JP2010071462A - In-wheel motor driving device - Google Patents

In-wheel motor driving device Download PDF

Info

Publication number
JP2010071462A
JP2010071462A JP2009142356A JP2009142356A JP2010071462A JP 2010071462 A JP2010071462 A JP 2010071462A JP 2009142356 A JP2009142356 A JP 2009142356A JP 2009142356 A JP2009142356 A JP 2009142356A JP 2010071462 A JP2010071462 A JP 2010071462A
Authority
JP
Japan
Prior art keywords
casing
outer peripheral
drive device
wheel motor
holding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142356A
Other languages
Japanese (ja)
Inventor
Tomoaki Makino
智昭 牧野
Ken Yamamoto
山本  憲
Minoru Suzuki
稔 鈴木
Yuichi Ito
雄一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009142356A priority Critical patent/JP2010071462A/en
Publication of JP2010071462A publication Critical patent/JP2010071462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-wheel motor driving device capable of preventing vibration due to insufficient support rigidity in the case of newly providing an outer periphery engaging member holding part inside a casing. <P>SOLUTION: A speed reducing section B of the in-wheel motor driving device 21 includes the casing 22; an input shaft 25 arranged inside the casing 22; eccentric members 25a, 25b connected to the input shaft 25; revolving members 26a, 26b carrying out revolving motion, with the inner peripheries mounted in a relatively rotatable manner to the outer peripheries of the eccentric members 25a, 25b; outer periphery engaging members 27 causing the rotating motion of the revolving members 26a, 26b; an output shaft 28 taking out the rotating motion of the revolving members 26a, 26b; the outer periphery engaging member holding part 45 mounted inside the casing 22 to support the outer periphery engaging members 27; and pressing members interposed while being elastically deformed between the internal wall of the casing 22 and the outer peripheral surface of the outer periphery engaging member holding part 45 to press the outer periphery engaging member holding part radially inward. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、インホイールモータ駆動装置の外周係合部材の支持構造に関する。   The present invention relates to a support structure for an outer peripheral engagement member of an in-wheel motor drive device.

従来のインホイールモータ駆動装置は、例えば、特開2008−44537号公報(特許文献1)に記載されている。特許文献1に記載されているインホイールモータ駆動装置は、駆動モータと、この駆動モータから駆動力を入力されて回転数を減速して車輪側に出力する減速機と、減速機の出力軸と結合する車輪のハブ部材とが同軸かつ直列に配列されている。この減速機はサイクロイド減速機構であり、従来の減速機として一般的な遊星歯車式減速機構と比較して高減速比が得られる。したがって、駆動モータの要求トルクを小さくすることができ、インホイールモータ駆動装置のサイズおよび重量を低減することができるという点で頗る有利である。また、このサイクロイド減速機構は、外周係合部材がケーシングに針状ころ軸受によって回転自在に支持されている。したがって、公転部材と外周係合部材との接触抵抗を大いに低減することができ、減速機のトルク損失を防止することができる点で頗る有利である。   A conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2008-44537 (Patent Document 1). An in-wheel motor drive device described in Patent Document 1 includes a drive motor, a speed reducer that receives a driving force from the drive motor, decelerates the number of rotations, and outputs it to the wheel side, and an output shaft of the speed reducer The hub members of the wheels to be coupled are arranged coaxially and in series. This speed reducer is a cycloid speed reduction mechanism, and a high speed reduction ratio can be obtained as compared with a planetary gear speed reduction mechanism that is general as a conventional speed reducer. Therefore, the required torque of the drive motor can be reduced, which is advantageous in that the size and weight of the in-wheel motor drive device can be reduced. In the cycloid reduction mechanism, the outer peripheral engagement member is rotatably supported on the casing by a needle roller bearing. Therefore, the contact resistance between the revolution member and the outer peripheral engagement member can be greatly reduced, and the torque loss of the reduction gear can be prevented.

特開2008−44537号公報JP 2008-44537 A

このサイクロイド減速機構のケーシングは、その軸線方向一方側で駆動モータのケーシングと締結固定され、軸線方向他方側でハブ部材のケーシングと固定される。また、サイクロイド減速機構の外周係合部材は、ピン形状であり、インホイールモータ駆動装置の軸線と平行に支持されて、公転部材の外周に係合する。また、組立の都合上、サイクロイド減速機構のケーシングを軸線方向に2分割しておき、外周係合部材および公転部材をケーシングの内部に配設して、これら2つのケーシングを接合する必要がある。ここで、外周係合部材の軸線方向一方側を支持する一方側のケーシングと、外周係合部材の軸線方向他方側を支持する他方側のケーシングとを、位置関係につき精度良く組立てるのは困難であり、外周係合部材の延在方向が、軸線と僅かに不平行となる虞がある。軸線に対する平行度が悪いと、外周係合部材と公転部材との間で点接触によるエッジロードが作用して、サイクロイド減速機構の片摩耗および耐久性低下が懸念される。   The casing of the cycloid reduction mechanism is fastened and fixed to the casing of the drive motor on one side in the axial direction, and is fixed to the casing of the hub member on the other side in the axial direction. Moreover, the outer periphery engaging member of a cycloid reduction mechanism is pin shape, is supported in parallel with the axis line of an in-wheel motor drive device, and engages with the outer periphery of a revolution member. Moreover, for the convenience of assembly, it is necessary to divide the casing of the cycloid reduction mechanism into two in the axial direction, arrange the outer peripheral engagement member and the revolution member inside the casing, and join these two casings. Here, it is difficult to assemble the casing on one side supporting one side in the axial direction of the outer peripheral engagement member and the casing on the other side supporting the other side in the axial direction of the outer peripheral engagement member with respect to the positional relationship with high accuracy. There is a possibility that the extending direction of the outer peripheral engaging member is slightly non-parallel to the axis. If the parallelism with respect to the axis is poor, an edge load due to point contact acts between the outer peripheral engagement member and the revolution member, and there is a concern that the cycloid reduction mechanism may be worn away and the durability may be reduced.

このため、ケーシングの内壁に取り付けられて、外周係合部材の両端を共通に支持する外周係合部材保持部を、新たに設けることが考えられる。この外周係合部材保持部によれば、一方側ケーシングと他方側ケーシングとの組立精度に依存することなく、外周係合部材の延在方向を、軸線と平行にすることが可能である。   For this reason, it is possible to newly provide an outer peripheral engagement member holding part that is attached to the inner wall of the casing and supports both ends of the outer peripheral engagement member in common. According to this outer periphery engagement member holding part, it is possible to make the extending direction of the outer periphery engagement member parallel to the axis without depending on the assembly accuracy of the one side casing and the other side casing.

ところで、組立の都合上、ケーシングの内壁と外周係合部材保持部の外壁とを完全に密着させることは困難であり、設計においてケーシングと外周係合部材保持部との間に隙間を持たせることが考えられる。   By the way, for the convenience of assembly, it is difficult to make the inner wall of the casing and the outer wall of the outer peripheral engagement member holding portion completely adhere to each other, and in the design, a gap is provided between the casing and the outer peripheral engagement member holding portion. Can be considered.

しかしながら、この環状隙間を設ける場合、以下のような問題が懸念される。第1に、外周係合部材保持部を径方向に支持しないばかりでなく、サイクロイド減速機構の振動の原因にさえなる。第2に、サイクロイド減速機構の軽量化を目指してケーシングをアルミニウムなどの軽金属で形成するとともに外周係合部材保持部を炭素鋼で形成する場合、異なる物性の材料が隣接するため、線膨張係数の違いによりケーシングと外周係合部材保持部との間の隙間が開いてしまい、サイクロイド減速機構が振動する原因となる。   However, when this annular gap is provided, there are concerns about the following problems. First, it does not support the outer peripheral engagement member holding portion in the radial direction but also causes vibration of the cycloid reduction mechanism. Second, when the casing is formed of a light metal such as aluminum and the outer peripheral engagement member holding portion is formed of carbon steel with the aim of reducing the weight of the cycloid reduction mechanism, the materials of different physical properties are adjacent to each other. The difference causes a gap between the casing and the outer peripheral engagement member holding portion to open, causing the cycloid reduction mechanism to vibrate.

本発明の目的は、外周係合部材保持部をケーシング内部に新たに設ける場合であっても、サイクロイド減速機構の振動を好適に防止することができるインホイールモータ駆動装置を提供することである。   The objective of this invention is providing the in-wheel motor drive device which can prevent suitably the vibration of a cycloid reduction mechanism even when it is a case where an outer periphery engaging member holding part is newly provided in a casing inside.

この目的のため本発明によるインホイールモータ駆動装置は、モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材に固定連結された車輪ハブとを備えることを前提とする。そして減速部は、減速部の外郭であるケーシングと、一端がケーシングの内部に配置された入力軸と、入力軸の軸線から偏心して入力軸の一端に結合した円盤形状の偏心部材と、内周が偏心部材の外周に相対回転可能に取り付けられ、入力軸の回転に伴って軸線を中心とする公転運動を行う公転部材と、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、公転部材の自転運動を取り出す出力軸と、軸線を中心とするリング形状であって、ケーシングの内部に取り付けられて外周係合部材を支持する外周係合部材保持部と、ケーシングの内壁と外周係合部材保持部の外周面との間に弾性変形しつつ介挿されて、外周係合部材保持部を径方向内側に押圧する押圧部材とを有する。   For this purpose, an in-wheel motor drive device according to the present invention includes a motor unit that rotationally drives a motor-side rotating member, a speed-reducing unit that decelerates the rotation of the motor-side rotating member and transmits the rotation to the wheel-side rotating member, and the wheel It is assumed that a wheel hub fixedly connected to the side rotating member is provided. The speed reducer includes a casing that is an outer shell of the speed reducer, an input shaft having one end disposed inside the casing, a disc-shaped eccentric member that is eccentric from the axis of the input shaft and is coupled to one end of the input shaft, Is attached to the outer periphery of the eccentric member so as to be rotatable relative to the outer periphery of the eccentric member, and revolves around the axis as the input shaft rotates, and engages with the outer periphery of the revolution member to cause the rotation of the revolution member. An outer periphery engaging member to be rotated, an output shaft for taking out the rotation of the revolving member, a ring shape centering on the axis, and an outer periphery engaging member holding portion that is attached to the inside of the casing and supports the outer periphery engaging member; And a pressing member that is inserted between the inner wall of the casing and the outer peripheral surface of the outer peripheral engaging member holding portion while being elastically deformed and presses the outer peripheral engaging member holding portion radially inward.

