JP2010085304A - X-ray reflection device and method for manufacturing the same - Google Patents

X-ray reflection device and method for manufacturing the same Download PDF

Info

Publication number
JP2010085304A
JP2010085304A JP2008256136A JP2008256136A JP2010085304A JP 2010085304 A JP2010085304 A JP 2010085304A JP 2008256136 A JP2008256136 A JP 2008256136A JP 2008256136 A JP2008256136 A JP 2008256136A JP 2010085304 A JP2010085304 A JP 2010085304A
Authority
JP
Japan
Prior art keywords
ray
ray reflection
curved
reflection device
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256136A
Other languages
Japanese (ja)
Other versions
JP5540305B2 (en
Inventor
Kazuhisa Mitsuda
和久 満田
Yuichiro Ezoe
祐一郎 江副
Kazuo Nakajima
一雄 中嶋
Hitomi Yamaguchi
ひとみ 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Utsunomiya University
Japan Aerospace Exploration Agency JAXA
Tokyo Metropolitan Public University Corp
Original Assignee
Tohoku University NUC
Utsunomiya University
Japan Aerospace Exploration Agency JAXA
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Utsunomiya University, Japan Aerospace Exploration Agency JAXA, Tokyo Metropolitan Public University Corp filed Critical Tohoku University NUC
Priority to JP2008256136A priority Critical patent/JP5540305B2/en
Publication of JP2010085304A publication Critical patent/JP2010085304A/en
Application granted granted Critical
Publication of JP5540305B2 publication Critical patent/JP5540305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray imaging device capable of dissolving disadvantages of an X-ray reflection device, with a linear slit formed. <P>SOLUTION: The X-ray reflection device includes a plurality of curved slits, formed by dry etching a silicon wafer and an X-ray reflection plane, formed by grinding each sidewall of the plurality of slits using a magnetic fluid. A curved X-ray reflection device is formed through plastic deformation of the whole silicon wafer after forming the X-ray reflection plane. Other X-ray reflection devices are obtained, by forming a metal substrate on which a plurality of curved slits are formed with an X-ray LIGA process, and by forming grinding each side wall of the plurality of slits by using a magnetic fluid to form the X-ray reflection plane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、宇宙空間におけるX線観測機器、あるいは地上における放射線計測や微量分析装置に利用されるX線反射装置及びその製造方法に関する。   The present invention relates to an X-ray observation apparatus in outer space, an X-ray reflection apparatus used for radiation measurement and a microanalysis apparatus on the ground, and a manufacturing method thereof.

X線は、可視光とは異なり、直入射光学系の利用が困難である。このため、金属のX線に対する屈折率が1よりも小さいことを利用した金属面の全反射による斜入射光学系が用いられている。この場合の全反射の臨界角は1度程度と小さいため、反射面の有効面積を大きくとるために、直径の異なる金属製の円筒状の反射鏡を、同軸状に多数配置する方法が知られている。しかしながら、この方法ではX線反射装置全体の重量が増大するため、宇宙空間で利用する場合に、地上からの輸送に支障を来すという問題があった。   Unlike visible light, X-rays are difficult to use with a direct incidence optical system. For this reason, an oblique incident optical system using total reflection of a metal surface utilizing the fact that the refractive index of metal with respect to X-rays is smaller than 1 is used. In this case, since the critical angle of total reflection is as small as about 1 degree, in order to increase the effective area of the reflecting surface, a method of arranging a large number of metallic cylindrical reflecting mirrors having different diameters coaxially is known. ing. However, since this method increases the weight of the entire X-ray reflection device, there is a problem in that it hinders transportation from the ground when used in outer space.

また、X線反射装置は、一定以上の反射率を確保するために、反射鏡の表面がX線の波長と同程度まで滑らかである必要がある。このため、これまでのX線反射装置は、表面を滑らかにするために反射面を研磨する必要があった。これまでは、研磨成形した母型に薄膜を押しつけて作ったレプリカ鏡を多数用意するなどして、一枚一枚の鏡を作成する手間がかかっていた(非特許文献1参照)。さらに、近年、ガラスファイバをX線導波管として使うX線光学系も実用化されているが、ガラスファイバが高価であるため全体としてのコスト増につながる(非特許文献2参照)。   Further, the X-ray reflection device needs to have a smooth surface to the same extent as the wavelength of X-rays in order to ensure a certain reflectance. For this reason, the conventional X-ray reflectors need to polish the reflecting surface in order to smooth the surface. Until now, it took time and effort to prepare each mirror by preparing a large number of replica mirrors made by pressing a thin film against a polished mold (see Non-Patent Document 1). Furthermore, in recent years, an X-ray optical system using a glass fiber as an X-ray waveguide has been put into practical use. However, since the glass fiber is expensive, it leads to an increase in cost as a whole (see Non-Patent Document 2).

