JP2010069456A - Method of oxidizing organic compound and method of reactivating catalyst - Google Patents

Method of oxidizing organic compound and method of reactivating catalyst Download PDF

Info

Publication number
JP2010069456A
JP2010069456A JP2008242325A JP2008242325A JP2010069456A JP 2010069456 A JP2010069456 A JP 2010069456A JP 2008242325 A JP2008242325 A JP 2008242325A JP 2008242325 A JP2008242325 A JP 2008242325A JP 2010069456 A JP2010069456 A JP 2010069456A
Authority
JP
Japan
Prior art keywords
catalyst
photocatalyst
particles
oxidizing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242325A
Other languages
Japanese (ja)
Inventor
Fumiaki Otani
文章 大谷
Tatsu Abe
竜 阿部
Hitoshi Takami
仁 高見
Yoshiaki Sakatani
能彰 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Sumitomo Chemical Co Ltd
Original Assignee
Hokkaido University NUC
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Sumitomo Chemical Co Ltd filed Critical Hokkaido University NUC
Priority to JP2008242325A priority Critical patent/JP2010069456A/en
Publication of JP2010069456A publication Critical patent/JP2010069456A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of oxidizing an organic compound which retains a good catalytic activity and allows continuous oxidization of an organic compound and a method of reactivating the catalyst used on the oxidizing method. <P>SOLUTION: The method of oxidizing an organic compound comprises oxidizing an organic compound using a catalyst consisting of Pt particles supported on a photocatalyst and retains the activity of the catalyst by irradiating the photocatalyst intermittently with light rays of sufficient wavelengths to photoexcite the photocatalyst. The method of reactivating a catalyst is used to reactivate the catalyst consisting of Pt particles supported on a photocatalyst and comprises carrying out a catalytic reaction using the catalyst for a predetermined time and regenerating the activity of the catalyst by irradiating the photocatalyst with light rays of sufficient wavelengths to photoexcite the photocatalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Pt粒子が光触媒体に担持されてなる触媒を用いた有機物の酸化方法および前記触媒の再活性化方法に関する。   The present invention relates to a method for oxidizing an organic substance using a catalyst in which Pt particles are supported on a photocatalyst and a method for reactivating the catalyst.

例えば、屋内環境において建材等から放出される揮発性有機化合物(アルデヒド類等)は、シックハウス症候群の原因物質として悪影響を及ぼすことが危惧されるため、酸化分解して除去することが望まれている。このように有機物の酸化分解が要望される場面は多くあり、その手段として、例えば、Pt粒子をゼオライトや活性炭に担持させたPt粒子担持触媒を用いる方法が提案されている(特許文献1、2)。   For example, volatile organic compounds (aldehydes and the like) released from building materials and the like in an indoor environment are feared to have an adverse effect as a causative substance of sick house syndrome, and thus are desired to be removed by oxidative decomposition. As described above, there are many demands for oxidative decomposition of organic substances. As a means for this, for example, a method using a Pt particle-supported catalyst in which Pt particles are supported on zeolite or activated carbon has been proposed (Patent Documents 1 and 2). ).

特開2006−217995号公報JP 2006-217995 A 特開2008−55425号公報JP 2008-55425 A

しかしながら、Pt粒子をゼオライトや活性炭に担持させた触媒を用いた場合、触媒反応が進むにつれて触媒表面に有機物やその分解中間体が吸着し、それらの吸着量が飽和量を超えると、Pt粒子の被毒により触媒活性が大幅に低下し、充分な効果が得られない場合があった。   However, when a catalyst in which Pt particles are supported on zeolite or activated carbon is used, organic substances and decomposition intermediates are adsorbed on the surface of the catalyst as the catalytic reaction proceeds, and if the amount of adsorption exceeds the saturation amount, In some cases, poisoning significantly reduces the catalytic activity, and a sufficient effect cannot be obtained.

そこで、本発明の課題は、良好な触媒活性を維持し、持続的に有機物を酸化できる有機物の酸化方法と、該酸化方法に用いる触媒の再活性化方法とを提供することにある。   Accordingly, an object of the present invention is to provide an organic matter oxidation method capable of maintaining good catalytic activity and continuously oxidizing organic matter, and a catalyst reactivation method used in the oxidation method.

本発明者等は、前記課題を解決するべく鋭意検討を行った。その結果、Pt粒子を光触媒体、好ましくは酸化タングステンに担持させた触媒であれば、たとえ触媒表面に有機物やその分解中間体が吸着しても、該吸着物は、光触媒体を光励起するのに充分な波長の光を照射することで生じる活性酸素種の作用(光触媒活性)によって分解され、良好な触媒活性を持続させることができることを見出し、本発明を完成した。   The present inventors have intensively studied to solve the above-mentioned problems. As a result, in the case of a catalyst in which Pt particles are supported on a photocatalyst, preferably tungsten oxide, even if an organic substance or its decomposition intermediate is adsorbed on the surface of the catalyst, the adsorbate photoexcites the photocatalyst. The present invention has been completed by finding that it can be decomposed by the action of the active oxygen species (photocatalytic activity) generated by irradiating with light having a sufficient wavelength and can maintain good catalytic activity.

