WO2020137825A1 - Method for producing cyclobutene - Google Patents

Method for producing cyclobutene Download PDF

Info

Publication number
WO2020137825A1
WO2020137825A1 PCT/JP2019/049900 JP2019049900W WO2020137825A1 WO 2020137825 A1 WO2020137825 A1 WO 2020137825A1 JP 2019049900 W JP2019049900 W JP 2019049900W WO 2020137825 A1 WO2020137825 A1 WO 2020137825A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen atom
reaction
mol
general formula
cyclobutene
Prior art date
Application number
PCT/JP2019/049900
Other languages
French (fr)
Japanese (ja)
Inventor
友亮 江藤
中村 新吾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980086441.9A priority Critical patent/CN113227026A/en
Priority to SG11202106891PA priority patent/SG11202106891PA/en
Priority to KR1020217023297A priority patent/KR102566765B1/en
Publication of WO2020137825A1 publication Critical patent/WO2020137825A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/357Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/06Monocyclic halogenated hydrocarbons with a four-membered ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a method for producing cyclobutene.
  • Cyclobutene containing a halogen atom is a compound useful as a dry etching gas for semiconductors, various refrigerants, foaming agents, heat transfer media, and the like.
  • 1H-pentafluorocyclobutene is known to be a method for producing 1H-pentafluorocyclobutene from 1H,2H-hexafluorocyclobutane by dehydrofluorination reaction (for example, Non-Patent Documents 1 and 2).
  • This technology synthesizes 1H-pentafluorocyclobutene in an open reaction system using glassware.
  • the present disclosure aims to produce cyclobutene containing a halogen atom with high selectivity.
  • the present disclosure includes the following configurations.
  • X 1 , X 2 , X 3 , X 4 and Y are the same as above.
  • X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. .) Including a step of removing cyclobutane represented by A manufacturing method, wherein the step of performing the elimination reaction is performed in a gas phase.
  • Item 2 The production method according to Item 1, wherein X 5 is a hydrogen atom, X 6 is a halogen atom, and the elimination reaction is a dehydrohalogenation reaction.
  • Item 4 The content of 1H-perfluorocyclobutene (1H-cC 4 F 5 H) is 99 mol% or more, the content of 3H-perfluorocyclobutene (3H-cC 4 F 5 H) is 1 mol% or less, Item 4.
  • Item 5. The composition according to Item 3 or 4, which is used as a cleaning gas, an etching gas, a deposit gas, or a building block for organic synthesis.
  • cyclobutene containing a halogen atom can be produced with high selectivity.
  • the inventors of the present invention performed a step of eliminating a raw material compound in a gas phase to obtain cyclobutene containing a halogen atom represented by the general formula (1) with high selectivity. It was found that it can be manufactured.
  • the present disclosure includes the following embodiments.
  • X 1 , X 2 , X 3 , X 4 and Y are the same as above.
  • X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. .
  • the step of performing the elimination reaction is performed in the gas phase.
  • cyclobutene containing a halogen atom can be produced with high selectivity.
  • the “selectivity” refers to the target compound (halogen atom is included in the effluent gas with respect to the total molar amount of compounds other than the raw material compound (cyclobutene containing a halogen atom) in the effluent gas from the reactor outlet. (Including cyclobutene) means the ratio (mol %) of the total molar amount.
  • the “conversion rate” means a compound other than the raw material compound (halogen atom is included in the outflow gas from the reactor outlet, with respect to the molar amount of the raw material compound (cyclobutane containing a halogen atom) supplied to the reactor. (Including cyclobutene, etc.) means the ratio (mol%) of the total molar amount.
  • the method for producing cyclobutene according to the present disclosure has a merit that it is not a batch reaction but a gas phase reaction of a distribution system, and therefore a solvent is not required and industrial waste does not occur.
  • Raw material compound In the present disclosure, the raw material compound is represented by the general formula (2):
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • Y represents a halogen atom.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • Y represents a halogen atom
  • Examples of the halogen atom of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and Y include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the perfluoroalkyl group of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is an alkyl group in which all hydrogen atoms are replaced by fluorine atoms.
  • the perfluoroalkyl group is, for example, a perfluoroalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 4 carbon atoms, particularly preferably 1 to 3 carbon atoms. It is preferably a fluoroalkyl group.
  • the perfluoroalkyl group is preferably a linear or branched perfluoroalkyl group.
  • the perfluoroalkyl group is preferably a trifluoromethyl group (CF 3 -) and a pentafluoroethyl group (C 2 F 5 -).
  • cyclobutane containing a halogen atom represented by the general formula (2) which is a raw material compound
  • X 1 , X 2 , X 3 and X 4 are the same or different and each independently represent a hydrogen atom, a halogen atom or a perfluoroalkyl group
  • X 5 is a hydrogen atom
  • X 6 is a fluorine atom
  • Y is more preferably a fluorine atom.
  • cyclobutane represented by the general formula (2) which is a raw material compound, include:
  • the cyclobutane represented by the general formula (2) can be used alone or in combination of two or more kinds. As such cyclobutane, a commercially available product can be adopted.
  • X 1 , X 2 , X 3 , X 4 and X 6 are, in that cyclobutene containing a halogen atom can be produced with high selectivity. More preferably, it is a fluorine atom, X 5 is a hydrogen atom, and Y is a fluorine atom.
  • the elimination reaction is performed in a gas phase.
  • the step of the desorption reaction in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor.
  • the apparatus, operation, etc. can be simplified, and it is economically advantageous.
  • X 5 is a hydrogen atom
  • X 6 is a halogen atom
  • the elimination reaction is a dehydrohalogenation reaction.
  • X 5 is a hydrogen atom
  • X 6 is a fluorine atom
  • the elimination reaction is a dehydrofluorination reaction.
  • X 1 , X 2 , X 3 , X 4 and X 6 are fluorine atoms and X 5 is a hydrogen atom.
  • Y is preferably a fluorine atom.
  • the elimination reaction is preferably a dehydrofluorination reaction.
  • Catalyst In the step of the elimination reaction in the present disclosure, it is preferable to perform the elimination reaction in the gas phase in the presence of a catalyst.
  • the catalyst used in this step is preferably activated carbon.
  • the catalyst used in this step is preferably a metal catalyst.
  • a metal catalyst chromium oxide, chromium fluoride oxide, chromium fluoride, aluminum oxide, aluminum fluoride oxide, aluminum fluoride, iron oxide, iron oxide fluoride, iron fluoride, nickel oxide, nickel fluoride oxide, fluoride It is preferably at least one selected from the group consisting of nickel, magnesium oxide, magnesium fluoride oxide and magnesium fluoride.
  • activated carbon, chromium oxide, chromium fluoride oxide, aluminum oxide, and aluminum fluoride oxide are more preferable because the target compound can be obtained with higher selectivity. It is also possible to further improve the conversion rate of the raw material compound.
  • the catalyst may be in powder form, but pellet form is preferable for gas phase continuous flow reaction.
  • the specific surface area of the catalyst measured by the BET method (hereinafter, also referred to as BET specific surface area) is usually 10 to 3,000 m 2 /g, preferably 10 to 400 m 2 /g, and more preferably 20 to 375 m. 2 /g, more preferably 30 to 350 m 2 /g.
  • BET specific surface area of the catalyst is in such a range, the density of the catalyst particles is not too small, and thus the target compound can be obtained with high selectivity. It is also possible to improve the conversion rate of the raw material compound.
  • powdered activated carbon such as crushed coal, shaped coal, granulated coal, spherical charcoal.
  • powdered activated carbon it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.76 mm) to 100 mesh (0.149 mm) in the JIS test.
  • a metal catalyst When a metal catalyst is used as the catalyst, it is preferably supported on a carrier.
  • the carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like.
  • carbon activated carbon, amorphous carbon, graphite, diamond or the like can be used.
  • Chromium oxide and fluorinated chromium oxide will be described as an example of the catalyst in the present disclosure.
  • chromium oxide for example, when chromium oxide is represented by Cr 2 O 3 .nH 2 O, the value of n is preferably 3 or less, more preferably 1 to 1.5.
  • the chromium oxide is preferably one in which m is usually in the range of 1.5 ⁇ m ⁇ 3.
  • fluorinated chromium oxide can be prepared by fluorinating chromium oxide. Examples of the fluorination include fluorination with hydrogen fluoride (HF) and fluorination with fluorocarbon and the like.
  • Fluorinated chromium oxide as a catalyst can be obtained, for example, according to the method described in Japanese Patent No. 3412165.
  • a fluorinated chromium oxide can be obtained by fluorinating chromium oxide with hydrogen fluoride (HF treatment).
  • the fluorination temperature is preferably 100 to 460° C., for example.
  • the pressure for fluorination is preferably the pressure at which it is subjected to a catalytic reaction.
  • the highly fluorinated-chromium oxide catalyst can be obtained by fluorinating chromium oxide at a higher temperature than usual for a long time.
  • the highly fluorinated-chromium oxide catalyst preferably has a fluorine content of 30% by mass or more, more preferably 30 to 45% by mass.
  • the fluorine content can be measured by a mass change of the catalyst or a general quantitative analysis method of chromium oxide.
  • the lower limit of the reaction temperature is such that the elimination reaction proceeds more efficiently and the target compound can be obtained with higher selectivity, and the conversion rate decreases. From the viewpoint of suppressing the above, it is usually 50° C., preferably 200° C., more preferably 250° C., further preferably 300° C., particularly preferably 350° C.
  • the upper limit of the reaction temperature in the elimination reaction is selected from the viewpoint that the dehydrofluorination reaction can proceed more efficiently and the target compound can be obtained with higher selectivity, and that the reaction product decomposes or polymerizes. From the viewpoint of suppressing the decrease in the rate, it is usually 500° C., preferably 450° C., and more preferably 400° C.
  • the reaction time of the desorption reaction is defined as the contact time of the starting compound with the catalyst (W/F 0 )[W: weight of metal catalyst (g), F 0 : flow rate of starting compound (cc/sec)] If the length is increased, the conversion rate of the raw material compound can be increased, but the amount of the catalyst is increased and the equipment becomes large, which is inefficient.
  • the reaction time of the dehydrofluorination reaction is 5 g ⁇ sec for the contact time (W/F 0 ) of the raw material compound with the catalyst from the viewpoint of improving the conversion rate of the raw material compound and suppressing the equipment cost.