そこで、本出願の発明者らは、異方性エッチングを行ったシリコンウェハの断面を用いるX線光学系を提案した(特許文献1、非特許文献3)。これはは、厚みがミクロンオーダーの薄いシリコンウェハに10μmレベルのエッチングにより細かい穴を開け、エッチングで得られた滑らかな側壁を反射面として使う。このような方法を用いることにより、一度のエッチングで多数の鏡を簡単に形成できる。しかも、前述のようにウェハが薄いため、このようなX線光学系を用いてX線反射鏡を製作することによって、全体の重量を一桁以上軽量化することが可能となる。   Therefore, the inventors of the present application have proposed an X-ray optical system using a cross section of a silicon wafer subjected to anisotropic etching (Patent Document 1, Non-Patent Document 3). In this method, a fine hole is formed in a thin silicon wafer having a thickness of the order of microns by etching at a level of 10 μm, and a smooth side wall obtained by the etching is used as a reflecting surface. By using such a method, a large number of mirrors can be easily formed by one etching. In addition, since the wafer is thin as described above, the overall weight can be reduced by an order of magnitude or more by manufacturing an X-ray reflecting mirror using such an X-ray optical system.

しかしながら、異方性エッチングで形成できる穴は、直線的なスリット状の穴に限られるため、上記のようなX線光学系を作る際には、理想曲面を直線で近似する必要があり、結果として、結像性能が制限される。また、理想曲面に近づけるために、上記のようなX線光学系を小さくして理想曲面に沿って配置することになるので、多数のX線光学系が必要になるという問題もある。   However, since holes that can be formed by anisotropic etching are limited to straight slit-shaped holes, it is necessary to approximate the ideal curved surface with a straight line when creating an X-ray optical system as described above. As a result, the imaging performance is limited. Further, since the X-ray optical system as described above is made smaller and arranged along the ideal curved surface in order to approach the ideal curved surface, there is a problem that a large number of X-ray optical systems are required.

特許第4025779号Patent No. 4025779 『X線結晶光学』波岡武、山下広順共編(培風館)(従来のX線反射装置について)"X-ray crystal optics" Takeshi Namioka and Hirojun Yamashita (Baifukan) (About conventional X-ray reflectors) Kumakov & Sharov (1992) Nature 357, 390 (ファイバー光学系について)Kumakov & Sharov (1992) Nature 357, 390 (About fiber optics) Ezoe et al. 2007, Transducers, 1, 1321 (シリコン異方性エッチングを用いたX線光学系と内壁の粗さについて)Ezoe et al. 2007, Transducers, 1, 1321 (X-ray optical system using silicon anisotropic etching and inner wall roughness) Chang et al. 2005, J. Micromech. Microeng, 15, 5808 (ドライエッチング及びその面粗さについて)Chang et al. 2005, J. Micromech. Microeng, 15, 5808 (Dry etching and surface roughness) Kondo et al. 2000, Microsystem. Technologies, 6, 218 (X線LIGA及びその面粗さについて)Kondo et al. 2000, Microsystem. Technologies, 6, 218 (About X-ray LIGA and its surface roughness) 山口他 2006, 精密工学会誌, 72, 100 (磁性流体を用いた研磨について)Yamaguchi et al. 2006, Journal of Japan Society for Precision Engineering, 72, 100 (About polishing using magnetic fluid) Sato & Yonehara, 1994, Applied Physics letter, 65, 1924 (シリコンウェハのアニールによる平滑化について)Sato & Yonehara, 1994, Applied Physics letter, 65, 1924 (About smoothing of silicon wafer by annealing) Nakajima et al. 2005, Nature Materials, 4, 47 (シリコンウェハの熱塑性変形について)Nakajima et al. 2005, Nature Materials, 4, 47 (Thermoplastic deformation of silicon wafers)

本発明は、このような背景のもとになされたものであり、従来のX線反射装置の利点を備えつつ、さらに直線的なスリットを形成したX線反射装置の欠点を解消することのできるX線反射装置を提供することを目的とする。   The present invention has been made based on such a background, and can solve the disadvantages of the X-ray reflecting apparatus in which a straight slit is formed while having the advantages of the conventional X-ray reflecting apparatus. An object is to provide an X-ray reflection device.