すなわち、本発明は、以下の構成からなる。
(1)Pt粒子が光触媒体に担持されてなる触媒を用いて有機物を酸化する方法であって、間欠的に前記光触媒体を光励起するのに充分な波長の光を照射することにより、触媒活性を維持させることを特徴とする有機物の酸化方法。
(2)前記光触媒体が酸化タングステンである前記(1)記載の有機物の酸化方法。
(3)Pt粒子が光触媒体に担持されてなる触媒の再活性化方法であって、前記触媒を用いた触媒反応を所定時間行った後、前記光触媒体を光励起するのに充分な波長の光を照射することにより、触媒活性を再生することを特徴とする触媒の再活性化方法。
(4)前記光触媒体が酸化タングステンである前記(3)記載の触媒の再活性化方法。
That is, this invention consists of the following structures.
(1) A method of oxidizing an organic substance using a catalyst in which Pt particles are supported on a photocatalyst, and the catalytic activity is obtained by intermittently irradiating light having a wavelength sufficient to photoexcite the photocatalyst. A method for oxidizing an organic substance, characterized by maintaining the temperature.
(2) The method for oxidizing an organic substance according to (1), wherein the photocatalyst is tungsten oxide.
(3) A method for reactivating a catalyst in which Pt particles are supported on a photocatalyst, wherein light having a wavelength sufficient to photoexcite the photocatalyst after performing a catalytic reaction using the catalyst for a predetermined time. A method for reactivating a catalyst, wherein the catalyst activity is regenerated by irradiating the catalyst.
(4) The method for reactivating a catalyst according to (3), wherein the photocatalyst is tungsten oxide.

本発明によれば、Pt粒子担持触媒を用いて有機物を酸化するにあたり、良好な触媒活性を維持し、持続的に有機物を酸化できる、という効果がある。また、本発明によれば、Pt粒子担持触媒を、光の照射という極めて簡便な手段によって、容易に再生することができる、という効果がある。さらに、本発明にかかる前記Pt粒子担持触媒は、有機物の酸化反応自体においては光の照射を必要としないので、暗所であっても効率よく有機物を酸化することができる。したがって、本発明によれば、例えば、環境中のアルコール類、アルデヒド類、メルカプタン類のような悪臭・有害物質を、簡便な方法で効率的に酸化分解し、除去することが可能になる。   According to the present invention, when an organic substance is oxidized using a Pt particle-supported catalyst, there is an effect that good catalytic activity is maintained and the organic substance can be oxidized continuously. Further, according to the present invention, there is an effect that the Pt particle supported catalyst can be easily regenerated by an extremely simple means of light irradiation. Furthermore, since the Pt particle-supported catalyst according to the present invention does not require light irradiation in the organic substance oxidation reaction itself, the organic substance can be efficiently oxidized even in a dark place. Therefore, according to the present invention, for example, malodors and harmful substances such as alcohols, aldehydes, and mercaptans in the environment can be efficiently oxidized and removed by a simple method.

本発明にかかる触媒、すなわち、本発明の有機物の酸化方法で用いる触媒および本発明の触媒の再活性化方法において再生する触媒は、Pt粒子が光触媒体に担持されてなるものである。   The catalyst according to the present invention, that is, the catalyst used in the organic matter oxidation method of the present invention and the catalyst regenerated in the catalyst reactivation method of the present invention is formed by supporting Pt particles on a photocatalyst.

前記光触媒体は、例えば紫外線や可視光線の照射により光触媒活性を発現する物質であればよく、具体的には、X線回折で求められる結晶構造を示し、金属元素と、酸素、窒素、イオウおよび弗素のうちの1種以上とからなる化合物の粒子が挙げられる。例えば、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ce等から選ばれる1種以上の金属元素の、酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが挙げられる。中でも、Ti、WまたはNbの酸化物が好ましく、とりわけ、酸化タングステン(WO3)が特に好ましい。 The photocatalyst may be a substance that exhibits photocatalytic activity when irradiated with, for example, ultraviolet light or visible light. Specifically, the photocatalyst exhibits a crystal structure obtained by X-ray diffraction, and includes metal elements, oxygen, nitrogen, sulfur, and the like. Examples thereof include particles of a compound composed of one or more kinds of fluorine. For example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Oxide, nitride, sulfide, oxynitride, oxysulfide of one or more metal elements selected from Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, Ce, etc. Nitrogen fluoride, oxyfluoride, oxynitride fluoride and the like can be mentioned. Among these, oxides of Ti, W, or Nb are preferable, and tungsten oxide (WO 3 ) is particularly preferable.

