JP2014145659A - X-ray reflector and manufacturing method thereof - Google Patents

X-ray reflector and manufacturing method thereof Download PDF

Info

Publication number
JP2014145659A
JP2014145659A JP2013014320A JP2013014320A JP2014145659A JP 2014145659 A JP2014145659 A JP 2014145659A JP 2013014320 A JP2013014320 A JP 2013014320A JP 2013014320 A JP2013014320 A JP 2013014320A JP 2014145659 A JP2014145659 A JP 2014145659A
Authority
JP
Japan
Prior art keywords
silicon substrate
thin film
manufacturing
ray
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013014320A
Other languages
Japanese (ja)
Other versions
JP6172433B2 (en
Inventor
Yuichi Kurashima
優一 倉島
Hiroshi Hiroshima
洋 廣島
Hisahiro Ito
寿浩 伊藤
Ryutaro Maeda
龍太郎 前田
Hideki Takagi
秀樹 高木
Takeshi Ikehara
毅 池原
Yuichiro Ezoe
祐一郎 江副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Metropolitan Public University Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tokyo Metropolitan Public University Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013014320A priority Critical patent/JP6172433B2/en
Publication of JP2014145659A publication Critical patent/JP2014145659A/en
Application granted granted Critical
Publication of JP6172433B2 publication Critical patent/JP6172433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem caused when a silicon base plate is plastically deformed by press working under high temperature so as to be curved, in an X-ray reflector and a manufacturing method of the X-ray reflector.SOLUTION: A manufacturing method of an X-ray reflector includes: a step of providing a plurality of holes which penetrate from one surface to the other surface of a silicon base plate and whose side walls are used as X-ray reflection surfaces to the silicon base plate; and a step of plating one surface of the silicon base plate having the plurality of holes with a metal thin film so as to curve the silicon base plate by the stress of the metal thin film.

Description

本発明は、微弱なX線を集光結合するX線反射装置及びその製造方法に関する。   The present invention relates to an X-ray reflection device that condenses and couples weak X-rays and a method for manufacturing the same.

X線の波長領域では、物質の屈折率が1よりも小さいため、可視光のような直入射光学系の利用が難しく、主として全反射を利用した斜め入射光学系が用いられている。しかし、全反射の許される角度は、1keVのX線に対し典型的に1度程度と非常に小さい。そこで、X線望遠鏡などでは、2回の全反射を利用したWolterI型の光学系がよく用いられる。さらに、有効面積を向上させるため、図1に示すような、光軸に対して同心円状に複数の反射鏡を並べる光学系も提案されている。しかし、このような光学系では、多数の反射鏡を用意しなければならないため、望遠鏡の作製に要する時間及び労力が過大となり、また、全体の重量が増大するので、宇宙機に搭載する場合を考えると搬送において不利となる。   In the X-ray wavelength region, since the refractive index of the substance is smaller than 1, it is difficult to use a direct-incidence optical system such as visible light, and an oblique-incidence optical system mainly using total reflection is used. However, the allowable angle of total reflection is typically as small as 1 degree with respect to 1 keV X-rays. Therefore, in an X-ray telescope or the like, a Wolter I type optical system using two times of total reflection is often used. Furthermore, in order to improve the effective area, an optical system in which a plurality of reflecting mirrors are arranged concentrically with respect to the optical axis as shown in FIG. 1 has been proposed. However, in such an optical system, it is necessary to prepare a large number of reflecting mirrors, so that the time and labor required for manufacturing the telescope becomes excessive, and the overall weight increases. Consideration is disadvantageous in transportation.