かかる本発明によれば、ケーシングの内壁と外周係合部材保持部の外周面との間に弾性変形しつつ介挿されて、外周係合部材保持部を径方向内側に押圧する押圧部材を備えることから、外周係合部材保持部を径方向に支持することが可能になる。したがって、ケーシング内部に外周係合部材保持部を新たに設ける場合であっても、振動の懸念を解消することができる。   According to the present invention, the pressing member is inserted between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion while being elastically deformed to press the outer peripheral engagement member holding portion radially inward. For this reason, it is possible to support the outer peripheral engagement member holding portion in the radial direction. Therefore, even when the outer peripheral engagement member holding portion is newly provided inside the casing, the concern about vibration can be solved.

本発明は一実施形態に限定されるものではなく、押圧部材はゴム製であってもよく、あるいは金属で形成された金属製部材であってもよい。かかる実施形態によれば、金属製であることから耐久性が向上する。   The present invention is not limited to one embodiment, and the pressing member may be made of rubber or a metal member formed of metal. According to this embodiment, since it is metal, durability improves.

本発明は一実施形態に限定されるものではなく、金属製部材は環状隙間の1箇所あるいは2箇所に設けられてもよいが、好ましい実施形態として金属製部材は周方向に少なくとも3箇所以上で介挿される。これにより、外周係合部材保持部を軸線と同軸に配置するよう支持することができる。   The present invention is not limited to one embodiment, and the metal member may be provided at one or two locations of the annular gap. However, as a preferred embodiment, the metal member is at least three or more in the circumferential direction. Is inserted. Thereby, it can support so that an outer periphery engaging member holding | maintenance part may be arrange | positioned coaxially with an axis line.

好ましくは、金属製部材は、軸線と平行に延びるスプリングピンである。あるいは、軸線と平行に延びる断面V字形状のピンである。これらのピンは、ケーシングの内壁と外周係合部材保持部の外周面との間に、容易に弾性変形しつつ介挿されることが可能であり、簡易な構成で振動の懸念を解消することができる。   Preferably, the metal member is a spring pin extending in parallel with the axis. Alternatively, it is a pin having a V-shaped cross section that extends parallel to the axis. These pins can be inserted between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion while being easily elastically deformed, and the concern about vibration can be eliminated with a simple configuration. it can.

好ましくは、ケーシングの内壁は金属製部材と係合する凹部を備える。ケーシングの内壁に代えて、あるいはケーシングの内壁とともに、外周係合部材保持部の外周面は金属製部材と係合する凹部を備える。これにより、金属製部材を容易に配置することができる。また、ケーシングに対する外周係合部材保持部の相対回動を抑制することができる。   Preferably, the inner wall of the casing includes a recess that engages with the metal member. Instead of the inner wall of the casing or together with the inner wall of the casing, the outer peripheral surface of the outer peripheral engaging member holding portion includes a concave portion that engages with the metal member. Thereby, a metal member can be arrange | positioned easily. Moreover, the relative rotation of the outer periphery engaging member holding | maintenance part with respect to a casing can be suppressed.

本発明は一実施形態に限定されるものではなく、外周係合部材保持部の外周面は隙間を介してケーシングの内壁と対面し、押圧部材は高分子材料で形成された高分子材料製部材であってもよい。かかる実施形態によれば、振動抑制効果の大きい高分子材料、例えば低反発素材、等で形成された押圧部材を用いることで、減速部から発生する振動を高分子材料製部材で吸収することができる。   The present invention is not limited to an embodiment, and the outer peripheral surface of the outer peripheral engagement member holding portion faces the inner wall of the casing through a gap, and the pressing member is a polymer material member formed of a polymer material. It may be. According to this embodiment, by using a pressing member formed of a polymer material having a large vibration suppressing effect, for example, a low repulsion material, vibration generated from the speed reduction unit can be absorbed by the polymer material member. it can.

また、高分子材料製部材は弾性変形しつつ介挿されているので、外周係合部材保持部を減速部の回転軸線に一致するよう支持力を発揮する。したがって、減速部の振動の発生を抑制することができる。   In addition, since the polymer material member is inserted while being elastically deformed, the outer peripheral engagement member holding portion exhibits a supporting force so as to coincide with the rotation axis of the speed reduction portion. Therefore, generation | occurrence | production of the vibration of a deceleration part can be suppressed.

本発明は一実施形態に限定されるものではないが、ケーシングの内壁および外周係合部材保持部の外周面に、軸線方向に延びて高分子材料製部材を受け入れる溝がそれぞれ形成されてもよい。かかる実施形態によれば、減速部の回転方向の振動を吸収することができる。   Although the present invention is not limited to one embodiment, grooves that extend in the axial direction and receive a member made of a polymer material may be formed on the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion. . According to this embodiment, it is possible to absorb vibrations in the rotational direction of the speed reducing portion.

溝の断面形状は特に限定されないが、好ましい実施形態として溝は、軸線と直角な断面がV字形状である。かかる実施形態によれば、ケーシングの内壁と外周係合部材保持部の外周面との間で高分子材料製部材に作用する周方向のせん断荷重を緩和することが可能になり、高分子材料製部材の耐久性が向上する。   The cross-sectional shape of the groove is not particularly limited, but as a preferred embodiment, the groove has a V-shaped cross section perpendicular to the axis. According to such an embodiment, it becomes possible to relieve the circumferential shear load acting on the polymer material member between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion, and the polymer material The durability of the member is improved.

あるいは他の実施形態として溝は、軸線と直角な断面がアーチ形状である。ここでアーチ形状は、放物曲線であってもよいし、カテナリーであってもよい。またゴシックアーチ形状であってもよい。   Alternatively, as another embodiment, the groove has an arch shape in a cross section perpendicular to the axis. Here, the arch shape may be a parabolic curve or a catenary. Moreover, a Gothic arch shape may be sufficient.

好ましい実施形態として溝は、ケーシングの内壁と溝との境界、および外周係合部材保持部の外周面と溝との境界に面取り部を有する。かかる実施形態によれば、ケーシングの内壁と溝との境界、および外周係合部材保持部の外周面と溝との境界が角張らないことから、これらの境界から高分子材料製部材に周方向のせん断荷重が作用することを回避することができる。   As a preferred embodiment, the groove has a chamfered portion at the boundary between the inner wall and the groove of the casing and the boundary between the outer peripheral surface of the outer peripheral engagement member holding portion and the groove. According to such an embodiment, the boundary between the inner wall of the casing and the groove and the boundary between the outer peripheral surface of the outer peripheral engagement member holding portion and the groove are not angular, so the circumferential direction from these boundaries to the polymeric material member It is possible to avoid the action of the shear load.

好ましい実施形態として高分子材料製部材は、溝に沿って延び、断面形状が円形である。かかる実施形態によれば、高分子材料製部材がケーシングの内壁と溝との境界、および外周係合部材保持部の外周面と溝との境界に接触せず、ケーシングの内壁と外周係合部材保持部の外周面との間で高分子材料製部材に作用する周方向のせん断荷重を分散することが可能になる。   In a preferred embodiment, the polymer material member extends along the groove and has a circular cross-sectional shape. According to this embodiment, the polymer material member does not contact the boundary between the inner wall and the groove of the casing and the boundary between the outer peripheral surface of the outer peripheral engagement member holding portion and the groove, and the inner wall of the casing and the outer peripheral engagement member It becomes possible to disperse the circumferential shear load acting on the polymer material member between the outer peripheral surface of the holding portion.

好ましい実施形態として減速部は、ケーシングの内壁と外周係合部材保持部の外周面との間に介挿される金属製部材をさらに有する。かかる実施形態によれば、信頼性が向上する。   As a preferred embodiment, the speed reducing portion further includes a metal member interposed between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion. According to such an embodiment, the reliability is improved.

好ましい実施形態としてケーシングの内壁と外周係合部材保持部の外周面との隙間は、外周係合部材保持部の振動の軸線直角方向成分よりも大きい。かかる実施形態によれば、高分子材料製部材は減速部の振動を効率よく吸収することができる。また外周係合部材保持部が振動してケーシングの内壁と当接せず、異音を防止できる。   As a preferred embodiment, the gap between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion is larger than the component perpendicular to the axis of vibration of the outer peripheral engagement member holding portion. According to this embodiment, the polymer material member can efficiently absorb the vibration of the speed reducing portion. Further, the outer peripheral engaging member holding portion vibrates and does not contact the inner wall of the casing, so that abnormal noise can be prevented.

このように本発明は、ケーシングの内壁と外周係合部材保持部の外周面との間に弾性変形しつつ介挿されて、外周係合部材保持部を径方向内側に押圧する押圧部材とを備える。したがって、外周係合部材保持部を径方向に好適に支持することが可能になり、ケーシング内部に外周係合部材保持部を新たに設ける場合であっても、振動の懸念を解消することができる。   Thus, the present invention provides a pressing member that is inserted while being elastically deformed between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion and presses the outer peripheral engagement member holding portion radially inward. Prepare. Therefore, it is possible to favorably support the outer peripheral engagement member holding portion in the radial direction, and even when the outer peripheral engagement member holding portion is newly provided inside the casing, the concern about vibration can be eliminated. .

本発明の一実施例になるインホイールモータ駆動装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the in-wheel motor drive device which becomes one Example of this invention. 同実施例における減速部の横断面図である。It is a cross-sectional view of the deceleration part in the Example. 図2の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 図2の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG. 本発明の変形例を拡大して示す図である。It is a figure which expands and shows the modification of this invention. 本発明の他の実施例であって、減速部の横断面図である。It is another Example of this invention, Comprising: It is a cross-sectional view of a deceleration part. 図11の一部になる比較例を拡大して示す図である。It is a figure which expands and shows the comparative example used as a part of FIG. 図11の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG. 図11の一部になる変形例を拡大して示す図である。It is a figure which expands and shows the modification which becomes a part of FIG.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

図1は、本実施例のインホイールモータ駆動装置を示す縦断面図である。図2は、本実施例のインホイールモータ駆動装置の横断面図である。   FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive device of the present embodiment. FIG. 2 is a cross-sectional view of the in-wheel motor drive device of the present embodiment.

