching, plasma reaction gas such as CVD, a monomer that is a raw material of a fluorine-containing polymer, a fluorine-containing pharmaceutical intermediate, or a hydrofluorocarbon solvent, which is useful in the field of manufacturing semiconductor devices. The present invention relates to a method for producing a fluoroolefin compound.

C=Cを構成する炭素原子に水素原子を有する、含水素フルオロシクロオレフィン化合物としては炭素数4〜6の化合物が良く知られており、幾つかの製造方法が開示されている。
特許文献1では、オクタフルオロシクロペンテンを貴金属触媒存在下に水素化してオクタフルオロシクロペンタンを得、続いて、アルカリ処理することによりヘプタフルオロシクロペンテンを得ている。
特許文献2では、1−ハロゲノ−または1,2−ジハロゲノ−ヘキサフルオロシクロペンテンと水素ガスを気相において、銅、鉄、クロムまたはニッケルを含む触媒存在下で還元して1−ハロゲノ−ヘキサフルオロシクロペンテンまたは3,3,4,4,5,5−ヘキサフルオロシクロペンテンを製造する方法が開示されている。具体的には、1位や2位に結合するハロゲンとして塩素原子である化合物を還元し、1位に塩素原子を有する化合物又は3,3,4,4,5,5−ヘキサフルオロシクロペンテンを得ているだけで、炭素原子とフッ素原子と水素原子とのみからなる1H−ペンタフルオロシクロペンテンを得てはいない。この方法で炭素原子とフッ素原子と水素原子とのみからなる1H−ペンタフルオロシクロペンテンを得るには反応温度を高温にする必要があるが、触媒の耐久性が乏しくなり、連続的に反応を継続することが困難である。
非特許文献1においては、ヘキサフルオロシクロブテンを金属水素化物で処理することにより、ペンタフルオロシクロブテンが得られている。また、非特許文献2においてはジクロロヘキサフルオロシクロブタンを水素化リチウムアルミニウムヒドリドにより還元させて得られるヘキサフルオロシクロブタンをアルカリ処理することによりペンタフルオロシクロブテンを得ている。
また、非特許文献3においては、ヘキサフルオロシクロブテンをエーテル中で、トリフェニルホスフィンと反応させると、ヘキサフルオロシクロブテン−ホスホニウムイリドが生成する旨の記載がなされている。非特許文献4においては、同様にヘキサフルオロシクロブテン−ホスホニウムイリドを生成し、ハロゲン(塩素、臭素、ヨウ素)を反応させると、1,1−ジハロヘキサフルオロシクロブタンが生成するとの記載がなされている。
しかしながら、非特許文献1においては火災等の危険性を伴う金属水素化物を使用しており、工業的製造法とは言い難く、非特許文献2においてもヘキサフルオロシクロブタンをアルカリ処理を行うだけで操作は簡便であるが、原料と目的物であるペンタフルオロシクロブテンとの沸点差がほとんど無いがために精製が極めて困難と言わざるを得ない。
また、非特許文献3、および4においては、ヘキサフルオロシクロブテン−ホスホニウムイリドが生成する旨の記載がなされているが、還元体である水素化物が生成するとの記載はなされていない。
As hydrogen-containing fluorocycloolefin compounds having a hydrogen atom at the carbon atom constituting C = C, compounds having 4 to 6 carbon atoms are well known, and several production methods are disclosed.
In Patent Document 1, octafluorocyclopentene is hydrogenated in the presence of a noble metal catalyst to obtain octafluorocyclopentane, followed by alkali treatment to obtain heptafluorocyclopentene.
In Patent Document 2, 1-halogeno- or 1,2-dihalogeno-hexafluorocyclopentene and hydrogen gas are reduced in the gas phase in the presence of a catalyst containing copper, iron, chromium or nickel to give 1-halogeno-hexafluorocyclopentene. Alternatively, a method for producing 3,3,4,4,5,5-hexafluorocyclopentene is disclosed. Specifically, a compound having a chlorine atom as a halogen bonded to the 1-position or the 2-position is reduced to obtain a compound having a chlorine atom in the 1-position or 3,3,4,4,5,5-hexafluorocyclopentene. However, 1H-pentafluorocyclopentene consisting only of carbon atoms, fluorine atoms and hydrogen atoms has not been obtained. In order to obtain 1H-pentafluorocyclopentene consisting only of carbon atoms, fluorine atoms and hydrogen atoms by this method, it is necessary to increase the reaction temperature, but the durability of the catalyst becomes poor and the reaction is continued continuously. Is difficult.
In Non-Patent Document 1, pentafluorocyclobutene is obtained by treating hexafluorocyclobutene with a metal hydride. In Non-Patent Document 2, pentafluorocyclobutene is obtained by alkali treatment of hexafluorocyclobutane obtained by reducing dichlorohexafluorocyclobutane with lithium aluminum hydride.
Non-Patent Document 3 describes that hexafluorocyclobutene-phosphonium ylide is produced when hexafluorocyclobutene is reacted with triphenylphosphine in ether. Non-patent document 4 describes that 1,1-dihalohexafluorocyclobutane is produced when hexafluorocyclobutene-phosphonium ylide is similarly produced and reacted with halogen (chlorine, bromine, iodine). Yes.
However, Non-Patent Document 1 uses a metal hydride with a risk of fire and the like, and it is difficult to say that it is an industrial production method. Is simple, but since there is almost no difference in boiling point between the raw material and the target product, pentafluorocyclobutene, it must be said that purification is extremely difficult.
Non-patent documents 3 and 4 describe that hexafluorocyclobutene-phosphonium ylide is produced, but do not describe that a hydride that is a reductant is produced.