また、MEMS技術を用いて、厚さ数百μmの薄いシリコン(Si)基板に、直径数μm程度の多数の微細な穴を開け、これらの穴の側面を反射鏡として利用することが考えられている(特許文献1、特許文献2参照)。図2のグラフに、MEMS技術によるX線望遠鏡を、その他の技術、すなわちガラス薄板、シリコン薄板、シリコンポア及びMCP等と比較した場合の性能の違いを示した。図2のグラフは、下に行くほど軽く、左に行くほど解像度が良いことを示している。有効面積の側面から見ると、MEMS技術によるX線反射鏡を使えば、従来のX線反射鏡に比べ、一桁以上軽い光学系を組むことができる(非特許文献2参照)。このような光学系は、衛星や惑星探査機への搭載のみならず、鏡を安価に作製できるので、医療用など地上での用途も考えられる。   In addition, it is conceivable to use a MEMS technique to form a large number of fine holes with a diameter of several μm in a thin silicon (Si) substrate having a thickness of several hundreds of μm, and to use the side surfaces of these holes as reflectors. (See Patent Document 1 and Patent Document 2). The graph of FIG. 2 shows the difference in performance when the X-ray telescope based on the MEMS technology is compared with other technologies, that is, a glass thin plate, a silicon thin plate, a silicon pore, MCP, and the like. The graph of FIG. 2 shows that the resolution is lighter toward the bottom and the resolution is better toward the left. When viewed from the side of the effective area, an optical system that is one digit or more lighter than a conventional X-ray reflector can be assembled by using an X-ray reflector by MEMS technology (see Non-Patent Document 2). Such an optical system can be used not only for mounting on satellites and planetary probes, but also for mirrors at low cost, so it can be used on the ground such as for medical purposes.

X線を集光・結像させるためには、MEMSプロセスにより作製したシリコン基板を湾曲させる必要がある。このための方法として、予め所定の形状とされた凹及び凸のモールドの間にシリコン基板を挟み込み、700℃以上の高温下でプレスすることによってシリコン基板を塑性変形させて湾曲させることが提案されている(非特許文献1、非特許文献3)。   In order to collect and image X-rays, it is necessary to curve a silicon substrate manufactured by the MEMS process. As a method for this, it has been proposed to sandwich a silicon substrate between concave and convex molds having a predetermined shape in advance and to bend by plastically deforming the silicon substrate by pressing at a high temperature of 700 ° C. or higher. (Non-Patent Document 1, Non-Patent Document 3).

特開2006−194758号公報JP 2006-194758 A 特開2010−85304号公報JP 2010-85304 A

「Ultra light-weight and high-resolution X-ray mirrors using DRIE and X-ray LIGA techniques for space X-ray telescopes」(Microsyst Technol (2010) 16:16331641)`` Ultra light-weight and high-resolution X-ray mirrors using DRIE and X-ray LIGA techniques for space X-ray telescopes '' (Microsyst Technol (2010) 16: 16331641) 「将来木星探査とX線観測」(日本惑星科学会誌Vol. 20, No. 4, 2011)"Future Jupiter Exploration and X-ray Observation" (Journal of Planetary Science Vol. 20, No. 4, 2011) 「Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-crystal lenses」(nature materials, VOL 4, JANUARY 2005, www.nature.com/naturematerials)“Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-crystal lenses” (nature materials, VOL 4, JANUARY 2005, www.nature.com/naturematerials)

ところで、シリコン基板を高温下でプレス加工により塑性変形させて湾曲させる方法には、次のような問題がある。まず、高温下でプレス加工するには、大がかりな装置が必要となり、加工コストが増大する。また、プレス加工するには、シリコン基板の両端を固定して中央部を押すことになるため、塑性変形により加工する際に応力集中が起こる。さらに、高温下でプレス加工する際に、加熱中の形状と冷却後の形状が必ずしも同一でないため、モールドの設計が難しく、モールドには高精度の形状が要求され、また、シリコンをプレス加工すると、加工後の修正や追加工ができないという問題がある。   Incidentally, the method of plastically deforming and bending a silicon substrate by pressing at a high temperature has the following problems. First, in order to perform press processing at a high temperature, a large-scale apparatus is required, and processing costs increase. Further, in the press working, both ends of the silicon substrate are fixed and the central portion is pushed, so that stress concentration occurs when working by plastic deformation. Furthermore, when pressing at a high temperature, the shape during heating and the shape after cooling are not necessarily the same, so the mold design is difficult, the mold requires a highly accurate shape, and when silicon is pressed There is a problem that correction and additional machining after processing cannot be performed.

そこで、本発明は、シリコン基板を高温下でプレス加工により塑性変形させて湾曲させる場合の問題点を解決することのできるX線反射装置及びその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray reflecting apparatus and a method for manufacturing the same that can solve the problems in the case where a silicon substrate is plastically deformed and curved by pressing at a high temperature.

上記の課題を解決するために、本発明に係るX線反射装置は、一方の面から他方の面へ貫通する穴を複数有し、当該穴の側壁をX線反射面として使用するシリコン基板であって、当該一方の面又は他方の面のいずれか一方に金属薄膜を鍍金し、当該鍍金した薄膜の応力により湾曲したシリコン基板を含む。   In order to solve the above problems, an X-ray reflection device according to the present invention is a silicon substrate that has a plurality of holes penetrating from one surface to the other surface and uses the side wall of the hole as an X-ray reflection surface. Then, a metal thin film is plated on either one of the one surface or the other surface, and a silicon substrate curved by the stress of the plated thin film is included.