  • /Cc to 300 g ⁇ sec/cc is preferable, 10 g ⁇ sec/cc to 200 g ⁇ sec/cc is more preferable, 15 g ⁇ sec/cc to 150 g ⁇ sec/cc is further preferable, It is particularly preferable that it is 20 g ⁇ sec/cc to 100 g ⁇ sec/cc.
  • the contact time of the raw material compound with the catalyst means the time of contact between the raw material compound and the catalyst.
  • the reaction temperature and the reaction time are appropriately adjusted particularly according to the catalyst, so that the target compound can be obtained with higher selectivity. Obtainable.
  • the reaction temperature is preferably 300°C or higher, more preferably 350°C or higher.
  • the contact time is preferably 10 g ⁇ sec/cc or more, more preferably 20 g ⁇ sec/cc or more, and further preferably 40 g ⁇ sec/cc or more.
  • the reaction temperature is preferably 300°C or higher, and the contact time is preferably 5 g ⁇ sec/cc or higher.
  • the reaction temperature is preferably 300°C or higher, more preferably 350°C or higher, and further preferably 400°C or higher.
  • the contact time is preferably 5 g ⁇ sec/cc to 55 g ⁇ sec/cc, more preferably 5 g ⁇ sec/cc to 50 g ⁇ sec/cc, and more preferably 5 g ⁇ sec/cc to 40 g ⁇ sec/ More preferably cc.
  • the reaction pressure of the desorption reaction is preferably -0.05MPa to 2MPa, more preferably -0.01MPa to 1MPa, from the viewpoint of promoting the desorption reaction more efficiently, and at atmospheric pressure. More preferably, the pressure is up to 0.5 MPa. Note that in the present disclosure, the pressure is a gauge pressure unless otherwise noted.
  • the reactor for contacting the raw material compound and the catalyst (metal catalyst etc.) to react with each other is not particularly limited in shape and structure as long as it can withstand the above temperature and pressure.
  • the reactor include a vertical reactor, a horizontal reactor, a multitubular reactor and the like.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • the desorption reaction can be carried out by any of a flow system and a batch system in which a starting compound is continuously charged into a reactor and the target compound is continuously withdrawn from the reactor. If the target compound remains in the reactor, the elimination reaction can proceed further, so that it is preferably carried out in a flow system.
  • the step of the desorption reaction in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation, etc. can be simplified, and it is economically advantageous.
  • the atmosphere during the desorption reaction is preferably in the presence of an inert gas and/or hydrogen fluoride from the viewpoint of suppressing the deterioration of the catalyst (metal catalyst etc.).
  • the inert gas is preferably at least one selected from the group consisting of nitrogen, helium, argon and carbon dioxide. Among these inert gases, nitrogen is more preferable from the viewpoint of cost reduction.
  • the concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
  • a cyclobutene containing a halogen atom represented by the general formula (1) can be obtained by performing a purification treatment according to a conventional method as needed.
  • Target compound The target compound in the present disclosure has the general formula (1):
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • Y represents a halogen atom.
  • It is a cyclobutene containing a halogen atom represented by.
  • X 1 , X 2 , X 3 and X 4 , and Y are the same as defined above.
  • Cyclobutene represented by the general formula (1) to be produced is, for example,
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom, or a perfluoroalkyl group, and Y is It is preferably a fluorine atom.
  • X 1 , X 2 , X 3 and X 4 are more preferably a fluorine atom, and Y is more preferably a fluorine atom.
  • the starting compound is a cyclobutane containing a halogen atom represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are fluorine. Atoms, X 5 is a hydrogen atom, and Y is a fluorine atom, which is preferably an elimination reaction.
  • the elimination reaction is preferably a dehydrofluorination reaction.
  • X 1 , X 2 , X 3 and X 4 are fluorine atoms, and Y is a fluorine atom.
  • a composition containing a cyclobutene containing a halogen atom As described above, a cyclobutene containing a halogen atom represented by the general formula (1) can be obtained. It may be obtained in the form of a composition containing a cyclobutene containing a halogen atom represented by the formula and a cyclobutane containing a halogen atom represented by the general formula (2).
  • X 1 , X 2 , X 3 and X 4 are fluorine atoms and Y is a fluorine atom.
  • the content of the cyclobutene containing a halogen atom represented by the general formula (1) with the total amount of the composition being 100 mol %. Is preferably 95 mol% or more, and more preferably 99 mol% or more.
  • the content of the cyclobutene containing a halogen atom represented by the general formula (1) with the total amount of the composition being 100 mol %. Is preferably 1 mol% to 99.9 mol%, more preferably 5 mol% to 99.9 mol%, still more preferably 10 mol% to 99.9 mol%.
  • the following compounds may be produced as impurities in the above elimination reaction.
  • the content of 1H-perfluorocyclobutene (1H-cC 4 F 5 H) is defined as 100 mol% of the total amount of the composition.
  • the amount is 99 mol% or more, and the content of 3H-perfluorocyclobutene (3H-cC 4 F 5 H) is preferably 1 mol% or less.
  • the halogen atom represented by the general formula (1) is contained.
  • Cyclobutene can be obtained with a particularly high selectivity, and as a result, it is possible to reduce the components other than cyclobutene containing the halogen atom represented by the general formula (1) in the composition.
  • labor for purification for obtaining a cyclobutene containing a halogen atom represented by the general formula (1) can be reduced.
  • a composition containing a cyclobutene containing a halogen atom represented by the general formula (1) of the present disclosure has the same composition as a semiconductor, a liquid crystal, etc., as in the case of cyclobutene containing a halogen atom represented by the general formula (1) alone.
  • the etching gas for forming the fine structure of the tip it can be effectively used for various purposes such as a deposit gas, a building block for organic synthesis, and a cleaning gas.
  • the deposit gas is a gas that deposits the etching resistant polymer layer.
  • the building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton.
  • a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3 , CF 3
  • a fluoroalkyl group such as a group into a substance that can be a detergent or a fluorine-containing pharmaceutical intermediate.
  • the starting compound is a cyclobutane containing a halogen atom represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are , A fluorine atom, X 5 was a hydrogen atom, and Y was a fluorine atom.
  • the desorption reaction was dehydrofluorination reaction.
  • the target compound is a cyclobutene containing a halogen atom represented by the general formula (1), wherein X 1 , X 2 , X 3 and X 4 are fluorine atoms, and Y is a fluorine atom.
  • the following compounds may be produced as impurities in the above elimination reaction.
  • Examples 1 to 3 (chromium oxide catalyst)
  • a SUS pipe (outer diameter: 1/2 inch) was used as a reaction tube, and 10 g of chromium oxide containing Cr 2 O 3 as a main component was filled as a catalyst.
  • anhydrous hydrogen fluoride was passed through the reactor, and the fluorination treatment was performed by setting the temperature of the reactor to 200°C to 300°C.
  • the fluorinated chromium oxide was taken out and used for the dehydrofluorination reaction.
  • the BET specific surface area of the fluorinated chromium oxide was 75 m 2 /g.
  • the reaction proceeded in the gas phase continuous flow system.
  • the reactor was heated at 250°C or 350°C to start the dehydrofluorination reaction.
  • mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, product name “GC-2014”), and NMR (manufactured by JEOL, product name “400YH”). ]) was used for structural analysis by NMR spectrum.
  • GC/MS gas chromatography/mass spectrometry
  • Example 1 the conversion rate from cC 4 F 6 H 2 (raw material compound) was 3.34 mol%, and the selectivity (yield) for cC 4 F 5 H (target compound) was 45.9 mol%.
  • Example 2 the conversion was 29.1 mol% and the selectivity was 98.6 mol%.
  • Example 3 the conversion was 26.1 mol% and the selectivity was 97.2 mol%.
  • Examples 4 and 5 (alumina catalyst) Following the experimental method of Example 1, alumina containing Al 2 O 3 as a main component was used as a catalyst. Following the experimental method of Example 1, the contact time (W/F 0 ) between cC 4 F 6 H 2 (raw material compound) and alumina (catalyst) should be 10 g ⁇ sec/cc or 40 g ⁇ sec/cc. Then, the raw material compound was passed through the reactor. Following the experimental method of Example 1, the reactor was heated at 400° C. to start the dehydrofluorination reaction. Dehydrofluorination reaction, mass spectrometry and structural analysis were carried out in the same manner as in Example 1 except for the above conditions.
  • Example 4 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 5 H was produced as the target compound.
  • the conversion from cC 4 F 6 H 2 (raw material compound) was 7.92 mol%, and the selectivity of cC 4 F 5 H (target compound) was 45.1 mol%.
  • the conversion rate was 4.11 mol% and the selectivity rate was 35.0 mol%.
  • Examples 6 to 10 (activated carbon catalyst) Following the experimental method of Example 1, activated carbon was used as a catalyst. Following the experimental method of Example 1, the contact time (W/F 0 ) between cC 4 F 6 H 2 (raw material compound) and activated carbon (catalyst) was 10 g ⁇ sec/cc, 27 g ⁇ sec/cc or 47 g ⁇ sec. The raw material compound was passed through the reactor so as to be sec/cc. Following the experimental method of Example 1, the reactor was heated at 300° C., 350° C. or 400° C. to start the dehydrofluorination reaction. Dehydrofluorination reaction, mass spectrometry and structural analysis were carried out in the same manner as in Example 1 except for the above conditions.
  • Example 6 the conversion from cC 4 F 6 H 2 (raw material compound) was 57.6 mol%, and the selectivity of cC 4 F 5 H (target compound) was 95.3 mol%.
  • Example 7 the conversion was 97.7 mol% and the selectivity was 68.3 mol%.
  • Example 8 the conversion was 84.1 mol% and the selectivity was 83.8 mol%.
  • Example 9 the conversion rate was 72.3 mol% and the selectivity was 94.6 mol%.
  • Example 10 the conversion was 84.7 mol% and the selectivity was 95.7 mol%.
  • the contact time (W/F 0 ) means at what rate the flowing raw material gas is flown, that is, the time during which the catalyst and the raw material gas are in contact with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present disclosure is to produce a cyclobutene which contains a halogen atom with high selectivity. A method for producing a cyclobutene represented by general formula (1) (wherein X1, X2, X3 and X4 may be the same or different, and each represents a hydrogen atom, a halogen atom or a perfluoroakyl group; and Y represents a halogen atom). This method comprises a step for subjecting a cyclobutane represented by general formula (2) (wherein X1, X2, X3, X4 and Y are as defined above; and X5 and X6 may be the same or different, and each represents a hydrogen atom, a halogen atom or a perfluoroakyl group) to an elimination reaction; and the elimination reaction is carried out in a gas phase.

