JP2010092899A - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP2010092899A
JP2010092899A JP2008258307A JP2008258307A JP2010092899A JP 2010092899 A JP2010092899 A JP 2010092899A JP 2008258307 A JP2008258307 A JP 2008258307A JP 2008258307 A JP2008258307 A JP 2008258307A JP 2010092899 A JP2010092899 A JP 2010092899A
Authority
JP
Japan
Prior art keywords
light
solar cell
layer
cell module
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008258307A
Other languages
English (en)
Inventor
Hideaki Honma
英明 本間
Akihito Kagotani
彰人 籠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008258307A priority Critical patent/JP2010092899A/ja
Priority to KR20117008739A priority patent/KR20110084404A/ko
Priority to EP09817521.9A priority patent/EP2339645A4/en
Priority to PCT/JP2009/005131 priority patent/WO2010038482A1/ja
Priority to CN200980148323.2A priority patent/CN102232246B/zh
Priority to US12/998,268 priority patent/US20110186114A1/en
Priority to TW98133533A priority patent/TW201025647A/zh
Publication of JP2010092899A publication Critical patent/JP2010092899A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光の利用効率を上げるのに最適な凹凸構造を有した太陽電池モジュール用の光再利用シート及びそれを用いた太陽電池モジュールを提供することを目的とする。
【解決手段】受光面を有し該受光面に受光した光を電気に変換して出力する太陽電池セルと、前記太陽電池セルの受光面とは逆側に充填材を介し、光再利用シートを備える太陽電池モジュールであって、光再利用シートの太陽電池セル側にガウス曲率が0となる凹凸構造の反射面を有した光再利用層を有した光再利用シートにより、太陽電池モジュールの光の利用効率を向上させることができる。
【選択図】図1

Description

本発明は、一方の面に光を反射する反射面を有し、光を特定方向に反射することにより光を再利用することができる光再利用シート及びそれを用いた太陽電池モジュールに関する。
近年、太陽電池モジュールの普及は大きな広がりを見せ、電卓等の小型電子機器に搭載される比較的小さなものから、家庭用として住宅に取り付けられる太陽電池モジュールや大規模な発電施設に用いられる大面積の太陽電池発電システム、さらには人工衛星の電源まで、様々な分野で利用が促進されている(例えば、特許文献1参照)。
このような太陽電池は、主に光が照射される面積に比例して発電量が増加する。したがって、発電効率を向上させるには封止技術、製膜技術等の製造技術を改善することに加え、いかにして太陽電池モジュールの開口率(全面積に対する発電可能な面積の割合)を大きくするかが重要な課題となっている。
また、特に単結晶シリコンや多結晶のシリコンのでは、そのシリコンのコストが高いという問題がある。また、それを貼り付けるためのコストも加算されてくる。
そこで、太陽電池セルの構成部材であるシリコンの量が少なく、CVD等の技術により、成膜することができるような薄膜シリコンの太陽電池セルが用いられるようになってきている。
しかし、上述のものは特に赤外の光が薄膜シリコンの太陽電池セルを透過しやすいため光の吸収率が低い。そこで光の利用効率を上げるために、あえて入射光を光を散乱させて、薄膜シリコンの太陽電池セルを透過する距離を稼ぐことで光の利用効率を向上させる。
一般に、非晶質シリコン太陽電池には、2種類の構造のものがある。一つは、ガラス等の透光性基板上に、SnO2やITO等の透明電導膜が形成され、その上に非晶質半導体(Si)のp層、i層、n層がこの順に積層されて成る構造のものである。もう一つは、金属基板電極の上に、非晶質半導体(Si)のn層,i層,p層がこの順に積層されて光電変換活性層が形成され、更にその上に透明電導膜が積層され成る構造のものである。
特に、前者の構造のものでは、非晶質半導体をp−i−n層の順に形成するのに、透光性絶縁基板が太陽電池表面カバーガラスを兼ねることができること、また、SnO2等の耐プラズマ性透明電導膜が開発されて、この上に非晶質半導体光電変換活性層をプラズマCVD法で形成することが可能になったことなどから、現在多く用いられている。
なお、非晶質半導光電変換活性層の形成に、原料ガスのグロー放電分解によるプラズマCVD法や、光CVD法による気相成長法を用いることができ、これらの方法によれば大面積の薄膜形成が可能であるという利点もある。
非晶質Si太陽電池は、100℃〜200℃程度の比較的低温で形成できるので、その非晶質Si太陽電池を形成するための基板として、様々な材質の基板を用いることが可能であるが、通常よく用いられるものはガラス基板やステンレス基板である。
また、非晶質Si太陽電池は、光を電機に代える変換効率が最大となるときのシリコンの光吸収層の膜厚が500nm程度であるため、その変換効率を向上させるには光吸収層の膜厚内で光の吸収量を増大させることが重要なポイントとなる。そのため、ガラス基板上の表面に凹凸のある透明導電膜を形成したり、ステンレス基板上の表面に凹凸のある金属膜を形成したりすることにより、光吸収層中での光の光路長を増加させることが従来より行われてきた。
このような方法で、光吸収層中での光路長を増加させた太陽電池の場合、その表面に凹凸がない平坦な基板上に非晶質Si太陽電池を形成した場合と比較して、光の利用効率が顕著に向上する。
ところで、ガラス基板の表面上に凹凸を形成する一般的な方法としては、常圧CVD法により透明電極であるSnO2膜を形成する方法があげられる。また、ステンレス等の金属基板上に凹凸を形成する方法としては、Agを蒸着法やスパッタリング法により形成する際に、その形成条件を調整したり、Agの形成後に熱処理を行ったりする方法が用いられていた。
この薄膜太陽電池は、透光性絶縁基板の上に、透明導電膜、水素化アモルファスシリコンカーバイド(a−SiC:H)p層、水素化アモルファスシリコン(a−Si:H)i層、水素化アモルファスシリコン(a−Si:H)n層、透明導電膜、及び裏面電極が順次形成されて構成されるものである。そして、前述のようにして、透明導電膜の表面に凹凸形状が形成され、これによりその上部に形成された各層が凹凸構造を有するというものである。
また、薄膜太陽電池等の半導体素子を可撓性基板あるいは軽量基板上に形成する場合、耐熱性の高いポリイミド樹脂が用いられてきた。このような樹脂に凹凸を形成する方法は、特許文献2等に開示されている。
また、特許文献3には、V溝の周期構造により、光を再帰反射し、光の利用効率を上げるような特許が公開されており、V溝頂角は、50度から90度が望ましいとの記述がある。また、V溝の周期のピッチとしては、10μmから20μmが望ましいとの記述がある。
また、太陽電池セル30の配置間隔を狭くするとリーク電流が生じてしまうため、隣り合う太陽電池セル30の間の領域が必要となる。図17に示すように、太陽電池モジュール200に入射する光H0のうち、この領域に入射する光H1を、裏面材300を太陽電池モジュール200の背面に配置することにより裏面材300反射し、光H2として再利用するもの(特許文献4)が知られている。しかし、まだ十分な発電効率は得られていない。
特開2001−295437号公報 特開平4−61285号公報 特開平11−274533号公報 特開平11−307791号公報
上述のように、従来の太陽電池モジュールの単位面積当たりの発電効率を上げようという要望は多いが、まだ十分とはいえない。
本発明はこのような課題に鑑みてなされたものであって、光の利用効率の向上に最適な凹凸構造を有した光再利用シート及びそれを用いた太陽電池モジュール用を提供することを目的とする。
上述の目的を達成するために、本発明では、以下のような手段を講じる。
請求項1の発明は、光を入射する前面板と、
前記前面板を透過した光を透過する充填層と、
前記充填層で固定され、前記充填層から透過した光を、受光面から受光して電気に変換する太陽電池セルと、
前記太陽電池セルの前記受光面の裏面側にあり、前記太陽電池セルの前記受光面には受光しなかった光を反射する反射層を備えた構造層を有する光再利用シートと、
を有する太陽電池モジュールであって、前記光再利用シートの前記反射層の反射面がガスス曲率0となることを特徴とする太陽電池モジュールである。
請求項2の発明は、前記再利用シートの前記反射面のうち、ガウス曲率が0となる前記反射面の面積率が、90%以上であることを特徴とする請求項1に記載の太陽電池モジュールである。
請求項3の発明は、前記光再利用シートの構造層が中空粒子及び/又は酸化チタンの粒子を含有したポリマーによりなり、前記構造層の表面が反射面であることを特徴とする請求項1に記載の太陽電池モジュールである。
請求項4の発明は、前期前面板の法線と前記反射面の法線とのなす角が22.5度以上30度以下である前記反射面を有することを特徴とする請求項1に記載の太陽電池モジュールである。
請求項5の発明は、前記反射面の法線と前記前面板の法線のなす角が22.5度以上30度以下である前記反射面の面積率が、50%以上であることを特徴とする請求項1に記載の太陽電池モジュールである。
請求項6の発明は、前記構造層の凹凸形状が、周期性を有する単位凹凸構造からなることを特徴とする請求項1に記載に記載の太陽電池モジュールである。
請求項7の発明は、前記単位凹凸構造の周期ピッチが、25μm以上300μm以下であることを特徴とする請求項1に記載の太陽電池モジュールである。
請求項8の発明は、前記単位凹凸構造の周期ピッチが、50μm以上200μm以下であることを特徴とする請求項1に記載に記載の太陽電池モジュールである。
本発明は、上述の手段により、入射した光を再利用することにより光の利用効率を向上し、発電効率の良い太陽電池モジュールを提供することができる。
まず、本発明に係る太陽電池モジュール200について説明する。
図1に示すのは本発明の太陽電池モジュール200に係る一様態を示す断面図である。本発明に係る太陽電池モジュール200は、前面板22と、充填層21と、光再利用シート20を有する。
前面板22は、太陽光や照明光などの光源Lの光を透過するものであり、太陽電池セル30を衝撃、汚れ、水分の浸入等から保護するもので、透過率が高い透明な材料からなる。
光源Lの光が太陽光・照明光の側Fより入射面110に垂直に入射する光H0は、前面板22に入射後、前面板22を透過し、充填層21に射出する。
尚、入射面110の法線NGは、平面P上に前面板22をもっとも安定させた状態で置いた状態における平面Pの法線Nと平行な方向とする。入射面110に垂直に入射する光とは、法線NGに平行に太陽電池モジュール200に入射する光のことである。
前面板22の材質は、強化ガラス、サファイアガラス等のガラスあるいは、PC(ポリカーボネート)、PEN(ポリエチレンナフタレート)等の樹脂シートである。前面板22の厚さは強化ガラスであれば約3〜6mm、樹脂シートであれば100μm〜3000μmのものが用いられる。
前面板22を射出した光は、充填層21に入射する。充填層21は、太陽電池セル30を封止するものである。前面板22に入射した光H0は、充填層21を透過し、太陽電池セル30へと射出される光H10となり、一部は光再利用シート20に射出される光H1となる。充填層21に入射した光H0を透過させるため光線透過率が高い材料が用いられ、難燃性のEVA(エチレン・ビニル・アセテート)が広く使用されている。
さらに、太陽電池セル30は、光電効果により受光面Jに入射した光を電気へと変換する機能を持ち、単結晶シリコン型、多結晶シリコン型、薄膜シリコン型、CISG(Cu・In・Ga・Seの化合物)系薄膜型など多くの種類が存在する。太陽電池セル30は、複数個を電極で接続し、モジュールを形成して用いられる。充填層21から太陽電池セル30に入射した光H10は、太陽電池セル30で電気へと変換される。
通常、入射面110に対し斜めに入射した光は、垂直入射の光H0と比較して入射面110で、反射する割合が多く、太陽電池セル30に入射する光が少なく、発電に利用できる光が少ない。
そのため、入射光H0が、入射面110に垂直に入射するとき、もっとも効率が高い。
光再利用シート20は、太陽電池セル30自体を透過した光や、太陽電池セル30の間に入射した光H1を反射面100で反射する機能を有する。反射された光H2は前面板22と大気の間等の界面で再度反射され、太陽電池セル30の受光面Jに入射する光H3となり光電変換される。これにより光再利用シート20が無い構成と比較して光利用効率が向上する効果がある。
光再利用シート20は、図12に示すように、構造層3、反射層4、基材2から構成される。
反射光H2の進む方向は、本発明の反射面100の凹凸構造により制御でき、多くの光を受光面Jに入射させることができる。反射面100の凹凸構造について、その法線N0及びガウス曲率Kgを用いて説明する。
尚、法線N0は、反射面100上の任意の一点で、その点での接平面に垂面な直線である。
また、図11より、シート法線NBとは、光再利用シート20の流れ方向(TD)、幅方向(MD)に対して垂直な法線とする。よって、反射面100の角度θ1は、この反射面100の法線N0とシート法線NBとのなす角とする。
通常、シート法線NBは、入射面100の法線NGに対して平行になるように配置されるため、入射光H1は、シート法線NBに対して平行に入射する。
次に、ガウス曲率Kgとは、曲面の曲率を表すものであり、一般に下記のように表される。すなわち、曲面上のある定点を通る断面の曲線の曲率Kのうち、最小のものをK1、最大のものを、K2とすると、曲面のガウス曲率Kgは、以下に示す数式1、すなわち曲線の曲率Kの最大値と最小値の積で定義される。

Figure 2010092899
次に、反射面100のガウス曲率Kgが、正の場合、負の場合、0の場合を考える。
3次元中での2次曲面は、正のガウス曲率Kgを有するときは、球面状であり、負の曲率を持つときには、馬蹄状であることが知られている。ガウス曲率Kgが0の場合には、例えば筒状や、円錐状の一部をなす面となることが知られている。
図2に示すように、ガウス曲率Kgが正の反射面100にシート法線NBに平行な光H1が入射すると、反射面100で、放射状に光H2が散乱する。このときの光H2の配光分布を図8(a)に示す。
また、図3に示すようにガウス曲率Kgが負の場合においても、同様にシート法線NBに平行な光H1が反射面100に入射し反射された光H2は、放射状に光H2が散乱する。このときの光H2の配光分布も同様に図8(a)のようになる。
一方、ガウス曲率Kgが0の場合については、二つの場合について説明する。一つは、反射面100が、円錐の一部を切り取った形状の場合で、図4に示すような場合である。このとき、シート法線NBに平行な光H1が反射面100で反射された光H2の配光分布は、放射状ではなく、図8(b)のような曲線状となる。
一方、(図5に示すように反射面100の法線N0が、円柱の一部を切り取った形である場合は、シート法線NBに平行な光H1が反射面100で反射された光H2の配光分布は、図8(c)のようになる。
尚、図6のように、反射面100が複数の平面からなる場合には、当然それぞれの平面101、102内においてその平面内のガウス曲率Kgは、0となる。このとき、シート法線NBに平行な光H1が反射面100で反射された光H2の配光分布は、図8(d)のようになる。
また、別の例として、図7に示すような場合も、ガウス曲率Kgは、反射面101、102内において0となる。このとき、シート法線NBに平行な光H1が反射面101、102で反射された光H2の配光分布を図8(e)に示す。
つまり、図4から図7に示すように、反射面100のガウス曲率Kgが0となる場合には、反射光H2は、発散、集光することなく、図8の(b)から(e)に示すような曲線または直線状の配光分布となる。
ところで、隣り合う太陽電池セル30の間の領域Rでは、光電変換が行われないが、この領域Rに照射される光再利用シート20に入射するH1を太陽電池セル30側の受光面J側に振り向けることにより上述の光H1を有効に利用することができる。このとき、図4から図7に示すように、反射面100のガウス曲率Kgが0であれば、反射光H2は、発散、集光することなく特定方向に反射されるため、反射光H2を太陽電池セル30の方向に効率的に射出することができる。
さらに、その反射面100により反射される光H2が、太陽電池セル30の方向にいくように、図9又は図10のように反射面100の法線N0が、太陽電池セル30の方向にあることが望ましい。このようにすることによって、さらに光を有効に再利用することができる。
尚、反射面100のガウス曲率Kgが0である面の比率は、シート面105に対して90%以上、100%以下であることが望ましい。ガウス曲率Kgが0である比率が90%より少ない場合には、反射光H2を、十分に効率的に太陽電池セル30の方向に射出することができない。
また、上述の入射光H1と反射光H2のなす角度を大きくすれば、離れた太陽電池セル30の受光面Jにも反射光H2を入射させることができるため、太陽電池セル30から離れたところに入射した光H1であっても利用でき、受光面Jに入射する光が増え、結果として光の利用効率を上げることができる。
このためには、反射面100の角度θ1を大きくすれば良く、反射光H2の角度が45度以上であれば、十分な効果が得られる。すなわち、反射面100の角度θ1は、45/2度=22.5度以上であることが望ましい。反射面100の角度θ1は、22.5度より小さい場合には、太陽電池モジュール200の隣り合う太陽電池セル30の間の領域Rに垂直に入射する光H1を、太陽電池セル30の方向に十分に反射することできないため、受光面Jに入射する光が十分に得られない。しかし、角度θ1が30度より大きいと、反射光H2が図11のように、多重反射してしまう。反射面100の角度θ1が、30度以下であれば多重反射が生じないため、反射面100の角度θ1としては、30度以下が望ましい。
また、反射面100のうち、反射面100の角度θ1が22.5度以上、30度以下の面積の割合は、反射面100の角度θ1が22.5度より小さく、30度大きいの面の面積の割合以上であることが望ましい。反射面100のうち、反射面100の角度θ1が22.5度以上、30度以下の面の割合が、それ以外の角度の面積の割合より小さいと、十分な光を受光面Jに入射することができない。
なお、反射面100は、微視的な凹凸も有しているが、光の波長の10倍程度までは、ミー散乱の領域といわれ散乱領域となり、可視光領域が460nmから780nmであることより、7.8μm以下の粗さの面状態は滑らかとなるようなスムージング処理を行い法線N0を求めることができる。この計測方法としては、レーザー顕微鏡を用いることが望ましい。また、光学顕微鏡や電子顕微鏡による断面計測も用いることができる。またこのとき、シート法線NBは、光再利用シート20をおいた試料台に垂直な線とみなせる。
光反射面100のガウス曲率Kgを計測する場合には、法線N0の場合と同様に、7.8μm以下の粗さの面状態は滑らかとなるようなスムージング処理後、曲率Kを計測し、上述の式1により求めることができる。尚、曲率K1、K2を計測する際には、反射面100の形状から最小の曲率K1、最大の曲率K2の方向を推定し算出される曲率Kを用いることができる。ここで、曲率Kが計測誤差以下であった場合は、ガウス曲率Kgは0であるとみなす。ところで、曲率Kが、0の場合を曲率Kが無い、曲率Kが、0以外の場合には曲率Kが有るということもできる。
また上述によらず、ガウス曲率Kgが0かどうかの判別は、ミクロトーム等で試料の断面を出した後、曲率Kが有るか無いかを判別することによっても可能である。
なお、反射面100では、複数の点で、法線N0、ガウス曲率Kgを得ることができるが、実際の計測では0.01mm程度のピッチで計測して、本発明の範囲内か範囲外かの基準とすることが現実的である。それ以上細かい点で法線N0やガウス曲率Kgを計測しても、反射面100で反射される反射光H2の挙動を調べるための計測としては、適切ではない。また粗いピッチで計測すると、反射面100の凹凸構造を十分に計測できない。
このようにして、反射面100を10点から100点計測し、ガウス曲率Kgが0である面の個数の比率から、反射面100で、ガウス曲率Kgが0である面積の比率とすることができる。例えば、ガウス曲率Kgが0の点が、92点であれば、反射面100のうち、92%でガウス曲率Kgが0であるといえる。
さらに、反射面100の角度θ1についても、上述と同様にして求められ、反射面100の角度θ1が22.5度以上、30度以下の面積の割合は、ガウス曲率Kgが0である面積の比率を求めるときと同様に、測定点の比率を用いることができる。
反射面100を形成する金型としては機械切削により作製されたものを用いることができる。この際、傾斜している面としては、直線状のものがより好ましく使用される。また、先端は、レンズに傷が付き易いため、丸みを帯びたものが望ましい。
構造層3に凹凸構造を形成する方法として、平面スタンパやロールスタンパの凹凸形成面に熱硬化型樹脂、紫外線硬化型樹脂や電子線硬化型樹脂等を塗布または注入し、その上に基材2を配置して、硬化処理後にスタンパから離型するといった方法が挙げられる。
また、図14のような、基材2を用いずに構造層3のみからなる光再利用シート20の作製方法としては、金型を用いたプレス法・キャスティング法・射出成形法等により基材2と一体成形する方法が挙げられる。このように、シート形成と同時に、凹凸構造を形成する。
また、反射面100の凹凸形状の構造は周期構造を有していてもよい。上述の反射面100の凹凸形状の構造はプリズム状の形状やシリンドリカルレンズのような各種レンズ・プリズム形状、あるいは不定形でも良い。このとき、反射面100の凹凸形状の構造の周期のピッチとしては、300μm以下であることが望ましく、より望ましくは、200μm以下である。上述の構造の周期のピッチが300μmより大きい場合には、反射面100を成型するときの凹凸形状の先端部分の型に樹脂が十分に入らないため成型性が悪い。上述の構造の周期のピッチが、200μm以下であれば比較的粘度の高い樹脂でも成型が可能となる。また、上述の構造の周期のピッチが小さすぎると型の作製が難しくなるため、25μm以上であることが望ましく、より望ましくは、50μm以上であることが望ましい。上述の構造の周期のピッチが25μmより小さいと、金型を切削する時間が長くタクトが落ち生産効率が悪い。上述の構造の周期のピッチが50μmより小さいと、反射面100を成形する際に樹脂がうまく溝に入らず凹凸形状の先端部分の形状を金型どおり作製することができない。
さらに、構造層3の厚さは、特には限定されないが、例えば30μm以上、500μm以下である。
上述の製造法は、以下の材料との適性により適宜選択するのが良い。
構造層3を形成するポリマー組成物中には、ポリマー組成物の他に例えば散乱反射体、硬化剤、可塑剤、分散剤、各種レベリング剤、紫外線吸収剤、抗酸化剤、粘性改質剤、潤滑剤、光安定化剤等が適宜配合されてもよい。
上述のポリマー組成物としては、特に限定されるものではなく、例えばポリ(メタ)アクリル系樹脂、ポリウレタン系樹脂、フッ素系樹脂、シリコーン系樹脂、ポリイミド系樹脂、エポキシ系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、ポリメチルペンテン系樹脂、環状ポリオレフィン系樹脂、アクリロニトリル−(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)等のポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、リエチレンナフタレート系樹脂、ポリエーテルイミド系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられ、これらのポリマーを1種又は2種以上混合して使用することができる。
上述のポリウレタン系樹脂の原料であるポリオールとしては、例えば水酸基含有不飽和単量体を含む単量体成分を重合して得られるポリオールや、水酸基過剰の条件で得られるポリエステルポリオールなどが挙げられ、これらを単体で又は2種以上混合して使用することができる。
水酸基含有不飽和単量体としては、(a)例えばアクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アリルアルコール、ホモアリルアルコール、ケイヒアルコール、クロトニルアルコール等の水酸基含有不飽和単量体、(b)例えばエチレングリコール、エチレンオキサイド、プロピレングリコール、プロピレンオキサイド、ブチレングリコール、ブチレンオキサイド、1,4−ビス(ヒドロキシメチル)シクロヘキサン、フェニルグリシジルエーテル、グリシジルデカノエート、プラクセルFM−1(ダイセル化学工業株式会社製)等の2価アルコール又はエポキシ化合物と、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸等の不飽和カルボン酸との反応で得られる水酸基含有不飽和単量体などが挙げられる。これらの水酸基含有不飽和単量体から選択される1種又は2種以上を重合してポリオールを製造することができる。
また上述のポリオールは、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸tert−ブチル、アクリル酸エチルヘキシル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸tert−ブチル、メタクリル酸エチルヘキシル、メタクリル酸グリシジル、メタクリル酸シクロヘキシル、スチレン、ビニルトルエン、1−メチルスチレン、アクリル酸、メタクリル酸、アクリロニトリル、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、酢酸アリル、アジピン酸ジアリル、イタコン酸ジアリル、マレイン酸ジエチル、塩化ビニル、塩化ビニリデン、アクリルアミド、N−メチロールアクリルアミド、N−ブトキシメチルアクリルアミド、ジアセトンアクリルアミド、エチレン、プロピレン、イソプレン等から選択される1種又は2種以上のエチレン性不飽和単量体と、上述の(a)及び(b)から選択される水酸基含有不飽和単量体とを重合することで製造することもできる。
水酸基含有不飽和単量体を含む単量体成分を重合して得られるポリオールの数平均分子量は1000以上500000以下であり、好ましくは5000以上100000以下である。また、その水酸基価は5以上300以下、好ましくは10以上200以下、さらに好ましくは20以上150以下である。
水酸基過剰の条件で得られるポリエステルポリオールは、(c)例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、ヘキサメチレングリコール、デカメチレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、トリメチロールプロパン、ヘキサントリオール、グリセリン、ペンタエリスリトール、シクロヘキサンジオール、水添ビスフェノルA、ビス(ヒドロキシメチル)シクロヘキサン、ハイドロキノンビス(ヒドロキシエチルエーテル)、トリス(ヒドロキシエチル)イソシヌレート、キシリレングリコール等の多価アルコールと、(d)例えばマレイン酸、フマル酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、トリメット酸、テレフタル酸、フタル酸、イソフタル酸等の多塩基酸とを、プロパンジオール、ヘキサンジオール、ポリエチレングリコール、トリメチロールプロパン等の多価アルコール中の水酸基数が前記多塩基酸のカルボキシル基数よりも多い条件で反応させて製造することができる。
上述の水酸基過剰の条件で得られるポリエステルポリオールの数平均分子量は500以上300000以下であり、好ましくは2000以上100000以下である。また、その水酸基価は5以上300以下、好ましくは10以上200以下、さらに好ましくは20以上150以下である。
当該ポリマー組成物のポリマー材料として用いられるポリオールとしては、上述のポリエステルポリオール、及び、上述の水酸基含有不飽和単量体を含む単量体成分を重合して得られ、かつ、(メタ)アクリル単位等を有するアクリルポリオールが好ましい。かかるポリエステルポリオール又はアクリルポリオールをポリマー材料とすれば耐候性が高く、構造層3の黄変等を抑制することができる。なお、このポリエステルポリオールとアクリルポリオールのいずれか一方を使用してもよく、両方を使用してもよい。
なお、上述のポリエステルポリオール及びアクリルポリオール中の水酸基の個数は、1分子当たり2個以上であれば特に限定されないが、固形分中の水酸基価が10以下であると架橋点数が減少し、耐溶剤性、耐水性、耐熱性、表面硬度等の被膜物性が低下する傾向がある。
構造層3を形成するポリマー組成物中に散乱反射体を反射性能、耐熱性能を向上させるため含有すると良い。ポリマー組成物中に散乱反射体を含有することで、構造層3ひいては光再利用シート20の耐熱性が向上させることができ、かつ屈折率がポリマー組成物と大きく異なるものを用いれば、光を反射させることができる。尚、これにより十分な反射率が得られる場合には、図13に示すように金属反射層4を設けなくても良い。この散乱反射体剤を構成する無機物としては、特に限定されるものではなく、無機酸化物が好ましい。この無機酸化物は、シリカ等も用いることができるが、ZnS等の金属化合物を用いることもできるが特に、TiO2、ZrO、Al2O3等の金属酸化物が望ましい。、またシリカの中空粒子を用いることもできる。このうち、TiO2は、屈折率が高く、分散性も得られやすいため好ましい。また、散乱反射体の形状は、球状、針状、板状、鱗片状、破砕状等の任意の粒子形状でよく、特に限定されない。
散乱反射体の平均粒子径の下限としては、0.1μmが好ましく、上限としては30μmが好ましい。平均粒子径が0.1μmより小さいと光を十分に反射しない。また、平均粒子径が30μmより大きいと成型性が悪い。
散乱反射体のポリマー組成物100部に対する配合量の下限としては固形分換算で30部が好ましい。一方、散乱反射体の上述の配合量の上限としては100部が好ましい。これは、無機充填剤の配合量が30部より少ないと、充填層21から構造層3に入射する光H1を十分に反射することができない。逆に、配合量が上述の範囲を越えると、成型性が悪い。
上述の散乱反射体としては、その表面に有機ポリマーが固定されたものを用いるとよい。このように有機ポリマー固定の散乱反射体を用いることで、ポリマー組成物での分散性やポリマー組成物との親和性の向上が図られる。この有機ポリマーについては、その分子量、形状、組成、官能基の有無等に関して特に限定はなく、任意の有機ポリマーを使用することができる。また有機ポリマーの形状については、直鎖状、分枝状、架橋構造等の任意の形状のものを使用することができる。
上述の有機ポリマーを構成する具体的な樹脂としては、例えば、(メタ)アクリル樹脂、ポリスチレン、ポリ酢酸ビニル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート等のポリエステルおよびこれらの共重合体やアミノ基、エポキシ基、ヒドロキシル基、カルボキシル基等の官能基で一部変性した樹脂等が挙げられる。中でも、(メタ)アクリル系樹脂、(メタ)アクリル−スチレン系樹脂、(メタ)アクリル−ポリエステル系樹脂等の(メタ)アクリル単位を含む有機ポリマーを必須成分とするものが被膜形成能を有し好適である。他方、上述のポリマー組成物と相溶性を有する樹脂が好ましく、従ってポリマー組成物と同じ組成であるものが最も好ましい。
上述のポリマー組成物としてはシクロアルキル基を有するポリオールが好ましい。ポリマー組成物としてのポリオール中にシクロアルキル基を導入することで、ポリマー組成物の撥水性、耐水性等の疎水性が高くなり、高温高湿条件下での構造層3ひいては光再利用シート20の耐撓み性、寸法安定性等が改善される。また、構造層3の耐候性、硬度、肉持感、耐溶剤性等の塗膜基本性能が向上する。さらに、表面に有機ポリマーが固定された散乱反射体との親和性及び散乱反射体の分散性がさらに良好になる。
また、ポリマー組成物中には硬化剤としてイソシアネートを含有するとよい。このようにポリマー組成物中にイソシアネート硬化剤を含有することで、より一層強固な架橋構造となり、構造層3の被膜物性がさらに向上する。このイソシアネートとしては上述の多官能イソシアネート化合物と同様の物質が用いられる。中でも、被膜の黄変色を防止する脂肪族系イソシアネートが好ましい。
なお、散乱反射体は、内部に有機ポリマーを包含していてもよい。このことにより、散乱反射体のコアである無機物に適度な軟度および靱性を付与することができる。
上述の有機ポリマーにはアルコキシ基を含有するものを用いるとよく、その含有量は特に限定されないが、散乱反射体1g当たり0.01mmol以上50mmol以下が好ましい。アルコキシ基により、ポリマー組成物との親和性や、ポリマー組成物中での分散性を向上させることができる。
上述のアルコキシ基は、微粒子骨格を形成する金属元素に結合したRO基を示す。このRは置換されていてもよいアルキル基であり、微粒子中のRO基は同一であっても異なっていてもよい。Rの具体例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル等が挙げられる。散乱反射体を構成する金属と同一の金属アルコキシ基を用いるのが好ましく、散乱反射体がコロイダルシリカである場合には、シリコンを金属とするアルコキシ基を用いるのが好ましい。
有機ポリマーを固定した散乱反射体の有機ポリマーの含有率については、特に制限されないが、散乱反射体を基準にして0.5質量%以上50質量%以下が好ましい。
光再利用シート20において、反射層4を用いる場合にはその密接着性等を向上させるため、反射層4の蒸着対象面(構造層3の表面)に表面処理を施すとよい(図示せず)。このような表面処理としては、例えば(a)コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いた酸化処理、及び(b)プライマーコート処理、アンダーコート処理、アンカーコート処理、蒸着アンカーコート処理などが挙げられる。これらの表面処理の中でも、反射層4との接着強度が向上し、緻密かつ均一な反射層4の形成に寄与するコロナ放電処理及びアンカーコート処理が好ましい。
上述のアンカーコート処理に用いるアンカーコート剤としては、例えばポリエステル系アンカーコート剤、ポリアミド系アンカーコート剤、ポリウレタン系アンカーコート剤、エポキシ系アンカーコート剤、フェノール系アンカーコート剤、(メタ)アクリル系アンカーコート剤、ポリ酢酸ビニル系アンカーコート剤、ポリエチレンアルイハポリプロピレン等のポリオレフィン系アンカーコート剤、セルロース系アンカーコート剤などが挙げられる。これらのアンカーコート剤の中でも、反射層4の接着強度をより向上することができるポリエステル系アンカーコート剤が特に好ましい。
上述のアンカーコート剤のコーティング量(固形分換算)は、1g/m2以上、3g/m2以下が好ましい。アンカーコート剤のコーティング量が1g/m2より少ないと、反射層4の密着性向上効果が小さくなる。一方、当該アンカーコート剤のコーティング量が3g/m2より多いと、光再利用シート20の強度、耐久性等が低下するおそれがある。
なお、上述のアンカーコート剤中には、密接着性向上のためのシランカップリング剤、ブロッキングを防止するためのブロッキング防止剤、耐候性等を向上させるための紫外線吸収剤等の各種添加剤を適宜混合することができる。かかる添加剤の混合量としては、添加剤の効果発現とアンカーコート剤の機能阻害とのバランスから0.1重量%以上10重量%以下が好ましい。上述の添加剤が、0.1重量%未満では、ブロッキングを十分に防止できず、耐候性が十分に得られず、10重量%より多いと、トップコート剤の機能を阻害してしまう。
反射層4は、光再利用シート20に入射する光を反射するものである。反射層4を形成する際には、構造層3の凹凸構造が形成された面に沿って金属を蒸着することで形成される。この反射層4の蒸着手段としては、構造層3に収縮、黄変等の劣化を招来することなく金属が蒸着できれば特に限定されるものではなく、(a)真空蒸着法、スパッタリング法、イオンプレーティング法、イオンクラスタービーム法等の物理気相成長法(Physical Vapor Deposition法;PVD法)、(b)プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法;CVD法)が採用される。これらの蒸着法の中でも、生産性が高く良質な反射層4が形成できる真空蒸着法やイオンプレーティング法が好ましい。
反射層4に用いられる金属としては、金属光沢を有しかつ蒸着が可能であれば特に限定されるものではなく、例えばアルミニウム(Al)、銀(Ag)ニッケル(Ni)、スズ(Sn)、ジルコニウム(Zr)等が挙げられる。中でも、反射性が高く、緻密な反射層4が比較的容易に形成されるアルミニウムが好ましい。
なお、反射層4は、単層構造でもよく、2層以上の多層構造でもよい。このように反射層4を多層構造とすることで、蒸着の際に懸かる熱負担の軽減により構造層3の劣化が低減され、さらに構造層3と反射層4との密着性等を改善することができる。このとき、金属膜の上に酸化金属層を設けても良い。また、上述の物理気相成長法及び化学気相成長法における蒸着条件は、構造層3や基材2の樹脂種類、反射層4の厚さ等に応じて適宜設計される。
反射層4の厚さの下限としては、10nmが好ましく、20nmが特に好ましい。一方、反射層4の厚さの上限としては、200nmが好ましく、100nmが特に好ましい。反射層4の厚さが10nm下限より小さいと、充填層21から反射層4に入射する光を十分に反射することができない。また、20nm以上の厚さであっても、上述の反射層4で反射される光は増えないため、20nmであれば十分な厚さといえる。一方、反射層4の厚さが200nmの上限を超えると、反射層4に目視でも確認できるクラックが発生し、100nm以下であれば、目視で確認できないようなクラックも発生しない。
また、反射層4の外面には、トップコート処理を施すとよい(図示せず)。このように反射層4の外面にトップコート処理を施すことで、反射層4が封止及び保護され、その結果、光再利用シート20のハンドリング性が良くなる。また、反射層4の経年劣化も抑えられる。
上述のトップコート処理に用いるトップコート剤としては、例えばポリエステル系トップコート剤、ポリアミド系トップコート剤、ポリウレタン系トップコート剤、エポキシ系トップコート剤、フェノール系トップコート剤、(メタ)アクリル系トップコート剤、ポリ酢酸ビニル系トップコート剤、ポリエチレンアルイハポリプロピレン等のポリオレフィン系トップコート剤、セルロース系トップコート剤などが挙げられる。かかるトップコート剤の中でも、反射層4との接着強度が高く、反射層4の表面保護、欠陥の封止等に寄与するポリエステル系トップコート剤が特に好ましい。
上述のトップコート剤のコーティング量(固形分換算)は、3g/m2以上、7g/m2以下が好ましい。トップコート剤のコーティング量が3g/m2より小さいと、反射層4を封止及び保護する効果が小さくなるおそれがある。一方、当該トップコート剤のコーティング量が上7g/m2を超えても、上述の反射層4の封止及び保護効果があまり増大せず、かえって光再利用シート20の厚さが増大してしまう。
なお、上述のトップコート剤中には、密接着性向上のためのシランカップリング剤、耐候性等を向上させるための紫外線吸収剤、耐熱性等を向上させるための無機フィラー等の各種添加剤を適宜混合することができる。かかる添加剤の混合量としては、添加剤の効果発現とトップコート剤の機能阻害とのバランスから0.1重量%以上10重量%以下が好ましい。上述の添加剤が、0.1重量%未満では、密接着性、耐候性、耐熱性が十分に得られず、10重量%より多いと、トップコート剤の機能を阻害してしまう。
上述の光再利用シート20を構成する基材2は、合成樹脂を材料とするシート成形により形成されている。かかる基材2に用いられる合成樹脂としては、屋外に設置されることを鑑み、耐水性、紫外線に対する耐久性等の耐候性を有しているものが望ましく、例えばポリエチレンテレフタレート樹脂(PET樹脂)等のポリエチレン系樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、ポリメチルペンテン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、リエチレンナフタレート系樹脂、ポリエーテルイミド系樹脂、エポキシン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。
上述の樹脂の中でも、高い耐熱性、強度、耐候性、耐久性、水蒸気等に対するガスバリア性等を有したものとして、ポリイミド系樹脂、ポリカーボネート樹脂、ポリエステル系樹脂、フッ素系樹脂、ポリ乳酸系樹脂が好ましい。
上述のポリエステル系樹脂としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。これらのポリエステル系樹脂の中でも、耐熱性、耐候性等の諸機能面及び価格面のバランスが良好なポリエチレンテレフタレートが特に好ましい。
上述のフッ素系樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体からなるペルフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンとのコポリマー(EPE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、エチレンとクロロトリフルオロエチレンとのコポリマー(ECTFE)、フッ化ビニリデン系樹脂(PVDF)、フッ化ビニル系樹脂(PVF)等が挙げられる。これらのフッ素系樹脂の中でも、強度、耐熱性、耐候性等に優れるポリフッ化ビニル系樹脂(PVF)やテトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)が特に好ましい。
上述の環状ポリオレフィン系樹脂としては、例えばa)シクロペンタジエン(及びその誘導体)、ジシクロペンタジエン(及びその誘導体)、シクロヘキサジエン(及びその誘導体)、ノルボルナジエン(及びその誘導体)等の環状ジエンを重合させてなるポリマー、b)当該環状ジエンとエチレン、プロピレン、4−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン等のオレフィン系モノマーの1種又は2種以上とを共重合させてなるコポリマー等が挙げられる。これらの環状ポリオレフィン系樹脂の中でも、強度、耐熱性、耐候性等に優れるシクロペンタジエン(及びその誘導体)、ジシクロペンタジエン(及びその誘導体)又はノルボルナジエン(及びその誘導体)等の環状ジエンのポリマーが特に好ましい。
なお、基材2の形成材料としては、上述の合成樹脂を1種又は2種以上混合して使用することができる。また、基材2の形成材料中には、加工性、耐熱性、耐候性、機械的性質、寸法安定性等を改良、改質する目的で、種々の添加剤等を混合することができる。この添加剤としては、例えば滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定化剤、充填材、強化繊維、補強剤、帯電防止剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料等が挙げられる。上述の基材2の成形方法としては、特に限定されず、例えば押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等の公知の方法が採用される。
基材2を用いる場合には、その厚さは、25μm以上、500μm以下が好ましく、250μmが特に好ましい。基材2の厚さが25μmより薄いと、紫外線硬化樹脂等の硬化収縮の影響により、構造層3の塗工加工際にカールが発生し、太陽電池モジュール200に組み込む際に不具合が発生する。逆に、基材2の厚さが500μmを超えると、フィルム重量が増してしまい、太陽電池モジュール200の重量も増してしまう。250μm以下であれば、より軽量の太陽電池モジュール200を実現できる。
また、基材2、構造層3、基材2中に紫外線安定剤又は分子鎖に紫外線安定基が結合したポリマーを含有することも可能である。この紫外線安定剤又は紫外線安定基により、紫外線で発生するラジカル、活性酸素等が不活性化され、光再利用シート20の紫外線安定性、耐候性等を向上させることができる。この紫外線安定剤又は紫外線安定基としては、紫外線に対する安定性が高いヒンダードアミン系紫外線安定剤又はヒンダードアミン系紫外線安定基が好適に用いられる。
このような特徴の光再利用シート20を用いた太陽電池モジュール200によれば、隣り合う太陽電池セル30の間の領域Rに入射する光を光再利用シート20の反射面100で反射し、太陽電池セル30に入射させることができる。これにより、隣り合う太陽電池セル30の間の領域Rに入射する光も利用することができ、太陽電池モジュール200の発電効率を向上させることが可能となる。
光再利用シート20は、図15のように光再利用シート20の反射面100の裏面を充填層側21に向けて配置することもできる。
また、図16のように、この光再利用シート20に10μmから30μmのアルミ層や10nmから100nmのシリカ層からなるバリア層を有したものを用いることができる。また耐久性を上げるために、PVF(ポリフッ化ビニル樹脂)を塗布または、ポリフッ化ビニル樹脂を有したフィルムを張り合わせて、太陽電池モジュールを保護するようにしてもよい。このようにすることにより、太陽電池モジュール200をバックシートとして用いることもできる。
(実施例1)
実施例1として、熱可塑性樹脂であるポリカーボネート樹脂を約300℃に加熱し、ロールに沿わせ延伸しながら厚さ0.3mmのフィルムを成形した後に、第1の凹凸構造の形状が切削されたシリンダー金型を使用し、加熱されたフィルムを加圧しながら冷却(シリンダー金型自体は80℃)し、第1の凹凸構造の形状が成形されたフィルムが完全に硬化する前に、続いて第2の凹凸構造の形状が切削されたシリンダー金型で加圧しながら冷却する(第2のレンズアレイ5の形状が切削されたシリンダー金型の温度は水冷式のロールで10℃)ことで更に熱可塑性樹脂の粘性を低下させ完全に硬化させた。この方法により、作製された光再利用シート20は、ピッチが120μmの反射面100の角度が30度の部分を有するようなレンチキュラーレンズ状の第1の凹凸構造と、さらにその凹凸構造の長手方向に直交するように、ピッチが30μmで反射面100の角度が30度の部分を有するように頂点が丸みを帯びた三角プリズム状の第2の凹凸構造を有する光再利用シート20の形状を成形した。
このように冷却ロールに第1の凹凸構造と、第2の第1の凹凸構造の形状を有する金型ロールを作製することで、ロールtoロール(フィルム送り速度1m/min)による押し出し成形で一度に構造層3を作製することが可能であった。
この光再利用シート20を、走査型共焦点レーザー顕微鏡OLS1100で、15μmピッチで100点の、表面形状を計測したところ、全点で、ガウス曲率Kgは、0となり、62点で、反射面100の角度が22.5度から30度となった。
さらに、その上に、アルミを約20nmになるように蒸着により、反射層4を形成した。
また、このように作製された光再利用シート20をイージーコントラスト(視野角測定装置)で測定したところ、図8(e)とほぼ同じ配光分布を得ることができた。
(実施例2)
実施例2として、熱可塑性樹脂であるポリカーボネート樹脂を約300℃に加熱し、ロールに沿わせ延伸しながらフィルムを成形した後に、光再利用シート20の形状に切削したシリンダー金型を使用して加熱されたフィルムを加圧しながら冷却(光再利用シート20の形状に切削したシリンダー金型は水冷式のロールで80℃に設定した。)することで熱可塑性樹脂の粘性を低下させ、光再利用シート20の形状を維持した状態で硬化させた。
この方法により、作製された光再利用シート20は、ピッチが80μmの反射面100の角度が30度の部分を有するようなレンチキュラーレンズ状の第1の凹凸構造と、さらに第1の凹凸構造の長手方向に直交するように、ピッチが40μmの反射面100の角度が30度の部分を有するような三角プリズム形状の第2の凹凸構造を有する光再利用シート20の形状を成形した。
このように一つのレンズ金型ロールでロールtoロール(フィルム送り速度1.5m/min)による押し出し成形で1度に光再利用シート20を作製することが可能であった。
この光再利用シート20を、走査型共焦点レーザー顕微鏡OLS1100で、20μmピッチで100点の、表面形状を計測したところ、93点で、ガウス曲率Kgは、0となり、65点で、反射面100の角度が22.5度から30度となった。
さらに、その上に、アルミを約20nmになるように蒸着により、反射層4を形成した。
また、このように作製された光再利用シート20をELDIM社製イージーコントラスト(視野角測定装置)で測定したところ、図8(e)とほぼ同じ配光分布を得ることができた。
ここで、実施例1の作製方法は、2つの冷却ロールの一つをレンズ形状が異なるものに代えることで、容易に光再利用シート20の形状を変形できるのに対し、実施例2の方法では、実施例1のように2つの冷却ロールの冷却温度の設定や加圧条件の最適化をする手間が少ない分簡便であるという利点がある。
(実施例3)
実施例3として、光学用2軸延伸易接着PETフィルム(膜厚125μm)上に、光再利用シート20のパターンを形成させるウレタンアクリレートを主成分とする紫外線硬化型樹脂(日本化薬社製ウレタンアクリレート樹脂(屈折率1.51))を塗布し、光再利用シート20の反射面100の形状に切削したシリンダー金型を使用して紫外線硬化型樹脂が塗布されたフィルムを搬送しながらUV光をPETフィルム側から露光することにより、紫外線硬化型樹脂を硬化し構造層3を形成した。硬化後、PETフィルムから金型を離型することにより、ピッチが100μmの反射面100の角度が30度の部分を有するようなレンチキュラーレンズ状の第1の凹凸構造と、さらに第1の凹凸構造の長手方向に直交するようにピッチが75μmの反射面100の角度が30度の部分を有するような三角プリズム形状の第2の凹凸構造を有する光再利用シート20の形状を成形した。
この光再利用シート20を、走査型共焦点レーザー顕微鏡OLS1100で、25μmピッチで100点の、表面形状を計測したところ、全点で、ガウス曲率Kgは、0となり、75点で、反射面100の角度が22.5度から30度となった。
また、このように作製された光再利用シート20をイージーコントラスト(視野角測定装置)で測定したところ、図8(c)とほぼ同じ形状の廃港分布を得ることができた。
(実施例4)
実施例4として、基材2としての250μmのPETフィルムに、構造層3として紫外線硬化アクリル系樹脂からピッチが150μmの反射面100の角度が30°であるプリズム状の凹凸構造が形成したものを積層し、金属反射層4として20nmのアルミ層を蒸着法により形成し光再利用シート20を得た。これを用い、太陽電池モジュール200を作製した。前面板22として約2mmのガラス板、前面板22から1.0mmの位置に、太陽電池セル30がくるように、厚さ約1.5mmになるようにEVAを充填し充填層21を形成した。太陽電池セル30として多結晶タイプのものを用い、太陽電池セル30の周辺部余白が太陽電池モジュール200の全面積に対して約10%となるものを用いて発電効率の測定をおこなった。表1にその発電効率の結果を示す。
(実施例5)
実施例5として、上述の実施例4の構成を変化させ、構成層21に酸化チタンを30%混入させたアクリル系樹脂を用い、反射層4は設けず、基材2として同様に250μmのPETフィルムを使用した光再利用シート20を作製し、同様の測定を行った。測定結果は表1の実施例5に記載した。
(比較例1)
比較例1として、従来の構成の太陽電池モジュール200でも同様の測定を行い、発電効率の比較を行った。測定結果を、表1の比較例1に示す。従来構成では、光再利用シート20の代わりに、250μmの白色PETを裏面に配置した構成である。
表1の結果から、本発明のような光再利用シート20を用いることにより、太陽電池の発電効率が向上することが分かる。
Figure 2010092899
本発明の太陽電池モジュールの一例を示す断面図。 反射面の一例を示す斜視図。 反射面の一例を示す斜視図。 本発明の光再利用シートの反射面の一例を示す斜視図。 本発明の光再利用シートの反射面の一例を示す斜視図。 本発明の光再利用シートの反射面の一例を示す斜視図。 本発明の光再利用シートの反射面の一例を示す斜視図。 反射光の配光分布の例を示す図。 本発明の太陽電池モジュールの一例を示す正面図。 本発明の太陽電池モジュールの一例を示す正面図。 本発明の光再利用シートの一例を示す断面図。 本発明の光再利用シートの一例を示す断面図。 本発明の光再利用シートの一例を示す断面図。 本発明の光再利用シートの一例を示す断面図。 本発明の太陽電池モジュールの一例を示す断面図。 本発明の太陽電池モジュールの一例を示す断面図。 従来の裏面材を用いた太陽電池モジュールを示す断面図
符号の説明
F…光源方向、2… 基材、3… 構造層、4…反射層、20…光再利用シート、21…充填層、30…太陽電池セル、22…前面板、200…太陽電池モジュール、、300…裏面材、301…反射光分布、100、101、102…反射面、105…シート面、110…入射面、120…反射面の稜線、J…受光面、Kg…ガウス曲率、K…曲率、K1…最小曲率、K2…最大曲率、TD…シート流れ方向、MD…シート幅方向、N…法線、N0、N1、N2…反射面の法線、NB…シート法線、NG…前面板22の法線、θ1…反射面の角度、H0…太陽電池モジュールに垂直に入射する光、H1…反射面に入射する光、H2…反射光、H3…再利用される光、40…保護層・保護フィルム、L…光源

Claims (8)

  1. 光を入射する前面板と、
    前記前面板を透過した光を透過する充填層と、
    前記充填層で固定され、前記充填層から透過した光を、受光面から受光して電気に変換する太陽電池セルと、
    前記太陽電池セルの前記受光面の裏面側にあり、前記太陽電池セルの前記受光面には受光しなかった光を反射する反射層を備えた構造層を有する光再利用シートと、
    を有する太陽電池モジュールであって、前記光再利用シートの前記反射層の反射面がガスス曲率0となることを特徴とする太陽電池モジュール。
  2. 前記再利用シートの前記反射面のうち、ガウス曲率が0となる前記反射面の面積率が、90%以上であることを特徴とする請求項1に記載の太陽電池モジュール。
  3. 前記光再利用シートの構造層が中空粒子及び/又は酸化チタンの粒子を含有したポリマーによりなり、前記構造層の表面が反射面であることを特徴とする請求項1に記載の太陽電池モジュール。
  4. 前期前面板の法線と前記反射面の法線とのなす角が22.5度以上30度以下である前記反射面を有することを特徴とする請求項1に記載の太陽電池モジュール。
  5. 前記反射面の法線と前記前面板の法線のなす角が22.5度以上30度以下である前記反射面の面積率が、50%以上であることを特徴とする請求項1に記載の太陽電池モジュール。
  6. 前記構造層の凹凸形状が、周期性を有する単位凹凸構造からなることを特徴とする請求項1に記載に記載の太陽電池モジュール。
  7. 前記単位凹凸構造の周期ピッチが、25μm以上300μm以下であることを特徴とする請求項1に記載の太陽電池モジュール。
  8. 前記単位凹凸構造の周期ピッチが、50μm以上200μm以下であることを特徴とする請求項1に記載に記載の太陽電池モジュール。
JP2008258307A 2008-10-03 2008-10-03 太陽電池モジュール Pending JP2010092899A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008258307A JP2010092899A (ja) 2008-10-03 2008-10-03 太陽電池モジュール
KR20117008739A KR20110084404A (ko) 2008-10-03 2009-10-02 태양 전지 모듈
EP09817521.9A EP2339645A4 (en) 2008-10-03 2009-10-02 SOLAR BATTERY MODULE
PCT/JP2009/005131 WO2010038482A1 (ja) 2008-10-03 2009-10-02 太陽電池モジュール
CN200980148323.2A CN102232246B (zh) 2008-10-03 2009-10-02 太阳能电池模块
US12/998,268 US20110186114A1 (en) 2008-10-03 2009-10-02 Solar battery module
TW98133533A TW201025647A (en) 2008-10-03 2009-10-02 Photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258307A JP2010092899A (ja) 2008-10-03 2008-10-03 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2010092899A true JP2010092899A (ja) 2010-04-22

Family

ID=42255373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258307A Pending JP2010092899A (ja) 2008-10-03 2008-10-03 太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2010092899A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077579B1 (ko) 2010-11-10 2011-10-27 주식회사 에스에너지 태양전지 모듈
WO2012083755A1 (zh) * 2010-12-21 2012-06-28 北京大学 一种太阳能电池模块
WO2013180339A1 (ko) * 2012-05-30 2013-12-05 주식회사 에스에너지 태양전지 모듈 및 그 제조방법
KR101349454B1 (ko) * 2012-03-05 2014-01-10 엘지이노텍 주식회사 태양광 발전장치
KR101391943B1 (ko) 2012-05-30 2014-05-08 주식회사 에스에너지 태양전지 모듈 및 그 제조방법
KR20150060413A (ko) * 2013-11-26 2015-06-03 엘지전자 주식회사 태양 전지 모듈 및 이에 사용되는 후면 기판
CN109217805A (zh) * 2018-10-16 2019-01-15 广东尚瑞新材料有限公司 一种具有聚光结构的光伏反射膜
CN112885918A (zh) * 2021-04-19 2021-06-01 安徽秦能光电有限公司 一种屋顶光伏组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119054A (ja) * 1999-10-15 2001-04-27 Hitachi Ltd 集光型太陽光発電装置
JP2008085293A (ja) * 2006-08-30 2008-04-10 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119054A (ja) * 1999-10-15 2001-04-27 Hitachi Ltd 集光型太陽光発電装置
JP2008085293A (ja) * 2006-08-30 2008-04-10 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077579B1 (ko) 2010-11-10 2011-10-27 주식회사 에스에너지 태양전지 모듈
WO2012083755A1 (zh) * 2010-12-21 2012-06-28 北京大学 一种太阳能电池模块
KR101349454B1 (ko) * 2012-03-05 2014-01-10 엘지이노텍 주식회사 태양광 발전장치
US9716199B2 (en) 2012-03-05 2017-07-25 Lg Innotek Co., Ltd. Solar cell apparatus
WO2013180339A1 (ko) * 2012-05-30 2013-12-05 주식회사 에스에너지 태양전지 모듈 및 그 제조방법
KR101391943B1 (ko) 2012-05-30 2014-05-08 주식회사 에스에너지 태양전지 모듈 및 그 제조방법
KR20150060413A (ko) * 2013-11-26 2015-06-03 엘지전자 주식회사 태양 전지 모듈 및 이에 사용되는 후면 기판
KR102196929B1 (ko) 2013-11-26 2020-12-30 엘지전자 주식회사 태양 전지 모듈 및 이에 사용되는 후면 기판
CN109217805A (zh) * 2018-10-16 2019-01-15 广东尚瑞新材料有限公司 一种具有聚光结构的光伏反射膜
CN112885918A (zh) * 2021-04-19 2021-06-01 安徽秦能光电有限公司 一种屋顶光伏组件

Similar Documents

Publication Publication Date Title
WO2010038482A1 (ja) 太陽電池モジュール
JP5068854B2 (ja) 太陽電池モジュール及び光源モジュール
JP4993021B2 (ja) 光再利用シート及び太陽電池モジュール
JP2010092899A (ja) 太陽電池モジュール
JP2010147454A (ja) 太陽電池モジュール用光再利用シート及び太陽電池モジュール
JP2006319250A (ja) 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
JP5446318B2 (ja) 太陽電池モジュールおよび光源モジュール
JP5568885B2 (ja) 太陽電池モジュール
JP2011003855A (ja) 反射保護シート及びこれを備えた半導体発電装置
JP4980332B2 (ja) 太陽電池モジュール
JP2011009548A (ja) 反射保護シート及びこれを用いた半導体発電装置
JP2012023122A (ja) 太陽電池モジュール用の裏面保護シート及び太陽電池モジュール
EP2634606A1 (en) Film mirror for solar power generation purposes and reflection device for solar power generation purposes
JP2013149803A (ja) 太陽電池モジュール用フロントシート及びこれを用いた太陽電池モジュール
JP2012129296A (ja) 太陽電池モジュール用カバーフィルム及び太陽電池モジュール
JP2012015442A (ja) 裏面保護シート及びそれを用いた太陽電池
JP2012222188A (ja) 保護フィルムを有した太陽電池モジュール及びその製造方法
JP5549327B2 (ja) 円筒状の金型、光再利用シート、及び太陽電池モジュール
JP2010123682A (ja) 太陽電池保護シートおよび太陽電池モジュール
JP2011159683A (ja) 太陽電池モジュール
JP2013074285A (ja) 太陽電池モジュール
JP2013004948A (ja) 太陽電池モジュール
JP2012204772A (ja) 太陽電池モジュール及び裏面保護シート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618