上記X線反射装置の製造方法には、シリコン基板に、一方の面から他方の面へ貫通する複数の穴であって、それぞれの側壁をX線反射面として使用する複数の穴を設けるステップと、前記複数の穴を有するシリコン基板の一方の面に金属薄膜を鍍金することにより、当該金属薄膜の応力によって前記シリコン基板を湾曲させるステップと、を含む。   The method of manufacturing the X-ray reflection device includes a step of providing a plurality of holes penetrating from one surface to the other surface of the silicon substrate, each hole using each side wall as an X-ray reflection surface. And plating the metal thin film on one surface of the silicon substrate having the plurality of holes to bend the silicon substrate by the stress of the metal thin film.

前記金属薄膜を鍍金する前に、前記シリコン基板の鍍金する面にシード層となる金属薄膜を成膜するステップを含むことが望ましい。また、前記シード層となる金属の成膜は、イオンビームスパッタ法により行うか、又は、金属蒸着法により行うことができる。さらに、前記シード層となる金属を成膜した後、前記金属薄膜を鍍金する前に、前記シリコン基板を洗浄することが望ましい。   Before plating the metal thin film, it is desirable to include a step of forming a metal thin film to be a seed layer on the surface to be plated of the silicon substrate. Further, the metal to be the seed layer can be formed by an ion beam sputtering method or a metal vapor deposition method. Furthermore, it is desirable to clean the silicon substrate after depositing the metal to be the seed layer and before plating the metal thin film.

また、前記シリコン基板に金属薄膜を鍍金する前に前記複数の穴にレジストを設ける工程、及び、前記鍍金後に当該レジストを除去する工程を含むことが望ましい。前記レジストは、感光性ポリマーフィルムを前記シリコン基板表面に貼り合わせ、加圧して穴の中にポリマーフィルムを充填する。レジストを設ける工程は、基板裏面から光を照射して前記穴の部分のみを感光させた後、現像して前記穴以外の部分のポリマーフィルムを取り除くことにより前記穴の内部だけにレジストを設けることができる。   Preferably, the method includes a step of providing a resist in the plurality of holes before plating a metal thin film on the silicon substrate, and a step of removing the resist after the plating. For the resist, a photosensitive polymer film is bonded to the surface of the silicon substrate and pressed to fill the hole with the polymer film. In the step of providing a resist, light is irradiated from the back surface of the substrate to expose only the hole portion, and then development is performed to remove the polymer film in portions other than the hole, thereby providing the resist only inside the hole. Can do.

前記複数の穴を設けるステップは、MEMSプロセス又はフォトリソグラフィ法とエッチングの組み合わせによって行うことができ、また、前記複数の穴は、同心円状とすることが望ましい。   The step of providing the plurality of holes can be performed by a MEMS process or a combination of photolithography and etching, and the plurality of holes are preferably concentric.

シリコン基板の一方の面に金属薄膜を鍍金し、当該鍍金した薄膜の応力によりシリコン基板を湾曲させることができるので、シリコン基板を塑性変形して湾曲させる場合に比べて大がかりな装置は必要なく、容易かつ低コストで、しかも高精度に湾曲したX線反射装置を製造することができる。   Since a metal thin film is plated on one surface of the silicon substrate and the silicon substrate can be bent by the stress of the plated thin film, a large-scale apparatus is not necessary as compared with the case where the silicon substrate is plastically deformed, An X-ray reflection device that is easily and low-cost and curved with high accuracy can be manufactured.

光軸に対して同心円状に複数の反射鏡を並べた従来の光学系を示す図である。It is a figure which shows the conventional optical system which arranged the some reflective mirror concentrically with respect to the optical axis. MEMS技術によるX線望遠鏡を、その他の技術、すなわちガラス薄板、シリコン薄板、シリコンポア及びMCP等と比較した場合の性能の違いを示したグラフである。It is the graph which showed the difference in the performance at the time of comparing the X-ray telescope by MEMS technology with other technologies, ie, a glass thin plate, a silicon thin plate, a silicon pore, MCP, etc. 本発明の実施の一形態に係るX線反射鏡の作製方法の概略を示した図である。It is the figure which showed the outline of the preparation methods of the X-ray reflective mirror which concerns on one Embodiment of this invention. 鍍金の応力によって、シリコン基板が中心から外側へ向かうほど大きく湾曲することを示した図である。It is the figure which showed that a silicon substrate curves greatly, so that it goes to an outer side from the center by the stress of plating. シリコン基板上にNiの膜厚を変えて鍍金した場合における、基板の湾曲の度合いを測定した結果を示したグラフである。It is the graph which showed the result of having measured the degree of curvature of a substrate when changing the film thickness of Ni on a silicon substrate.