車両の床下に取り付けられて車輪を駆動するインホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を図示しない駆動輪に伝える車輪ハブ軸受部Cとを備える。そして軸線O方向にモータ部A、減速部B、車輪ハブ軸受部Cの順で直列配置される。モータ部Aと減速部Bとはケーシング22に収納され、車輪ハブ軸受部Cはケーシング22に回転自在に支持される。ケーシング22の外壁はナックル、サスペンション等を介して、例えば電気自動車のホイールハウジング内に取り付けられる。あるいは鉄道車両の台車に取り付けられる。   An in-wheel motor drive device 21 that is mounted under the floor of a vehicle and drives a wheel includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a reduction unit B And a wheel hub bearing portion C for transmitting the output to drive wheels (not shown). Then, the motor part A, the speed reduction part B, and the wheel hub bearing part C are arranged in series in the direction of the axis O. The motor part A and the speed reduction part B are accommodated in the casing 22, and the wheel hub bearing part C is rotatably supported by the casing 22. The outer wall of the casing 22 is attached to, for example, a wheel housing of an electric vehicle via a knuckle, a suspension, or the like. Or it is attached to the bogie of a railway vehicle.

モータ部Aは、ケーシング22に固定されるステータ23と、ステータ23の内側に軸方向に開いた隙間を介して対向配置される円盤形状のロータ24と、ロータ24の内側に固定連結されてロータ24と一体回転するモータ側回転部材25とを備えるアキシャルギャップモータである。   The motor part A includes a stator 23 fixed to the casing 22, a disk-shaped rotor 24 disposed opposite to the inner side of the stator 23 via an axially opened gap, and a rotor 24 fixedly connected to the inner side of the rotor 24. 24 is an axial gap motor including a motor-side rotation member 25 that rotates integrally with the motor 24.

モータ側回転部材25は、モータ部Aの駆動力を減速部Bに伝達するためにモータ部Aから減速部Bにかけて配置され、減速部Bの入力軸に相当する。そして、減速部B内部に配置される一端が偏心部材25a,25bと結合する。このモータ側回転部材25は、他端がロータ24と嵌合すると共に、減速部Bの両端で転がり軸受36a,36bによって支持される。さらに、2つの円盤形状の偏心部材25a,25bは、偏心運動による遠心力で発生する振動を互いに打ち消し合うために、周方向180°位相を変えて設けられている。   The motor-side rotating member 25 is disposed from the motor part A to the speed reduction part B in order to transmit the driving force of the motor part A to the speed reduction part B, and corresponds to the input shaft of the speed reduction part B. And the one end arrange | positioned inside the deceleration part B couple | bonds with the eccentric members 25a and 25b. The other end of the motor-side rotating member 25 is fitted to the rotor 24 and is supported by rolling bearings 36a and 36b at both ends of the speed reduction unit B. Further, the two disc-shaped eccentric members 25a and 25b are provided with a 180 ° phase change in the circumferential direction in order to cancel each other the vibrations generated by the centrifugal force due to the eccentric motion.

減速部Bは、偏心部材25a,25bに回転自在に保持される公転部材としての曲線板26a,26bと、曲線板26a,26bの外周部に係合する外周係合部材としての複数の外ピン27と、曲線板26a,26bの自転運動を車輪側回転部材28に伝達する運動変換機構と、これらの部材を内部に収容する減速部ケーシング22bとを備える。ケーシング22の一部である減速部ケーシング22bは、筒状であって、軸線O方向の一方側で、モータ部Aのケーシング22と嵌合し、他方側で、車輪ハブ軸受部Cのケーシング22cと結合する。   The deceleration portion B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric members 25a and 25b, and a plurality of outer pins as outer peripheral engaging members that engage with the outer peripheral portions of the curved plates 26a and 26b. 27, a motion conversion mechanism that transmits the rotational motion of the curved plates 26a and 26b to the wheel-side rotating member 28, and a speed reduction portion casing 22b that accommodates these members therein. The speed reduction part casing 22b, which is a part of the casing 22, is cylindrical and is fitted to the casing 22 of the motor part A on one side in the direction of the axis O, and the casing 22c of the wheel hub bearing part C on the other side. Combine with.

車輪側回転部材28は、減速部Bから車輪ハブ軸受部Cにかけて配置され、フランジ部28aと軸部28bとを有する。フランジ部28aは減速部Bにあって、フランジ部28aの端面には、車輪側回転部材28の回転軸線Oを中心とする円周上の等間隔に内ピン31を固定する孔28hが形成されている。軸部28bはフランジ部28aから車輪ハブ軸受部Cに亘って延び、軸部28bの外径面には、車輪ハブ32が固定されている。   The wheel-side rotation member 28 is disposed from the speed reduction part B to the wheel hub bearing part C, and has a flange part 28a and a shaft part 28b. The flange portion 28a is in the speed reduction portion B, and holes 28h for fixing the inner pins 31 are formed on the end surface of the flange portion 28a at equal intervals on the circumference around the rotation axis O of the wheel side rotation member 28. ing. The shaft portion 28b extends from the flange portion 28a to the wheel hub bearing portion C, and the wheel hub 32 is fixed to the outer diameter surface of the shaft portion 28b.

図2を参照して、曲線板26aは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30a,30bを有する。貫通孔30aは、曲線板26aの自転軸心Xを中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受入れる。また、貫通孔30bは、曲線板26aの中心Xに設けられており、曲線板26aの内周になる。曲線板26aは、偏心部材25aの外周に相対回転可能に取り付けられる。   Referring to FIG. 2, the curved plate 26 a has a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer peripheral portion, and a plurality of through holes 30 a and 30 b penetrating from one end face to the other end face. Have A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis X of the curved plate 26a, and receive an inner pin 31 described later. The through hole 30b is provided at the center X of the curved plate 26a, and is the inner periphery of the curved plate 26a. The curved plate 26a is attached to the outer periphery of the eccentric member 25a so as to be relatively rotatable.

曲線板26aは、転がり軸受41によって偏心部材25aに対して回転自在に支持されている。この転がり軸受41は、内輪部材42と、外輪部材43と、内輪部材42の外側軌道面および外輪部材43の内側軌道面の間に配置される複数のころ44と、周方向で隣り合うころ44の間隔を保持する保持器(図示省略)とを備える円筒ころ軸受である。あるいは転がり軸受41は深溝玉軸受であってもよい。   The curved plate 26a is supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric member 25a. The rolling bearing 41 includes an inner ring member 42, an outer ring member 43, a plurality of rollers 44 disposed between the outer raceway surface of the inner ring member 42 and the inner raceway surface of the outer ring member 43, and rollers 44 adjacent in the circumferential direction. It is a cylindrical roller bearing provided with the holder | retainer (illustration omitted) which hold | maintains these space | intervals. Alternatively, the rolling bearing 41 may be a deep groove ball bearing.

内輪部材42の内周は偏心部材25aの外周面に嵌合し、内輪部材42の外周はころ44の内側軌道面になる。外輪部材43の内周はころ44の外側軌道面になり、外輪部材43の外周は曲線板26aの貫通孔30bの内周に嵌合する。曲線板26bについても同様である。   The inner periphery of the inner ring member 42 is fitted to the outer peripheral surface of the eccentric member 25 a, and the outer periphery of the inner ring member 42 becomes the inner raceway surface of the roller 44. The inner periphery of the outer ring member 43 is the outer raceway surface of the roller 44, and the outer periphery of the outer ring member 43 is fitted to the inner periphery of the through hole 30b of the curved plate 26a. The same applies to the curved plate 26b.

外ピン27は、モータ側回転部材25の回転軸線Oを中心とする円周軌道上に等間隔に設けられる。自転軸心Xは回転軸線Oから偏心している。そして、曲線板26a,26bが公転運動すると、外周の曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。   The outer pins 27 are provided at equal intervals on a circumferential track centering on the rotation axis O of the motor-side rotating member 25. The rotation axis X is eccentric from the rotation axis O. Then, when the curved plates 26a, 26b revolve, the outer curved shape and the outer pin 27 engage with each other, causing the curved plates 26a, 26b to rotate.

なお、ケーシング22に配設された外ピン27は、ケーシング22や減速部Bの減速部ケーシング22bに直接保持されているわけではなく、減速部ケーシング22bの内壁に嵌合固定されている外ピン保持部45に保持されている。より具体的には、軸線方向両端部を外ピン保持部45に設けられた針状ころ軸受27aによって回転自在に支持されている。このように、外ピン27を外ピン保持部45に回転自在に取り付けることにより、曲線板26a,26bとの係合による接触抵抗を低減することができる。   The outer pin 27 disposed in the casing 22 is not directly held by the casing 22 or the speed reduction part casing 22b of the speed reduction part B, but is an outer pin fitted and fixed to the inner wall of the speed reduction part casing 22b. It is held by the holding unit 45. More specifically, both end portions in the axial direction are rotatably supported by needle roller bearings 27 a provided on the outer pin holding portion 45. Thus, by attaching the outer pin 27 to the outer pin holding portion 45 so as to be rotatable, the contact resistance due to the engagement with the curved plates 26a, 26b can be reduced.

外周係合部材保持部としての外ピン保持部45は、軸線Oを中心とするリング形状であって、円筒部46と、円筒部の軸線方向両端部から径方向内側に延びる一対のリング部47,48とを備える。そして、外ピン保持部45は、ケーシング22の内壁に取り付けられている。円筒部46の外周面と減速部ケーシング22bとの間には、外ピン保持部45の回転を防止する回り止めピン49が取り付けられる。   The outer pin holding portion 45 as the outer periphery engaging member holding portion has a ring shape centering on the axis O, and includes a cylindrical portion 46 and a pair of ring portions 47 extending radially inward from both axial ends of the cylindrical portion. , 48. The outer pin holding portion 45 is attached to the inner wall of the casing 22. A detent pin 49 that prevents the rotation of the outer pin holding portion 45 is attached between the outer peripheral surface of the cylindrical portion 46 and the speed reduction portion casing 22b.