本発明のX線反射装置の製造方法は、シリコンウェハをドライエッチングして、複数の曲線状のスリットを形成する工程と、前記複数のスリットの各側壁を磁性流体を使った研磨して、X線反射面を形成する工程とを含むことを特徴とする。   According to the method of manufacturing the X-ray reflection device of the present invention, a silicon wafer is dry-etched to form a plurality of curved slits, and each side wall of the plurality of slits is polished using a magnetic fluid, Forming a line reflecting surface.

本発明のX線反射装置の製造方法は、さらに、X線反射面の形成後に、シリコンウェハ全体を塑性変形して曲面状にする工程を含む。   The manufacturing method of the X-ray reflecting device of the present invention further includes a step of plastically deforming the entire silicon wafer to form a curved surface after forming the X-ray reflecting surface.

本発明のX線反射装置は、シリコンウェハと、前記シリコンウェハに同心円状に設けられた複数の曲線状のスリットと、前記各スリットの側壁をX線の反射が可能な程度まで平滑化して得られるX線反射面とを含むことを特徴とする。   The X-ray reflection device of the present invention is obtained by smoothing a silicon wafer, a plurality of curved slits concentrically provided on the silicon wafer, and the side walls of the slits to the extent that X-rays can be reflected. And an X-ray reflecting surface.

本発明の曲面状X線反射装置は、さらに、前記X線反射装置を、曲面を含む所定の形状に塑性変形したことを特徴とする。   The curved X-ray reflector of the present invention is further characterized in that the X-ray reflector is plastically deformed into a predetermined shape including a curved surface.

本発明のX線光学装置は、前記曲面状X線反射装置を複数配置したことを特徴とする。   The X-ray optical apparatus of the present invention is characterized in that a plurality of the curved X-ray reflection devices are arranged.

本発明のX線反射装置の製造方法は、X線LIGAプロセスで、複数の曲線状のスリットが形成された金属基板を形成する工程と、前記複数のスリットの各側壁を磁性流体を使った研磨して、X線反射面を形成する工程とを含むことを特徴とする。   The manufacturing method of the X-ray reflecting device of the present invention includes a step of forming a metal substrate on which a plurality of curved slits are formed by an X-ray LIGA process, and polishing each side wall of the plurality of slits using a magnetic fluid. And a step of forming an X-ray reflecting surface.

本発明のX線反射装置の製造方法は、さらに、X線反射面の形成後に、金属基板全体を塑性変形又は弾性変形して曲面を含む所定の形状にする工程を含む。   The manufacturing method of the X-ray reflecting device of the present invention further includes a step of plastically deforming or elastically deforming the entire metal substrate to form a predetermined shape including a curved surface after forming the X-ray reflecting surface.

本発明のX線反射装置は、金属基板と、前記金属基板に同心円状に設けられた複数の曲線状のスリットと、前記各スリットの側壁をX線の反射が可能な程度まで平滑化して得られるX線反射面とを含むことを特徴とする。   The X-ray reflection device of the present invention is obtained by smoothing a metal substrate, a plurality of curved slits concentrically provided on the metal substrate, and the side walls of the slits to the extent that X-rays can be reflected. And an X-ray reflecting surface.

本発明の曲面状X線反射装置は、前記X線反射装置を曲面状に塑性変形又は弾性変形したことを特徴とする。   The curved X-ray reflector of the present invention is characterized in that the X-ray reflector is plastically deformed or elastically deformed into a curved surface.

本発明のX線光学装置は、前記曲面状X線反射装置を複数配置したことを特徴とする。   The X-ray optical apparatus of the present invention is characterized in that a plurality of the curved X-ray reflection devices are arranged.

本発明によれば、X線反射に必要な平滑度を有する曲面を含む所定の形状の反射面を含むX線反射鏡を一括して大量に製作することができるので、X線反射鏡の製作コストを大幅に下げることができる。また、特にシリコンウェハの場合は非常に薄くすることができるので、重量を大幅に下げることができ、重量制限が厳しい宇宙用途に好適である。また、多数の鏡を用意してこれを正確に並べるという手間が省けるため、製作効率が向上する。さらに、曲線状のスリット構造の形成とその後の曲面状、例えば曲面状への変形により、理由曲面に近いX線光学系を構成できるため、従来の技術に比べ、結像性能が大幅に向上する。   According to the present invention, a large number of X-ray reflecting mirrors including a reflecting surface having a predetermined shape including a curved surface having smoothness necessary for X-ray reflection can be manufactured in large quantities. Cost can be greatly reduced. In particular, in the case of a silicon wafer, it can be made very thin, so that the weight can be greatly reduced, and it is suitable for space applications where the weight limit is severe. In addition, since it is possible to save the trouble of preparing a large number of mirrors and arranging them accurately, the production efficiency is improved. Furthermore, since the X-ray optical system close to the reason curved surface can be configured by forming a curved slit structure and then deforming it into a curved surface, for example, a curved surface, the imaging performance is greatly improved compared to the conventional technology. .