本発明の基本的なアイディアは、シリコン基板の一方の表面に金属の鍍金を施し、その鍍金によって生じる応力を利用して、シリコン基板を湾曲させるというものである。従来、半導体製造及びMEMSプロセスなどに用いられる鍍金では、応力は望ましくないものとされ、どうやって応力が生じないようにするか、あるいはどうのようにして応力を打ち消すかという点に注力されてきた。これに対し本発明では、このよう応力を積極的に利用してシリコン基板を湾曲させる。   The basic idea of the present invention is to apply a metal plating to one surface of a silicon substrate and to bend the silicon substrate using the stress generated by the plating. Conventionally, in plating used in semiconductor manufacturing and MEMS processes, stress is undesirable, and efforts have been focused on how to prevent stress generation or how to cancel stress. On the other hand, in the present invention, the silicon substrate is curved by actively utilizing such stress.

図3は、本発明の実施の一形態に係るX線反射鏡の作製方法の概略を示した図である。同図(A)は、シリコンウェハに対してMEMSプロセスにより、貫通する微細な穴を多数設けたシリコン基板10及び20の平面図であり、同図(B)は、同図(A)に示したシリコン基板10の断面図である。図3(A)において、符号20で示したのは、シリコン基板10の中心から放射状に延びる梁である。梁20とその他の部分(10)は同一Siウエハであり、MEMSプロセスにより同一の行程で作製されたものである。MEMSプロセス以外にも、通常の半導体デバイスの作製に用いるのと同様のフォトリソグラフィ法とエッチングを組み合わせて、シリコン基板10及び20に多数の微細穴を設けることもできる。   FIG. 3 is a diagram showing an outline of a method for manufacturing an X-ray reflecting mirror according to an embodiment of the present invention. FIG. 4A is a plan view of the silicon substrates 10 and 20 provided with a number of fine holes penetrating through a silicon wafer by the MEMS process, and FIG. 4B is a diagram shown in FIG. 1 is a cross-sectional view of a silicon substrate 10. In FIG. 3A, reference numeral 20 denotes a beam extending radially from the center of the silicon substrate 10. The beam 20 and the other part (10) are the same Si wafer, and are produced in the same process by the MEMS process. In addition to the MEMS process, the silicon substrate 10 and 20 can be provided with a large number of fine holes by combining the photolithography method and etching similar to those used for manufacturing a normal semiconductor device.

微細穴を設けたあと、必要に応じて、微細穴のエッジ部に丸みを付けるために、シリコン基板をアニール処理することもできる。これは微細穴のエッジ部に応力が集中して基板が破壊する可能性を防止するためである。   After providing the fine holes, the silicon substrate can be annealed to round the edge of the fine holes as necessary. This is to prevent the possibility of stress concentration at the edge portion of the fine hole and destruction of the substrate.

次に、イオンビームスパッタ法又は金属蒸着法等によって、多数の微細穴が設けられたシリコン基板10の表面にシード層となる金属を成膜する。このとき、対向電極には、高純度で円滑に溶解するものを用いることが望ましい。   Next, a metal serving as a seed layer is formed on the surface of the silicon substrate 10 provided with a large number of fine holes by ion beam sputtering or metal vapor deposition. At this time, it is desirable to use a counter electrode that dissolves smoothly with high purity.

次に、シード層と鍍金膜との密着性を向上させるために、薬品によりシード層が成膜された基板を洗浄するか、あるいはイオンビームを基板表面に照射して(逆スパッタ)洗浄する。また、この両方を行うこともできる。   Next, in order to improve the adhesion between the seed layer and the plating film, the substrate on which the seed layer is formed with a chemical is cleaned, or the substrate surface is irradiated with an ion beam (reverse sputtering) and cleaned. It is also possible to do both.