リング部47,48には、それぞれ厚み方向に貫通する複数の外ピン保持孔47h,48hが設けられている。外ピン保持孔47h,48hは、それぞれモータ側回転部材25の回転軸線Oと平行な方向に延びて、針状ころ軸受27aの外輪27gを保持する。また、リング部47の外ピン保持孔47hとリング部48の外ピン保持孔48hは周方向同位置に設けられて互いに対面する。外ピン保持部45をケーシング22に取り付けると、互いに対面する外ピン保持孔47h,48hの中心軸線は、モータ側回転部材25の回転軸線Oと平行になる。   The ring portions 47 and 48 are provided with a plurality of outer pin holding holes 47h and 48h penetrating in the thickness direction, respectively. The outer pin holding holes 47h and 48h each extend in a direction parallel to the rotation axis O of the motor side rotating member 25 and hold the outer ring 27g of the needle roller bearing 27a. The outer pin holding hole 47h of the ring portion 47 and the outer pin holding hole 48h of the ring portion 48 are provided at the same position in the circumferential direction and face each other. When the outer pin holding part 45 is attached to the casing 22, the central axes of the outer pin holding holes 47 h and 48 h facing each other are parallel to the rotation axis O of the motor side rotation member 25.

これにより外ピン保持部45は、外ピン27をモータ側回転部材25の回転軸線Oと平行に保持することができる。なお、外ピン保持孔47h,48hを同時加工で同軸に形成することができるので、外ピン保持孔47hの中心と外ピン保持孔48hの中心とを一致させるのは比較的簡単である。   Thereby, the outer pin holding part 45 can hold the outer pin 27 in parallel with the rotation axis O of the motor side rotating member 25. Since the outer pin holding holes 47h and 48h can be formed coaxially by simultaneous processing, it is relatively easy to match the center of the outer pin holding hole 47h with the center of the outer pin holding hole 48h.

インホイールモータ駆動装置21の軽量化の観点から、ケーシング22b,22cを含むケーシング22は、アルミ合金やマグネシウム合金等の軽金属で形成する。一方、高い強度が求められる外ピン保持部45は、炭素鋼で形成するのが望ましい。   From the viewpoint of reducing the weight of the in-wheel motor drive device 21, the casing 22 including the casings 22b and 22c is formed of a light metal such as an aluminum alloy or a magnesium alloy. On the other hand, it is desirable to form the outer pin holding part 45, which requires high strength, from carbon steel.

図3は、図2のDで示す領域を拡大して示す図である。減速部ケーシング22bの内壁と外ピン保持部45の外周面との間には、スプリングピン51を周方向等間隔に複数介挿する。スプリングピン51は軸線Oと平行に延在する金属製の管状部材(金属製部材)であって、一部にスリット51sが形成されて断面C字状である。減速部ケーシング22bの内壁には、スプリングピン51と係合する係合溝52が形成されている。軸線Oと平行に延在する係合溝52は、半円断面であり、スプリングピン51の外径とほぼ同じである。外ピン保持部45の外周面には、スプリングピン51と係合する係合溝53が形成されている。軸線Oと平行に延在する係合溝53は、半円断面であり、スプリングピン51の外径とほぼ同じである。スプリングピン51はこれら係合溝52,53の中に弾性変形しつつ介挿され、スリット51sの幅が狭くなるよう、元の形状より縮径している。このためスプリングピン51は元の形状に戻ろうとして、これら係合溝52,53を径方向に押圧する。スプリングピン51は、スプリングに用いられるばね鋼など、弾力性を発現する金属製であることから、ゴムと比較して大きなヤング率である。   FIG. 3 is an enlarged view of a region indicated by D in FIG. A plurality of spring pins 51 are inserted at equal intervals in the circumferential direction between the inner wall of the speed reduction unit casing 22 b and the outer peripheral surface of the outer pin holding unit 45. The spring pin 51 is a metal tubular member (metal member) extending in parallel with the axis O, and a slit 51s is formed in a part thereof and has a C-shaped cross section. An engagement groove 52 that engages with the spring pin 51 is formed on the inner wall of the speed reduction unit casing 22b. The engagement groove 52 extending in parallel with the axis O has a semicircular cross section and is substantially the same as the outer diameter of the spring pin 51. An engaging groove 53 that engages with the spring pin 51 is formed on the outer peripheral surface of the outer pin holding portion 45. The engagement groove 53 extending in parallel with the axis O has a semicircular cross section and is substantially the same as the outer diameter of the spring pin 51. The spring pin 51 is inserted into the engagement grooves 52 and 53 while being elastically deformed, and has a diameter smaller than that of the original shape so that the width of the slit 51s is narrowed. Therefore, the spring pin 51 presses the engagement grooves 52 and 53 in the radial direction so as to return to the original shape. Since the spring pin 51 is made of a metal that exhibits elasticity, such as spring steel used for the spring, it has a larger Young's modulus than rubber.

インホイールモータ駆動装置21の組立の際に、モータ部Aと減速部Bとの接合面から、減速部ケーシング22bの内壁と外ピン保持部45の外周面との間へ、スプリングピン51を軸線Oと平行に挿入するとよい。   When the in-wheel motor drive device 21 is assembled, the spring pin 51 is moved from the joint surface between the motor part A and the speed reduction part B to the space between the inner wall of the speed reduction part casing 22b and the outer peripheral surface of the outer pin holding part 45. It may be inserted in parallel with O.

スプリングピン51は周方向に少なくとも3箇所配置され、外ピン保持部45を軸線Oに向かって径方向に押圧する。このため、外ピン保持部45を減速部ケーシング22b内部の中央、すなわち軸線Oの位置、に支持する力が径方向に作用し、外ピン保持部45の支持剛性を高くして、外ピン保持部45の振動を防止することができる。本実施例では、図2に示すように周方向等間隔に6箇所でスプリングピン51を備える。   At least three spring pins 51 are arranged in the circumferential direction and press the outer pin holding portion 45 in the radial direction toward the axis O. For this reason, a force that supports the outer pin holding portion 45 in the center inside the speed reduction portion casing 22b, that is, the position of the axis O acts in the radial direction to increase the support rigidity of the outer pin holding portion 45 and hold the outer pin. The vibration of the part 45 can be prevented. In this embodiment, as shown in FIG. 2, spring pins 51 are provided at six locations at equal intervals in the circumferential direction.

また本実施例の減速部Bが高温になり、減速部ケーシング22bと外ピン保持部45との線膨張係数の違いにより、減速部ケーシング22bの内壁と外ピン保持部45の外周面との隙間が増加する場合であっても、スプリングピン51が外ピン保持部45を押圧し続けることから、外ピン保持部45の支持剛性を高くして、外ピン保持部45の振動を防止することができる。したがって本実施例によれば、軽量化のためにケーシング22を軽金属製にする場合であっても、振動の防止に有利である。   Further, the speed reduction part B of the present embodiment becomes hot, and a gap between the inner wall of the speed reduction part casing 22b and the outer peripheral surface of the outer pin holding part 45 due to the difference in the linear expansion coefficient between the speed reduction part casing 22b and the outer pin holding part 45. Since the spring pin 51 continues to press the outer pin holding portion 45 even when the increase in the number of pins is increased, the support rigidity of the outer pin holding portion 45 can be increased to prevent vibration of the outer pin holding portion 45. it can. Therefore, according to the present embodiment, even when the casing 22 is made of light metal for weight reduction, it is advantageous for preventing vibration.

次に本発明の各変形例を順次説明する。図4〜図10は本発明の変形例を示す縦断面図であって、図2のD領域を拡大するものである。   Next, each modification of the present invention will be described sequentially. 4 to 10 are longitudinal sectional views showing modified examples of the present invention, in which the area D in FIG. 2 is enlarged.

図4に示す変形例では、係合溝53を断面長方形とする。他の基本構成は図1〜図3に沿って説明した実施例と同じである。図4の変形例であってもスプリングピン51が係合溝52,53を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 4, the engagement groove 53 has a rectangular cross section. Other basic configurations are the same as those of the embodiment described with reference to FIGS. Even in the modification of FIG. 4, the spring pin 51 can press the engagement grooves 52 and 53, and the support rigidity of the outer pin holding portion 45 can be increased.

図5に示す変形例では、係合溝52および係合溝53を断面長方形とする。他の基本構成は図1〜図3に沿って説明した実施例と同じである。図5の変形例であってもスプリングピン51が係合溝52,53を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 5, the engagement groove 52 and the engagement groove 53 are rectangular in cross section. Other basic configurations are the same as those of the embodiment described with reference to FIGS. Even in the modification of FIG. 5, the spring pin 51 can press the engaging grooves 52 and 53, and the support rigidity of the outer pin holding portion 45 can be increased.

図6に示す変形例では、スプリングピン51をV字断面とし、係合溝52および係合溝53を断面長方形とし、他の基本構成は図1〜図3に沿って説明した実施例と同じである。スプリングピン51の断面における中心部51cの角度は、鋭角60度であるが、直角であっても鈍角であってもよい。両側縁51kを周方向に一致させ、両側縁51kの中央から中心部51cまでを径方向に一致させて配置し、安定性を良くする。具体的には、スプリングピン51の断面における両側縁51kを外ピン保持部45の外周面に接触させ、中心部51cを減速部ケーシング22bの内壁に接触させ、外ピン保持部45と減速部ケーシング22bとの間に断面V字状のスプリングピン51を弾性変形しつつ介挿する。図6の変形例であってもスプリングピン51が係合溝52,53を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 6, the spring pin 51 has a V-shaped cross section, the engagement groove 52 and the engagement groove 53 have a rectangular cross section, and the other basic configuration is the same as the embodiment described with reference to FIGS. It is. The angle of the central portion 51c in the cross section of the spring pin 51 is an acute angle of 60 degrees, but may be a right angle or an obtuse angle. The both side edges 51k are made to coincide with each other in the circumferential direction, and the center to the center part 51c of both side edges 51k are made to coincide with each other in the radial direction to improve stability. Specifically, both side edges 51k in the cross section of the spring pin 51 are brought into contact with the outer peripheral surface of the outer pin holding portion 45, the center portion 51c is brought into contact with the inner wall of the speed reduction portion casing 22b, and the outer pin holding portion 45 and the speed reduction portion casing are contacted. A spring pin 51 having a V-shaped cross section is interposed between the spring 22b and 22b while being elastically deformed. Even in the modification of FIG. 6, the spring pin 51 can press the engagement grooves 52 and 53, and the support rigidity of the outer pin holding portion 45 can be increased.