以下に図面を参照しながら、本発明の実施の形態について説明する。図1(A)は、シリコンウェハに、ドライエッチングで多数の曲線状のスリットを形成した状態を示した平面図であり、同図(B)は、同図(A)線X−Xに沿って切った断面図である。ウェハの厚さは、一例として300〜1000μm程度である。各スリットは、同心円状にシリコンウェハを貫通するように形成されており、その幅は一例として5〜20μm程度である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view showing a state in which a number of curved slits are formed on a silicon wafer by dry etching, and FIG. 1B is along the line XX in FIG. It is sectional drawing cut off. The thickness of the wafer is, for example, about 300 to 1000 μm. Each slit is formed concentrically so as to penetrate the silicon wafer, and its width is about 5 to 20 μm as an example.

図1のようなスリットは、シリコンウェハの表面にマスクを塗布し、これをパターニングした後、ドライエッチングプロセスによりウェハ表面と垂直な方向にエッチングすることによって一括して形成される。各スリットの側壁は、円筒形の側面の一部からなる曲面である。ドライエッチングによって得られるスリットの各側壁の面粗さは、せいぜい10nm程度であり、異方性エッチングを用いた場合に比べて1桁程度悪い(非特許文献4参照)。   The slits as shown in FIG. 1 are collectively formed by applying a mask to the surface of a silicon wafer, patterning it, and then etching in a direction perpendicular to the wafer surface by a dry etching process. The side wall of each slit is a curved surface formed of a part of a cylindrical side surface. The surface roughness of each side wall of the slit obtained by dry etching is at most about 10 nm, which is about an order of magnitude worse than when anisotropic etching is used (see Non-Patent Document 4).

そこで、本実施形態では、各スリットの側壁を平滑化するために、磁性流体を用いる。磁性流体は、磁場を印加することで粘性が変化する流体であり、既に光学部品の研磨などに実用化されている(非特許文献6参照)。具体的には、磁性流体と研磨材の混合液を各スリットに流し込み、図2に示すように、シリコンウェハと垂直に変動磁場を印加する。前記混合液は磁場の変動に合わせてスリット内をランダムに移動する。シリコンウェハを中心軸の周りに回転させて、前記混合液とスリットの側壁との相対運動を促進することも可能である。こうすることにより、前記混合液が各スリットの側壁面を研磨し、表面の粗さを平滑化することができる。このような方法でドライエッチングによって形成したスリットの側壁を研磨することによって、nmレベルもしくはそれ以下の面粗さを実現することができる(非特許文献6参照)。   Therefore, in this embodiment, a magnetic fluid is used to smooth the side walls of each slit. A magnetic fluid is a fluid whose viscosity changes when a magnetic field is applied, and has already been put into practical use for polishing optical components (see Non-Patent Document 6). Specifically, a mixed liquid of magnetic fluid and abrasive is poured into each slit, and a varying magnetic field is applied perpendicular to the silicon wafer as shown in FIG. The liquid mixture moves randomly in the slit according to the fluctuation of the magnetic field. It is also possible to rotate the silicon wafer around the central axis to promote relative movement between the mixed solution and the side wall of the slit. By carrying out like this, the said liquid mixture can grind | polish the side wall surface of each slit, and can smooth the surface roughness. By polishing the side wall of the slit formed by dry etching by such a method, a surface roughness of the nm level or less can be realized (see Non-Patent Document 6).

混合液としては、例えば平均粒径0.01 μmの四三酸化鉄水分散体(フェリコロイドW40、タイホー工業株式会社製、固形分40重量%)と粒径0−1/2μmのダイヤモンドスラリーを用い、スリットに流し込む。加工部に適当な強さの交流磁場(0.7 A、周波数20Hz)を印加することで、前記混合液は磁場に感応してスリット内を移動し、即壁面を1〜2nmの面粗さに研磨加工できる。   As the mixed liquid, for example, a triiron tetroxide aqueous dispersion having an average particle size of 0.01 μm (ferricolloid W40, Taiho Kogyo Co., Ltd., solid content 40% by weight) and a diamond slurry having a particle size of 0-1 / 2 μm are used. Pour into the slit. By applying an alternating magnetic field (0.7 A, frequency 20 Hz) of an appropriate strength to the processed part, the mixture moves in the slit in response to the magnetic field, and immediately has a surface roughness of 1 to 2 nm on the wall surface. Can be polished.