このままの状態で鍍金を行うと、多数設けられた微細な穴の内部が鍍金されると、穴が塞がれ、あるいは穴の径が小さくなってX線が通過できなくなる。そこで、鍍金を行う前に、微細穴が形成されている基板表面に感光性ポリマーフィルムを貼り付け、あるいは微細穴内部にこれを埋め込んで、基板裏側から光を照射して、微細穴の部分のみを感光させる。その後、これを現像することによって微細穴以外の部分からポリマーフィルムを取り除き、微細穴の部分のみをレジストで埋める。   If plating is performed in this state, if the inside of a large number of fine holes is plated, the holes are blocked or the diameter of the holes becomes small, so that X-rays cannot pass. Therefore, before plating, attach a photosensitive polymer film to the surface of the substrate where the micro holes are formed, or embed it inside the micro holes, and irradiate light from the back side of the substrate, so that only the micro holes Sensitize. Thereafter, by developing this, the polymer film is removed from portions other than the fine holes, and only the fine hole portions are filled with a resist.

鍍金は、例えば、硫酸ニッケル、塩化ニッケル、ホウ酸を主成分とするワット浴を使用する。このとき、微細穴はポリマーフィルムで埋められているので、微細穴の内部が鍍金されることはない。なお、微細穴にレジストが存在するとX線が透過しないため、鍍金後は微細穴中のレジストを有機溶媒などで除去する。   For the plating, for example, a Watt bath mainly composed of nickel sulfate, nickel chloride and boric acid is used. At this time, since the fine hole is filled with the polymer film, the inside of the fine hole is not plated. In addition, since X-rays do not permeate if a resist is present in the fine hole, the resist in the fine hole is removed with an organic solvent after plating.

ここで、塩化ニッケルの量を調整することにより、鍍金時の応力を制御することができる。具体的には、塩化ニッケルの濃度を増やすことにより、応力を増加させて湾曲の曲率を大きくすることができる。また、鍍金時には、鍍金浴を攪拌することにより、鍍金膜自身をより均質にできる上に、膜厚もより均一にすることができる。鍍金の膜厚を調整することによっても応力を制御することができる。具体的には、鍍金膜厚を厚くすることにより、曲率を大きくすることができる。この膜厚は、鍍金時における電流密度分布を調整することによって所望の値にすることもできる。   Here, the stress at the time of plating can be controlled by adjusting the amount of nickel chloride. Specifically, by increasing the concentration of nickel chloride, the curvature can be increased by increasing the stress. Further, at the time of plating, by stirring the plating bath, the plating film itself can be made more uniform and the film thickness can be made more uniform. The stress can also be controlled by adjusting the thickness of the plating. Specifically, the curvature can be increased by increasing the plating film thickness. This film thickness can be set to a desired value by adjusting the current density distribution during plating.

その後、さらに必要に応じて、微細穴の側壁に対し、斜め蒸着などによってシード層を付加し、積極的に微細穴の側壁にNiを鍍金して、側壁におけるX線の反射率を向上させることもできる。   Thereafter, if necessary, a seed layer is added to the side wall of the fine hole by oblique deposition or the like, and Ni is positively plated on the side wall of the fine hole to improve the reflectance of X-rays on the side wall. You can also.

以上のように、シリコン基板10及び20の片側の面に対して鍍金によりニッケル(Ni)などの金属薄膜30を成膜すると、図4に示すように、鍍金の応力によって、シリコン基板10及び20は、中心から外側へ向かうほど大きく湾曲する。   As described above, when the metal thin film 30 such as nickel (Ni) is formed on one side of the silicon substrates 10 and 20 by plating, the silicon substrates 10 and 20 are caused by the stress of the plating as shown in FIG. Bends from the center toward the outside.

図5は、シリコン基板10及び20上にニッケルの膜厚を変えて鍍金した場合における、基板の湾曲の度合いを測定した結果を示したグラフであり、横軸はシリコン基板10の中間からの距離、縦軸は湾曲によりシリコン基板10の中心からどれだけの高さになったかを示す。   FIG. 5 is a graph showing the results of measuring the degree of curvature of the substrate when the thickness of nickel is plated on the silicon substrates 10 and 20, and the horizontal axis is the distance from the middle of the silicon substrate 10. The vertical axis indicates how much height is obtained from the center of the silicon substrate 10 due to the curvature.