図7に示す変形例では、外ピン保持部45の外周面に係合溝を設けない。代わりに、減速部ケーシング22bの内壁にスプリングピン51のほぼ全体を収容する深さの係合溝52を設ける。他の基本構成は図1〜図3に沿って説明した実施例と同じである。係合溝52は径方向外方に向けて刻設されたU字断面であって、係合溝52の深さはスプリングピン51の外径よりも僅かに浅い。このためスプリングピン51は外ピン保持部45の外周面と接触し、外ピン保持部45と減速部ケーシング22bとの間に弾性変形しつつ介挿される。図7の変形例であってもスプリングピン51が外ピン保持部45の外周面および係合溝52を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 7, no engagement groove is provided on the outer peripheral surface of the outer pin holding portion 45. Instead, an engagement groove 52 having a depth for accommodating almost the entire spring pin 51 is provided on the inner wall of the speed reduction unit casing 22b. Other basic configurations are the same as those of the embodiment described with reference to FIGS. The engagement groove 52 is a U-shaped cross section cut outward in the radial direction, and the depth of the engagement groove 52 is slightly shallower than the outer diameter of the spring pin 51. For this reason, the spring pin 51 comes into contact with the outer peripheral surface of the outer pin holding portion 45 and is inserted between the outer pin holding portion 45 and the speed reduction portion casing 22b while being elastically deformed. Even in the modification of FIG. 7, the spring pin 51 can press the outer peripheral surface of the outer pin holding portion 45 and the engaging groove 52, and the support rigidity of the outer pin holding portion 45 can be increased.

図8に示す変形例では、スプリングピン51をV字断面とし、外ピン保持部45の外周面に係合溝を設けない代わりに、減速部ケーシング22bの内壁にスプリングピン51のほぼ全体を収容する深さの係合溝52を設け、係合溝52を断面長方形とする。他の基本構成は図1〜図3に沿って説明した実施例および図6に沿って説明した変形例と同じである。図8の変形例であってもスプリングピン51が外ピン保持部45の外周面および係合溝52を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 8, the spring pin 51 has a V-shaped cross section, and instead of providing an engagement groove on the outer peripheral surface of the outer pin holding portion 45, almost the entire spring pin 51 is accommodated in the inner wall of the speed reduction portion casing 22b. An engagement groove 52 having a depth to be formed is provided, and the engagement groove 52 has a rectangular cross section. Other basic configurations are the same as the embodiment described with reference to FIGS. 1 to 3 and the modification described with reference to FIG. 6. Even in the modification of FIG. 8, the spring pin 51 can press the outer peripheral surface of the outer pin holding portion 45 and the engaging groove 52, and the support rigidity of the outer pin holding portion 45 can be increased.

図9に示す変形例では、減速部ケーシング22bの内壁に係合溝を設けない。代わりに、外ピン保持部45の外周面にスプリングピン51のほぼ全体を収容する深さの係合溝53を設ける。他の基本構成は図1〜図3に沿って説明した実施例と同じである。係合溝53は径方向内方に向けて刻設されたU字断面であって、係合溝53の深さはスプリングピン51の外径よりも僅かに浅い。このためスプリングピン51は減速部ケーシング22bの内壁と接触し、外ピン保持部45と減速部ケーシング22bとの間に弾性変形しつつ介挿される。図9の変形例であってもスプリングピン51が係合溝53および減速部ケーシング22bの内壁を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 9, no engagement groove is provided on the inner wall of the speed reduction unit casing 22b. Instead, an engagement groove 53 having a depth for accommodating substantially the entire spring pin 51 is provided on the outer peripheral surface of the outer pin holding portion 45. Other basic configurations are the same as those of the embodiment described with reference to FIGS. The engagement groove 53 is a U-shaped cross section cut inward in the radial direction, and the depth of the engagement groove 53 is slightly shallower than the outer diameter of the spring pin 51. For this reason, the spring pin 51 contacts the inner wall of the speed reduction part casing 22b, and is inserted between the outer pin holding part 45 and the speed reduction part casing 22b while being elastically deformed. Even in the modified example of FIG. 9, the spring pin 51 can press the engagement groove 53 and the inner wall of the speed reduction portion casing 22 b, thereby increasing the support rigidity of the outer pin holding portion 45.

図10に示す変形例では、減速部ケーシング22bの内壁に係合溝を設けない。代わりに、外ピン保持部45の外周面にスプリングピン51のほぼ全体を収容する深さの係合溝53を設ける。そして、係合溝53を断面長方形とする。スプリングピン51は断面V字形であり、断面における両側縁51kを減速部ケーシング22bの内壁に接触させ、中心部51cを外ピン保持部45の係合溝53の底面に接触させ、外ピン保持部45と減速部ケーシング22bとの間に断面V字状のスプリングピン51を弾性変形しつつ介挿する。他の基本構成は図1〜図3に沿って説明した実施例および図6に沿って説明した変形例と同じである。図10の変形例であってもスプリングピン51が係合溝53および減速部ケーシング22bの内壁を押圧して、外ピン保持部45の支持剛性を高くすることができる。   In the modification shown in FIG. 10, no engagement groove is provided on the inner wall of the speed reduction unit casing 22b. Instead, an engagement groove 53 having a depth for accommodating substantially the entire spring pin 51 is provided on the outer peripheral surface of the outer pin holding portion 45. The engagement groove 53 is rectangular in cross section. The spring pin 51 has a V-shaped cross section, and both side edges 51k in the cross section are brought into contact with the inner wall of the speed reduction portion casing 22b, the central portion 51c is brought into contact with the bottom surface of the engaging groove 53 of the outer pin holding portion 45, and the outer pin holding portion. A spring pin 51 having a V-shaped cross section is inserted between 45 and the speed reducer casing 22b while being elastically deformed. Other basic configurations are the same as the embodiment described with reference to FIGS. 1 to 3 and the modification described with reference to FIG. 6. Even in the modified example of FIG. 10, the spring pin 51 can press the engagement groove 53 and the inner wall of the speed reduction unit casing 22 b, thereby increasing the support rigidity of the outer pin holding unit 45.

なお、図6、図8、図10の変形例では、断面V字状のスプリングピン51の姿勢を、径方向内外で逆向きにしてもよい。   6, 8, and 10, the posture of the spring pin 51 having a V-shaped cross section may be reversed in the radial direction inside and outside.

説明を図1および図2に戻すと、減速部Bの運動変換機構は、車輪側回転部材28に保持された複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成される。内ピン31は、車輪側回転部材28の回転軸線Oを中心とする円周軌道上に等間隔に設けられており、その軸方向一方側端部が車輪側回転部材28に固定されている。曲線板26a,26bとの摩擦抵抗を低減するために、内ピン31に係る曲線板26a,26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。一方、貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)より所定分大きく設定されている。内ピン31は、外ピン27よりも内径側にあり、曲線板26a,26bの貫通孔30aと係合する内側係合部材である。   Returning to FIG. 1 and FIG. 2, the motion conversion mechanism of the speed reduction unit B includes a plurality of inner pins 31 held by the wheel side rotation member 28 and through holes 30 a provided in the curved plates 26 a and 26 b. Composed. The inner pins 31 are provided at equal intervals on a circumferential track centered on the rotation axis O of the wheel side rotation member 28, and one end in the axial direction thereof is fixed to the wheel side rotation member 28. In order to reduce the frictional resistance with the curved plates 26a, 26b, a needle roller bearing 31a is provided at a position where it abuts against the inner wall surface of the through hole 30a of the curved plates 26a, 26b of the inner pin 31. On the other hand, the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter of the through hole 30a is the outer diameter of the inner pin 31 ("the maximum outer diameter including the needle roller bearing 31a"). The same shall apply hereinafter). The inner pin 31 is an inner engagement member that is closer to the inner diameter side than the outer pin 27 and engages with the through holes 30a of the curved plates 26a and 26b.

車輪ハブ軸受部Cは、車輪側回転部材28に固定連結された車輪ハブ32と、車輪ハブ32を回転自在に保持する車輪ハブ軸受33と、車輪ハブ軸受33を支持するケーシング22cとを備える。ケーシング22の一部である車輪ハブ軸受部ケーシング22cは、筒状であって、減速部Bの減速部ケーシング22bと締結される。車輪ハブ軸受33は複列アンギュラ玉軸受である。車輪ハブ32は、円筒形状の中空部32aとフランジ部32bとを有する。フランジ部32bにはボルト32cによって図示しない駆動輪が固定連結される。   The wheel hub bearing portion C includes a wheel hub 32 fixedly connected to the wheel-side rotating member 28, a wheel hub bearing 33 that rotatably holds the wheel hub 32, and a casing 22c that supports the wheel hub bearing 33. The wheel hub bearing portion casing 22c, which is a part of the casing 22, has a cylindrical shape and is fastened to the speed reduction portion casing 22b of the speed reduction portion B. The wheel hub bearing 33 is a double-row angular ball bearing. The wheel hub 32 has a cylindrical hollow portion 32a and a flange portion 32b. A driving wheel (not shown) is fixedly connected to the flange portion 32b by a bolt 32c.

上記構成のインホイールモータ駆動装置21の作動原理を詳しく説明する。   The operation principle of the in-wheel motor drive device 21 having the above configuration will be described in detail.

モータ部Aは、例えば、ステータ23のコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石または磁性体によって構成されるロータ24が回転する。   The motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23, and the rotor 24 composed of a permanent magnet or a magnetic material rotates.

これにより、ロータ24に接続されたモータ側回転部材25が回転すると、曲線板26a,26bはモータ側回転部材25の回転軸線Oを中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と転がり接触するよう係合して、曲線板26a,26bをモータ側回転部材25の回転とは逆向きに自転運動させる。   As a result, when the motor-side rotating member 25 connected to the rotor 24 rotates, the curved plates 26 a and 26 b revolve around the rotation axis O of the motor-side rotating member 25. At this time, the outer pin 27 is engaged so as to be in rolling contact with the curved waveform of the curved plates 26 a and 26 b to cause the curved plates 26 a and 26 b to rotate in the direction opposite to the rotation of the motor-side rotating member 25.

貫通孔30aに挿通される内ピン31は、貫通孔30aの内径よりも十分に細く、曲線板26a,26bの自転運動に伴って貫通孔30aの孔壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが車輪側回転部材28を介して車輪ハブ軸受部Cに伝達される。   The inner pin 31 inserted through the through hole 30a is sufficiently thinner than the inner diameter of the through hole 30a, and comes into contact with the hole wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel hub bearing portion C via the wheel-side rotating member 28.

このとき、軸線Oと同軸に配置された車輪側回転部材28は、減速部Bの出力軸として曲線板26a,26bの自転を取り出し、モータ側回転部材25の回転が減速部Bによって減速されて車輪側回転部材28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。   At this time, the wheel-side rotating member 28 disposed coaxially with the axis O takes out the rotation of the curved plates 26a and 26b as the output shaft of the speed reducing unit B, and the rotation of the motor side rotating member 25 is decelerated by the speed reducing unit B. Since it is transmitted to the wheel side rotation member 28, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the torque required for the drive wheels.

なお、上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの波形の数をZとすると、(Z−Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と、非常に大きな減速比を得ることができる。 Note that the reduction ratio of the speed reduction portion B having the above-described configuration is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. The In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, the reduction ratio is 1/11, and a very large reduction ratio can be obtained.

このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27を外ピン保持部45に対して回転自在とし、内ピン31の曲線板26a,26bに当接する位置に針状ころ軸受31aを設けたことにより、摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。   In this way, by adopting the speed reduction unit B that can obtain a large speed reduction ratio without using a multi-stage configuration, the in-wheel motor drive device 21 having a compact and high speed reduction ratio can be obtained. Since the outer pin 27 is rotatable with respect to the outer pin holding portion 45 and the needle roller bearing 31a is provided at a position where the outer pin 27 comes into contact with the curved plates 26a and 26b of the inner pin 31, the frictional resistance is reduced. The transmission efficiency of the deceleration part B is improved.

本実施例に係るインホイールモータ駆動装置21を電気自動車に採用することにより、ばね下重量を抑えることができる。その結果、走行安定性に優れた電気自動車を得ることができる。   By employing the in-wheel motor drive device 21 according to this embodiment in an electric vehicle, the unsprung weight can be suppressed. As a result, an electric vehicle with excellent running stability can be obtained.

また、本実施例においては、減速部Bの曲線板26a,26bを180°位相を変えて2枚設けたが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相を変えて設けるとよい。   In the present embodiment, two curved plates 26a and 26b of the speed reduction portion B are provided with 180 ° phase shifts. However, the number of the curved plates can be arbitrarily set. In the case of providing a sheet, it is preferable to change the phase by 120 °.

また、本実施例における運動変換機構は、車輪側回転部材28に固定された内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成される例を示したが、これに限ることなく、減速部Bの回転を車輪ハブ32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと、車輪側回転部材に形成された穴との係合で構成される運動変換機構であってもよい。   Moreover, although the motion conversion mechanism in a present Example showed the example comprised by the inner pin 31 fixed to the wheel side rotation member 28, and the through-hole 30a provided in the curve boards 26a and 26b, Without limitation, any configuration capable of transmitting the rotation of the speed reduction unit B to the wheel hub 32 can be employed. For example, it may be a motion conversion mechanism configured by engagement of an inner pin fixed to a curved plate and a hole formed in the wheel side rotation member.

なお、本実施例における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。   The description of the operation in the present embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor unit A to the drive wheels. Therefore, the power decelerated as described above is converted into high torque.

また、本実施例における作動の説明では、モータ部Aに電力を供給してモータ部Aを駆動させ、モータ部Aからの動力を駆動輪に伝達させたが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電しても良い。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器等の作動に用いてもよい。   In the description of the operation in the present embodiment, power is supplied to the motor unit A to drive the motor unit A, and the power from the motor unit A is transmitted to the drive wheels. When decelerating or going down a hill, the power from the driving wheel side may be converted into high-rotation and low-torque rotation by the deceleration unit B and transmitted to the motor unit A, and the motor unit A may generate power. . Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.

さらに、本実施例の構成にブレーキを加えることもできる。例えば、図1の構成において、ケーシング22を軸方向に延長してロータ24の図中右側に空間を形成し、ロータ24と一体的に回転する回転部材と、ケーシング22に回転不能にかつ軸方向に移動可能なピストンと、このピストンを作動させるシリンダとを配置して、車両停止時にピストンと回転部材とを嵌合させてロータ24をロックするパーキングブレーキであってもよい。   Further, a brake can be added to the configuration of this embodiment. For example, in the configuration of FIG. 1, the casing 22 is extended in the axial direction to form a space on the right side of the rotor 24 in the drawing, the rotating member that rotates integrally with the rotor 24, and the casing 22 is non-rotatable and axial. A parking brake that locks the rotor 24 by disposing a movable piston and a cylinder that operates the piston and fitting the piston and the rotating member when the vehicle is stopped may be used.

または、ロータ24と一体的に回転する回転部材の一部に形成されたフランジおよびケーシング22側に設置された摩擦板をケーシング22側に設置されたシリンダで挟むディスクブレーキであってもよい。さらに、この回転部材の一部にドラムを形成すると共に、ケーシング22側にブレーキシューを固定し、摩擦係合およびセルフエンゲージ作用で回転部材をロックするドラムブレーキを用いることができる。   Alternatively, it may be a disc brake in which a flange formed on a part of a rotating member that rotates integrally with the rotor 24 and a friction plate installed on the casing 22 side are sandwiched by a cylinder installed on the casing 22 side. Furthermore, a drum brake can be used in which a drum is formed on a part of the rotating member, a brake shoe is fixed to the casing 22 side, and the rotating member is locked by friction engagement and self-engagement.

また、本実施例において、曲線板26a,26bを支持する軸受41として円筒ころ軸受の例を示したが、これに限ることなく、例えば、すべり軸受、深溝玉軸受、円錐ころ軸受、針状ころ軸受、自動調心ころ軸受、アンギュラ玉軸受、4点接触玉軸受等、すべり軸受であるか転がり軸受であるかを問わず、転動体がころであるか玉であるかを問わず、さらには複列か単列かを問わず、あらゆる軸受を適用することができる。また、その他の場所に配置される軸受についても、同様に任意の形態の軸受を採用することができる。   In the present embodiment, an example of a cylindrical roller bearing is shown as the bearing 41 that supports the curved plates 26a and 26b. However, the present invention is not limited to this, and for example, a plain bearing, a deep groove ball bearing, a tapered roller bearing, and a needle roller Bearings, spherical roller bearings, angular contact ball bearings, 4-point contact ball bearings, etc., whether they are plain bearings or rolling bearings, regardless of whether the rolling elements are rollers or balls, All bearings can be applied, whether double row or single row. Similarly, any type of bearing can be adopted for bearings arranged in other locations.

また、本実施例においては、モータ部Aにケーシングに固定されるステータと、ステータの内側に径方向の隙間を空けて対面する位置に配置されるロータとを備えるラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えばステータとロータとが径方向に開いた隙間を介して対面するよう配置されるラジアルギャップモータであってもよい。   Further, in this embodiment, an example is adopted in which a radial gap motor including a stator fixed to the casing of the motor part A and a rotor disposed at a position facing the inner side of the stator with a radial gap is provided. Although shown, it is not restricted to this, The motor of arbitrary structures is applicable. For example, it may be a radial gap motor in which the stator and the rotor are arranged so as to face each other through a gap opened in the radial direction.

さらに、インホイールモータ駆動装置21を搭載した電気自動車は、後輪を駆動輪としてもよく、また、前輪を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。   Furthermore, the electric vehicle on which the in-wheel motor drive device 21 is mounted may have a rear wheel as a drive wheel, a front wheel as a drive wheel, or a four-wheel drive vehicle. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

次に本発明の他の実施例を説明する。図11は本発明の他の実施例を示す横断面図である。図12は、図11にEで示す領域を拡大して示す図であって、本発明と対比される比較例を表す。図13は、図11にEで示す領域を拡大して示す図である。これから説明する他の実施例につき、上述した実施例と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。他の実施例では、減速部ケーシング22bの内壁と外ピン保持部45の外周面との間に、高分子材料製部材61を周方向等間隔に複数介挿する。高分子材料製部材61は軸線Oと平行に延在する円柱形状の部材であり、高分子材料で形成される。   Next, another embodiment of the present invention will be described. FIG. 11 is a cross-sectional view showing another embodiment of the present invention. FIG. 12 is an enlarged view of the region indicated by E in FIG. 11 and represents a comparative example compared with the present invention. FIG. 13 is an enlarged view of the area indicated by E in FIG. In the other embodiments to be described below, the same reference numerals are given to the configurations common to the above-described embodiments, the description thereof is omitted, and different configurations will be described below. In another embodiment, a plurality of polymeric material members 61 are inserted at equal intervals in the circumferential direction between the inner wall of the speed reduction unit casing 22 b and the outer peripheral surface of the outer pin holding unit 45. The polymer material member 61 is a cylindrical member extending in parallel with the axis O, and is formed of a polymer material.

高分子材料は、振動を吸収する材料、例えばゴム、合成樹脂、シリコン樹脂、合成繊維等が望ましい。高分子材料製部材61は、減速部ケーシング22bの内壁と外ピン保持部45の外周面とに挟圧されて圧縮側に弾性変形し、外ピン保持部45の外周面を内径方向へ押圧する。振動を吸収する材料として、圧縮状態から時間をかけて緩慢に原形へ復元する低反発素材が考えられる。   The polymer material is preferably a material that absorbs vibration, such as rubber, synthetic resin, silicon resin, synthetic fiber, and the like. The polymer material member 61 is sandwiched between the inner wall of the speed reduction portion casing 22b and the outer peripheral surface of the outer pin holding portion 45 and elastically deforms to the compression side, and presses the outer peripheral surface of the outer pin holding portion 45 in the inner diameter direction. . As a material that absorbs vibration, a low-rebound material that slowly recovers to its original shape over time from a compressed state can be considered.

減速部ケーシング22bの内壁には、軸線O方向に延びて高分子材料製部材61を受け入れる溝52が形成される。外ピン保持部45の外周面には、軸線O方向に延びて高分子材料製部材61を受け入れる溝53が形成される。   A groove 52 that extends in the direction of the axis O and receives the polymer material member 61 is formed in the inner wall of the speed reduction unit casing 22b. A groove 53 that extends in the direction of the axis O and receives the polymer material member 61 is formed on the outer peripheral surface of the outer pin holding portion 45.

高分子材料製部材61は、溝52,53と係合して、減速部Bの回転方向(周方向)の振動を吸収することができる。また、高分子材料製部材61は、溝52,53と係合して外ピン保持部45の回転を防止することから、図2に示す回り止めピン49を省略することができる。   The polymeric material member 61 can be engaged with the grooves 52 and 53 to absorb vibrations in the rotational direction (circumferential direction) of the speed reducing portion B. Moreover, since the polymeric material member 61 engages with the grooves 52 and 53 to prevent the outer pin holding portion 45 from rotating, the detent pin 49 shown in FIG. 2 can be omitted.

ところで減速部Bが25の回転を減速して28に伝達する間、外ピン保持部45は外ピン27から周方向の反力を受ける。このため、溝52,53の断面形状が半円形であって、ケーシング内壁と外ピン保持部外周面との環状隙間62の隙間幅が極めて小さい場合、図12に矢印で示すように周方向のせん断力が高分子材料製部材61に一部に集中作用する。   By the way, while the deceleration part B decelerates the rotation of 25 and transmits it to 28, the outer pin holding part 45 receives a reaction force in the circumferential direction from the outer pin 27. For this reason, when the cross-sectional shape of the grooves 52 and 53 is semicircular and the gap width of the annular gap 62 between the inner wall of the casing and the outer peripheral surface of the outer pin holding portion is extremely small, as shown by the arrows in FIG. The shearing force is concentrated on a part of the polymer material member 61.

そこで、図13に示すように、断面半円形状の溝52と減速部ケーシング22bの内壁との境界に面取り部63を形成する。面取り部63は膨らみを帯び、溝52とケーシング内壁とを滑らかに接続する。これにより、周方向せん断力が高分子材料製部材61の一部に集中することを緩和できる。   Therefore, as shown in FIG. 13, a chamfered portion 63 is formed at the boundary between the groove 52 having a semicircular cross section and the inner wall of the speed reduction portion casing 22b. The chamfered portion 63 has a bulge and smoothly connects the groove 52 and the inner wall of the casing. Thereby, it can relieve | moderate that the circumferential direction shear force concentrates on a part of member 61 made from a polymeric material.

なお面取り部63は、かかる丸みを帯びた形状の他、図示はしなかったが平面を帯びた面取りであってもよい。   In addition to the rounded shape, the chamfered portion 63 may be a chamfered with a flat surface although not shown.

また、図13に示すように、外ピン保持部45の外径を減速部ケーシング22bの内径よりも充分小さくして、環状隙間62の隙間幅を充分大きくする。これにより、周方向せん断力が高分子材料製部材61の一部に集中することを緩和できる。   Further, as shown in FIG. 13, the outer diameter of the outer pin holding part 45 is made sufficiently smaller than the inner diameter of the speed reducing part casing 22b, and the gap width of the annular gap 62 is made sufficiently large. Thereby, it can relieve | moderate that the circumferential direction shear force concentrates on a part of member 61 made from a polymeric material.

なお本実施例では、環状隙間62の好ましい隙間幅を、想定される外ピン保持部45の振動の軸線Oに対する直角方向成分よりも大きくする。これにより、高分子材料製部材61は減速部Bの振動を効率よく吸収することができる。また外ピン保持部45が振動して減速部ケーシング22bの内壁と当接せず、異音を防止できる。   In the present embodiment, the preferable gap width of the annular gap 62 is set to be larger than the component perpendicular to the vibration axis O of the assumed outer pin holding portion 45. Thereby, the polymeric material member 61 can efficiently absorb the vibration of the speed reducing portion B. Further, the outer pin holding portion 45 vibrates and does not come into contact with the inner wall of the speed reduction portion casing 22b, so that abnormal noise can be prevented.

また周方向せん断力が高分子材料製部材61の一部に集中しないよう、溝53の断面を、図13に示すようにV字形状にする。これにより、周方向せん断力および径方向押圧力を図13に矢印で示す向きの合力に変換することができる。この合力は圧縮力であることから、高分子材料製部材61の一部に周方向せん断力が集中せず、高分子材料製部材61の耐久性が向上する。   Further, the cross section of the groove 53 is formed in a V shape as shown in FIG. 13 so that the circumferential shearing force is not concentrated on a part of the polymer material member 61. Thereby, the circumferential shear force and the radial pressing force can be converted into a resultant force indicated by an arrow in FIG. Since this resultant force is a compressive force, the circumferential shear force is not concentrated on a part of the polymer material member 61, and the durability of the polymer material member 61 is improved.

この点につき詳細に説明すると、高分子材料製部材61は、断面V字形状の溝53に沿って延び、その断面形状が円形である。このため、高分子材料製部材61はV字の両翼になる溝53の左側面および右側面とそれぞれ接触し、かかる2つの接触箇所から圧縮力を受ける。したがって、断面V字形状の溝と断面円形の高分子材料製部材61との組み合わせにより、周方向せん断力を効果的に分散できるのである。   This point will be described in detail. The polymer material member 61 extends along the groove 53 having a V-shaped cross section, and has a circular cross section. Therefore, the polymer material member 61 comes into contact with the left side surface and the right side surface of the groove 53 that forms both V-shaped blades, and receives compressive force from the two contact points. Therefore, the circumferential shear force can be effectively dispersed by the combination of the V-shaped groove and the polymer material member 61 having a circular cross section.

また、図示はしなかったが、溝53の断面形状をアーチ形状にしてもよい。ここでアーチ形状は、放物曲線であってもよいし、カテナリーであってもよい。またゴシックアーチ形状であってもよい。アーチ形状の場合も、高分子材料製部材61は溝53の右側面および左側面とそれぞれ接触し、かかる2つの接触箇所から圧縮力を受ける。したがって、断面アーチ形状の溝と断面円形の高分子材料製部材61との組み合わせにより、周方向せん断力を効果的に分散できるのである。   Although not shown, the cross-sectional shape of the groove 53 may be an arch shape. Here, the arch shape may be a parabolic curve or a catenary. Moreover, a Gothic arch shape may be sufficient. Also in the case of the arch shape, the polymer material member 61 comes into contact with the right side surface and the left side surface of the groove 53, respectively, and receives compressive force from the two contact points. Therefore, the circumferential shear force can be effectively dispersed by the combination of the groove having the cross-sectional arch shape and the member 61 made of the polymer material having the circular cross-section.

また、図示はしなかったが、周方向等間隔に複数設けられた高分子材料製部材61の一部を、金属製部材に代替してもよい。高分子材料製部材と金属製部材とを併用することによって、信頼性が向上する。   Although not shown, a part of the plurality of polymer material members 61 provided at equal intervals in the circumferential direction may be replaced with a metal member. Reliability is improved by using a polymer material member and a metal member in combination.

次に高分子材料製部材61を受け入れる溝53の変形例を説明する。図14は本発明の変形例を示す縦断面図であって、図11のE領域を拡大するものである。図14に示す変形例では、V字溝53の角度を大きくする。これにより、高分子材料製部材61はV字の中央部で溝53と接触する。すなわち図14に矢印で示すように、V字の角度が小さな図13の実施例と比較して、押圧力の入力位置を内径側にして、減速部ケーシング22bから遠ざけることが可能になり、周方向せん断力の集中を一層緩和することができる。   Next, a modification of the groove 53 for receiving the polymer material member 61 will be described. FIG. 14 is a longitudinal sectional view showing a modification of the present invention, and is an enlargement of the E region of FIG. In the modification shown in FIG. 14, the angle of the V-shaped groove 53 is increased. As a result, the polymer material member 61 comes into contact with the groove 53 at the center of the V shape. That is, as shown by an arrow in FIG. 14, compared to the embodiment of FIG. 13 in which the V-shaped angle is small, the input position of the pressing force can be set to the inner diameter side and away from the speed reduction unit casing 22b. The concentration of directional shear force can be further relaxed.

以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   Although the embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the illustrated embodiment. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明になるインホイールモータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。   The in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.

21 インホイールモータ駆動装置、22,22b ケーシング、23 ステータ、24 ロータ、25 モータ側回転部材、25a,25b 偏心部材、26a,26b 曲線板、27 外ピン、28 車輪側回転部材、31 内ピン、32 車輪ハブ、33 車輪ハブ軸受、41 転がり軸受、45 外ピン保持部、46 円筒部、47,48 リング部、49 回り止めピン、51 スプリングピン(金属製部材)、51s スリット、52,53 係合溝、61 高分子材料製部材、62 環状隙間、63 面取り部。   21 in-wheel motor drive device, 22, 22b casing, 23 stator, 24 rotor, 25 motor side rotating member, 25a, 25b eccentric member, 26a, 26b curved plate, 27 outer pin, 28 wheel side rotating member, 31 inner pin, 32 Wheel hub, 33 Wheel hub bearing, 41 Rolling bearing, 45 Outer pin holding part, 46 Cylindrical part, 47, 48 Ring part, 49 Non-rotating pin, 51 Spring pin (metal member), 51s Slit, 52, 53 Groove, 61 Polymer material member, 62 annular gap, 63 chamfer.