なお、この磁性流体による研磨の際に、水素アニールを併せて行うことにより、さらなる平滑化が可能である(非特許文献7参照)。   Note that further smoothing is possible by performing hydrogen annealing together with polishing with the magnetic fluid (see Non-Patent Document 7).

このようにして平滑度を向上させたスリットの側壁は、X線反射面として機能する。ただし、この状態のX線反射面はウェハの表面と垂直であるため、点源からのX線を別の一点に収束させるX線反射鏡としては使用可能であるが、宇宙X線観測に必要な、平行X線を点に集光する目的には使用できない。   The side wall of the slit thus improved in smoothness functions as an X-ray reflecting surface. However, since the X-ray reflecting surface in this state is perpendicular to the wafer surface, it can be used as an X-ray reflecting mirror for converging X-rays from a point source to another point, but is necessary for cosmic X-ray observation. It cannot be used for the purpose of focusing parallel X-rays on a point.

そこで、上記のようにして得られたウェハを、図2に示すような球面状にするために、塑性変形の技術を利用する(非特許文献8)。すなわち、シリコンウェハを予め用意した球面状の型に入れ、水素雰囲気中で1300度程度の高温とし、圧力をかける。このようにすることによって、シリコンウェハは型に沿って、曲率半径が10cm〜10m程度の球面状に塑性変形し、その後、形状は安定する。もちろん、用途に応じて球面以外の曲面状とすることもできる。   Therefore, a plastic deformation technique is used to make the wafer obtained as described above into a spherical shape as shown in FIG. 2 (Non-patent Document 8). That is, a silicon wafer is put in a spherical mold prepared in advance and is heated to a high temperature of about 1300 degrees in a hydrogen atmosphere and pressure is applied. By doing so, the silicon wafer is plastically deformed into a spherical shape having a curvature radius of about 10 cm to 10 m along the mold, and then the shape is stabilized. Of course, it may be a curved surface other than a spherical surface depending on the application.

図3は、塑性変形後のX線反射鏡の断面図である。同図のように、シリコンウェハを球面状に変形させることによって、上方から入来する平行なX線を各X線反射面で反射させることによって、一点に集光させることができる。   FIG. 3 is a cross-sectional view of the X-ray reflecting mirror after plastic deformation. As shown in the figure, by transforming the silicon wafer into a spherical shape, parallel X-rays coming from above are reflected by the respective X-ray reflecting surfaces, so that they can be condensed at one point.

図4は、塑性変形後のX線反射鏡を2段に重ねて構成した集光系の断面図であり、球面の曲率半径が異なる二つのX線反射鏡を重ねて構成される、2回反射光学系(Walter type-I)となっている。このような2回反射光学系は、宇宙X線観測でしばしば用いられる。このような構成により、収差のより小さいX線光学系が得られる。また、曲率半径のより小さいものを多段に重ねれば、焦点距離をより短くすることができる。さらに、入射口と出射口を逆に配置すれば、点状のX線源から平行X線を作る逆望遠鏡としての利用も可能となる。   FIG. 4 is a cross-sectional view of a condensing system configured by stacking X-ray reflecting mirrors after plastic deformation in two stages, and is configured by overlapping two X-ray reflecting mirrors having different spherical radii of curvature. It is a reflective optical system (Walter type-I). Such a double reflection optical system is often used in cosmic X-ray observation. With such a configuration, an X-ray optical system with smaller aberration can be obtained. In addition, if the ones having a smaller radius of curvature are stacked in multiple stages, the focal length can be shortened. Furthermore, if the entrance and the exit are arranged in reverse, it can be used as a reverse telescope that produces parallel X-rays from a point-like X-ray source.

図5は、図4に示した集光系を2対対峙させた、点光源からの光を点へ集光する集光系の断面図である。このような光学系は、X線反射鏡を微量分析などを行うX線顕微鏡として利用することができる。このように、本実施形態のX線反射鏡は、宇宙用途だけでなく、地上における各種用途にも用いることができる。   FIG. 5 is a cross-sectional view of a condensing system for condensing light from a point light source to a point in which the condensing system shown in FIG. Such an optical system can be used as an X-ray microscope that performs microanalysis of the X-ray reflector. As described above, the X-ray reflecting mirror of the present embodiment can be used not only for space use but also for various uses on the ground.

これまで説明してきたX線反射鏡は、シリコンウェハをベースとしたものだが、シリコンウェハの代わりに金属の基板をベースとしたX線反射鏡を製作することもできる。金属の基板をベースとする場合は、シリコンウェハの場合のドライエッチングの代わりに、X線LIGAプロセスを用いる。すなわち、まず、高い面精度でスリットが形成されたレジトスを加工し、電析によって、ニッケルなどの金属で、レジストのレプリカを製作する。その後、各スリットの側壁面を、磁気流体を用いて研磨する。これにより、nmレベルあるいはそれ以下の面粗さを実現でき、X線反射面として十分に機能するレベルの平滑度が得られる。   The X-ray reflecting mirror described so far is based on a silicon wafer, but an X-ray reflecting mirror based on a metal substrate can be manufactured instead of a silicon wafer. When a metal substrate is used as a base, an X-ray LIGA process is used instead of dry etching in the case of a silicon wafer. That is, first, a resist having slits formed thereon with high surface accuracy is processed, and a resist replica is made of a metal such as nickel by electrodeposition. Then, the side wall surface of each slit is grind | polished using a magnetic fluid. As a result, surface roughness of the nm level or less can be realized, and a level of smoothness sufficiently functioning as an X-ray reflecting surface can be obtained.

このままの状態で、点源からのX線を別の一点に収束させるX線反射鏡としては使用可能であるが、さらに、平行X線を点に集光するために目的の場合は、球面状に変形させる。この変形は、シリコンウェハの場合よりも容易に、通常の弾性変形又は塑性変形により球面状にすることができる。なお、X線LIGAプロセスを利用する場合は、材質がニッケルなどの金属であるため、シリコンウェハの場合よりも高いエネルギーのX線の反射が可能になるという利点がある。   In this state, it can be used as an X-ray reflecting mirror for converging X-rays from a point source to another point. To deform. This deformation can be made spherical by ordinary elastic deformation or plastic deformation more easily than in the case of a silicon wafer. Note that, when the X-ray LIGA process is used, since the material is a metal such as nickel, there is an advantage that X-rays with higher energy can be reflected than in the case of a silicon wafer.

金属をベースとしたX線反射鏡についても、シリコンウェハをベースとした場合と同様に、2回反射光学系(Walter type-I)、多段に重ねたX線反射鏡、逆望遠鏡を構成することができる他、微量分析などにも適用できる。   For metal-based X-ray reflectors, as in the case of silicon wafers, configure a double-reflection optical system (Walter type-I), multi-layered X-ray reflectors, and reverse telescopes. It can be applied to trace analysis.

シリコンウェハにドライエッチングで多数の曲線状のスリットを形成した状態を示した平面図及び断面図である。It is the top view and sectional drawing which showed the state which formed many curvilinear slits by dry etching in the silicon wafer. 磁性流体を用いてX線反射面を研磨する場合の磁場のかけ方と回転軸を示した図である。It is the figure which showed how to apply a magnetic field and a rotating shaft when grind | polishing an X-ray reflective surface using a magnetic fluid. 塑性変形後のX線反射鏡の断面図である。It is sectional drawing of the X-ray reflective mirror after plastic deformation. 塑性変形後のX線反射鏡を2段に重ねて、平行光を点へ集光する集光系の断面図である。It is sectional drawing of the condensing system which piles up the X-ray reflecting mirror after plastic deformation in two steps, and condenses parallel light to a point. 図4に示した集光系を2対対峙させた、点光源からの光を点へ集光する集光系の断面図である。It is sectional drawing of the condensing system which condenses the light from a point light source which made the condensing system shown in FIG.

Claims (10)