この測定では、厚さ300μmのシリコン基板の片面に、設定膜厚5μm、10μm、20μmのNiをワット浴を用いて鍍金した。その結果、鍍金膜厚5μmでは曲率半径は8.1mとなり、鍍金膜厚10μmでは曲率半径は2mとなり、鍍金膜厚20μmでは曲率半径は1.4mとなった。すなわち、鍍金膜厚が増加するほど曲率半径は小さくなる。言い換えると、鍍金膜厚が増加するほどシリコン基板の湾曲の度合い(曲率)が大きくなっている。この結果から、鍍金の膜厚を調整することによって、曲率を制御できることが示される。   In this measurement, Ni having a set film thickness of 5 μm, 10 μm, and 20 μm was plated on one side of a 300 μm thick silicon substrate using a Watt bath. As a result, the radius of curvature was 8.1 m when the plating film thickness was 5 μm, the curvature radius was 2 m when the plating film thickness was 10 μm, and the curvature radius was 1.4 m when the plating film thickness was 20 μm. That is, the radius of curvature decreases as the plating film thickness increases. In other words, the degree of curvature (curvature) of the silicon substrate increases as the plating film thickness increases. This result shows that the curvature can be controlled by adjusting the thickness of the plating.

このようにして湾曲されたシリコン基板10は、特許文献2に示されているようなX線反射鏡と同様に、X線を集光するための反射鏡として利用することができる。しかしながら、本実施形態のように、シリコン基板10及び20の片面だけに鍍金を施し、その際に生じる応力によって湾曲させたものは、特許文献2に記載のX線反射鏡に比べて加工が容易で低コストであり、しかも高精度の加工が可能になるという利点がある。   The silicon substrate 10 curved in this way can be used as a reflecting mirror for condensing X-rays in the same manner as an X-ray reflecting mirror as disclosed in Patent Document 2. However, as in the present embodiment, only one side of the silicon substrates 10 and 20 is plated and curved by the stress generated at that time is easier to process than the X-ray reflector described in Patent Document 2. In addition, there is an advantage that the cost is low and high-precision machining is possible.

10 シリコン基板
20 梁
30 金属薄膜
10 Silicon substrate 20 Beam 30 Metal thin film

Claims (14)