酸化タングステン(WO3)は、例えば、タングステン酸ナトリウム、タングステン酸カルシウム、タングステン酸アンモニウム等のタングステン酸塩の水溶液を加温し、塩酸や硝酸を混合してタングステン酸を得た後、焼成する方法や、タングステン酸、メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解する方法等によって得ることができる。また、市販の酸化タングステンを使用してもよいことは勿論である。 Tungsten oxide (WO 3 ) is a method in which, for example, an aqueous solution of tungstate such as sodium tungstate, calcium tungstate, ammonium tungstate, etc. is heated and mixed with hydrochloric acid or nitric acid to obtain tungstic acid, followed by firing. Alternatively, it can be obtained by a method of thermal decomposition by heating tungstic acid, ammonium metatungstate, or ammonium paratungstate. Of course, commercially available tungsten oxide may be used.

前記光触媒体は、その凝集粒径として、累積粒度分布の微粒側から累積50%の粒径(D50)が、通常0.01μm以上、好ましくは0.05μm以上であり、通常5μm以下、好ましくは1μm以下であるのがよい。D50が0.01μm未満である場合、Pt粒子を担持させた後の洗浄工程や乾燥工程で硬い凝集粒子ができやすく、触媒を製造する上で不具合を生じることがある。一方、D50が5μmを超える場合、Pt粒子を光触媒体の表面に均一に担持させにくくなり、得られる触媒の活性が低下するおそれがある。   The photocatalyst has an aggregate particle size of 50% cumulative particle size (D50) from the fine particle side of the cumulative particle size distribution, usually 0.01 μm or more, preferably 0.05 μm or more, usually 5 μm or less, preferably It is good that it is 1 μm or less. When D50 is less than 0.01 μm, hard agglomerated particles are likely to be formed in the washing step and the drying step after supporting the Pt particles, which may cause problems in producing the catalyst. On the other hand, when D50 exceeds 5 μm, it becomes difficult to uniformly support the Pt particles on the surface of the photocatalyst, and the activity of the resulting catalyst may be reduced.

前記光触媒体は、その粒度分布の尺度として、累積粒度分布の微粒側から累積10%の粒径(D10)に対する累積90%の粒径(D90)の比、すなわちD90/D10の値が、通常10以下、好ましくは1〜6であるのがよい。D90/D10の値が10を超える場合、粒径の大きな光触媒体粒子が混在することになり、Pt粒子を光触媒体の表面に均一に担持させにくくなり、得られる触媒の活性が低下するおそれがある。   The photocatalyst has a ratio of the 90% cumulative particle size (D90) to the 10% cumulative particle size (D10) from the fine particle side of the cumulative particle size distribution, that is, the value of D90 / D10, as a measure of the particle size distribution. It is 10 or less, preferably 1-6. When the value of D90 / D10 exceeds 10, the photocatalyst particles having a large particle size will be mixed, making it difficult to uniformly support the Pt particles on the surface of the photocatalyst, and the activity of the resulting catalyst may be reduced. is there.

前記光触媒体のBET比表面積は、通常2m2/g以上、好ましくは5〜100m2/gであるのがよい。BET比表面積が2m2/g未満である場合、反応物質(有機物)の触媒へ接触が不充分となるため、触媒活性が低下するおそれがある。 BET specific surface area of the photocatalyst is typically 2m 2 / g or more, it is preferably 5 to 100 m 2 / g. When the BET specific surface area is less than 2 m 2 / g, the contact of the reactant (organic substance) with the catalyst becomes insufficient, and the catalytic activity may be reduced.

前記光触媒体の一次粒子径は、通常8nm以上、好ましくは10nm以上であり、かつ、通常420nm以下、好ましくは170nm以下であるのがよい。一次粒子径が8nm未満の場合、光触媒体粒子の結晶性が低下し、結晶格子内に欠陥等が生成しやすいため、触媒表面の吸着物(有機物やその分解中間体)を分解するのに充分な光触媒活性が得られないおそれがある。一方、一次粒子径が420nmを超える場合、光触媒体粒子の表面積が小さくなる結果、反応物質(有機物)の触媒へ接触が不充分となるため、触媒活性が低下するおそれがある。   The primary particle diameter of the photocatalyst is usually 8 nm or more, preferably 10 nm or more, and usually 420 nm or less, preferably 170 nm or less. When the primary particle diameter is less than 8 nm, the crystallinity of the photocatalyst particles is reduced, and defects and the like are easily generated in the crystal lattice, which is sufficient to decompose the adsorbed material (organic matter and decomposition intermediates) on the catalyst surface. May not be able to obtain a good photocatalytic activity. On the other hand, when the primary particle diameter exceeds 420 nm, the surface area of the photocatalyst particles becomes small, and as a result, the contact of the reactant (organic substance) with the catalyst becomes insufficient, and the catalytic activity may be reduced.