シリコンウェハをドライエッチングして、複数の曲線状のスリットを形成する工程と、
磁性流体を使って前記複数のスリットの各側壁を研磨してX線反射面を形成する工程と、
を含んだX線反射装置の製造方法。
A step of dry etching a silicon wafer to form a plurality of curved slits;
Polishing each side wall of the plurality of slits using a magnetic fluid to form an X-ray reflecting surface;
Of manufacturing an X-ray reflection device including
X線反射面の形成後に、シリコンウェハ全体を塑性変形して曲面を含む所定の形状にする工程を含む、請求項1に記載のX線反射装置の製造方法。   The method for manufacturing an X-ray reflection device according to claim 1, further comprising a step of plastically deforming the entire silicon wafer to form a predetermined shape including a curved surface after forming the X-ray reflection surface. シリコンウェハと、
前記シリコンウェハに同心円状に設けられた複数の曲線状のスリットと、
前記各スリットの側壁をX線の反射が可能な程度まで平滑化して得られるX線反射面と、
を含んだX線反射装置。
A silicon wafer;
A plurality of curved slits concentrically provided in the silicon wafer;
An X-ray reflecting surface obtained by smoothing the side wall of each slit to the extent that X-rays can be reflected;
X-ray reflection device including
請求項3に記載のX線反射装置を、曲面を含む所定の形状に塑性変形したことを特徴とする曲面状X線反射装置。   4. A curved X-ray reflection device, wherein the X-ray reflection device according to claim 3 is plastically deformed into a predetermined shape including a curved surface. 請求項4に記載の曲面状X線反射装置を複数配置したことを特徴とするX線光学装置。   An X-ray optical apparatus comprising a plurality of curved X-ray reflection apparatuses according to claim 4. X線LIGAプロセスで、複数の曲線状のスリットが形成された金属基板を形成する工程と、
磁性流体を使って前記複数のスリットの各側壁を研磨してX線反射面を形成する工程と、
を含んだX線反射装置の製造方法。
Forming a metal substrate having a plurality of curved slits formed by an X-ray LIGA process;
Polishing each side wall of the plurality of slits using a magnetic fluid to form an X-ray reflecting surface;
Of manufacturing an X-ray reflection device including
X線反射面の形成後に、金属基板全体を塑性変形又は弾性変形して曲面状にする工程を含んだ請求項6に記載のX線反射装置の製造方法。   The method for manufacturing an X-ray reflection device according to claim 6, further comprising a step of plastically deforming or elastically deforming the entire metal substrate to form a curved surface after forming the X-ray reflection surface. 金属基板と、
前記金属基板に同心円状に設けられた複数の曲線状のスリットと、
前記各スリットの側壁をX線の反射が可能な程度まで平滑化して得られるX線反射面と、
を含んだX線反射装置。
A metal substrate;
A plurality of curved slits concentrically provided on the metal substrate;
An X-ray reflecting surface obtained by smoothing the side wall of each slit to the extent that X-rays can be reflected;
X-ray reflection device including
請求項8に記載のX線反射装置を、曲面を含む所定の形状に塑性変形又は弾性変形したことを特徴とする曲面状X線反射装置。   A curved X-ray reflection device, wherein the X-ray reflection device according to claim 8 is plastically or elastically deformed into a predetermined shape including a curved surface. 請求項9に記載の曲面状X線反射装置を複数配置したことを特徴とするX線光学装置。   An X-ray optical apparatus comprising a plurality of curved X-ray reflection apparatuses according to claim 9.
JP2008256136A 2008-10-01 2008-10-01 X-ray reflection device and manufacturing method thereof Active JP5540305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256136A JP5540305B2 (en) 2008-10-01 2008-10-01 X-ray reflection device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256136A JP5540305B2 (en) 2008-10-01 2008-10-01 X-ray reflection device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010085304A true JP2010085304A (en) 2010-04-15
JP5540305B2 JP5540305B2 (en) 2014-07-02