一方の面から他方の面へ貫通する穴を複数有し、当該穴の側壁をX線反射面として使用するシリコン基板であって、当該一方の面又は他方の面のいずれか一方に金属薄膜を鍍金し、当該鍍金した薄膜の応力により湾曲したシリコン基板を含むことを特徴とするX線反射装置。   A silicon substrate having a plurality of holes penetrating from one surface to the other surface and using a side wall of the hole as an X-ray reflecting surface, wherein a metal thin film is provided on either the one surface or the other surface An X-ray reflection apparatus comprising a silicon substrate that is plated and curved by the stress of the plated thin film. 前記鍍金した金属薄膜と前記シリコン基板との間に、シード層となる金属薄膜を有することを特徴とする請求項1に記載のX線反射装置。   The X-ray reflection device according to claim 1, further comprising a metal thin film serving as a seed layer between the plated metal thin film and the silicon substrate. 前記複数の穴は、同心円状に設けられていることを特徴とする請求項1又は2に記載のX線反射装置。   The X-ray reflecting apparatus according to claim 1, wherein the plurality of holes are provided concentrically. 前記鍍金される金属薄膜はニッケルを含むことを特徴とする請求項1乃至3のうちいずれか一項に記載のX線反射装置。   The X-ray reflection device according to any one of claims 1 to 3, wherein the metal thin film to be plated contains nickel. シリコン基板に、一方の面から他方の面へ貫通する複数の穴であって、それぞれの側壁をX線反射面として使用する複数の穴を設けるステップと、
前記複数の穴を有するシリコン基板の一方の面に金属薄膜を鍍金することにより、当該金属薄膜の応力によって前記シリコン基板を湾曲させるステップと、
を含むことを特徴とするX線反射装置の製造方法。
Providing a silicon substrate with a plurality of holes penetrating from one surface to the other surface, each hole being used as an X-ray reflecting surface;
Curving the silicon substrate by stress of the metal thin film by plating a metal thin film on one surface of the silicon substrate having the plurality of holes;
The manufacturing method of the X-ray reflective apparatus characterized by the above-mentioned.
前記金属薄膜を鍍金する前に、前記シリコン基板の鍍金する面にシード層となる金属薄膜を成膜するステップを含むことを特徴とする請求項5に記載のX線反射装置の製造方法。   6. The method of manufacturing an X-ray reflection apparatus according to claim 5, further comprising a step of forming a metal thin film that serves as a seed layer on a surface of the silicon substrate to be plated before plating the metal thin film. 前記シード層となる金属の成膜は、イオンビームスパッタ法により行うことを特徴とする請求項6に記載のX線反射装置の製造方法。   The method of manufacturing an X-ray reflection apparatus according to claim 6, wherein the metal forming the seed layer is formed by an ion beam sputtering method. 前記シード層となる金属の成膜は、金属蒸着法により行うことを特徴とする請求項6に記載のX線反射装置の製造方法。   The method of manufacturing an X-ray reflection apparatus according to claim 6, wherein the metal forming the seed layer is formed by a metal vapor deposition method. 前記シード層となる金属を成膜した後、前記金属薄膜を鍍金する前に、前記シリコン基板を洗浄することを特徴とする請求項6乃至8のうちいずれか一項に記載のX線反射装置の製造方法。   9. The X-ray reflection device according to claim 6, wherein the silicon substrate is cleaned after depositing the metal to be the seed layer and before plating the metal thin film. Manufacturing method. 前記シリコン基板に金属薄膜を鍍金する前に前記複数の穴にレジストを設ける工程、及び、前記鍍金後に当該レジストを除去する工程を含むことを特徴とする請求項5乃至9のうちいずれか一項に記載のX線反射装置機製造方法。   10. The method according to claim 5, further comprising: providing a resist in the plurality of holes before plating a metal thin film on the silicon substrate; and removing the resist after the plating. A method for manufacturing an X-ray reflection device according to claim 1. 前記レジストを設ける工程は、感光性ポリマーフィルムを前記シリコン基板の表面に貼り合わせ、加圧して前記穴の中にポリマーフィルムを充填し、基板裏面から光を照射して前記穴の部分のみを感光させた後、現像して前記穴以外の部分のポリマーフィルムを取り除くことにより前記穴に設けることを特徴とする請求項10に記載のX線反射装置を製造する方法。   In the step of providing the resist, a photosensitive polymer film is bonded to the surface of the silicon substrate, pressurized to fill the hole with the polymer film, and light is irradiated from the back of the substrate to expose only the hole portion. The method for producing an X-ray reflection device according to claim 10, wherein the hole is provided by removing the polymer film other than the hole after development. 前記複数の穴を設けるステップは、MEMSプロセスによって行うことを特徴とする請求項5乃至11のうちいずれか一項に記載のX線反射装置の製造方法。   The method of manufacturing an X-ray reflection device according to claim 5, wherein the step of providing the plurality of holes is performed by a MEMS process. 前記複数の穴を設けるステップは、フォトリソグラフィ法とエッチングの組み合わせによって行うことを特徴とする請求項5乃至11のうちいずれか一項に記載のX線反射装置の製造方法。   12. The method of manufacturing an X-ray reflection device according to claim 5, wherein the step of providing the plurality of holes is performed by a combination of photolithography and etching. 前記複数の穴は、同心円状であることを特徴とする請求項5乃至13のうちいずれか一向に記載のX線反射装置の製造方法。   The method of manufacturing an X-ray reflection device according to any one of claims 5 to 13, wherein the plurality of holes are concentric.
JP2013014320A 2013-01-29 2013-01-29 X-ray reflection device and manufacturing method thereof Expired - Fee Related JP6172433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014320A JP6172433B2 (en) 2013-01-29 2013-01-29 X-ray reflection device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014320A JP6172433B2 (en) 2013-01-29 2013-01-29 X-ray reflection device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014145659A true JP2014145659A (en) 2014-08-14
JP6172433B2 JP6172433B2 (en) 2017-08-02