本発明にかかる触媒におけるPt粒子の担持量は、光触媒体100重量部に対して、Pt粒子が、通常0.005〜0.6重量部、好ましくは0.01〜0.4重量部であるのがよい。Pt粒子が0.005重量部未満の場合、充分な触媒活性が得られないおそれがあり、一方、0.6重量部を超えると、高騰する触媒コストに見合うだけの触媒活性が得られないため、経済的に不利になる。   The supported amount of Pt particles in the catalyst according to the present invention is usually 0.005 to 0.6 parts by weight, preferably 0.01 to 0.4 parts by weight, based on 100 parts by weight of the photocatalyst. It is good. If the Pt particles are less than 0.005 parts by weight, sufficient catalytic activity may not be obtained. On the other hand, if it exceeds 0.6 parts by weight, catalyst activity sufficient to meet the rising catalyst cost cannot be obtained. , It becomes economically disadvantageous.

本発明にかかる触媒を得るに際し、Pt粒子を光触媒体に担持させる方法は、特に制限されないが、例えば、i)光触媒体を水等の適当な溶媒に分散させた分散体に、Pt粒子の前駆体物質を混合したのち、光照射を施す方法、ii)光触媒体を水等の適当な溶媒に分散させた分散体に、Pt粒子またはその前駆体物質を混合したのち、乾燥、焼成を施す方法、iii)光触媒体をPt粒子前駆体物質を含む水溶液に浸漬したのち、焼成する方法、等を採用すればよい。特に、担持されるPt粒子の粒子径を制御するうえでは、上記i)の方法が好ましい。   In obtaining the catalyst according to the present invention, the method for supporting the Pt particles on the photocatalyst is not particularly limited. For example, i) the precursor of the Pt particles in a dispersion in which the photocatalyst is dispersed in an appropriate solvent such as water. A method of applying light after mixing the body material, and ii) a method of drying and firing after mixing the Pt particles or its precursor material in a dispersion in which the photocatalyst is dispersed in an appropriate solvent such as water. Iii) A method of firing after immersing the photocatalyst in an aqueous solution containing a Pt particle precursor substance may be employed. In particular, in order to control the particle diameter of the supported Pt particles, the method i) is preferable.

上記i)〜iii)の方法で用いられるPt粒子前駆体物質は、光触媒体の表面でPt粒子に遷移しうる化合物であればよく、例えば、塩化白金(PtCl2、PtCl4)、臭化白金(PtBr2、PtBr4)、沃化白金(PtI2、PtI4)、塩化白金カリウム(K2(PtCl4))、ヘキサクロロ白金酸(H2PtCl6)、亜硫酸白金(H3Pt(SO3)2OH)、酸化白金(PtO2)、塩化テトラアンミン白金(Pt(NH3)4Cl2)、炭酸水素テトラアンミン白金(C21446Pt)、テトラアンミン白金リン酸水素(Pt(NH3)4HPO4)、水酸化テトラアンミン白金(Pt(NH3)4(OH)2)、硝酸テトラアンミン白金(Pt(NO3)2(NH3)4)、テトラアンミン白金テトラクロロ白金((Pt(NH3)4)(PtCl4))等が挙げられる。Pt粒子前駆体物質は、1種のみを用いてもよいし、2種以上を併用してもよい。 The Pt particle precursor material used in the above methods i) to iii) may be any compound that can transition to Pt particles on the surface of the photocatalyst, such as platinum chloride (PtCl 2 , PtCl 4 ), platinum bromide. (PtBr 2 , PtBr 4 ), platinum iodide (PtI 2 , PtI 4 ), potassium platinum chloride (K 2 (PtCl 4 )), hexachloroplatinic acid (H 2 PtCl 6 ), platinum sulfite (H 3 Pt (SO 3) ) 2 OH), platinum oxide (PtO 2 ), tetraammineplatinum chloride (Pt (NH 3 ) 4 Cl 2 ), tetraammineplatinum hydrogen carbonate (C 2 H 14 N 4 O 6 Pt), tetraammineplatinum hydrogen phosphate (Pt ( NH 3 ) 4 HPO 4 ), tetraammineplatinum hydroxide (Pt (NH 3 ) 4 (OH) 2 ), tetraammineplatinum nitrate (Pt (NO 3 ) 2 (NH 3 ) 4 ), tetraammineplatinum tetrachloroplatinum ((Pt (NH 3 ) 4 ) (PtCl 4 )) and the like. Only one type of Pt particle precursor material may be used, or two or more types may be used in combination.