Family

ID=42249395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256136A Active JP5540305B2 (en) 2008-10-01 2008-10-01 X-ray reflection device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5540305B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037440A (en) * 2010-08-10 2012-02-23 Tokyo Metropolitan Univ X-ray optical system
JP2012088251A (en) * 2010-10-21 2012-05-10 Tokyo Metropolitan Univ Neutron optical system
JP2013528804A (en) * 2010-05-19 2013-07-11 シルヴァー,エリック,エイチ Hybrid X-ray optical instrument and method
JP2014145659A (en) * 2013-01-29 2014-08-14 National Institute Of Advanced Industrial & Technology X-ray reflector and manufacturing method thereof
JP2015007647A (en) * 2014-09-03 2015-01-15 公立大学法人首都大学東京 X-ray optical system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236948A (en) * 1987-03-25 1988-10-03 Shimadzu Corp Curved crystal for x-ray
JPH0897309A (en) * 1994-09-29 1996-04-12 Nec Corp Non-volatile semiconductor memory and its manufacture
JPH10132764A (en) * 1996-10-31 1998-05-22 Sumitomo Metal Ind Ltd Apparatus and method for selective excitation fluorescent x-ray analysis
JPH11133190A (en) * 1997-10-27 1999-05-21 Japan Science & Technology Corp X-ray diffraction element and its manufacture
JPH11165252A (en) * 1997-12-04 1999-06-22 Nisca Corp Abrasive material, manufacture of abrasive material and polishing or grinding method
JP2000351960A (en) * 1999-06-10 2000-12-19 Nisca Corp Abrasive grain body for grinding
JP2003515728A (en) * 1999-11-24 2003-05-07 ビーティージー・インターナショナル・リミテッド X-ray zoom lens
JP2003151986A (en) * 2001-11-15 2003-05-23 Nec Yamagata Ltd Method for manufacturing semiconductor device
JP4025779B2 (en) * 2005-01-14 2007-12-26 独立行政法人 宇宙航空研究開発機構 X-ray concentrator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236948A (en) * 1987-03-25 1988-10-03 Shimadzu Corp Curved crystal for x-ray
JPH0897309A (en) * 1994-09-29 1996-04-12 Nec Corp Non-volatile semiconductor memory and its manufacture
JPH10132764A (en) * 1996-10-31 1998-05-22 Sumitomo Metal Ind Ltd Apparatus and method for selective excitation fluorescent x-ray analysis
JPH11133190A (en) * 1997-10-27 1999-05-21 Japan Science & Technology Corp X-ray diffraction element and its manufacture
JPH11165252A (en) * 1997-12-04 1999-06-22 Nisca Corp Abrasive material, manufacture of abrasive material and polishing or grinding method
JP2000351960A (en) * 1999-06-10 2000-12-19 Nisca Corp Abrasive grain body for grinding
JP2003515728A (en) * 1999-11-24 2003-05-07 ビーティージー・インターナショナル・リミテッド X-ray zoom lens
JP2003151986A (en) * 2001-11-15 2003-05-23 Nec Yamagata Ltd Method for manufacturing semiconductor device
JP4025779B2 (en) * 2005-01-14 2007-12-26 独立行政法人 宇宙航空研究開発機構 X-ray concentrator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528804A (en) * 2010-05-19 2013-07-11 シルヴァー,エリック,エイチ Hybrid X-ray optical instrument and method
JP2012037440A (en) * 2010-08-10 2012-02-23 Tokyo Metropolitan Univ X-ray optical system
JP2012088251A (en) * 2010-10-21 2012-05-10 Tokyo Metropolitan Univ Neutron optical system
JP2014145659A (en) * 2013-01-29 2014-08-14 National Institute Of Advanced Industrial & Technology X-ray reflector and manufacturing method thereof
JP2015007647A (en) * 2014-09-03 2015-01-15 公立大学法人首都大学東京 X-ray optical system

Also Published As

Publication number Publication date
JP5540305B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
Kazanskiy et al. Technological line for creation and research of diffractive optical elements
Ezoe et al. Ultra light-weight and high-resolution X-ray mirrors using DRIE and X-ray LIGA techniques for space X-ray telescopes
JP5540305B2 (en) X-ray reflection device and manufacturing method thereof
CA2681264C (en) Method of forming waveguides via controlled delamination and waveguides formed using the method
US9157798B2 (en) Optical wavelength dispersion device and method of manufacturing the same
KR20210043590A (en) Meta-surface main lens, secondary lens, manufacturing method and optical system thereof
JP2012108326A (en) Microlens sheet material and method for manufacturing the same
CN113703080A (en) Superlens and optical system with same
JP5751573B2 (en) Neutron focusing and imaging optical system and manufacturing method thereof
EP3667376B1 (en) Flat metalens and cover glass comprising same
US9910195B2 (en) Optical wavelength dispersion device and method of manufacturing the same
Carrión et al. Microfabrication of axicons by glass blowing at a wafer-level
Ezoe et al. Large-aperture focusing of x rays with micropore optics using dry etching of silicon wafers
Riveros et al. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics
JP5920796B2 (en) Method for manufacturing X-ray reflection device
Sundaram et al. Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL
Zhu et al. Fabrication of curved microlens array using a drop-on-demand droplet generator and polydimethylsiloxane replica mold
WO2019159650A1 (en) Method for manufacturing microporous optical element and microporous optical element
Riveros et al. Magnetic field-assisted finishing of silicon microelectromechanical systems micropore X-Ray optics
Prasciolu et al. Extended asymmetric-cut multilayer X-ray gratings
JP2012037440A (en) X-ray optical system
Lin et al. Design and fabrication of an electrostatically actuated microdeformable focusing mirror
Michette et al. Active microstructured arrays for x-ray optics
Fukushima et al. Improvement of imaging performance of silicon micropore X-ray optics by ultra long-term annealing
Nakaniwa et al. Development of x-ray mirror foils using a hot plastic deformation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5540305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250