Family

ID=51426020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014320A Expired - Fee Related JP6172433B2 (en) 2013-01-29 2013-01-29 X-ray reflection device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6172433B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135951A (en) * 1983-12-24 1985-07-19 Fujitsu Ltd Formation of pattern
JP2003515728A (en) * 1999-11-24 2003-05-07 ビーティージー・インターナショナル・リミテッド X-ray zoom lens
JP2010050415A (en) * 2008-08-25 2010-03-04 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
JP2010085304A (en) * 2008-10-01 2010-04-15 Japan Aerospace Exploration Agency X-ray reflection device and method for manufacturing the same
JP2011153869A (en) * 2010-01-26 2011-08-11 Canon Inc Light source grating, imaging apparatus for x-ray phase contrast image equipped with the source grating, and x-ray computed tomography system
JP2011162854A (en) * 2010-02-10 2011-08-25 Canon Inc Microstructure manufacturing method and radiation absorption grating
JP2011176363A (en) * 2011-05-20 2011-09-08 Oki Data Corp Method of manufacturing semiconductor thin film, and method of manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135951A (en) * 1983-12-24 1985-07-19 Fujitsu Ltd Formation of pattern
JP2003515728A (en) * 1999-11-24 2003-05-07 ビーティージー・インターナショナル・リミテッド X-ray zoom lens
JP2010050415A (en) * 2008-08-25 2010-03-04 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
JP2010085304A (en) * 2008-10-01 2010-04-15 Japan Aerospace Exploration Agency X-ray reflection device and method for manufacturing the same
JP2011153869A (en) * 2010-01-26 2011-08-11 Canon Inc Light source grating, imaging apparatus for x-ray phase contrast image equipped with the source grating, and x-ray computed tomography system
JP2011162854A (en) * 2010-02-10 2011-08-25 Canon Inc Microstructure manufacturing method and radiation absorption grating
JP2011176363A (en) * 2011-05-20 2011-09-08 Oki Data Corp Method of manufacturing semiconductor thin film, and method of manufacturing semiconductor device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUO NAKAJIMA ET. AL: "Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-cryst", NATURE MATERIALS, vol. Vol. 4, JPN6017019999, 19 December 2004 (2004-12-19), US, pages page 47-50 *
YUICHIRO EZOE AT. AL: "Shaped silicon wafer obtained by hot plastic deformation: performance evaluation for future astronom", APPLIED OPTICS, vol. Vol. 48, No. 19, JPN6017019994, July 2009 (2009-07-01), US, pages page 3830-3838 *
YUICHRO EZOE ET. AL: "Ultra light-weight and high-resolution X-ray mirror using DRIE and X-ray LIGA techniques for space X", MICROSYSTEM TECHNOLOGIES, vol. Vol. 16, JPN6017019996, 2010, DE, pages page 1633-1641 *
江副祐一郎等: "特集「将来木星圏・土星圏探査計画へのサイエンス:その1」将来土星探査とX線観測", 日本惑星科学会誌, vol. Vol. 20, No. 4, JPN6017020001, 2011, JP, pages page 300-308 *

Also Published As

Publication number Publication date
JP6172433B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US10267957B2 (en) Conformal optical metasurfaces
US9995859B2 (en) Conformal optical metasurfaces
US7365918B1 (en) Fast x-ray lenses and fabrication method therefor
Ezoe et al. Ultra light-weight and high-resolution X-ray mirrors using DRIE and X-ray LIGA techniques for space X-ray telescopes
JP5627247B2 (en) Microstructure manufacturing method and radiation absorption grating
JP4025779B2 (en) X-ray concentrator
US8532252B2 (en) X-ray shield grating, manufacturing method therefor, and X-ray imaging apparatus
US9027221B2 (en) Method for manufacturing compound refractive lens for focusing X-rays in two dimensions
EP1812935A2 (en) High-precision optical surface prepared by sagging from a masterpiece
US9157798B2 (en) Optical wavelength dispersion device and method of manufacturing the same
Zhang et al. High resolution and high throughput x-ray optics for future astronomical missions
JP2014013366A (en) Manufacturing method for curved diffraction grating, mold for curved diffraction grating, and curved diffraction grating using the same
Chkhalo et al. Diffraction limited X-ray optics: technology, metrology, applications
JP6172433B2 (en) X-ray reflection device and manufacturing method thereof
US20130135740A1 (en) Optical wavelength dispersion device and method of manufacturing the same
Collon et al. Aberration-free silicon pore x-ray optics
Collon et al. Performance characterization of silicon pore optics
CZ306934B6 (en) An X-ray optical system
Zhang et al. Fabrication of micro-slot optics on curved substrate by X-ray lithography and electroplating
JP6422050B2 (en) X-ray optical system substrate and manufacturing method thereof
JP5920796B2 (en) Method for manufacturing X-ray reflection device
Spiga et al. Active shape correction of a thin glass/plastic x-ray mirror
Wojcik et al. X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold
Kume et al. Development of internal stress measurement technique for Ni electroforming using Shack. Hartmann sensor
WO2001039210A1 (en) X-ray zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6172433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees