JPS63236948A - Curved crystal for x-ray - Google Patents

Curved crystal for x-ray

Info

Publication number
JPS63236948A
JPS63236948A JP62071099A JP7109987A JPS63236948A JP S63236948 A JPS63236948 A JP S63236948A JP 62071099 A JP62071099 A JP 62071099A JP 7109987 A JP7109987 A JP 7109987A JP S63236948 A JPS63236948 A JP S63236948A
Authority
JP
Japan
Prior art keywords
crystal
substrate
expansion
coefft
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62071099A
Other languages
Japanese (ja)
Other versions
JPH0833497B2 (en
Inventor
Masaru Kawada
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62071099A priority Critical patent/JPH0833497B2/en
Publication of JPS63236948A publication Critical patent/JPS63236948A/en
Publication of JPH0833497B2 publication Critical patent/JPH0833497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To decrease the danger of cracking and to permit formation of a uniform adhesive layer by specifying the coefft. of expansion of a supporting substrate which allows transmission of visible light and UV rays to <=2 times the coefft. of expansion of a crystal and providing grooves to the surface to be stuck with the crystal. CONSTITUTION:The coefft. of expansion of the supporting substrate 1 to be stuck with the curved crystal is specified to <=2 times the coefft. of expansion of the crystal and a material such as glass which allows the transmission of visible light and UV rays is used. Plural pieces of the grooves for escaping the excess adhesive agent are provided to the surface to be stuck with the crystal. The UV curing adhesive agent 2 is coated uniformly on such substrate 1 and the crystal 3 is hold down by a keep plate 4, then the UV rays 5 are irradiated thereto to cure the adhesive agent. Since the coeffts. of the substrate 1 and the crystal 3 are approximated to each other in such a manner, the danger of the cracking of the crystal 3 is decreased. Since the grooves are provided, the escape of the excessive adhesive agent and the formation of the uniform adhesive layer are permitted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、X線分光あるいはX線リソグラフィーの分野
でX線の分光用あるいは集光素子として用いられるX線
湾曲結晶に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an X-ray curved crystal used for X-ray spectroscopy or as a condensing element in the field of X-ray spectroscopy or X-ray lithography.

(ロ)従来技術 X線分光用素子として長年用いられてき九湾曲結晶は、
近年X線リングラフイーの分野においてX線集光素子と
して注目されている。
(b) Conventional technology The nine-curve crystal, which has been used for many years as an element for X-ray spectroscopy,
In recent years, it has attracted attention as an X-ray focusing element in the field of X-ray phosphorography.

従来このX線分光結晶にはSi+06等があpまた結晶
を張り付ける基板には人1等の金属が使われてき友。
Conventionally, materials such as Si+06 have been used for this X-ray spectroscopy crystal, and first grade metals have been used for the substrate to which the crystal is attached.

ところで、結晶を湾曲させて基板に張り付ける場合、薄
い結晶の方が曲げやすさの点で有利である。しかし、結
晶を薄くすnばするほど基板との膨張率の違いから熱的
変化によって結晶が割nる危険もそれだけ大きくなる。
By the way, when curved crystals are attached to a substrate, thinner crystals are more advantageous in terms of ease of bending. However, the thinner the crystal, the greater the risk that the crystal will crack due to thermal changes due to the difference in expansion coefficient with the substrate.

Si+Ge等の結晶の膨張率とAI等の金属の膨張率に
は一桁程度の違いがある九め、従来の公党結晶は温度変
化に弱いという欠点をかかえていた。を九基板に金属を
用いた場合、結晶を張り付ける接着剤として紫外線硬化
接着剤が使えず、エポキシ樹脂等に限らnていた。この
場合硬化時間が限られてい九ので結晶を湾曲させ、基板
に張り付けるという作業を数10分から数時間とい5短
時間のうちに行わなけnばならなかり几。長時間かけて
少しずつ曲げていけばクリープによって結晶は曲がりや
すくなるが、従来の接着時間で曲げnばそれだけ割れる
危険性奄増大する。
There is a difference of about one order of magnitude between the coefficient of expansion of crystals such as Si+Ge and that of metals such as AI.Conventional Koto crystals had the disadvantage of being sensitive to temperature changes. When metal is used for the substrate, ultraviolet curing adhesives cannot be used as adhesives for attaching crystals, and epoxy resins are the only adhesives available. In this case, the curing time is limited, so the work of curving the crystal and attaching it to the substrate must be done within a short period of time, ranging from several tens of minutes to several hours. If the crystal is bent little by little over a long period of time, it becomes easier to bend the crystal due to creep, but the longer the bonding is done in the conventional way, the more the risk of cracking increases.

さらに金属基板では接着剤のmt−直接見ることができ
ないので、![1着層が均一に7!るよう監視すること
は原理的にできない。
Furthermore, on metal substrates, the mt of the adhesive cannot be directly seen, so! [1st layer is uniformly 7! In principle, it is not possible to monitor the

結晶を基板に接着する際、結晶の周辺部の接着剤は比較
的外へ逃げやすいが、結晶が大きくなるにし友かい結晶
の中央付近の接着剤は外側へ逃げにくくなる。このため
結晶が大きくなるほど接着層が不均一になりやすく、こ
れが結晶表面の凹凸の原因となってい友。この凹凸の九
め局所的にX@を回折しない部分が出てくることがらり
危。
When bonding a crystal to a substrate, the adhesive at the periphery of the crystal is relatively easy to escape to the outside, but as the crystal grows larger, the adhesive near the center of the crystal becomes more difficult to escape to the outside. For this reason, the larger the crystal, the more likely the adhesive layer will be uneven, which causes unevenness on the crystal surface. There is a danger that there will be localized areas of this unevenness that do not diffract X@.

(ハ)   目   的 本発明は、結晶を湾曲させ基板に張り付ける際に、接着
時間を自由に選べ、かつ接着層を監視でき、また接着層
に不均一が生じないような構造を持ち、さらに張り付け
後の温度変化にも強いX@湾曲結晶を提供することにあ
る。
(c) Purpose The present invention has a structure in which when a crystal is curved and attached to a substrate, the bonding time can be freely selected, the bonding layer can be monitored, and the bonding layer does not become uneven. The objective is to provide an X@curved crystal that is resistant to temperature changes after pasting.

に)構成 結晶を張り付ける支持基板に膨張率が結晶の2倍以下で
、かつ紫外線と可視光を透過するガラス等の材料を用い
、該基板の結晶張り付け面に余分な接着剤を逃がすめ1
本以上の溝を入れるか、適尚な数の穴をあける。この場
合、結晶を基板張り付け面に滑らかにそわせる几めには
穴の径はできるだけ小さく、溝の幅はできるだけ細く、
かつ穴や溝の総面積は張り付け面の3分の1以下である
ことが望ましい。
2) Use a material such as glass whose expansion coefficient is less than twice that of the crystal and which transmits ultraviolet rays and visible light for the support substrate on which the constituent crystals are attached, and allow excess adhesive to escape to the crystal attachment surface of the substrate.
Insert a groove larger than a book or drill an appropriate number of holes. In this case, the diameter of the hole should be as small as possible and the width of the groove should be as narrow as possible in order to smoothly align the crystal with the surface to which the substrate is attached.
Moreover, it is desirable that the total area of the holes and grooves be one-third or less of the pasting surface.

(ホ)実施例 本発明のX線湾曲結晶を第1図(a)に示す。支持基板
1は、結晶3の膨張率の2倍以下の膨張率を有し、可視
光と波長365nm近辺の紫外線に対して透明なガラス
等の材料で形成さnている。これにより接着剤として紫
外線硬化接着剤2t−使用し、基板1裏面より紫外線を
照射して接着剤を硬化することができ、接着時間を任意
にとることが可能となる。また、基板1裏面よ5IIR
着層の監視をすることもできる。さらに。
(E) Example The X-ray curved crystal of the present invention is shown in FIG. 1(a). The support substrate 1 is made of a material such as glass, which has an expansion coefficient that is less than twice the expansion coefficient of the crystal 3 and is transparent to visible light and ultraviolet light having a wavelength of around 365 nm. This makes it possible to use an ultraviolet curing adhesive 2T as an adhesive and to cure the adhesive by irradiating ultraviolet rays from the back surface of the substrate 1, making it possible to set an arbitrary adhesion time. Also, from the back side of board 1, 5IIR
It is also possible to monitor layer deposition. moreover.

結晶3の張り付け面には第2図に示す如く、多数の溝(
同(a)図)または多数の穴(同(b)図)が形成され
ている。これにより、張り付け作業において、&″着剤
逃げが確保されて接着層の均一化を図ることが可能とな
る。
As shown in Fig. 2, there are many grooves (
(a) of the same figure) or a large number of holes (see (b) of the same figure) are formed. As a result, during pasting work, adhesive escape is ensured and it becomes possible to make the adhesive layer uniform.

以下、このような結晶の裏作法について述べる。第1図
において、まず第2図で説明し九基板1の張り付け面に
紫外線硬化接着剤2を均一に塗る(b)。
Below, we will discuss how to prepare such crystals. In FIG. 1, first, as explained in FIG. 2, an ultraviolet curing adhesive 2 is uniformly applied to the attachment surface of the nine substrate 1 (b).

次に、張り付ける結晶3を張り付け面上に置き、上から
押え板4を用い恒温室で徐々に曲げて、はりつけ面にそ
わせていく。曲げにかける時間を長くとると、クリープ
が大きくなって。
Next, the crystal 3 to be pasted is placed on the surface to be pasted, and using a presser plate 4 from above, it is gradually bent in a constant temperature room to align it with the surface to be pasted. The longer the bending time, the greater the creep.

結晶は割れずに曲げやすくなる(C)。The crystal becomes easier to bend without cracking (C).

結晶3が完全に張シ付け面にそって曲がりたことを基板
1の裏面から確認し、接着層の厚みが均一になるように
結晶の干渉縞を見ながら。
Check from the back side of the substrate 1 that the crystal 3 is completely bent along the bonding surface, and watch the interference fringes of the crystal to ensure that the thickness of the adhesive layer is uniform.

基板lや押え板4を調節する。ttuiを終えたら基板
1の裏面から紫外線5を均一に照射し、接着剤2を硬化
させる(d)。
Adjust the substrate l and presser plate 4. After completing the ttui process, ultraviolet rays 5 are uniformly irradiated from the back side of the substrate 1 to harden the adhesive 2 (d).

最後に、押え板4をはずし、結晶3の表面をうすい酸で
洗えばX線湾曲結晶の製作は完了する(a)。
Finally, the holding plate 4 is removed and the surface of the crystal 3 is washed with dilute acid to complete the production of the X-ray curved crystal (a).

次に異体的な結晶の例を示す。Next, an example of a different crystal is shown.

大きさが70 X 80 (mm)で、厚みがQ、3m
mのGe(111)を結晶として用いる場合を例にとる
Size is 70 x 80 (mm), thickness is Q, 3m
Let us take as an example the case where m Ge(111) is used as a crystal.

Geの膨張率は、室温で6.OX 10  °Cなので
The expansion coefficient of Ge is 6. Because it is OX 10 °C.

張り付ける基板1の材料としては、室温で同じ膨張率を
持つLa 8 F oaやLa8Fo+s(小原党学製
光学ガラス)等が用いられる(ちなみに、 kl基板の
膨張率は室温で23X10  C)。特にLa8FO6
は厚さ10 mmあた’) + 360 nmの波長の
光に対して38%、370nmの波長の光に対して62
チと紫外線に対して比較的高い透過率を示す。
As the material of the substrate 1 to be pasted, La 8 F oa or La 8 Fo+s (optical glass manufactured by Ohara Togaku Co., Ltd.), which has the same expansion coefficient at room temperature, is used (by the way, the expansion coefficient of the kl substrate is 23×10 C at room temperature). Especially La8FO6
+38% for light with a wavelength of 360 nm, 62% for light with a wavelength of 370 nm
It exhibits relatively high transmittance to both light and ultraviolet light.

基板材料として光学ガラスを選んだのは、*4層の膜厚
監視を可視光でやるためと、紫外線照射時、ガラスの品
質の均一性が要求されるので一般ガラスより好ましい几
めである。を几、光学ガラスでは膨張率の選択の幅も広
い。
Optical glass was chosen as the substrate material because the film thickness of the *4 layers could be monitored using visible light, and because uniformity of glass quality was required when irradiated with ultraviolet rays, it was preferable to ordinary glass. However, optical glasses have a wide range of expansion coefficients to choose from.

結晶3の張り付け面(基板1)にはQ、5mm、深さQ
、5mmの構を間隔2mmで多数切り、接着剤2の逃げ
とする。
The surface to which crystal 3 is attached (substrate 1) is Q, 5 mm, depth Q.
, a large number of 5 mm structures were cut at intervals of 2 mm to provide relief for the adhesive 2.

この基板1に紫外線硬化接着剤を均一に塗布し、結晶を
その上に固定し、押え板5で徐々に結晶を曲げていく。
An ultraviolet curing adhesive is uniformly applied to this substrate 1, a crystal is fixed thereon, and the crystal is gradually bent using a holding plate 5.

結晶が張り付け面にそりたことを確認したら、接着層が
均一になるように調節し、水銀燈を裏面から均一に照射
し、接着剤を硬化させる。最後に押え板5をはずし、フ
ッ酸と硝酸のりすい溶液で結晶3の表面を洗5゜(へ)
効果 従来の全1j4m基板を用い几X線湾曲結晶に対し次の
点が改善さfL7t。
After confirming that the crystals are warped on the surface to which they are attached, adjust the adhesive layer so that it is even, and then irradiate the adhesive evenly with a mercury lamp from the back side to harden the adhesive. Finally, remove the holding plate 5 and wash the surface of the crystal 3 with a dilute solution of hydrofluoric acid and nitric acid.
Effects fL7t has the following improvements over the conventional X-ray curved crystal using a 1j4m substrate.

まず、基板の膨張率が張り付ける結晶に近りため9炸裂
されるX、ml湾曲結晶は従来のXI!分光結晶にくら
べ温度変化に対して割れにくくなった。その九めに用い
る結晶も従来にくらべて薄くすることができ、その結果
結晶を湾曲させるとき9曲げやすくなり9割れる危険も
少なくな′)友。
First, the X, ml curved crystal, which explodes because the expansion coefficient of the substrate is close to that of the crystal to which it is attached, is the conventional XI! Compared to spectroscopic crystals, it is less likely to break due to temperature changes. The crystal used for the crystal can also be made thinner than before, making it easier to bend the crystal and reducing the risk of it breaking.

次に紫外線硬化接着剤による張り付けが可能になつ九の
で、結晶の曲げにかける時間を任意にとれるようになり
、長時間にわたって徐々に結晶を曲げていけば、クリー
プが期待でき、その分結晶が割れにくく曲げやすくなり
九。
Next, since it becomes possible to paste the crystal with ultraviolet curing adhesive9, it becomes possible to take as much time as you like to bend the crystal.If you gradually bend the crystal over a long period of time, you can expect creep, and the crystal will shrink accordingly. Less likely to break and easier to bend.9.

tた可視光を透過する基板は結晶の湾曲状態と接着層の
監視に役立ち、さらに基板の張り付け面の多数の穴や溝
は余分な接着剤を逃がし。
The substrate, which transmits visible light, helps monitor the curvature of the crystal and the adhesive layer, and the numerous holes and grooves on the surface of the substrate allow excess adhesive to escape.

接着層を均一にするのに役立つ。この結果、接着層の局
所的不均一による結晶表面の凹凸の問題はとり除かれ、
均一なX線の集光が可能になった。
Helps to even out the adhesive layer. As a result, the problem of unevenness on the crystal surface due to local non-uniformity of the adhesive layer is eliminated.
Uniform collection of X-rays has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のX線湾曲結晶ならびにその農作工程を
説明する図、第2図は結晶用基板の概略図で、接着剤の
逃げとしてはりつけ面に多数の溝を切うた場合(a)、
多数の穴をあけた場合Φ)をそれぞれ示す。 1・・・支持基板 2・・・紫外線硬化接着剤3・・・
結晶 4・・・押え板 5・・・紫外線代理人弁理士武
石哨腓・b、−:、・1,7第1凹 ↑  ↑  ↑  ↑  ↑−・5°  うζタト娶1
日第2図 (a) (シ)
Figure 1 is a diagram illustrating the X-ray curved crystal of the present invention and its farming process, and Figure 2 is a schematic diagram of the crystal substrate, in which many grooves are cut on the gluing surface to provide relief for the adhesive (a). ,
In the case of drilling many holes, Φ) is shown respectively. 1...Supporting substrate 2...Ultraviolet curing adhesive 3...
Crystal 4...Press plate 5...Ultraviolet agent Patent attorney Takeishi Takeishi・b, −:,・1,7 1st concave ↑ ↑ ↑ ↑ ↑−・5° Uζ Tato’s wife 1
Figure 2 (a) (shi)

Claims (1)

【特許請求の範囲】[Claims] 結晶を支持基板の曲面にそわせて張り付けたX線結晶に
おいて、前記支持基板をその膨張率が結晶の膨張率の2
倍以下でかつ可視光と紫外線に対して透明な材料で形成
すると共に支持基板の結晶張り付け面に接着剤を逃がす
ための1本以上の溝または適当な数の穴を設けたことを
特徴とするX線湾曲結晶。
In an X-ray crystal in which a crystal is attached along the curved surface of a support substrate, the expansion coefficient of the support substrate is 2 times that of the crystal.
It is characterized by being made of a material that is transparent to visible light and ultraviolet light and having one or more grooves or an appropriate number of holes on the surface of the support substrate to which the crystal is attached to allow the adhesive to escape. X-ray curved crystal.
JP62071099A 1987-03-25 1987-03-25 X-ray curved crystal Expired - Lifetime JPH0833497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071099A JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071099A JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Publications (2)

Publication Number Publication Date
JPS63236948A true JPS63236948A (en) 1988-10-03
JPH0833497B2 JPH0833497B2 (en) 1996-03-29

Family

ID=13450754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071099A Expired - Lifetime JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Country Status (1)

Country Link
JP (1) JPH0833497B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214685A (en) * 1991-10-08 1993-05-25 Maxwell Laboratories, Inc. X-ray lithography mirror and method of making same
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP2010085304A (en) * 2008-10-01 2010-04-15 Japan Aerospace Exploration Agency X-ray reflection device and method for manufacturing the same
JP2010112712A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Germanium curved spectral element
WO2016152940A1 (en) * 2015-03-26 2016-09-29 株式会社リガク Doubly curved x-ray condenser element, doubly curved x-ray spectroscopic element and apparatus equipped with same, and method for manufacturing said elements
CN109702909A (en) * 2019-01-17 2019-05-03 同济大学 A kind of clamping device and production method applied to the production of the spherical surface bent crystal
WO2021009897A1 (en) * 2019-07-18 2021-01-21 株式会社島津製作所 Dispersive element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214685A (en) * 1991-10-08 1993-05-25 Maxwell Laboratories, Inc. X-ray lithography mirror and method of making same
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP2010085304A (en) * 2008-10-01 2010-04-15 Japan Aerospace Exploration Agency X-ray reflection device and method for manufacturing the same
JP2010112712A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Germanium curved spectral element
WO2016152940A1 (en) * 2015-03-26 2016-09-29 株式会社リガク Doubly curved x-ray condenser element, doubly curved x-ray spectroscopic element and apparatus equipped with same, and method for manufacturing said elements
JP2016183888A (en) * 2015-03-26 2016-10-20 株式会社リガク Double-curved x-ray light-collecting element, double-curved x-ray spectroscopic element, device having the elements, and method for manufacturing the elements
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
CN109702909A (en) * 2019-01-17 2019-05-03 同济大学 A kind of clamping device and production method applied to the production of the spherical surface bent crystal
WO2021009897A1 (en) * 2019-07-18 2021-01-21 株式会社島津製作所 Dispersive element
JPWO2021009897A1 (en) * 2019-07-18 2021-01-21

Also Published As

Publication number Publication date
JPH0833497B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP1147522B1 (en) Curved optical device and method of fabrication
JP4931717B2 (en) Manufacturing method of pellicle for lithography
JPS60120389A (en) Manufacture of device having microshutter
JPS63236948A (en) Curved crystal for x-ray
CN102098019B (en) Composite substrate and method for forming metal pattern
JP4261349B2 (en) Method and apparatus for packaged optical products
JP2002040628A (en) Pellicle and method for bonding pellicle plate to pellicle frame
JP2002040629A (en) Method for bonding pellicle plate to pellicle frame
JP2784358B2 (en) Electrodeposited image transfer method
JP2695752B2 (en) Electrodeposited image forming method
JPS593421A (en) Liquid crystal display element
JPS63201601A (en) Optical window material and its production
JP2005524862A (en) Method for manufacturing an optical element comprising a quartz substrate
JPS6318326A (en) Optical adhesion method for transparent substrate
KR100409013B1 (en) Method for manufacturing mold of light-guide plate for backlight unit of LCD
JP2797190B2 (en) Manufacturing method of X-ray exposure mask
JPH0796239A (en) Apparatus and method for manufacture of plastic lens
KR101512867B1 (en) Composite substrate and method for forming metal pattern
EP1085528A2 (en) Method to manufacture X ray mirrors with thin film multilayer structures by replication technique
JPH02172041A (en) Manufacture of stamper for optical disk
JP2514993B2 (en) Liquid crystal display manufacturing method
JPS60129947A (en) Optical recording medium
JP2533182B2 (en) Optical disc manufacturing method
JP2003084134A (en) Method for manufacturing polarized beam splitter
JP2532989B2 (en) Method for manufacturing information recording medium