上記i)の方法においては、光触媒体を光励起するのに充分な波長の光を照射すると、光励起によって生成した電子によってPt粒子の前駆体物質は還元され、Pt粒子として光触媒体表面に担持される。
上記i)の方法における光照射は、例えば、分散体を攪拌しながら行ってもよいし、分散体を透明なガラスやプラスチック製の管に流通させながら行ってもよい。前記光照射に用いる光源は、光触媒体を光励起できる光を照射しうるものであれば特に制限はなく、例えば、キセノンランプ、発光ダイオード、蛍光灯、ハロゲンランプ、太陽光、水銀灯などを用いることができる。光の照射時間は、通常30分以上、好ましくは1時間以上であり、かつ、通常24時間以下、好ましくは6時間以下であるのがよい。光の照射時間が30分未満の場合、Pt粒子の担持量が少なくなり、得られる触媒の活性が低下するおそれがあり、一方、24時間を超える場合、通常それまでにPt粒子前駆体物質の大部分はPt粒子となって担持されているので、光照射にかかるコストに見合う効果が得られず、経済的に不利となる。
In the method i), when light having a wavelength sufficient to photoexcite the photocatalyst is irradiated, the precursor substance of the Pt particles is reduced by the electrons generated by photoexcitation and is supported on the surface of the photocatalyst as Pt particles. .
The light irradiation in the method i) may be performed, for example, while stirring the dispersion, or may be performed while circulating the dispersion in a transparent glass or plastic tube. The light source used for the light irradiation is not particularly limited as long as it can emit light capable of photoexciting the photocatalyst, and for example, a xenon lamp, a light emitting diode, a fluorescent lamp, a halogen lamp, sunlight, a mercury lamp, or the like is used. it can. The light irradiation time is usually 30 minutes or longer, preferably 1 hour or longer, and usually 24 hours or shorter, preferably 6 hours or shorter. If the irradiation time of light is less than 30 minutes, the supported amount of Pt particles may be reduced, and the activity of the resulting catalyst may be reduced. On the other hand, if it exceeds 24 hours, the Pt particle precursor material is usually used by that time. Since most of them are carried as Pt particles, an effect commensurate with the cost of light irradiation cannot be obtained, which is economically disadvantageous.

さらに、上記i)の方法においては、上記のようにして光を照射した後に、分散体に犠牲剤を添加し、その後さらに光の照射を行うこともできる。この場合、犠牲剤の添加は、少なくとも30分以上光照射した後に行うことが好ましい。なお、光照射を行う前にあらかじめ分散体に犠牲剤を含有させると、Pt粒子の析出が極めて速く起こり、担持されるPt粒子の粒子径等の制御が困難になるおそれがある。
犠牲剤としては、得られた触媒の触媒活性を維持もしくは再生するために光を照射した際に、光触媒体の価電子帯に生成する正孔の光触媒作用によって容易に酸化分解されるものが好ましく、例えば、エタノール、メタノール、プロパノール等のアルコール、アセトン等のケトン、蓚酸等のカルボン酸などが用いられる。犠牲剤は、1種のみを用いてもよいし、2種以上を併用してもよい。なお、犠牲剤が固体の場合には、固体のまま用いてもよいが、犠牲剤を適当な溶媒に溶解させて用いることもできる。
Furthermore, in the method i), after irradiating with light as described above, a sacrificial agent can be added to the dispersion, and then further irradiating with light. In this case, the sacrificial agent is preferably added after light irradiation for at least 30 minutes. If a sacrificial agent is included in the dispersion in advance before light irradiation, precipitation of Pt particles occurs extremely quickly, and it may be difficult to control the particle diameter of the supported Pt particles.
The sacrificial agent is preferably one that is easily oxidatively decomposed by the photocatalytic action of holes generated in the valence band of the photocatalyst when irradiated with light to maintain or regenerate the catalytic activity of the obtained catalyst. For example, alcohols such as ethanol, methanol, and propanol, ketones such as acetone, and carboxylic acids such as oxalic acid are used. A sacrificial agent may use only 1 type and may use 2 or more types together. When the sacrificial agent is solid, the sacrificial agent may be used as it is, but the sacrificial agent may be dissolved in an appropriate solvent.

本発明の有機物の酸化方法は、上述した触媒(Pt粒子が光触媒体に担持されてなる触媒)を用いて有機物を酸化するものであり、例えば、アルコール類、アルデヒド類、メルカプタン類のような悪臭・有害物質など、酸化しようとする有機物が存在する雰囲気下に前記触媒を配置することにより、前記触媒に担持されたPt粒子の触媒作用で有害な有機物を酸化する。この有機物の酸化反応においては、特に光の照射を必要としないので、暗所であっても効率よく有機物を酸化することができる。   The organic matter oxidation method of the present invention oxidizes organic matter using the above-described catalyst (a catalyst in which Pt particles are supported on a photocatalyst), and for example, malodors such as alcohols, aldehydes, and mercaptans. -By arranging the catalyst in an atmosphere in which an organic substance to be oxidized, such as a harmful substance, is present, the harmful organic substance is oxidized by the catalytic action of the Pt particles supported on the catalyst. In this oxidation reaction of organic matter, light irradiation is not particularly required, so that the organic matter can be efficiently oxidized even in a dark place.

本発明では、前記有機物の酸化反応において、間欠的に、前記触媒を構成する光触媒体を光励起するのに充分な波長の光を照射する。この光の照射により、前記光触媒体から活性酸素種が生成し、これにより活性低下の原因となる触媒表面の吸着物が分解、清浄化され、触媒活性を維持させることができるのである。ここで、光触媒体を光励起するのに充分な波長の光とは、光触媒体にもよるが、通常、波長350〜500nm程度の光であり、例えば、キセノンランプ、発光ダイオード、蛍光灯、ハロゲンランプ、太陽光、水銀灯などの光源を用いて照射される光を利用できる。
なお、前記有機物の酸化反応において行う光照射は、間欠的に行われるが、その間隔等については特に制限はなく、反応の進行に伴う触媒活性の低下の程度に応じて、適宜設定すればよい。
In the present invention, light having a wavelength sufficient to photoexcite the photocatalyst constituting the catalyst is intermittently irradiated in the organic substance oxidation reaction. By this light irradiation, active oxygen species are generated from the photocatalyst, and thereby, the adsorbed material on the catalyst surface that causes a decrease in activity is decomposed and cleaned, and the catalytic activity can be maintained. Here, the light having a wavelength sufficient to photoexcite the photocatalyst is usually light having a wavelength of about 350 to 500 nm, depending on the photocatalyst, for example, a xenon lamp, a light emitting diode, a fluorescent lamp, and a halogen lamp. The light irradiated using a light source such as sunlight or a mercury lamp can be used.
In addition, the light irradiation performed in the oxidation reaction of the organic matter is intermittently performed, but there is no particular limitation on the interval and the like, and may be set as appropriate according to the degree of decrease in the catalytic activity accompanying the progress of the reaction. .

本発明の有機物の酸化方法において、上述した触媒(Pt粒子が光触媒体に担持されてなる触媒)は、少なくとも酸化しようとする有機物と接触しうるように配置されていればよい。例えば、上述した触媒自体を任意の形状に成形して、前記有機物と接触するよう配置してもよいし、上述した触媒を適当な溶媒に分散させて分散体とし、前記有機物が接触しうる面(任意の基材や製品表面など)に塗布し、触媒層を形成するようにしてもよい。なお、後者の場合、塗布に用いる分散体には、本発明の効果を損なわない範囲で、各種添加剤(珪素化合物、アルミニウム化合物、アルミノ珪酸塩、アルカリ土類金属(水)酸化物等)やバインダー等を混合してもよい。   In the organic matter oxidation method of the present invention, the above-described catalyst (a catalyst in which Pt particles are supported on a photocatalyst) may be disposed so as to be in contact with at least the organic matter to be oxidized. For example, the above-described catalyst itself may be formed into an arbitrary shape and disposed so as to be in contact with the organic matter. Alternatively, the above-described catalyst may be dispersed in an appropriate solvent to form a dispersion, and the surface on which the organic matter can come into contact. The catalyst layer may be formed by applying to any substrate or product surface. In the latter case, the dispersion used for coating may have various additives (silicon compound, aluminum compound, aluminosilicate, alkaline earth metal (water) oxide, etc.) A binder or the like may be mixed.

本発明の触媒の再活性化方法は、上述した触媒(Pt粒子が光触媒体に担持されてなる触媒)を用いた触媒反応(例えば、上述した有機物の酸化反応など)を所定時間行った後、前記触媒を構成する光触媒体を光励起するのに充分な波長の光を照射するものである。これにより、触媒活性を再生することができる。なお、ここでの光照射は、上述した有機物の酸化反応において行う光照射と同様である。   In the method for reactivating the catalyst of the present invention, the catalyst reaction using the above-described catalyst (the catalyst in which the Pt particles are supported on the photocatalyst) (for example, the above-described oxidation reaction of organic matter) is performed for a predetermined time, The photocatalyst body constituting the catalyst is irradiated with light having a wavelength sufficient for photoexcitation. Thereby, the catalyst activity can be regenerated. In addition, the light irradiation here is the same as the light irradiation performed in the oxidation reaction of the organic substance mentioned above.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
なお、各種物性は次のようにして測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
Various physical properties were measured as follows.

<粒度分布>
酸化タングステン粒子の粒度分布は、酸化タングステン粒子を水に分散させたものを試料とし、レーザー開設式粒度分布測定装置(島津製作所製「SALD-7000」)を用いて、累積粒度分布の微粒側から累積10%の粒径(D10)、累積50%の粒径(D50)、累積90%の粒径(D90)をそれぞれ測定した。そして、D50の値を凝集粒径とし、粒度分布の尺度としてD90/D10の値を算出した。
<Particle size distribution>
The particle size distribution of the tungsten oxide particles is obtained by dispersing the tungsten oxide particles in water as a sample and using a laser-opened particle size distribution measuring device (“SALD-7000” manufactured by Shimadzu Corporation) from the fine particle side of the cumulative particle size distribution. A 10% cumulative particle size (D10), a 50% cumulative particle size (D50), and a 90% cumulative particle size (D90) were measured. The value of D50 was defined as the aggregate particle size, and the value of D90 / D10 was calculated as a measure of the particle size distribution.

<BET比表面積>
酸化タングステン粒子のBET比表面積は、高速・比表面積・細孔分布測定装置(ユアサアイオニクス(株)製「NOVA1200e」)を用いて窒素吸着法にて測定した。
<BET specific surface area>
The BET specific surface area of the tungsten oxide particles was measured by a nitrogen adsorption method using a high-speed / specific surface area / pore distribution measuring device (“NOVA 1200e” manufactured by Yuasa Ionics Co., Ltd.).

<一次粒子径>
酸化タングステン粒子の一次粒子径は、上記BET比表面積の値を用いて、下記式により算出した。下記式において、酸化タングステン粒子(WO3)の密度ρの値は7.16g/cm3とした。なお、このようにして求められる一次粒子径dは、粒子が球形であるとした場合の直径である。
一次粒子径d(nm)=6/(S×ρ)
Sは、BET比表面積(m2/g)
ρは、酸化タングステン粒子(WO3)の密度(g/cm3
<Primary particle size>
The primary particle diameter of the tungsten oxide particles was calculated by the following formula using the value of the BET specific surface area. In the following formula, the value of the density ρ of the tungsten oxide particles (WO 3 ) was 7.16 g / cm 3 . In addition, the primary particle diameter d calculated | required in this way is a diameter when particle | grains are assumed to be spherical.
Primary particle diameter d (nm) = 6 / (S × ρ)
S is the BET specific surface area (m 2 / g)
ρ is the density of the tungsten oxide particles (WO 3) (g / cm 3)

(製造例1)
D10=0.046μm、D50=0.215μm、D90=5.726μmであり、D90/D10の値は124であり、BET比表面積は6.0m2/gであり、一次粒子径は140nmである市販の酸化タングステン粒子(高純度化学製;WO3、純度99.99%)4gを水50mL中に分散し、5分間超音波照射を行った後に、遠心分離機(コクサン製「H−201F」)にて1000rpmの回転速度で10分間処理することにより、粒径の大きな粒子を沈降させて分離した。得られた分散体中の酸化タングステン粒子(a)は、D10=0.074μm、D50=0.131μm、D90=0.365μmであり、D90/D10の値は4.93であり、BET比表面積は8.5m2/gであり、一次粒子径は99nmであった。
(Production Example 1)
D10 = 0.046 μm, D50 = 0.215 μm, D90 = 5.726 μm, the value of D90 / D10 is 124, the BET specific surface area is 6.0 m 2 / g, and the primary particle diameter is 140 nm. After dispersing 4 g of commercially available tungsten oxide particles (manufactured by High Purity Chemical; WO 3 , purity 99.99%) in 50 mL of water and irradiating with ultrasonic waves for 5 minutes, a centrifugal separator (“H-201F” manufactured by Kokusan) was used. ) At a rotational speed of 1000 rpm for 10 minutes, particles having a large particle size were settled and separated. The tungsten oxide particles (a) in the obtained dispersion had D10 = 0.074 μm, D50 = 0.131 μm, D90 = 0.365 μm, D90 / D10 value of 4.93, and BET specific surface area. Was 8.5 m 2 / g, and the primary particle size was 99 nm.