Description

シクロブテンの製造方法Method for producing cyclobutene
 本開示は、シクロブテンの製造方法に関する。 The present disclosure relates to a method for producing cyclobutene.
 ハロゲン原子を含むシクロブテンは、半導体用ドライエッチングガスの他、各種冷媒、発泡剤、熱移動媒体等として有用な化合物である。 Cyclobutene containing a halogen atom is a compound useful as a dry etching gas for semiconductors, various refrigerants, foaming agents, heat transfer media, and the like.
 ハロゲン原子を含むシクロブテンのうち、1H-ペンタフルオロシクロブテンについて、1H, 2H-ヘキサフルオロシクロブタンから、脱フッ化水素反応により、1H-ペンタフルオロシクロブテンを製造する方法が知られている(例えば、非特許文献1及び2)。この技術は、ガラス器具を用いた開放反応系で、1H-ペンタフルオロシクロブテンを合成している。 Of cyclobutene containing a halogen atom, 1H-pentafluorocyclobutene is known to be a method for producing 1H-pentafluorocyclobutene from 1H,2H-hexafluorocyclobutane by dehydrofluorination reaction (for example, Non-Patent Documents 1 and 2). This technology synthesizes 1H-pentafluorocyclobutene in an open reaction system using glassware.
 本開示は、ハロゲン原子を含むシクロブテンを高い選択率で製造することを目的とする。 The present disclosure aims to produce cyclobutene containing a halogen atom with high selectivity.
 本開示は、以下の構成を包含する。 The present disclosure includes the following configurations.
 項1.
 一般式(1):
Item 1.
General formula (1):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
で表されるシクロブテンの製造方法であって、
 一般式(2):
(In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
A method for producing cyclobutene represented by
General formula (2):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、X1、X2、X3、X4及びYは、前記に同じである。X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンを脱離反応する工程を含み、
 前記脱離反応する工程を、気相で行う、製造方法。
(In the formula, X 1 , X 2 , X 3 , X 4 and Y are the same as above. X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. .)
Including a step of removing cyclobutane represented by
A manufacturing method, wherein the step of performing the elimination reaction is performed in a gas phase.
 項2.
 前記X5は水素原子であり、前記X6はハロゲン原子であり、前記脱離反応が脱ハロゲン化水素反応である、前記項1に記載の製造方法。
Item 2.
2. The production method according to Item 1, wherein X 5 is a hydrogen atom, X 6 is a halogen atom, and the elimination reaction is a dehydrohalogenation reaction.
 項3.
 一般式(1):
Item 3.
General formula (1):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
で表されるシクロブテンを含有する組成物であって、
組成物全量を100mol%として、前記一般式(1)で表されるシクロブテンの含有量が95mol%以上である、組成物。
(In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
A composition containing cyclobutene represented by the following:
The composition, wherein the total amount of the composition is 100 mol %, the content of cyclobutene represented by the general formula (1) is 95 mol% or more.
 項4.
 1H-パーフルオロシクロブテン(1H-cC4F5H)の含有量が99mol%以上であり、3H-パーフルオロシクロブテン(3H-cC4F5H)の含有量が1mol%以下である、前記項3に記載の組成物組成物。
Item 4.
The content of 1H-perfluorocyclobutene (1H-cC 4 F 5 H) is 99 mol% or more, the content of 3H-perfluorocyclobutene (3H-cC 4 F 5 H) is 1 mol% or less, Item 4. The composition according to Item 3 above.
 項5.
 クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、前記項3又は4に記載の組成物。
Item 5.
Item 5. The composition according to Item 3 or 4, which is used as a cleaning gas, an etching gas, a deposit gas, or a building block for organic synthesis.
 本開示によれば、ハロゲン原子を含むシクロブテンを高い選択率で製造することができる。 According to the present disclosure, cyclobutene containing a halogen atom can be produced with high selectivity.
 本発明者らは、鋭意研究を行った結果、原料化合物を脱離反応する工程を、気相で行うことによって、上記一般式(1)で表されるハロゲン原子を含むシクロブテンを高い選択率で製造できることを見出した。 As a result of earnest studies, the inventors of the present invention performed a step of eliminating a raw material compound in a gas phase to obtain cyclobutene containing a halogen atom represented by the general formula (1) with high selectivity. It was found that it can be manufactured.
 本開示は、かかる知見に基づき、更に研究を重ねた結果完成されたものである。 The present disclosure has been completed as a result of further research based on such findings.
 本開示は、以下の実施形態を含む。 The present disclosure includes the following embodiments.
 本開示の一般式(1): General formula (1) of the present disclosure:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
で表されるシクロブテンの製造方法は、
 一般式(2):
(In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
The method for producing cyclobutene represented by
General formula (2):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、X1、X2、X3、X4及びYは、前記に同じである。X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンを脱離反応する工程を含む。
(In the formula, X 1 , X 2 , X 3 , X 4 and Y are the same as above. X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. .)
The step of eliminating the cyclobutane represented by
 本開示では、前記脱離反応する工程を、気相で行う。 In the present disclosure, the step of performing the elimination reaction is performed in the gas phase.
 本開示においては、上記要件を満たすことにより、ハロゲン原子を含むシクロブテンを高い選択率で製造することができる。 In the present disclosure, by satisfying the above requirements, cyclobutene containing a halogen atom can be produced with high selectivity.
 本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物(ハロゲン原子を含むシクロブテン等)の合計モル量に対する、当該流出ガスに含まれる目的化合物(ハロゲン原子を含むシクロブテン)の合計モル量の割合(mol%)を意味する。 In the present disclosure, the “selectivity” refers to the target compound (halogen atom is included in the effluent gas with respect to the total molar amount of compounds other than the raw material compound (cyclobutene containing a halogen atom) in the effluent gas from the reactor outlet. (Including cyclobutene) means the ratio (mol %) of the total molar amount.
 本開示において、「転化率」とは、反応器に供給される原料化合物(ハロゲン原子を含むシクロブタン)のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物(ハロゲン原子を含むシクロブテン等)の合計モル量の割合(mol%)を意味する。 In the present disclosure, the “conversion rate” means a compound other than the raw material compound (halogen atom is included in the outflow gas from the reactor outlet, with respect to the molar amount of the raw material compound (cyclobutane containing a halogen atom) supplied to the reactor. (Including cyclobutene, etc.) means the ratio (mol%) of the total molar amount.
 また、本開示のシクロブテンの製造方法は、バッチ反応ではなく、流通系の気相反応であるから、溶媒を用いる必要がなく産廃が生じないという利点がある。 Further, the method for producing cyclobutene according to the present disclosure has a merit that it is not a batch reaction but a gas phase reaction of a distribution system, and therefore a solvent is not required and industrial waste does not occur.
 (1)原料化合物
 本開示において、原料化合物は、一般式(2):
(1) Raw material compound In the present disclosure, the raw material compound is represented by the general formula (2):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
で表されるシクロブタンである。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom. )
Is cyclobutane.
 X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。 X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group.
 Yは、ハロゲン原子を示す。 Y represents a halogen atom.
 X1、X2、X3、X4、X5、X6及びYのハロゲン原子は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Examples of the halogen atom of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and Y include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 X1、X2、X3、X4、X5及びX6のパーフルオロアルキル基は、全ての水素原子がフッ素原子で置換されたアルキル基である。パーフルオロアルキル基は、例えば、炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~6、更に好ましくは炭素数1~4、特に好ましくは炭素数1~3のパーフルオロアルキル基であることが好ましい。パーフルオロアルキル基は、直鎖状、又は分枝鎖状のパーフルオロアルキル基であることが好ましい。前記パーフルオロアルキル基として、トリフルオロメチル基(CF3-)、及びペンタフルオロエチル基(C2F5-)であることが好ましい。 The perfluoroalkyl group of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is an alkyl group in which all hydrogen atoms are replaced by fluorine atoms. The perfluoroalkyl group is, for example, a perfluoroalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 4 carbon atoms, particularly preferably 1 to 3 carbon atoms. It is preferably a fluoroalkyl group. The perfluoroalkyl group is preferably a linear or branched perfluoroalkyl group. The perfluoroalkyl group is preferably a trifluoromethyl group (CF 3 -) and a pentafluoroethyl group (C 2 F 5 -).
 原料化合物である一般式(2)で表されるハロゲン原子を含むシクロブタンとしては、ハロゲン原子を含むシクロブテンを高い選択率で製造することができる点で、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示し、X5は水素原子であり、X6はフッ素原子であり、Yはフッ素原子であることがより好ましい。 As the cyclobutane containing a halogen atom represented by the general formula (2), which is a raw material compound, it is possible to produce cyclobutene containing a halogen atom with high selectivity, and X 1 , X 2 , X 3 and X 4 Are the same or different and each independently represent a hydrogen atom, a halogen atom or a perfluoroalkyl group, X 5 is a hydrogen atom, X 6 is a fluorine atom, and Y is more preferably a fluorine atom.
 原料化合物である一般式(2)で表されるシクロブタンとしては、例えば、 Examples of cyclobutane represented by the general formula (2), which is a raw material compound, include:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
等の化合物が挙げられる。 And the like.
 これらの一般式(2)で表されるシクロブタンは、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなシクロブタンは、市販品を採用することができる。 The cyclobutane represented by the general formula (2) can be used alone or in combination of two or more kinds. As such cyclobutane, a commercially available product can be adopted.
 一般式(2)で表されるハロゲン原子を含むシクロブタンでは、ハロゲン原子を含むシクロブテンを高い選択率で製造することができる点で、X1、X2、X3、X4及びX6は、フッ素原子であり、X5は水素原子であり、Yは、フッ素原子であることがより好ましい。 In the cyclobutane containing a halogen atom represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are, in that cyclobutene containing a halogen atom can be produced with high selectivity. More preferably, it is a fluorine atom, X 5 is a hydrogen atom, and Y is a fluorine atom.
 (2)脱離反応
 本開示における脱離反応する工程では、気相下で脱離反応を行う。本開示における脱離反応する工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
(2) Elimination reaction In the elimination reaction step in the present disclosure, the elimination reaction is performed in a gas phase. The step of the desorption reaction in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation, etc. can be simplified, and it is economically advantageous.
 本開示における脱離反応する工程では、前記X5は水素原子であり、前記X6はハロゲン原子であり、前記脱離反応が脱ハロゲン化水素反応であることが好ましい。本開示における脱離反応する工程では、前記X5は水素原子であり、前記X6はフッ素原子であり、前記脱離反応が脱フッ化水素反応であることが好ましい。 In the step of the elimination reaction in the present disclosure, it is preferable that X 5 is a hydrogen atom, X 6 is a halogen atom, and the elimination reaction is a dehydrohalogenation reaction. In the step of carrying out the elimination reaction in the present disclosure, it is preferable that X 5 is a hydrogen atom, X 6 is a fluorine atom, and the elimination reaction is a dehydrofluorination reaction.
 例えば、原料化合物として、一般式(2)で表されるハロゲン原子を含むシクロブタンでは、X1、X2、X3、X4及びX6は、フッ素原子であり、X5は水素原子であり、Yは、フッ素原子であることが好ましい。 For example, in the cyclobutane containing a halogen atom represented by the general formula (2) as a raw material compound, X 1 , X 2 , X 3 , X 4 and X 6 are fluorine atoms and X 5 is a hydrogen atom. , Y is preferably a fluorine atom.
 以下の反応式に従い、脱離反応は脱フッ化水素反応であることが好ましい。 According to the following reaction formula, the elimination reaction is preferably a dehydrofluorination reaction.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 触媒
 本開示における脱離反応する工程では、触媒の存在下、気相下で脱離反応を行うことが好ましい。
Catalyst In the step of the elimination reaction in the present disclosure, it is preferable to perform the elimination reaction in the gas phase in the presence of a catalyst.
 本工程で用いられる触媒は、活性炭であることが好ましい。本工程で用いられる触媒は、金属触媒であることが好ましい。金属触媒として、酸化クロム、フッ化酸化クロム、フッ化クロム、酸化アルミニウム、フッ化酸化アルミニウム、フッ化アルミニウム、酸化鉄、フッ化酸化鉄、フッ化鉄、酸化ニッケル、フッ化酸化ニッケル、フッ化ニッケル、酸化マグネシウム、フッ化酸化マグネシウム及びフッ化マグネシウムからなる群より選択される少なくとも1種であることが好ましい。 The catalyst used in this step is preferably activated carbon. The catalyst used in this step is preferably a metal catalyst. As a metal catalyst, chromium oxide, chromium fluoride oxide, chromium fluoride, aluminum oxide, aluminum fluoride oxide, aluminum fluoride, iron oxide, iron oxide fluoride, iron fluoride, nickel oxide, nickel fluoride oxide, fluoride It is preferably at least one selected from the group consisting of nickel, magnesium oxide, magnesium fluoride oxide and magnesium fluoride.
 これら触媒のうち、目的化合物をより高い選択率で得ることができる点から、活性炭、酸化クロム、フッ化酸化クロム、酸化アルミニウム、フッ化酸化アルミニウムがより好ましい。また、原料化合物の転化率をより向上させることも可能である。 Among these catalysts, activated carbon, chromium oxide, chromium fluoride oxide, aluminum oxide, and aluminum fluoride oxide are more preferable because the target compound can be obtained with higher selectivity. It is also possible to further improve the conversion rate of the raw material compound.
 本工程において、気相で、原料化合物と触媒とを接触させるに当たっては、触媒を固体の状態(固相)で原料化合物と接触させることが好ましい。 In this step, when the raw material compound and the catalyst are brought into contact with each other in the gas phase, it is preferable that the catalyst is brought into contact with the raw material compound in a solid state (solid phase).
 本工程において、触媒は、粉末状でもよいが、ペレット状の方が気相連続流通式の反応に好ましい。 In this step, the catalyst may be in powder form, but pellet form is preferable for gas phase continuous flow reaction.
 前記触媒のBET法により測定した比表面積(以下、BET比表面積とも称する。)は、通常10~3,000m2/gであり、好ましくは10~400m2/gであり、より好ましくは20~375m2/gであり、更に好ましくは30~350m2/gである。触媒のBET比表面積がこのような範囲にある場合、触媒の粒子の密度が小さ過ぎることがない為、高い選択率で目的化合物を得ることができる。また、原料化合物の転化率を向上させることも可能である。 The specific surface area of the catalyst measured by the BET method (hereinafter, also referred to as BET specific surface area) is usually 10 to 3,000 m 2 /g, preferably 10 to 400 m 2 /g, and more preferably 20 to 375 m. 2 /g, more preferably 30 to 350 m 2 /g. When the BET specific surface area of the catalyst is in such a range, the density of the catalyst particles is not too small, and thus the target compound can be obtained with high selectivity. It is also possible to improve the conversion rate of the raw material compound.
 触媒として活性炭を用いる場合、破砕炭、成形炭、顆粒炭、球状炭等の粉末活性炭を用いる事が好ましい。粉末活性炭は、JIS試験で、4メッシュ(4.76mm)~100メッシュ(0.149mm)の粒度を示す粉末活性炭を用いることが好ましい。 When using activated carbon as a catalyst, it is preferable to use powdered activated carbon such as crushed coal, shaped coal, granulated coal, spherical charcoal. As the powdered activated carbon, it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.76 mm) to 100 mesh (0.149 mm) in the JIS test.
 触媒として金属触媒を用いる場合、担体に担持されていることが好ましい。担体としては、例えば、炭素、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)等が挙げられる。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。 When a metal catalyst is used as the catalyst, it is preferably supported on a carrier. Examples of the carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like. As carbon, activated carbon, amorphous carbon, graphite, diamond or the like can be used.
 本開示における触媒の一例として、酸化クロム及びフッ素化された酸化クロムについて、説明する。酸化クロムは、例えば、酸化クロムをCr2O3・nH2Oで表した場合に、nの値が3以下であることが好ましく、1~1.5であることがより好ましい。また、前記酸化クロムは、組成式:CrOmにおいて、mが通常1.5<m<3の範囲にあるものが好ましい。触媒として、フッ素化された酸化クロムは、酸化クロムをフッ素化することにより調製することができる。フッ素化としては、フッ化水素(HF)によるフッ素化、フルオロカーボン等によるフッ素化を挙げることができる。 Chromium oxide and fluorinated chromium oxide will be described as an example of the catalyst in the present disclosure. For chromium oxide, for example, when chromium oxide is represented by Cr 2 O 3 .nH 2 O, the value of n is preferably 3 or less, more preferably 1 to 1.5. In the composition formula: CrO m , the chromium oxide is preferably one in which m is usually in the range of 1.5<m<3. As a catalyst, fluorinated chromium oxide can be prepared by fluorinating chromium oxide. Examples of the fluorination include fluorination with hydrogen fluoride (HF) and fluorination with fluorocarbon and the like.
 触媒としてのフッ素化された酸化クロムは、例えば、日本特許第3412165号に記載されている方法に従って得ることができる。酸化クロムをフッ化水素によりフッ素化(HF処理)することによってフッ素化された酸化クロムを得ることができる。フッ素化の温度は、例えば、100~460℃が好ましい。フッ素化の圧力は、触媒反応に供される時の圧力が好ましい。本開示において、フッ素含有量の多い高フッ素化-酸化クロム触媒を用いることが特に好ましい。高フッ素化-酸化クロム触媒は、酸化クロムを通常より高温で、長時間フッ素化することにより得ることができる。 Fluorinated chromium oxide as a catalyst can be obtained, for example, according to the method described in Japanese Patent No. 3412165. A fluorinated chromium oxide can be obtained by fluorinating chromium oxide with hydrogen fluoride (HF treatment). The fluorination temperature is preferably 100 to 460° C., for example. The pressure for fluorination is preferably the pressure at which it is subjected to a catalytic reaction. In the present disclosure, it is particularly preferable to use a highly fluorinated-chromium oxide catalyst having a high fluorine content. The highly fluorinated-chromium oxide catalyst can be obtained by fluorinating chromium oxide at a higher temperature than usual for a long time.
 高フッ素化-酸化クロム触媒は、フッ素含有量が30質量%以上であることが好ましく、30~45質量%であることがより好ましい。フッ素含有量は、触媒の質量変化、又は一般的なクロム酸化物の定量分析法によって測定することができる。 The highly fluorinated-chromium oxide catalyst preferably has a fluorine content of 30% by mass or more, more preferably 30 to 45% by mass. The fluorine content can be measured by a mass change of the catalyst or a general quantitative analysis method of chromium oxide.
 脱離反応温度