Claims (15)

モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材に固定連結された車輪ハブとを備え、
前記減速部は、減速部の外郭であるケーシングと、
一端が前記ケーシングの内部に配置された入力軸と、
前記入力軸の軸線から偏心して入力軸の一端に結合した円盤形状の偏心部材と、
内周が前記偏心部材の外周に相対回転可能に取り付けられ、前記入力軸の回転に伴って前記軸線を中心とする公転運動を行う公転部材と、
前記公転部材の外周部に係合して前記公転部材の自転運動を生じさせる外周係合部材と、
前記公転部材の自転運動を取り出す出力軸と、
前記軸線を中心とするリング形状であって、前記ケーシングの内部に取り付けられて前記外周係合部材を支持する外周係合部材保持部と、
前記ケーシングの内壁と前記外周係合部材保持部の外周面との間に弾性変形しつつ介挿されて、外周係合部材保持部を径方向内側に押圧する押圧部材とを有する、インホイールモータ駆動装置。
A motor unit that rotationally drives the motor side rotating member, a speed reducing unit that decelerates the rotation of the motor side rotating member and transmits the rotation to the wheel side rotating member, and a wheel hub fixedly connected to the wheel side rotating member,
The speed reduction part is a casing that is an outline of the speed reduction part;
An input shaft having one end disposed inside the casing;
A disc-shaped eccentric member eccentric from the axis of the input shaft and coupled to one end of the input shaft;
A revolving member that has an inner periphery attached to the outer periphery of the eccentric member so as to be relatively rotatable, and performs a revolving motion around the axis along with the rotation of the input shaft;
An outer periphery engaging member that engages with an outer peripheral portion of the revolving member to cause rotation of the revolving member;
An output shaft for extracting the rotational motion of the revolving member;
A ring shape centered on the axis, and an outer periphery engaging member holding portion attached to the inside of the casing and supporting the outer periphery engaging member;
An in-wheel motor having a pressing member that is inserted between the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion while being elastically deformed and presses the outer peripheral engagement member holding portion radially inward. Drive device.
前記押圧部材は金属で形成された金属製部材である、請求項1に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 1, wherein the pressing member is a metal member made of metal. 前記金属製部材は周方向に少なくとも3箇所以上で介挿される、請求項2に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 2, wherein the metal member is inserted in at least three locations in the circumferential direction. 前記金属製部材は前記軸線と平行に延びるスプリングピンである、請求項2または3に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 2, wherein the metal member is a spring pin extending in parallel with the axis. 前記金属製部材は前記軸線と平行に延びる断面V字形状のピンである、請求項2または3に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 2 or 3, wherein the metal member is a pin having a V-shaped cross section extending in parallel with the axis. 前記ケーシングの内壁は前記金属製部材と係合する凹部を備える、請求項4または5に記載のインホイールモータ駆動装置。   6. The in-wheel motor drive device according to claim 4, wherein an inner wall of the casing includes a recess that engages with the metal member. 前記外周係合部材保持部の外周面は前記金属製部材と係合する凹部を備える、請求項4〜6のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor drive device in any one of Claims 4-6 provided with the recessed part which the outer peripheral surface of the said outer periphery engaging member holding | maintenance part engages with the said metal members. 前記外周係合部材保持部の外周面は隙間を介して前記ケーシングの内壁と対面し、
前記押圧部材は高分子材料で形成された高分子材料製部材である、請求項1に記載のインホイールモータ駆動装置。
The outer peripheral surface of the outer peripheral engagement member holding part faces the inner wall of the casing through a gap,
The in-wheel motor drive device according to claim 1, wherein the pressing member is a polymer material member made of a polymer material.
前記ケーシングの内壁および前記外周係合部材保持部の外周面に、軸線方向に延びて前記高分子材料製部材を受け入れる溝がそれぞれ形成される、請求項8に記載のインホイールモータ駆動装置。   9. The in-wheel motor drive device according to claim 8, wherein grooves are formed in the inner wall of the casing and the outer peripheral surface of the outer peripheral engagement member holding portion so as to extend in the axial direction and receive the polymer material member. 前記溝は、軸線と直角な断面がV字形状である、請求項9に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 9, wherein the groove has a V-shaped cross section perpendicular to the axis. 前記溝は、軸線と直角な断面がアーチ形状である、請求項9に記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 9, wherein the groove has an arch shape in a cross section perpendicular to the axis. 前記溝は、前記ケーシングの内壁と溝との境界、および前記外周係合部材保持部の外周面と溝との境界に面取り部を有する、請求項9〜11のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor according to any one of claims 9 to 11, wherein the groove has a chamfered portion at a boundary between the inner wall and the groove of the casing and a boundary between the outer peripheral surface of the outer peripheral engagement member holding portion and the groove. Drive device. 前記高分子材料製部材は、前記溝に沿って延び、断面形状が円形である、請求項10〜12のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to any one of claims 10 to 12, wherein the polymer material member extends along the groove and has a circular cross-sectional shape. 前記減速部は、前記ケーシングの内壁と前記外周係合部材保持部の外周面との間に介挿される金属製部材をさらに有する、請求項8〜13のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to any one of claims 8 to 13, wherein the speed reduction portion further includes a metal member interposed between an inner wall of the casing and an outer peripheral surface of the outer peripheral engagement member holding portion. . 前記隙間は、前記外周係合部材保持部の振動の軸線直角方向成分よりも大きい、請求項8〜14のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor drive device according to any one of claims 8 to 14, wherein the gap is larger than a component perpendicular to an axis of vibration of the outer peripheral engagement member holding portion.
JP2009142356A 2008-08-22 2009-06-15 In-wheel motor driving device Pending JP2010071462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142356A JP2010071462A (en) 2008-08-22 2009-06-15 In-wheel motor driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008213650 2008-08-22
JP2009142356A JP2010071462A (en) 2008-08-22 2009-06-15 In-wheel motor driving device

Publications (1)

Publication Number Publication Date
JP2010071462A true JP2010071462A (en) 2010-04-02

Family

ID=42203442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142356A Pending JP2010071462A (en) 2008-08-22 2009-06-15 In-wheel motor driving device

Country Status (1)

Country Link
JP (1) JP2010071462A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132580A1 (en) * 2010-04-21 2011-10-27 Ntn株式会社 Decelerating device
JP2011226583A (en) * 2010-04-21 2011-11-10 Ntn Corp Decelerating device
WO2012011461A1 (en) * 2010-07-23 2012-01-26 Ntn株式会社 In-wheel motor drive device
WO2013111650A1 (en) * 2012-01-23 2013-08-01 Ntn株式会社 Wheel driving apparatus
WO2014006833A1 (en) * 2012-07-03 2014-01-09 ナブテスコ株式会社 Eccentric oscillating gear device
JP2014001859A (en) * 2013-09-24 2014-01-09 Ntn Corp In-wheel motor driving device
JP2014000958A (en) * 2013-09-04 2014-01-09 Ntn Corp In-wheel motor drive device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181040U (en) * 1984-11-02 1986-05-29
JPH0372144U (en) * 1989-11-16 1991-07-22
JP2001323971A (en) * 2000-05-16 2001-11-22 Sumitomo Heavy Ind Ltd Holding structure for internal gear
JP2007078177A (en) * 2005-08-18 2007-03-29 Ntn Corp Power transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181040U (en) * 1984-11-02 1986-05-29
JPH0372144U (en) * 1989-11-16 1991-07-22
JP2001323971A (en) * 2000-05-16 2001-11-22 Sumitomo Heavy Ind Ltd Holding structure for internal gear
JP2007078177A (en) * 2005-08-18 2007-03-29 Ntn Corp Power transmission device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684878B2 (en) 2010-04-21 2014-04-01 Ntn Corporation Speed reducer
JP2011226583A (en) * 2010-04-21 2011-11-10 Ntn Corp Decelerating device
CN102762891A (en) * 2010-04-21 2012-10-31 Ntn株式会社 Decelerating device
WO2011132580A1 (en) * 2010-04-21 2011-10-27 Ntn株式会社 Decelerating device
WO2012011461A1 (en) * 2010-07-23 2012-01-26 Ntn株式会社 In-wheel motor drive device
JP2012025267A (en) * 2010-07-23 2012-02-09 Ntn Corp In-wheel motor driving device
CN103026103A (en) * 2010-07-23 2013-04-03 Ntn株式会社 In-wheel motor drive device
CN103026103B (en) * 2010-07-23 2016-03-02 Ntn株式会社 Wheel motor drive device
US9132727B2 (en) 2010-07-23 2015-09-15 Ntn Corporation In-wheel motor drive device
US8857546B2 (en) 2010-07-23 2014-10-14 Ntn Corporation In-wheel motor drive device
EP2808581A1 (en) * 2012-01-23 2014-12-03 NTN Corporation Wheel driving apparatus
CN104145132A (en) * 2012-01-23 2014-11-12 Ntn株式会社 Wheel driving apparatus
EP2808581A4 (en) * 2012-01-23 2015-04-29 Ntn Toyo Bearing Co Ltd Wheel driving apparatus
JP2013148198A (en) * 2012-01-23 2013-08-01 Ntn Corp Wheel driving device
WO2013111650A1 (en) * 2012-01-23 2013-08-01 Ntn株式会社 Wheel driving apparatus
US9490679B2 (en) 2012-01-23 2016-11-08 Ntn Corporation Wheel driving device
JP2014009808A (en) * 2012-07-03 2014-01-20 Nabtesco Corp Eccentric oscillation type gear device
WO2014006833A1 (en) * 2012-07-03 2014-01-09 ナブテスコ株式会社 Eccentric oscillating gear device
KR20150027818A (en) * 2012-07-03 2015-03-12 나부테스코 가부시키가이샤 Eccentric oscillating gear device
KR101692647B1 (en) * 2012-07-03 2017-01-03 나부테스코 가부시키가이샤 Eccentric oscillating gear device
TWI595174B (en) * 2012-07-03 2017-08-11 Nabtesco Corp Eccentric swing gear device
JP2014000958A (en) * 2013-09-04 2014-01-09 Ntn Corp In-wheel motor drive device
JP2014001859A (en) * 2013-09-24 2014-01-09 Ntn Corp In-wheel motor driving device

Similar Documents

Publication Publication Date Title
JP4799199B2 (en) In-wheel motor drive device
JP5519337B2 (en) In-wheel motor drive device
US9490679B2 (en) Wheel driving device
JP5564352B2 (en) In-wheel motor drive device
JP2010071462A (en) In-wheel motor driving device
WO2011070882A1 (en) In-wheel motor drive device
JP5292626B2 (en) In-wheel motor drive device and casing for in-wheel motor drive device
JP2015093492A (en) In-wheel motor driving device
JP2005231428A (en) Electric wheel driving device
JP5374326B2 (en) In-wheel motor drive device
JP2009074583A (en) Cycloid reduction gear and in-wheel motor drive unit
JP5255370B2 (en) In-wheel motor drive device
JP2003028254A (en) Electric wheel driving device
JP2008168821A (en) In-wheel motor drive unit
JP5142274B2 (en) Cycloid reducer
JP2010260476A (en) In-wheel motor drive device and motor drive device for vehicles
JP2016016718A (en) Hub structure with built-in motor, and bicycle
JP2008168822A (en) In-wheel motor drive unit
JP5564608B2 (en) In-wheel motor drive device
JP2010048279A (en) Cycloid reduction gear and in-wheel motor driving device
JP2008208911A (en) In-wheel motor drive mechanism
JP4380493B2 (en) Electric wheel drive device
JP2008045682A (en) In-wheel motor driving device
JP2006117003A (en) Electric wheel drive device
JP2012097903A (en) In-wheel motor driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Effective date: 20130307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130312

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702