特開平11−292807号公報JP 11-292807 A 特開2000−86548号公報JP 2000-86548 A Journal of Chemical Society,3198(1961)Journal of Chemical Society, 3198 (1961) Journal of Chemical Society,1177(1954)Journal of Chemical Society, 1177 (1954) Journal of Organic Chemistry、Vol.33、4395(1968)Journal of Organic Chemistry, Vol. 33, 4395 (1968) Journal of Fluorine Chemistry、Vol.18、413(1981)Journal of Fluorine Chemistry, Vol. 18, 413 (1981)

本発明者は、上記の状況を踏まえ、パーフルオロシクロオレフィンから1H−ポリフルオロシクロアルケンを製造するにあたり、危険な反応試剤を用いることなく、短工程で、且つ、温和な条件下での製造を可能にする方法の開発に迫られた。そこで、本発明者は非特許文献3や4に記載されているヘキサフルオロシクロブテン−ホスホニウムイリドから、1H−ポリフルオロシクロアルケンを得ることを検討した。しかしながら、へキサフルオロシクロブテン−ホスホニウムイリドは単離できるほど安定性が高く、温和な条件下で1H−ポリフルオロシクロアルケンを得ることが困難であることを確認した。かかる知見に基づき、本発明者は、更なる検討をした結果、トリフェニルホスフィンのような芳香族置換のホスフィン以外のトリアルキルホスフィンを選択してやることで、生成すると考えられるパーフルオロシクロアルケンのトリアルキルホスフィン付加体の反応性を高くすることができると推定した。そして、含水溶媒中、特定の温度範囲であればパーフルオロシクロアルケンのトリアルキルホスフィン付加体の形成が円滑に進行し、これが系内の水と反応して含水素ポリフルオロシクロアルケンとなることを見出し、本発明を完成させるに至った。この方法によれば、ワンポットで含水素ポリフルオロシクロアルケンが製造可能となるため、生産性に優れる利点がある。   Based on the above situation, the present inventor, in the production of 1H-polyfluorocycloalkene from perfluorocycloolefin, can be produced in a short process and under mild conditions without using a dangerous reaction reagent. We were forced to develop a method to make it possible. Then, this inventor examined obtaining 1H-polyfluoro cycloalkene from the hexafluoro cyclobutene phosphonium ylide described in the nonpatent literatures 3 and 4. FIG. However, it was confirmed that hexafluorocyclobutene-phosphonium ylide is so stable that it can be isolated, and it is difficult to obtain 1H-polyfluorocycloalkene under mild conditions. Based on this finding, the present inventors have made further studies, and as a result, selected trialkylphosphine other than aromatic-substituted phosphine such as triphenylphosphine to produce perfluorocycloalkene trialkyl. It was estimated that the reactivity of the phosphine adduct could be increased. Then, the formation of a trialkylphosphine adduct of perfluorocycloalkene smoothly proceeds in a water-containing solvent within a specific temperature range, and this reacts with water in the system to form a hydrogen-containing polyfluorocycloalkene. The headline and the present invention have been completed. According to this method, since the hydrogen-containing polyfluorocycloalkene can be produced in one pot, there is an advantage of excellent productivity.

本発明によれば、式(1)で示される含フッ素ハロゲン化合物をトリアルキルホスフィンと含水エーテル系溶媒下に、−10〜30℃の温度範囲で接触させて、式(2)で示される含水素フルオロシクロオレフィン化合物を得る製造方法が提供される。

Figure 2010126452
ただし、式(1)中、nは0〜3の整数である。
Figure 2010126452
ただし、式(2)中、nは0〜3の整数である。
本発明において、前記トリアルキルホスフィンがトリ−n−ブチルホスフィンであることが好ましい。
また本発明において、前記式(2)で表される化合物が1,3,3,4,4−ペンタフルオロシクロブテン又は1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンであることが好ましい。 According to the present invention, the fluorine-containing halogen compound represented by the formula (1) is brought into contact with a trialkylphosphine and a water-containing ether solvent in a temperature range of −10 to 30 ° C. A production method for obtaining a hydrogen fluorocycloolefin compound is provided.
Figure 2010126452
However, in Formula (1), n is an integer of 0-3.
Figure 2010126452
However, in Formula (2), n is an integer of 0-3.
In the present invention, the trialkylphosphine is preferably tri-n-butylphosphine.
In the present invention, the compound represented by the formula (2) is 1,3,3,4,4-pentafluorocyclobutene or 1,3,3,4,4,5,5-heptafluorocyclopentene. It is preferable.

本発明の製造方法は、前記式(1)で示されるパーフルオロシクロオレフィンをトリアルキルホスフィンと含水エーテル系溶媒存在下に、−10〜30℃の温度範囲で接触させて、前記式(2)で示される含水素フルオロシクロオレフィンを一工程で製造するものである。反応は、パーフルオロシクロオレフィンとトリアルキルホスフィンの付加物(イリド体:CF=CP、もしくはホスホラン体:CF=CPF(R):Rはアルキル基)がまず生成し、次いで、系中に存在する微量の水の作用により、付加物が加水分解されて水素に置換されるものと考えられる。 In the production method of the present invention, the perfluorocycloolefin represented by the formula (1) is contacted in the presence of a trialkylphosphine and a hydrous ether solvent in a temperature range of −10 to 30 ° C., and the formula (2) The hydrogen-containing fluorocycloolefin shown by these is manufactured in one process. The reaction is perfluoro cyclo olefin adduct of trialkylphosphine (ylide body: CF = CP + R 3, or phosphorane body: CF = CPF (R 3) : R is an alkyl group) is first generated and then It is considered that the adduct is hydrolyzed and replaced with hydrogen by the action of a small amount of water present in the system.

原料として用いるパーフルオロシクロオレフィンは、前記式(1)に示すように、炭素数が3〜6のパーフルオロシクロオレフィン化合物が使用される。具体的には、パーフルオロシクロプロペン、パーフルオロシクロブテン、パーフルオロシクロペンテン、パーフルオロシクロヘキセンが挙げられる。これらの中でも、パーフルオロシクロペンテンがより好ましい。   As the perfluorocycloolefin used as a raw material, a perfluorocycloolefin compound having 3 to 6 carbon atoms is used as shown in the formula (1). Specific examples include perfluorocyclopropene, perfluorocyclobutene, perfluorocyclopentene, and perfluorocyclohexene. Among these, perfluorocyclopentene is more preferable.

本発明で使用されるパーフルオロシクロオレフィンは公知の方法で製造することができる。例えば、ヘキサフルオロシクロブテンの製造方法としては、Journal of Chemical Society,1952,3830や、特開平7−112944号公報に記載の方法が知られている。いずれの方法もフッ素樹脂のモノマーとして工業的に使用されている、クロロトリフルオロエチレンを原料にして2量化して1,2−ジクロロヘキサフルオロシクロブタンを合成し、前者は亜鉛によって、後者は金属触媒存在下に水素還元を行うことにより脱塩素化し、ヘキサフルオロシクロブテンに導かれる。   The perfluorocycloolefin used in the present invention can be produced by a known method. For example, as a method for producing hexafluorocyclobutene, methods described in Journal of Chemical Society, 1952, 3830 and JP-A-7-112944 are known. Both methods are industrially used as monomers for fluororesins, and dimerize chlorotrifluoroethylene as a raw material to synthesize 1,2-dichlorohexafluorocyclobutane. The former is zinc and the latter is a metal catalyst. It is dechlorinated by carrying out hydrogen reduction in the presence and led to hexafluorocyclobutene.

オクタフルオロシクロペンテンは、J.Org.Chem.,vol.28,112(1963)に記載の方法によれば、オクタクロロシクロペンテンを非プロトン性極性溶媒中、フッ化カリウムなどの金属フルオリドによりフッ素化することで得られる。また、WO98/43233号公報に記載の方法によれば、オクタクロロシクロペンテンを触媒存在下、フッ化水素でフッ素化して1,2−ジクロロヘキサフルオロシクロペンテンに導き、さらに、前述と同様にフッ化カリウムを反応させることによっても製造することができる。   Octafluorocyclopentene is described in J. Org. Org. Chem. , Vol. 28, 112 (1963), it can be obtained by fluorinating octachlorocyclopentene with a metal fluoride such as potassium fluoride in an aprotic polar solvent. Further, according to the method described in WO98 / 43333, octachlorocyclopentene is fluorinated with hydrogen fluoride in the presence of a catalyst to lead to 1,2-dichlorohexafluorocyclopentene. Can also be produced by reacting.

デカフルオロシクロヘキセンは、J.Org.Chem.,vol.28,112(1963)に記載の方法によれば、1,2−ジクロロオクタフルオロシクロヘキセンを非プロトン性極性溶媒中、フッ化カリウムなどの金属フルオリドによりフッ素化することで得られる。   Decafluorocyclohexene is described in J. Org. Org. Chem. , Vol. 28, 112 (1963), it can be obtained by fluorinating 1,2-dichlorooctafluorocyclohexene with a metal fluoride such as potassium fluoride in an aprotic polar solvent.

本発明において得られる含水素フルオロオレフィン化合物は式(2)に示されるように、オレフィン部位に水素を持つ化合物である。その具体例としては、1、3,3−トリフルオロシクロプロペン、1,3,3,4,4−ペンタフルオロシクロブテン、1,3,3,4,4,5,5−ヘプタフルオロシクロペンテン、1,3,3,4,4,5,5,6,6−ノナフルオロシクロへキセンが挙げられ、これらの中でも、1,3,3,4,4−ペンタフルオロシクロブテン、1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンがより好ましい。   The hydrogen-containing fluoroolefin compound obtained in the present invention is a compound having hydrogen at the olefin moiety as shown in the formula (2). Specific examples thereof include 1,3,3-trifluorocyclopropene, 1,3,3,4,4-pentafluorocyclobutene, 1,3,3,4,4,5,5-heptafluorocyclopentene, 1,3,3,4,4,5,5,6,6-nonafluorocyclohexene, among which 1,3,3,4,4-pentafluorocyclobutene, 1,3, More preferred is 3,4,4,5,5-heptafluorocyclopentene.

本発明で用いるトリアルキルホスフィンは、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリ−t−ブチルホスフィン、ジ−t−ブチルメチルホスフィン、t−ブチルジイソプロピルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィンなどが挙げられる。これらの中でも、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリ−t−ブチルホスフィン、ジ−t−ブチルメチルホスフィン、t−ブチルジイソプロピルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィンが好ましく、ビニル位炭素への求核性の高いトリ−n−ブチルホスフィンがより好ましい。
これらトリアルキルホスフィンの添加量は原料に用いるパーフルオロシクロアルケン対して1〜5モル当量、1.2〜2モル当量がより好ましい。
The trialkylphosphine used in the present invention is trimethylphosphine, triethylphosphine, tripropylphosphine, triisopropylphosphine, tri-n-butylphosphine, tri-t-butylphosphine, di-t-butylmethylphosphine, t-butyldiisopropylphosphine. , Trihexylphosphine, tricyclohexylphosphine, trioctylphosphine and the like. Among these, triisopropylphosphine, tri-n-butylphosphine, tri-t-butylphosphine, di-t-butylmethylphosphine, t-butyldiisopropylphosphine, trihexylphosphine, and trioctylphosphine are preferable. The highly nucleophilic tri-n-butylphosphine is more preferable.
The addition amount of these trialkylphosphines is more preferably 1 to 5 molar equivalents and 1.2 to 2 molar equivalents with respect to the perfluorocycloalkene used as a raw material.

これらのトリアルキルホスフィンは市販品を使用することが可能であるが、空気との接触により酸化され、一部がトリアルキルホスフィンオキシドに変化している場合がある。このトリアルキルホスフィンオキシドを除去するために、使用前に蒸留精製したものを用いる方が望ましい。   Commercially available products of these trialkylphosphines can be used, but they may be oxidized by contact with air and partially converted to trialkylphosphine oxides. In order to remove this trialkylphosphine oxide, it is desirable to use one that has been purified by distillation before use.

原料として用いるパーフルオロシクロオレフィンとトリアルキルホスフィンは通常、溶媒を介して接触させる。溶媒としてはパーフルオロシクロオレフィンとトリアルキルホスフィンの両方を溶解させることのできるエーテル系溶媒が用いられる。具体的には、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチル−t−ブチルエーテル、エチル−t−ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテルなどの炭化水素系エーテル、メチル−ノナフルオロブタンエーテル、エチル−ノナフルオロブタンエーテル、1,1,2,2−テトラフルオロエチル―2’,2’,2’―トリフルオロエチルエーテル、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−トリフルオロメチルペンタンなどのフッ素系エーテルが挙げられる。これらの中でも、さらに、水を任意の割合で溶解することの可能な、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルがより好ましい。   The perfluorocycloolefin and trialkylphosphine used as raw materials are usually contacted via a solvent. As the solvent, an ether solvent capable of dissolving both perfluorocycloolefin and trialkylphosphine is used. Specifically, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl t-butyl ether, ethyl t-butyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, Hydrocarbon ethers such as triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, methyl-nonafluorobutane ether, ethyl-nonafluorobutane ether, 1,1,2,2-tetrafluoroethyl -2 ', 2', 2'-trifluoroethyl ether, 1,1 1,2,2,3,4,5,5,5- fluorine-based ethers such as deca-fluoro-3-methoxy-4-trifluoromethyl-pentane and the like. Among these, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether that can dissolve water at an arbitrary ratio are more preferable.

溶媒の使用量は原料となるパーフルオロシクロオレフィンとトリアルキルホスフィンの両方を溶解させることが必要なため、パーフルオロシクロオレフィンに対して重量比で通常1倍〜5倍、好ましくは1.5〜5倍、より好ましくは2〜3倍の量を使用することが好ましい。   Since the amount of the solvent used needs to dissolve both the perfluorocycloolefin and trialkylphosphine as raw materials, it is usually 1 to 5 times, preferably 1.5 to 5 by weight with respect to the perfluorocycloolefin. It is preferable to use an amount 5 times, more preferably 2 to 3 times.

上記溶媒は通常、空気、特に、酸素を取り込んでいるため、トリアルキルホスフィンと混合された際に、溶解している酸素により、トリアルキルホスフィンオキシドに酸化され、実質、有効なトリアルキルホスフィンの量が減少する可能性がある。そこで、溶媒中の空気、特に、酸素を取り除くために、トリアルキルホスフィンを添加する前に、窒素やアルゴンのような不活性ガスをバブリングさせて酸素を追い出しても良い。   The solvent usually incorporates air, particularly oxygen, so when mixed with a trialkylphosphine, it is oxidized to trialkylphosphine oxide by dissolved oxygen, resulting in a substantially effective amount of trialkylphosphine. May decrease. Therefore, in order to remove air, particularly oxygen in the solvent, before adding the trialkylphosphine, an inert gas such as nitrogen or argon may be bubbled to expel oxygen.

パーフルオロシクロオレフィンとトリアルキルホスフィンを接触させる際の温度は、−10〜30℃、好ましくは−5〜30℃である。反応温度が低すぎるとパーフルオロシクロオレフィンとトリアルキルホスフィンとの反応で生じると考えられる、パーフルオロシクロオレフィンのトリアルキルホスフィン付加体が生成し難くなるので、反応が進行しないか、もしくは反応完結までに多大な時間を要する。一方、反応温度が高すぎると反応が急激に進行して安全上好ましくない。   The temperature at the time of contacting the perfluorocycloolefin and the trialkylphosphine is −10 to 30 ° C., preferably −5 to 30 ° C. If the reaction temperature is too low, it becomes difficult to produce a trialkylphosphine adduct of perfluorocycloolefin, which is thought to be generated by the reaction of perfluorocycloolefin and trialkylphosphine, so the reaction does not proceed or until the reaction is completed Takes a lot of time. On the other hand, if the reaction temperature is too high, the reaction proceeds rapidly, which is not preferable for safety.

パーフルオロシクロオレフィンのトリアルキルホスフィン付加体の加水分解には、溶媒中に含まれる水が作用する。その水分含有量は、通常、エーテル系溶媒に対して、重量比で通常0.1〜15%、好ましくは0.5〜10%である。水の含有量が少ないとパーフルオロシクロオレフィンのトリアルキルホスフィン付加体の加水分解が未完結になり、水分量が多すぎると原料のパーフルオロシクロオレフィンの溶媒への溶解が不十分となり反応が進行しにくくなる。また、溶媒中の水分は理論上、パーフルオロシクロオレフィンのトリアルキルホスフィン付加体の加水分解に使用されて溶媒中の含有量は徐々に減少していくが、溶媒と接触している大気中から水分が取り込まれ、反応に関わっているものと推測される。特に、吸湿性の高い溶媒は水分を取り込み易いために、反応が進行し易い。   Water contained in the solvent acts on the hydrolysis of the trialkylphosphine adduct of perfluorocycloolefin. The water content is usually 0.1 to 15%, preferably 0.5 to 10% by weight with respect to the ether solvent. If the water content is low, hydrolysis of the trialkylphosphine adduct of perfluorocycloolefin is incomplete, and if the water content is too high, the raw perfluorocycloolefin is not sufficiently dissolved in the solvent and the reaction proceeds. It becomes difficult to do. In addition, the water in the solvent is theoretically used for hydrolysis of the trialkylphosphine adduct of perfluorocycloolefin, and the content in the solvent gradually decreases, but from the atmosphere in contact with the solvent. It is assumed that water is taken in and is involved in the reaction. In particular, a solvent having a high hygroscopic property easily takes in moisture, so that the reaction easily proceeds.

溶媒中の水は、パーフルオロシクロオレフィンとトリアルキルホスフィンとの反応開始時から含まれていても良いし、反応の途中で添加しても良いが、生産性の観点から反応開始時に含まれているのが好ましい。
反応開始時から溶媒中に水分を含有させる場合、パーフルオロシクロオレフィンのトリアルキルホスフィン付加体の加水分解を完全に行うために、パーフルオロシクロオレフィンの消費がほぼ停止した状態で、反応系に水を更に添加しても構わない。この操作を行うことで、目的とする1H−パーフルオロシクロオレフィンの収率向上に寄与する。
Water in the solvent may be included from the start of the reaction between the perfluorocycloolefin and the trialkylphosphine, or may be added during the reaction, but is included at the start of the reaction from the viewpoint of productivity. It is preferable.
When water is contained in the solvent from the beginning of the reaction, in order to completely hydrolyze the trialkylphosphine adduct of perfluorocycloolefin, water consumption in the reaction system is almost stopped. May be further added. By performing this operation, it contributes to the yield improvement of the target 1H-perfluorocycloolefin.

反応はガラス製の反応器を用いることができるが、原料に使用するパーフルオロオレフィンの沸点が低い場合には、反応系外へのロスを防止する観点から、オートクレーブのような密閉式の反応器を用いる方が好ましい。   Although a glass reactor can be used for the reaction, when the boiling point of the perfluoroolefin used as a raw material is low, a closed reactor such as an autoclave is used from the viewpoint of preventing loss to the outside of the reaction system. Is preferred.

反応後の処理は特別な方法を用いる必要はなく、通常の方法を採用することができる。目的とする含水素フルオロシクロオレフィンは沸点が100℃以下であるため、反応液を直接減圧し、冷媒等で冷やしたトラップ等に回収しても良いし、有機溶媒を用いて、反応として用いたエーテル溶媒から抽出し、水洗浄、乾燥工程を経て回収することもできる。また、反応器にカラムを付した蒸留装置を直接取り付けて、蒸留を行ってもよい。回収した生成物はさらに純度を高めるために蒸留に付しても構わない。   The treatment after the reaction is not required to use a special method, and a usual method can be adopted. Since the target hydrogen-containing fluorocycloolefin has a boiling point of 100 ° C. or lower, the reaction solution may be directly depressurized and recovered in a trap cooled with a refrigerant or the like, or used as a reaction using an organic solvent. It can be extracted from an ether solvent and recovered through a water washing and drying process. Alternatively, distillation may be performed by directly attaching a distillation apparatus with a column attached to the reactor. The recovered product may be subjected to distillation in order to further increase the purity.

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。なお、特に断りがない限り、「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited the range by the following Examples. Unless otherwise specified, “parts” and “%” represent “parts by weight” and “% by weight”, respectively.

以下において採用した分析条件は下記の通りである。
(1)ガスクロマトグラフィー分析(GC分析)
装置:G−5000(日立製作所社製)
カラム:TC−1(60m×I.D0.25μm、1.0μmdf) (GLサイエンス社製)
昇温プログラム:(1)50℃で10分保持し、次いで(2)20℃/分で昇温した後、(3)250℃で10分保持する。
インジェクション温度:200℃
キャリヤーガス:窒素ガス
検出器:FID
The analysis conditions adopted below are as follows.
(1) Gas chromatography analysis (GC analysis)
Apparatus: G-5000 (manufactured by Hitachi, Ltd.)
Column: TC-1 (60 m × ID 0.25 μm, 1.0 μmdf) (manufactured by GL Sciences)
Temperature rise program: (1) Hold at 50 ° C. for 10 minutes, then (2) heat up at 20 ° C./minute, and (3) hold at 250 ° C. for 10 minutes.
Injection temperature: 200 ° C
Carrier gas: Nitrogen gas detector: FID

(2)ガスクロマトグラフ質量分析(GC−MS分析)
装置:アジレント社製ガスクロマトグラフ質量分析計「HP6890」
カラム:アジレントHP−1(長さ60m、内径250μm、膜厚1μm)
昇温プログラム:(1)40℃で10分保持し、次いで(2)20℃/分で昇温した後、(3)240℃で10分保持する。
インジェクション温度:150℃
ディテクター温度:150℃
キャリヤーガス:ヘリウムガス(282mL/分)
スプリット比:170/1
MS部分:アジレント5973ネットワーク(アジレント社製)
検出器:EI型(加速電圧:70eV)
(2) Gas chromatograph mass spectrometry (GC-MS analysis)
Apparatus: Gas chromatograph mass spectrometer “HP6890” manufactured by Agilent
Column: Agilent HP-1 (length 60 m, inner diameter 250 μm, film thickness 1 μm)
Temperature rise program: (1) Hold at 40 ° C. for 10 minutes, then (2) heat up at 20 ° C./minute, and (3) hold at 240 ° C. for 10 minutes.
Injection temperature: 150 ° C
Detector temperature: 150 ° C
Carrier gas: helium gas (282 mL / min)
Split ratio: 170/1
MS part: Agilent 5973 network (manufactured by Agilent)
Detector: EI type (acceleration voltage: 70 eV)

(3)NMR分析
装置:日本電子社製核磁気共鳴装置「JNM−ECA400型」
(3) NMR analyzer: JEOL nuclear magnetic resonance apparatus “JNM-ECA400”

[実施例1] 1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンの合成
攪拌機、滴下ロートを付したガラス製反応器にオクタフルオロシクロペンテン 42部、約5重量%の水分を含むエチレングリコールジメチルエーテル87部を仕込み、反応器をドライアイス−エタノール浴に浸して−10℃に冷却した。滴下ロートより、トリ−n−ブチルホスフィン45部を10分間かけて滴下し、−10℃で30分間攪拌を継続した後、ドライアイス−エタノール浴を取り去り、室温で8時間攪拌した。反応液をガスクロマトグラフィーにて分析した結果、原料であるオクタフルオロシクロペンテンの消失を確認した。反応器にドライアイス−エタノール浴に浸したガラス製トラップをつなぎ、真空ポンプにて系内を減圧した。約30分後、系内を常圧に戻し、トラップ内に捕集された液体を分析したところ、目的物である、1,3,3,4,4,5,5−ヘプタフルオロシクロペンテン28部(収率72%)が得られた。

1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンのスペクトルデータ
19F−NMR(CFCl,CDCl):δ−107.8(s,2F),−120.4(s,2F),−125.0(m,2F),−130.5(s,1F),H−NMR(TMS,CDCl):δ5.95(m、1H)
GC−MS(EI−MS):m/z 194,173,144
Example 1 Synthesis of 1,3,3,4,4,5,5-heptafluorocyclopentene A glass reactor equipped with a stirrer and a dropping funnel contains 42 parts of octafluorocyclopentene and contains about 5% by weight of water. 87 parts of ethylene glycol dimethyl ether was charged, and the reactor was immersed in a dry ice-ethanol bath and cooled to -10 ° C. From the dropping funnel, 45 parts of tri-n-butylphosphine was added dropwise over 10 minutes, and stirring was continued for 30 minutes at −10 ° C. Then, the dry ice-ethanol bath was removed, and the mixture was stirred at room temperature for 8 hours. As a result of analyzing the reaction solution by gas chromatography, it was confirmed that the raw material octafluorocyclopentene had disappeared. A glass trap immersed in a dry ice-ethanol bath was connected to the reactor, and the system was depressurized with a vacuum pump. After about 30 minutes, the system was returned to normal pressure, and the liquid collected in the trap was analyzed. As a result, 28 parts of 1,3,3,4,4,5,5-heptafluorocyclopentene, which was the target product, was obtained. (Yield 72%) was obtained.

Spectral data of 1,3,3,4,4,5,5-heptafluorocyclopentene
19 F-NMR (CFCl 3 , CDCl 3 ): δ-107.8 (s, 2F), -120.4 (s, 2F), -125.0 (m, 2F), -130.5 (s, 1F), 1 H-NMR (TMS, CDCl 3 ): δ 5.95 (m, 1H)
GC-MS (EI-MS): m / z 194, 173, 144

[実施例2]
実施例1において、約5重量%の水分を含むエチレングリコールジメチルエーテル87部を約6重量%の水分を含むテトラヒドロフラン89部に変更したこと以外は実施例1と同様に反応を行った。その結果、1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンが26部(収率69%)得られた。
[Example 2]
In Example 1, the reaction was conducted in the same manner as in Example 1 except that 87 parts of ethylene glycol dimethyl ether containing about 5% by weight of water was changed to 89 parts of tetrahydrofuran containing about 6% by weight of water. As a result, 26 parts (yield 69%) of 1,3,3,4,4,5,5-heptafluorocyclopentene were obtained.

[実施例3]
実施例1において、トリ−n−ブチルホスフィン45部をトリ−n−オクチルホスフィン78部に変更したこと以外は実施例1と同様に反応を行った。その結果、1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンが27部(収率70%)得られた。
[Example 3]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that 45 parts of tri-n-butylphosphine was changed to 78 parts of tri-n-octylphosphine. As a result, 27 parts (yield 70%) of 1,3,3,4,4,5,5-heptafluorocyclopentene were obtained.

[実施例4] 1,3,3,4,4−ペンタフルオロシクロブテンの合成
攪拌機、ガス導入管を付したステンレス製オートクレーブに約5重量%の水分を含むエチレングリコールジメチルエーテル87部を仕込み、オートクレーブをドライアイス−エタノール浴に浸して−50℃に冷却した。あらかじめステンレス製シリンダーに秤量したヘキサフルオロシクロブテン32部をガス導入管からオートクレーブ内に吹き込み、ドライアイス−エタノール浴を−10℃まで昇温させた。トリ−n−ブチルホスフィン45部を10分間かけて注入し、−10℃で30分間攪拌を継続した後、ドライアイス−エタノール浴を取り去って氷水浴に変更し、約20℃で10時間攪拌した。オートクレーブにドライアイス−エタノール浴に浸したガラス製トラップをつなぎ、真空ポンプにて系内を減圧した。約30分後、系内を常圧に戻し、トラップ内に捕集された液体を分析したところ、目的物である、1,3,3,4,4−ペンタフルオロシクロブテン13部(収率45%)が得られた。

1,3,3,4,4−ペンタフルオロシクロブテンのスペクトルデータ
19F−NMR(CFCl,CDCl):δ−103.87(s、C=CF),−113.45(s、2F)、−118.88(s、2F)
H−NMR(TMS,CDCl):δ5.94(m、1H)
GC−MS(EI−MS):m/z 144,125,75
[Example 4] Synthesis of 1,3,3,4,4-pentafluorocyclobutene 87 parts of ethylene glycol dimethyl ether containing about 5% by weight of water was charged into a stainless steel autoclave equipped with a stirrer and a gas introduction tube. Was immersed in a dry ice-ethanol bath and cooled to -50 ° C. 32 parts of hexafluorocyclobutene weighed in advance in a stainless steel cylinder was blown into the autoclave from the gas introduction tube, and the temperature of the dry ice-ethanol bath was raised to -10 ° C. After injecting 45 parts of tri-n-butylphosphine over 10 minutes and continuing stirring at −10 ° C. for 30 minutes, the dry ice-ethanol bath was removed and replaced with an ice-water bath, and stirring was carried out at about 20 ° C. for 10 hours. . A glass trap immersed in a dry ice-ethanol bath was connected to the autoclave, and the inside of the system was depressurized with a vacuum pump. After about 30 minutes, the system was returned to normal pressure and the liquid collected in the trap was analyzed. As a result, 13 parts of 1,3,3,4,4-pentafluorocyclobutene (yield) was obtained. 45%) was obtained.

Spectral data of 1,3,3,4,4-pentafluorocyclobutene
19 F-NMR (CFCl 3 , CDCl 3 ): δ-103.87 (s, C═CF), −113.45 (s, 2F), −118.88 (s, 2F)
1 H-NMR (TMS, CDCl 3 ): δ 5.94 (m, 1H)
GC-MS (EI-MS): m / z 144, 125, 75

[実施例5] 1,3,3,4,4、5,5、6,6−ノナフルオロシクロヘキセンの合成
攪拌機、滴下ロートを付したガラス製反応器にデカフルオロシクロヘキセン52部、約5重量%の水分を含むエチレングリコールジメチルエーテル100部を仕込み、反応器をドライアイス−エタノール浴に浸して−10℃に冷却した。滴下ロートより、トリ−n−ブチルホスフィン41部を10分間かけて滴下し、−10℃で30分間攪拌を継続した後、ドライアイス−エタノール浴を取り去り、室温で6時間攪拌した。反応液をガスクロマトグラフィーにて分析した結果、原料であるデカフルオロシクロヘキセンの消失を確認した。反応器にドライアイス−エタノール浴に浸したガラス製トラップをつなぎ、真空ポンプにて系内を減圧した。約30分後、系内を常圧に戻し、トラップ内に捕集された液体を分析したところ、目的物である、1,3,3,4,4,5,5,6,6−ノナフルオロシクロヘキセン30部(収率62%)を得た。

1,3,3,4,4,5,5,6、6−ノナフルオロシクロヘキセンのスペクトルデータ
19F−NMR(CFCl,CDCl):δ〜121.7(s、C=CF),−121.7(s、2F)、−135.4(m、4F),−107.1(s、2F)、H−NMR(TMS,CDCl):δ3.90(m、1H)
GC−MS(EI−MS):m/z 244、225、175、144、113、75
Example 5 Synthesis of 1,3,3,4,4,5,5,6,6-nonafluorocyclohexene 52 parts of decafluorocyclohexene in a glass reactor equipped with a stirrer and a dropping funnel, about 5% by weight 100 parts of ethylene glycol dimethyl ether containing water was charged, and the reactor was immersed in a dry ice-ethanol bath and cooled to -10 ° C. From a dropping funnel, 41 parts of tri-n-butylphosphine was added dropwise over 10 minutes, and stirring was continued at -10 ° C for 30 minutes. Then, the dry ice-ethanol bath was removed, and the mixture was stirred at room temperature for 6 hours. As a result of analyzing the reaction liquid by gas chromatography, it was confirmed that the raw material decafluorocyclohexene had disappeared. A glass trap immersed in a dry ice-ethanol bath was connected to the reactor, and the system was depressurized with a vacuum pump. After about 30 minutes, the system was returned to atmospheric pressure, and the liquid collected in the trap was analyzed. As a result, 1,3,3,4,4,5,5,6,6-nona which was the target product was analyzed. 30 parts of fluorocyclohexene (62% yield) were obtained.

Spectral data of 1,3,3,4,4,5,5,6,6-nonafluorocyclohexene
19 F-NMR (CFCl 3 , CDCl 3 ): δ to 121.7 (s, C═CF), −121.7 (s, 2F), −135.4 (m, 4F), −107.1 ( s, 2F), 1 H-NMR (TMS, CDCl 3 ): δ 3.90 (m, 1H)
GC-MS (EI-MS): m / z 244, 225, 175, 144, 113, 75

[比較例1]
実施例1において、反応温度を−20℃、反応時間6時間に変更したこと以外は実施例1と同様に反応を行った。ガスクロマトグラフィー分析を行った結果、原料のオクタフルオロシクロペンテンが95%残存しており、目的物である1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンは2%しか生成していなかった。
[Comparative Example 1]
In Example 1, the reaction was performed in the same manner as in Example 1 except that the reaction temperature was changed to −20 ° C. and the reaction time was 6 hours. As a result of gas chromatography analysis, 95% of the raw material octafluorocyclopentene remains, and only 2% of the target 1,3,3,4,4,5,5-heptafluorocyclopentene is produced. There wasn't.

[比較例2]
実施例1において、トリ−n−ブチルホスフィン41部をトリフェニルホスフィン53部に変更したこと以外は、実施例1と同様に反応を行った。ガスクロマトグラフィー分析を行った結果、原料のオクタフルオロシクロペンテンはほぼ消失していたが、目的物である1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンの生成は認められず、オクタフルオロシクロペンテンのトリフェニルホスフィン付加体の段階で、反応が停止していることが示唆された。
[Comparative Example 2]
In Example 1, the reaction was performed in the same manner as in Example 1 except that 41 parts of tri-n-butylphosphine was changed to 53 parts of triphenylphosphine. As a result of gas chromatography analysis, the raw material octafluorocyclopentene was almost disappeared, but the production of the desired 1,3,3,4,4,5,5-heptafluorocyclopentene was not observed, It was suggested that the reaction stopped at the stage of the triphenylphosphine adduct of octafluorocyclopentene.

Claims (3)

式(1)で示されるパーフルオロシクロオレフィンと、トリアルキルホスフィンを含水エーテル溶媒存在下に、−10℃〜30℃の温度範囲で接触させて、式(2)で示される含水素フルオロシクロオレフィンを得ることを特徴とする製造方法。
Figure 2010126452
ただし、式(1)中、nは0〜3の整数である。
Figure 2010126452
ただし、式(2)中、nは0〜3の整数である。
A perfluorocycloolefin represented by the formula (1) and a trialkylphosphine are brought into contact with each other in the presence of a hydrous ether solvent in a temperature range of −10 ° C. to 30 ° C. to obtain a hydrogen-containing fluorocycloolefin represented by the formula (2). The manufacturing method characterized by obtaining.
Figure 2010126452
However, in Formula (1), n is an integer of 0-3.
Figure 2010126452
However, in Formula (2), n is an integer of 0-3.
トリアルキルホスフィンがトリ−n−ブチルホスフィンであることを特徴とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the trialkylphosphine is tri-n-butylphosphine. 式(2)で表される化合物が1,3,3,4,4−ペンタフルオロシクロブテン又は1,3,3,4,4,5,5−ヘプタフルオロシクロペンテンであることを特徴とする請求項1、2又は3に記載の製造方法。 The compound represented by the formula (2) is 1,3,3,4,4-pentafluorocyclobutene or 1,3,3,4,4,5,5-heptafluorocyclopentene. Item 4. The production method according to Item 1, 2, or 3.
JP2008299953A 2008-11-25 2008-11-25 Method for producing hydrogen-containing fluoroolefin compound Active JP5158366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299953A JP5158366B2 (en) 2008-11-25 2008-11-25 Method for producing hydrogen-containing fluoroolefin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299953A JP5158366B2 (en) 2008-11-25 2008-11-25 Method for producing hydrogen-containing fluoroolefin compound