 本開示における脱離反応する工程では、反応温度の下限値は、より効率的に脱離反応を進行させ、目的化合物をより高い選択率で得ることができる観点、転化率の低下を抑制する観点から、通常50℃であり、好ましくは200℃であり、より好ましくは250℃であり、更に好ましくは300℃であり、特に好ましくは350℃である。
Elimination reaction temperature In the step of elimination reaction in the present disclosure, the lower limit of the reaction temperature is such that the elimination reaction proceeds more efficiently and the target compound can be obtained with higher selectivity, and the conversion rate decreases. From the viewpoint of suppressing the above, it is usually 50° C., preferably 200° C., more preferably 250° C., further preferably 300° C., particularly preferably 350° C.
 脱離反応における反応温度の上限値は、より効率的に脱フッ化水素反応を進行させ、目的化合物をより高い選択率で得ることができる観点、且つ反応生成物が分解又は重合することによる選択率の低下を抑制する観点から、通常500℃であり、好ましくは450℃であり、より好ましくは400℃である。 The upper limit of the reaction temperature in the elimination reaction is selected from the viewpoint that the dehydrofluorination reaction can proceed more efficiently and the target compound can be obtained with higher selectivity, and that the reaction product decomposes or polymerizes. From the viewpoint of suppressing the decrease in the rate, it is usually 500° C., preferably 450° C., and more preferably 400° C.
 脱離反応時間
 脱離反応の反応時間は、原料化合物の触媒に対する接触時間(W/F0)[W:金属触媒の重量(g)、F0:原料化合物の流量(cc/sec)]を長くすれば原料化合物の転化率を上げることができるが、触媒の量が多くなって設備が大きくなり、非効率である。
Desorption reaction time The reaction time of the desorption reaction is defined as the contact time of the starting compound with the catalyst (W/F 0 )[W: weight of metal catalyst (g), F 0 : flow rate of starting compound (cc/sec)] If the length is increased, the conversion rate of the raw material compound can be increased, but the amount of the catalyst is increased and the equipment becomes large, which is inefficient.
 その為、脱フッ化水素反応の反応時間は、原料化合物の転化率を向上させる点、及び設備コストを抑制する点から、原料化合物の触媒に対する接触時間(W/F0)が、5g・sec/cc~300g・sec/ccであることが好ましく、10g・sec/cc~200g・sec/ccであることがより好ましく、15g・sec/cc~150g・sec/ccであることが更に好ましく、20g・sec/cc~100g・sec/ccであることが特に好ましい。 Therefore, the reaction time of the dehydrofluorination reaction is 5 g·sec for the contact time (W/F 0 ) of the raw material compound with the catalyst from the viewpoint of improving the conversion rate of the raw material compound and suppressing the equipment cost. /Cc to 300 g·sec/cc is preferable, 10 g·sec/cc to 200 g·sec/cc is more preferable, 15 g·sec/cc to 150 g·sec/cc is further preferable, It is particularly preferable that it is 20 g·sec/cc to 100 g·sec/cc.
 上記原料化合物の触媒に対する接触時間とは、原料化合物及び触媒が接触する時間を意味する。 The contact time of the raw material compound with the catalyst means the time of contact between the raw material compound and the catalyst.
 本開示における脱離反応では、触媒の存在下、気相で行う際に、特に触媒に合わせて反応温度と反応時間(接触時間)とを適宜調整することで、目的化合物をより高い選択率で得ることができる。 In the elimination reaction in the present disclosure, when the reaction is carried out in the gas phase in the presence of a catalyst, the reaction temperature and the reaction time (contact time) are appropriately adjusted particularly according to the catalyst, so that the target compound can be obtained with higher selectivity. Obtainable.
 触媒として、酸化クロムを用いる場合は、反応温度は300℃以上であることが好ましく、350℃以上であることがより好ましい。また、接触時間は10g・sec/cc以上であることが好ましく、20g・sec/cc以上であることがより好ましく、40g・sec/cc以上であることが更に好ましい。 When using chromium oxide as a catalyst, the reaction temperature is preferably 300°C or higher, more preferably 350°C or higher. Further, the contact time is preferably 10 g·sec/cc or more, more preferably 20 g·sec/cc or more, and further preferably 40 g·sec/cc or more.
 触媒として、アルミナを用いる場合、反応温度は300℃以上であることが好ましく、また、接触時間は5g・sec/cc以上であることが好ましい。 When alumina is used as the catalyst, the reaction temperature is preferably 300°C or higher, and the contact time is preferably 5 g·sec/cc or higher.
 触媒として、活性炭を用いる場合、反応温度は300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることが更に好ましい。また、接触時間は5g・sec/cc~55g・sec/ccであることが好ましく、5g・sec/cc~50g・sec/ccであることがより好ましく、5g・sec/cc~40g・sec/ccであることが更に好ましい。 When using activated carbon as the catalyst, the reaction temperature is preferably 300°C or higher, more preferably 350°C or higher, and further preferably 400°C or higher. The contact time is preferably 5 g·sec/cc to 55 g·sec/cc, more preferably 5 g·sec/cc to 50 g·sec/cc, and more preferably 5 g·sec/cc to 40 g·sec/ More preferably cc.
 脱離反応圧力
 脱離反応の反応圧力は、より効率的に脱離反応を進行させる点から、-0.05MPa~2MPaであることが好ましく、-0.01MPa~1MPaであることがより好ましく、常圧~0.5MPaであることが更に好ましい。なお、本開示において、圧力については表記が無い場合はゲージ圧とする。
Desorption reaction pressure The reaction pressure of the desorption reaction is preferably -0.05MPa to 2MPa, more preferably -0.01MPa to 1MPa, from the viewpoint of promoting the desorption reaction more efficiently, and at atmospheric pressure. More preferably, the pressure is up to 0.5 MPa. Note that in the present disclosure, the pressure is a gauge pressure unless otherwise noted.
 脱離反応において、原料化合物と触媒(金属触媒等)とを接触させて反応させる反応器としては、上記温度及び圧力に耐えうるものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。 In the elimination reaction, the reactor for contacting the raw material compound and the catalyst (metal catalyst etc.) to react with each other is not particularly limited in shape and structure as long as it can withstand the above temperature and pressure. Examples of the reactor include a vertical reactor, a horizontal reactor, a multitubular reactor and the like. Examples of the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
 脱離反応の例示
 脱離反応は、反応器に原料化合物を連続的に仕込み、当該反応器から目的化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。目的化合物が反応器に留まると、更に脱離反応が進行し得ることから、流通式で実施することが好ましい。本開示における脱離反応する工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
Example of Desorption Reaction The desorption reaction can be carried out by any of a flow system and a batch system in which a starting compound is continuously charged into a reactor and the target compound is continuously withdrawn from the reactor. If the target compound remains in the reactor, the elimination reaction can proceed further, so that it is preferably carried out in a flow system. The step of the desorption reaction in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation, etc. can be simplified, and it is economically advantageous.
 脱離反応を行う際の雰囲気については、触媒(金属触媒等)の劣化を抑制する点から、不活性ガス存在下及び/又はフッ化水素存在下であることが好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン及び二酸化炭素からなる群より選択される少なくとも1種であることが好ましい。これらの不活性ガスの中でも、コストを抑える点から、窒素がより好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50mol%とすることが好ましい。 The atmosphere during the desorption reaction is preferably in the presence of an inert gas and/or hydrogen fluoride from the viewpoint of suppressing the deterioration of the catalyst (metal catalyst etc.). The inert gas is preferably at least one selected from the group consisting of nitrogen, helium, argon and carbon dioxide. Among these inert gases, nitrogen is more preferable from the viewpoint of cost reduction. The concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
 脱離反応終了後は、必要に応じて常法にしたがって精製処理を行い、一般式(1)で表されるハロゲン原子を含むシクロブテンを得ることができる。 After completion of the elimination reaction, a cyclobutene containing a halogen atom represented by the general formula (1) can be obtained by performing a purification treatment according to a conventional method as needed.
 (3)目的化合物
 本開示における目的化合物は、一般式(1):
(3) Target compound The target compound in the present disclosure has the general formula (1):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
で表されるハロゲン原子を含むシクロブテンである。
(In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
It is a cyclobutene containing a halogen atom represented by.
 X1、X2、X3及びX4、並びにYは、前記に同じである。 X 1 , X 2 , X 3 and X 4 , and Y are the same as defined above.
 製造しようとする一般式(1)で表されるシクロブテンは、例えば、次の Cyclobutene represented by the general formula (1) to be produced is, for example,
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
等の化合物が挙げられる。 And the like.
 一般式(1)で表されるハロゲン原子を含むシクロブテンでは、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示し、Yは、フッ素原子であることが好ましい。一般式(1)で表されるハロゲン原子を含むシクロブテンでは、X1、X2、X3及びX4は、フッ素原子であり、Yは、フッ素原子であることがより好ましい。 In cyclobutene containing a halogen atom represented by the general formula (1), X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom, or a perfluoroalkyl group, and Y is It is preferably a fluorine atom. In the cyclobutene containing a halogen atom represented by the general formula (1), X 1 , X 2 , X 3 and X 4 are more preferably a fluorine atom, and Y is more preferably a fluorine atom.
 本開示におけるハロゲン原子を含むシクロブテンの製造方法では、原料化合物は、一般式(2)で表されるハロゲン原子を含むシクロブタンとして、X1、X2、X3、X4及びX6は、フッ素原子であり、X5は水素原子であり、Yは、フッ素原子である場合の脱離反応であることが好ましい。 In the method for producing a cyclobutene containing a halogen atom in the present disclosure, the starting compound is a cyclobutane containing a halogen atom represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are fluorine. Atoms, X 5 is a hydrogen atom, and Y is a fluorine atom, which is preferably an elimination reaction.
 以下の反応式に従い、脱離反応は脱フッ化水素反応であることが好ましい。 According to the following reaction formula, the elimination reaction is preferably a dehydrofluorination reaction.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 目的化合物は、一般式(1)で表されるハロゲン原子を含むシクロブテンとして、X1、X2、X3及びX4は、フッ素原子であり、Yは、フッ素原子であることが好ましい。 As the target compound, as the cyclobutene containing a halogen atom represented by the general formula (1), it is preferable that X 1 , X 2 , X 3 and X 4 are fluorine atoms, and Y is a fluorine atom.
 (4)ハロゲン原子を含むシクロブテンを含む組成物
 以上のようにして、一般式(1)で表されるハロゲン原子を含むシクロブテンを得ることができるが、上記のように、一般式(1)で表されるハロゲン原子を含むシクロブテンと、一般式(2)で表されるハロゲン原子を含むシクロブタンとを含有する組成物の形で得られることもある。
(4) A composition containing a cyclobutene containing a halogen atom As described above, a cyclobutene containing a halogen atom represented by the general formula (1) can be obtained. It may be obtained in the form of a composition containing a cyclobutene containing a halogen atom represented by the formula and a cyclobutane containing a halogen atom represented by the general formula (2).
 組成物に含まれる一般式(1)で表されるハロゲン原子を含むシクロブテンとして、X1、X2、X3及びX4は、フッ素原子であり、Yは、フッ素原子であることが好ましい。 As the cyclobutene containing a halogen atom represented by the general formula (1) contained in the composition, it is preferable that X 1 , X 2 , X 3 and X 4 are fluorine atoms and Y is a fluorine atom.
 本開示の一般式(1)で表されるハロゲン原子を含むシクロブテンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるハロゲン原子を含むシクロブテンの含有量は、95mol%以上であることが好ましく、99mol%以上であることがより好ましい。 In the composition containing a halogen atom-containing cyclobutene represented by the general formula (1) of the present disclosure, the content of the cyclobutene containing a halogen atom represented by the general formula (1), with the total amount of the composition being 100 mol %. Is preferably 95 mol% or more, and more preferably 99 mol% or more.
 本開示の一般式(1)で表されるハロゲン原子を含むシクロブテンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるハロゲン原子を含むシクロブテンの含有量は1mol%~99.9mol%が好ましく、5mol%~99.9mol%がより好ましく、10mol%~99.9mol%更に好ましい。 In the composition containing a cyclobutene containing a halogen atom represented by the general formula (1) of the present disclosure, the content of the cyclobutene containing a halogen atom represented by the general formula (1), with the total amount of the composition being 100 mol %. Is preferably 1 mol% to 99.9 mol%, more preferably 5 mol% to 99.9 mol%, still more preferably 10 mol% to 99.9 mol%.
 本開示におけるハロゲン原子を含むシクロブテンの製造方法では、上記脱離反応には、以下の化合物が不純物として生成され得る。 In the method for producing a cyclobutene containing a halogen atom according to the present disclosure, the following compounds may be produced as impurities in the above elimination reaction.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本開示の一般式(1)で表されるハロゲン原子を含むシクロブテンを含む組成物において、前記組成物の総量を100mol%として、1H-パーフルオロシクロブテン(1H-cC4F5H)の含有量は99mol%以上であり、3H-パーフルオロシクロブテン(3H-cC4F5H)の含有量は1mol%以下が好ましい。 In a composition containing a cyclobutene containing a halogen atom represented by the general formula (1) of the present disclosure, the content of 1H-perfluorocyclobutene (1H-cC 4 F 5 H) is defined as 100 mol% of the total amount of the composition. The amount is 99 mol% or more, and the content of 3H-perfluorocyclobutene (3H-cC 4 F 5 H) is preferably 1 mol% or less.
 本開示の製造方法によれば、一般式(1)で表されるハロゲン原子を含むシクロブテンを含む組成物として得られた場合であっても、一般式(1)で表されるハロゲン原子を含むシクロブテンを特に高い選択率で得ることができ、その結果、前記組成物中の一般式(1)で表されるハロゲン原子を含むシクロブテン以外の成分を少なくすることが可能である。本開示の製造方法によれば、一般式(1)で表されるハロゲン原子を含むシクロブテンを得る為の精製の労力を削減することができる。 According to the production method of the present disclosure, even when obtained as a composition containing cyclobutene containing a halogen atom represented by the general formula (1), the halogen atom represented by the general formula (1) is contained. Cyclobutene can be obtained with a particularly high selectivity, and as a result, it is possible to reduce the components other than cyclobutene containing the halogen atom represented by the general formula (1) in the composition. According to the production method of the present disclosure, labor for purification for obtaining a cyclobutene containing a halogen atom represented by the general formula (1) can be reduced.
 本開示の一般式(1)で表されるハロゲン原子を含むシクロブテンを含む組成物は、一般式(1)で表されるハロゲン原子を含むシクロブテン単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスの他、デポジットガス、有機合成用ビルディングブロック、クリーニングガス等の各種用途に有効利用できる。 A composition containing a cyclobutene containing a halogen atom represented by the general formula (1) of the present disclosure has the same composition as a semiconductor, a liquid crystal, etc., as in the case of cyclobutene containing a halogen atom represented by the general formula (1) alone. In addition to the etching gas for forming the fine structure of the tip, it can be effectively used for various purposes such as a deposit gas, a building block for organic synthesis, and a cleaning gas.
 前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。 The deposit gas is a gas that deposits the etching resistant polymer layer.
 前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示の一般式(1)で表されるハロゲン原子を含むシクロブテン、及びこれを含む組成物とCF3Si(CH3)3等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体となり得る物質に変換することが可能である。 The building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton. For example, when cyclobutene containing a halogen atom represented by the general formula (1) of the present disclosure and a composition containing the same are reacted with a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3 , CF 3 It is possible to introduce a fluoroalkyl group such as a group into a substance that can be a detergent or a fluorine-containing pharmaceutical intermediate.
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。 Although the embodiments of the present disclosure have been described above, various changes in form and details can be made without departing from the spirit and scope of the claims.
 以下に実施例を挙げ、本開示を具体的に説明するが、本開示は、これら実施例によって何ら限定されるものではない。 The present disclosure will be specifically described below with reference to examples, but the present disclosure is not limited to these examples.
 実施例
 実施例のハロゲン原子を含むシクロブテンの製造方法では、原料化合物は、一般式(2)で表されるハロゲン原子を含むシクロブタンにおいて、X1、X2、X3、X4及びX6は、フッ素原子であり、X5は水素原子であり、Yは、フッ素原子とした。
In the method for producing a cyclobutene containing a halogen atom of Examples, the starting compound is a cyclobutane containing a halogen atom represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are , A fluorine atom, X 5 was a hydrogen atom, and Y was a fluorine atom.
 以下の反応式に従、脱離反応は、脱フッ化水素反応とした。 According to the following reaction formula, the desorption reaction was dehydrofluorination reaction.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 目的化合物は、一般式(1)で表されるハロゲン原子を含むシクロブテンにおいて、X1、X2、X3及びX4は、フッ素原子であり、Yは、フッ素原子とした。 The target compound is a cyclobutene containing a halogen atom represented by the general formula (1), wherein X 1 , X 2 , X 3 and X 4 are fluorine atoms, and Y is a fluorine atom.
 また、上記脱離反応には、以下の化合物が不純物として生成され得る。 The following compounds may be produced as impurities in the above elimination reaction.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 実施例1~3(酸化クロム触媒)
 反応管としてSUS配管(外径:1/2インチ)を用い、触媒としてCr2O3を主成分とする酸化クロム10gを充填した。前記触媒を脱離反応(脱フッ化水素反応)に使用する前処理として、反応器に無水フッ化水素を流通させ、反応器の温度を200℃から300℃としてフッ素化処理を行った。フッ素化された酸化クロムを取り出し、脱フッ化水素反応に用いた。フッ素化された酸化クロムのBET比表面積は75m2/gであった。
Examples 1 to 3 (chromium oxide catalyst)
A SUS pipe (outer diameter: 1/2 inch) was used as a reaction tube, and 10 g of chromium oxide containing Cr 2 O 3 as a main component was filled as a catalyst. As a pretreatment for using the catalyst in a desorption reaction (dehydrofluorination reaction), anhydrous hydrogen fluoride was passed through the reactor, and the fluorination treatment was performed by setting the temperature of the reactor to 200°C to 300°C. The fluorinated chromium oxide was taken out and used for the dehydrofluorination reaction. The BET specific surface area of the fluorinated chromium oxide was 75 m 2 /g.
 反応器であるSUS配管(外径:1/2インチ)に、触媒としてフッ素化した酸化クロム(フッ化酸化クロム)を10g加えた。窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、cC4F6H2(原料化合物)とフッ素化した酸化クロム(触媒)との接触時間(W/F0)が20g・sec/cc又は40g・sec/ccとなるように、反応器に原料化合物(cC4F6H2)を流通させた。 10 g of fluorinated chromium oxide (chromium fluoride oxide) as a catalyst was added to a SUS pipe (outer diameter: 1/2 inch) which is a reactor. After drying at 200°C for 2 hours in a nitrogen atmosphere, the pressure was normal pressure and the contact time (W/F 0 ) between cC 4 F 6 H 2 (raw material compound) and fluorinated chromium oxide (catalyst) was 20 g. The raw material compound (cC 4 F 6 H 2 ) was passed through the reactor so as to be sec/cc or 40 g·sec/cc.
 気相連続流通式で反応を進行させた。  The reaction proceeded in the gas phase continuous flow system.
 反応器を250℃又は350℃で加熱して脱フッ化水素反応を開始した。 -The reactor was heated at 250°C or 350°C to start the dehydrofluorination reaction.
 脱フッ化水素反応を開始してから1時間後に、除害塔を通った留出分を集めた。 1 hour after starting the dehydrofluorination reaction, the distillate that passed through the detoxification tower was collected.
 その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。 Then, mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, product name “GC-2014”), and NMR (manufactured by JEOL, product name “400YH”). ]) was used for structural analysis by NMR spectrum.
 質量分析及び構造解析の結果から、目的化合物としてcC4F5Hが生成したことが確認された。実施例1では、cC4F6H2(原料化合物)からの転化率は3.34mol%であり、cC4F5H(目的化合物)の選択率(収率)は45.9mol%であった。実施例2では、転化率:29.1mol%、選択率:98.6mol%であった。実施例3では、転化率:26.1mol%、選択率:97.2mol%であった。 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 5 H was produced as the target compound. In Example 1, the conversion rate from cC 4 F 6 H 2 (raw material compound) was 3.34 mol%, and the selectivity (yield) for cC 4 F 5 H (target compound) was 45.9 mol%. In Example 2, the conversion was 29.1 mol% and the selectivity was 98.6 mol%. In Example 3, the conversion was 26.1 mol% and the selectivity was 97.2 mol%.
 実施例4及び5(アルミナ触媒)
 前記実施例1の実験方法に倣い、触媒としてAl2O3を主成分とするアルミナを用いた。前記実施例1の実験方法に倣い、cC4F6H2(原料化合物)とアルミナ(触媒)との接触時間(W/F0)が10g・sec/cc又は40g・sec/ccとなるように、反応器に原料化合物を流通させた。前記実施例1の実験方法に倣い、反応器を400℃で加熱して脱フッ化水素反応を開始した。前記条件以外は、実施例1と同様にして、脱フッ化水素反応、質量分析及び構造解析を実施した。
Examples 4 and 5 (alumina catalyst)
Following the experimental method of Example 1, alumina containing Al 2 O 3 as a main component was used as a catalyst. Following the experimental method of Example 1, the contact time (W/F 0 ) between cC 4 F 6 H 2 (raw material compound) and alumina (catalyst) should be 10 g·sec/cc or 40 g·sec/cc. Then, the raw material compound was passed through the reactor. Following the experimental method of Example 1, the reactor was heated at 400° C. to start the dehydrofluorination reaction. Dehydrofluorination reaction, mass spectrometry and structural analysis were carried out in the same manner as in Example 1 except for the above conditions.
 質量分析及び構造解析の結果から、目的化合物としてcC4F5Hが生成したことが確認された。実施例4では、cC4F6H2(原料化合物)からの転化率は7.92mol%であり、cC4F5H(目的化合物)の選択率は45.1mol%であった。実施例5では、転化率:4.11mol%、選択率:35.0mol%であった。 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 5 H was produced as the target compound. In Example 4, the conversion from cC 4 F 6 H 2 (raw material compound) was 7.92 mol%, and the selectivity of cC 4 F 5 H (target compound) was 45.1 mol%. In Example 5, the conversion rate was 4.11 mol% and the selectivity rate was 35.0 mol%.
 実施例6~10(活性炭触媒)
 前記実施例1の実験方法に倣い、触媒として活性炭を用いた。前記実施例1の実験方法に倣い、cC4F6H2(原料化合物)と活性炭(触媒)との接触時間(W/F0)が10g・sec/cc、27g・sec/cc又は47g・sec/ccとなるように、反応器に原料化合物を流通させた。前記実施例1の実験方法に倣い、反応器を300℃、350℃又は400℃で加熱して脱フッ化水素反応を開始した。前記条件以外は、実施例1と同様にして、脱フッ化水素反応、質量分析及び構造解析を実施した。
Examples 6 to 10 (activated carbon catalyst)
Following the experimental method of Example 1, activated carbon was used as a catalyst. Following the experimental method of Example 1, the contact time (W/F 0 ) between cC 4 F 6 H 2 (raw material compound) and activated carbon (catalyst) was 10 g·sec/cc, 27 g·sec/cc or 47 g·sec. The raw material compound was passed through the reactor so as to be sec/cc. Following the experimental method of Example 1, the reactor was heated at 300° C., 350° C. or 400° C. to start the dehydrofluorination reaction. Dehydrofluorination reaction, mass spectrometry and structural analysis were carried out in the same manner as in Example 1 except for the above conditions.
 質量分析及び構造解析の結果から、目的化合物としてcC4F5Hが生成したことが確認された。実施例6では、cC4F6H2(原料化合物)からの転化率は57.6mol%であり、cC4F5H(目的化合物)の選択率は95.3mol%であった。実施例7では、転化率:97.7mol%、選択率:68.3mol%であった。実施例8では、転化率:84.1mol%、選択率:83.8mol%であった。実施例9では、転化率:72.3mol%、選択率:94.6mol%であった。実施例10では、転化率:84.7mol%、選択率:95.7mol%であった。 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 5 H was produced as the target compound. In Example 6, the conversion from cC 4 F 6 H 2 (raw material compound) was 57.6 mol%, and the selectivity of cC 4 F 5 H (target compound) was 95.3 mol%. In Example 7, the conversion was 97.7 mol% and the selectivity was 68.3 mol%. In Example 8, the conversion was 84.1 mol% and the selectivity was 83.8 mol%. In Example 9, the conversion rate was 72.3 mol% and the selectivity was 94.6 mol%. In Example 10, the conversion was 84.7 mol% and the selectivity was 95.7 mol%.
 各実施例の結果を以下の表1に示す。表1において、接触時間(W/F0)とは、流通する原料ガスをどの程度の速度で流すか、即ち、触媒及び原料ガスが接触する時間を意味する。 The results of each example are shown in Table 1 below. In Table 1, the contact time (W/F 0 ) means at what rate the flowing raw material gas is flown, that is, the time during which the catalyst and the raw material gas are in contact with each other.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Claims (5)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
    で表されるシクロブテンの製造方法であって、
     一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1、X2、X3、X4及びYは、前記に同じである。X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
    で表されるシクロブタンを脱離反応する工程を含み、
     前記脱離反応する工程を、気相で行う、製造方法。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
    A method for producing cyclobutene represented by
    General formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X 1 , X 2 , X 3 , X 4 and Y are the same as above. X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. .)
    Including a step of removing cyclobutane represented by
    A manufacturing method, wherein the step of performing the elimination reaction is performed in a gas phase.
  2.  前記X5は水素原子であり、前記X6はハロゲン原子であり、前記脱離反応が脱ハロゲン化水素反応である、請求項1に記載の製造方法。 2. The production method according to claim 1, wherein X 5 is a hydrogen atom, X 6 is a halogen atom, and the elimination reaction is a dehydrohalogenation reaction.
  3.  一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X1、X2、X3及びX4は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。Yは、ハロゲン原子を示す。)
    で表されるシクロブテンを含有する組成物であって、
    組成物全量を100mol%として、前記一般式(1)で表されるシクロブテンの含有量が95mol%以上である、組成物。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group. Y represents a halogen atom.)
    A composition containing cyclobutene represented by the following:
    The composition, wherein the total amount of the composition is 100 mol %, the content of cyclobutene represented by the general formula (1) is 95 mol% or more.
  4.  1H-パーフルオロシクロブテン(1H-cC4F5H)の含有量が99mol%以上であり、3H-パーフルオロシクロブテン(3H-cC4F5H)の含有量が1mol%以下である、請求項3に記載の組成物組成物。 The content of 1H-perfluorocyclobutene (1H-cC 4 F 5 H) is 99 mol% or more, the content of 3H-perfluorocyclobutene (3H-cC 4 F 5 H) is 1 mol% or less, A composition according to claim 3.
  5.  クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、請求項3又は4に記載の組成物。 The composition according to claim 3 or 4, which is used as a cleaning gas, an etching gas, a deposit gas, or a building block for organic synthesis.
PCT/JP2019/049900 2018-12-27 2019-12-19 Method for producing cyclobutene WO2020137825A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086441.9A CN113227026A (en) 2018-12-27 2019-12-19 Process for producing cyclobutene
SG11202106891PA SG11202106891PA (en) 2018-12-27 2019-12-19 Method for producing cyclobutene
KR1020217023297A KR102566765B1 (en) 2018-12-27 2019-12-19 Method for producing cyclobutene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245665 2018-12-27
JP2018245665A JP6835060B2 (en) 2018-12-27 2018-12-27 Cyclobutene manufacturing method

Publications (1)

Publication Number Publication Date
WO2020137825A1 true WO2020137825A1 (en) 2020-07-02

Family

ID=71127736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049900 WO2020137825A1 (en) 2018-12-27 2019-12-19 Method for producing cyclobutene

Country Status (6)

Country Link
JP (1) JP6835060B2 (en)
KR (1) KR102566765B1 (en)
CN (1) CN113227026A (en)
SG (1) SG11202106891PA (en)
TW (1) TWI777113B (en)
WO (1) WO2020137825A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049515A1 (en) * 2021-09-27 2023-03-30 Honeywell International Inc. Fluorine substituted cyclobutene compounds, and compositions, methods and uses including same
WO2023049513A1 (en) * 2021-09-27 2023-03-30 Honeywell International Inc. Fluorine substituted cyclobutene compounds, and compositions, methods and uses including same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891968A (en) * 1955-08-12 1959-06-23 Du Pont Difluorobutenedioic acids, their alkali metal salts, their alkyl esters and anhydride, and process for preparing them
GB844604A (en) * 1955-09-14 1960-08-17 Robert Neville Haszeldine Halogenated organic compounds
WO2010007968A1 (en) * 2008-07-18 2010-01-21 日本ゼオン株式会社 Method for producing hydrogen-containing fluoroolefin compound
JP2010043034A (en) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd Manufacturing method of hydrogen-containing fluoroolefin compound
JP2010126452A (en) * 2008-11-25 2010-06-10 Nippon Zeon Co Ltd Method for producing hydrogen-containing fluoroolefin compound
CN107721810A (en) * 2017-11-07 2018-02-23 中国民航大学 A kind of method for synthesizing extinguishing chemical octafluorocyclobutane

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100673B2 (en) * 1986-08-19 1995-11-01 旭化成工業株式会社 Process for producing 1-fluorocyclohexene
KR940002713B1 (en) * 1991-12-03 1994-03-31 주식회사 코오롱 Process for the preparation of photosensitive diazo-type compounds
TWI298716B (en) * 2001-08-06 2008-07-11 Showa Denko Kk
US7560602B2 (en) * 2005-11-03 2009-07-14 Honeywell International Inc. Process for manufacture of fluorinated olefins
JP5056963B2 (en) * 2010-03-31 2012-10-24 ダイキン工業株式会社 Method for producing fluorine-containing alkane
CN102971279B (en) * 2010-04-02 2015-05-20 索尔维公司 Process for dehydrofluorinating hydrochlorofluoroalkanes and products obtained thereby
CN102884031B (en) * 2010-05-03 2016-04-06 阿科玛股份有限公司 For the formation of the dehydrofluorination of five fluothane of tetrafluoroolefin
CN102836722B (en) * 2012-09-06 2014-10-15 西安近代化学研究所 Catalyst used in preparation of fluorine-containing olefin through dehydrohalogenation of halohydrofluoroalkane and preparation method of catalyst
KR102258218B1 (en) * 2013-08-26 2021-05-28 에이지씨 가부시키가이샤 Method for producing fluorinated compound
CN105107533B (en) * 2015-08-18 2019-04-09 巨化集团技术中心 A kind of preparation method of vapor phase dehydrofluorination catalysts
CN107739294B (en) * 2017-10-17 2020-08-21 北京宇极科技发展有限公司 Method for preparing hydrofluorocyclopentene by gas phase dehydrofluorination
JP7166911B2 (en) * 2018-12-25 2022-11-08 ダイキン工業株式会社 Method for producing cyclobutene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891968A (en) * 1955-08-12 1959-06-23 Du Pont Difluorobutenedioic acids, their alkali metal salts, their alkyl esters and anhydride, and process for preparing them
GB844604A (en) * 1955-09-14 1960-08-17 Robert Neville Haszeldine Halogenated organic compounds
WO2010007968A1 (en) * 2008-07-18 2010-01-21 日本ゼオン株式会社 Method for producing hydrogen-containing fluoroolefin compound
JP2010043034A (en) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd Manufacturing method of hydrogen-containing fluoroolefin compound
JP2010126452A (en) * 2008-11-25 2010-06-10 Nippon Zeon Co Ltd Method for producing hydrogen-containing fluoroolefin compound
CN107721810A (en) * 2017-11-07 2018-02-23 中国民航大学 A kind of method for synthesizing extinguishing chemical octafluorocyclobutane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUXTON, M. W. ET AL.: "The reaction of highly fluorinated organic compounds. Part V. 1H: 2H-Hexafluorocyclobutane and 1H- Pentafluorocyclobut-1-ene", JOURNAL OF THE CHEMICAL SOCIETY, 1954, pages 1177 - 1179, XP055721537 *
FULLER, G. ET AL.: "Some isomeric Hexafluorocyclobutanes and Pentafluorocyclobutenes", JOURNAL OF THE CHEMICAL SOCIETY, 1961, pages 3198 - 3203, XP055721540 *

Also Published As

Publication number Publication date
JP2020105114A (en) 2020-07-09
KR102566765B1 (en) 2023-08-16
SG11202106891PA (en) 2021-07-29
TW202035349A (en) 2020-10-01
CN113227026A (en) 2021-08-06
KR20210108993A (en) 2021-09-03
TWI777113B (en) 2022-09-11
JP6835060B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6673413B2 (en) Method for producing fluoroolefin
JP6827246B2 (en) Method for producing halogenated butene compound
WO2010007968A1 (en) Method for producing hydrogen-containing fluoroolefin compound
WO2014077246A1 (en) Method for producing dry etching gas
KR102566765B1 (en) Method for producing cyclobutene
JP2016504326A (en) Method for jointly manufacturing HFO-1234ze and HFC-245fa
JP2022087300A (en) Production process for fluoroethylene
JP2023174809A (en) Method for producing fluoroolefin compound
JP6874778B2 (en) Cyclobutane manufacturing method
CN112912360B (en) Process for producing perfluorocycloolefin compound
JP2021014410A (en) Production method of vinyl compound
RU2784315C1 (en) Method for production of cyclobutene
RU2807184C2 (en) Method for obtaining cyclobutene
RU2807184C9 (en) Method for obtaining cyclobutane
JP2019151629A (en) Method of producing compound
KR102683558B1 (en) Method for producing halogenated butene compounds
JP2021011474A (en) Manufacturing method of fluorinated vinyl compound
CN117597322A (en) Process for producing olefin
KR20220019801A (en) Process for the preparation of alkanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023297

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19904214

Country of ref document: EP

Kind code of ref document: A1