Publications (2)

Publication Number Publication Date
JP2010126452A true JP2010126452A (en) 2010-06-10
JP5158366B2 JP5158366B2 (en) 2013-03-06

Family

ID=42327074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299953A Active JP5158366B2 (en) 2008-11-25 2008-11-25 Method for producing hydrogen-containing fluoroolefin compound

Country Status (1)

Country Link
JP (1) JP5158366B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129488A1 (en) * 2013-02-21 2014-08-28 日本ゼオン株式会社 High-purity 1h-heptafluorocyclopentene
CN107365244A (en) * 2017-08-03 2017-11-21 北京宇极科技发展有限公司 Organic solvent provides hydrogen source and the method that hydrogen halogen exchange reaction prepares 1H perhalogeno cycloolefins occurs
JP2020100595A (en) * 2018-12-25 2020-07-02 ダイキン工業株式会社 Production method of cyclobutene
WO2020137825A1 (en) * 2018-12-27 2020-07-02 ダイキン工業株式会社 Method for producing cyclobutene
CN115417745A (en) * 2022-11-04 2022-12-02 北京宇极科技发展有限公司 Method for synthesizing hydrofluoroolefin
CN113227025B (en) * 2018-12-25 2024-06-21 大金工业株式会社 Method for producing cyclobutene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292807A (en) * 1998-04-01 1999-10-26 Nippon Zeon Co Ltd Production of fluorinated unsaturated hydrocarbon
WO2010007968A1 (en) * 2008-07-18 2010-01-21 日本ゼオン株式会社 Method for producing hydrogen-containing fluoroolefin compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292807A (en) * 1998-04-01 1999-10-26 Nippon Zeon Co Ltd Production of fluorinated unsaturated hydrocarbon
WO2010007968A1 (en) * 2008-07-18 2010-01-21 日本ゼオン株式会社 Method for producing hydrogen-containing fluoroolefin compound

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129488A1 (en) * 2013-02-21 2014-08-28 日本ゼオン株式会社 High-purity 1h-heptafluorocyclopentene
CN104995158A (en) * 2013-02-21 2015-10-21 日本瑞翁株式会社 High-purity 1h-heptafluorocyclopentene
US9944852B2 (en) 2013-02-21 2018-04-17 Zeon Corporation High-purity 1H-heptafluorocyclopentene
CN107365244A (en) * 2017-08-03 2017-11-21 北京宇极科技发展有限公司 Organic solvent provides hydrogen source and the method that hydrogen halogen exchange reaction prepares 1H perhalogeno cycloolefins occurs
JP2020100595A (en) * 2018-12-25 2020-07-02 ダイキン工業株式会社 Production method of cyclobutene
WO2020137824A1 (en) * 2018-12-25 2020-07-02 ダイキン工業株式会社 Cyclobutene production method
CN113227025A (en) * 2018-12-25 2021-08-06 大金工业株式会社 Process for producing cyclobutene
JP7166911B2 (en) 2018-12-25 2022-11-08 ダイキン工業株式会社 Method for producing cyclobutene
CN113227025B (en) * 2018-12-25 2024-06-21 大金工业株式会社 Method for producing cyclobutene
WO2020137825A1 (en) * 2018-12-27 2020-07-02 ダイキン工業株式会社 Method for producing cyclobutene
JP2020105114A (en) * 2018-12-27 2020-07-09 ダイキン工業株式会社 Method for producing cyclobutene
CN115417745A (en) * 2022-11-04 2022-12-02 北京宇极科技发展有限公司 Method for synthesizing hydrofluoroolefin

Also Published As

Publication number Publication date
JP5158366B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5005681B2 (en) Method for producing hexafluoro-1,3-butadiene
JP5158366B2 (en) Method for producing hydrogen-containing fluoroolefin compound
JP7166911B2 (en) Method for producing cyclobutene
JP2021119113A (en) Method for producing sulfur tetrafluoride
JP5267561B2 (en) Method for producing fluorine-containing ether
KR20160122126A (en) Method for producing fluorinated hydrocarbon
JP5311009B2 (en) Method for producing hydrogen-containing fluoroolefin compound
Petrov et al. New partially fluorinated epoxides by oxidation of olefins with sodium hypohalites under phase transfer catalysis
CN105272818B (en) Prepare the new method of perfluorobutadiene
US8742142B2 (en) Process for producing perfluorinated organic compounds
US10737997B2 (en) Method for the manufacture of fluorinated compounds
JP2017226617A (en) Methods for producing acid fluoride and perfluoroalkyl vinyl ether
US10975053B2 (en) Production methods for 1,3-dioxolane compound and perfluoro(2,2-dimethyl-1,3-dioxole)
JP5126936B2 (en) Process for producing fluoro (alkyl vinyl ether) and its derivatives
JP6003709B2 (en) Process for producing 1,2-bis (perfluoroalkyl) -perfluorocycloalkene
US20020038055A1 (en) Process for preparing fluorine-containing benzaldehydes
JP5266648B2 (en) Process for producing perfluoro (exomethylenecycloalkene) compound
JP5194500B2 (en) Method for producing high purity fluorine-containing alkyl ether
EP2643289B1 (en) Process for producing perfluorinated organic compounds
JPWO2018037999A1 (en) Method for converting butenes and method for purifying monofluorobutane
JP2013095715A (en) Method for producing cyclic hydrofluoroether and cyclic hydrofluorovinyl ether
JP2003146917A (en) Method for producing perfluoroalkyne compound
JP2013095716A (en) Cyclic hydrofluorocarbon and method for producing the same, and method for producing cyclic hydrofluoroolefin
JP2012131731A (en) Method of producing fluorinated alkene
JP2004307422A (en) New difluorotetrahydrothiophene 1,1-dioxide and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5158366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250