次に、上記酸化タングステン粒子(a)0.5gを水10mLを入れた試験管内に加えて分散させ、その中に濃度0.019mol/Lのヘキサクロロ白金酸(H2PtCl6)水溶液を、生成するPt粒子の理論量が酸化タングステン粒子(a)100重量部に対して0.5重量部となるように加えた後、攪拌しながら波長400nmの光を1時間照射した。このとき、光源としては、高出力紫発光ダイオード(OptoSupply、OSSV5111A、口径5mm、定格出力45mW/sr)を12個用いた。次いで、光照射後の酸化タングステン粒子の分散体にメタノール1mLを加えた後、引き続き攪拌しながら、上記と同様にして、波長400nmの光を2時間照射した。その後、濾過、水洗浄、120℃での乾燥を施すことにより、Pt微粒子が酸化タングステンに担持されてなる粒子状の触媒(1)を得た。 Next, 0.5 g of the above tungsten oxide particles (a) are added and dispersed in a test tube containing 10 mL of water, and an aqueous hexachloroplatinic acid (H 2 PtCl 6 ) solution having a concentration of 0.019 mol / L is formed therein. After adding so that the theoretical amount of Pt particles to be 0.5 parts by weight with respect to 100 parts by weight of the tungsten oxide particles (a), light with a wavelength of 400 nm was irradiated for 1 hour with stirring. At this time, twelve high-power purple light emitting diodes (OptoSupply, OSSV5111A, aperture 5 mm, rated output 45 mW / sr) were used as light sources. Next, 1 mL of methanol was added to the dispersion of tungsten oxide particles after light irradiation, and then light with a wavelength of 400 nm was irradiated for 2 hours in the same manner as described above while stirring. Thereafter, filtration, washing with water, and drying at 120 ° C. were performed to obtain a particulate catalyst (1) in which Pt fine particles were supported on tungsten oxide.

(実施例1)
室内光の下、密閉可能なガラス製容器(容量330mL)の底面に、製造例1で得た粒子状の触媒(1)50mgを15mm×15mmの大きさにほぼ均等に広げて収容し、ガラス製容器内を合成空気で満たした後に、2−プロパノールを19μmol注入し、ガラス製容器を密閉した。その後、直ちに、このガラス製容器を暗所内に設置し、室温で60分間放置することにより、2−プロパノールの酸化反応を行った。暗所内で室温にて60分間反応させた後、ガラス製容器内の触媒に、キセノンランプ(Cermax製;300W)を用いて、少なくとも波長350〜500nmの光を含む光を30分間照射した。光照射後、上記と同様に、ガラス製容器内に2−プロパノールを19μmol注入して、60分間の2−プロパノールの酸化反応を行った。このように、60分間の2−プロパノールの酸化反応と30分間の光照射とを交互に繰り返し、2−プロパノールの酸化反応を合計7回、光照射を合計6回行った。
上記のように2−プロパノールの酸化反応と光照射を繰り返し行う間、逐次、ガラス製容器内のガスをガスクロマトグラフィーで分析し、2−プロパノールの濃度および2−プロパノールの酸化生成物であるアセトンの濃度を定量した。このときの2−プロパノール濃度およびアセトン濃度の経時変化を示すグラフを図1に示す。
Example 1
Under room light, 50 mg of the particulate catalyst (1) obtained in Production Example 1 is spread on a bottom surface of a sealable glass container (capacity 330 mL) in a size of 15 mm × 15 mm and accommodated in glass. After filling the inside of the container with synthetic air, 19 μmol of 2-propanol was injected, and the glass container was sealed. Immediately thereafter, this glass container was placed in a dark place and allowed to stand at room temperature for 60 minutes to effect oxidation of 2-propanol. After reacting in the dark at room temperature for 60 minutes, the catalyst in the glass container was irradiated with light containing light having a wavelength of at least 350 to 500 nm using a xenon lamp (manufactured by Cermax; 300 W) for 30 minutes. After light irradiation, 19 μmol of 2-propanol was injected into a glass container in the same manner as described above, and an oxidation reaction of 2-propanol was performed for 60 minutes. Thus, the oxidation reaction of 2-propanol for 60 minutes and the light irradiation for 30 minutes were repeated alternately, and the oxidation reaction of 2-propanol was performed 7 times in total and the light irradiation was performed 6 times in total.
While repeating the oxidation reaction of 2-propanol and light irradiation as described above, the gas in the glass container is sequentially analyzed by gas chromatography, and the concentration of 2-propanol and acetone which is an oxidation product of 2-propanol are analyzed. The concentration of was quantified. The graph which shows a time-dependent change of 2-propanol concentration and acetone concentration at this time is shown in FIG.

(比較例1)
実施例1と同様に、触媒(1)を収容するとともに、内部を合成空気で満たした後に2−プロパノールを注入して密閉したガラス製容器を用意し、直ちに、このガラス製容器を暗所内に設置し、室温で180分間放置することにより、2−プロパノールの酸化反応を行った。暗所内で室温にて180分間反応させた後、一旦、暗所内でガラス製容器内を大気開放し、その後、再び暗所内でガラス製容器内を合成空気で満たし、2−プロパノールを19μmol注入してガラス製容器を密閉し、室温で放置することにより、2−プロパノールの酸化反応を行った。
上記のように2−プロパノールの酸化反応を行う間、逐次、ガラス製容器内のガスをガスクロマトグラフィーで分析し、2−プロパノールの濃度および2−プロパノールの酸化生成物であるアセトンの濃度を定量した。このときの2−プロパノール濃度およびアセトン濃度の経時変化を示すグラフを図2に示す。
(Comparative Example 1)
As in Example 1, the catalyst (1) was accommodated, and the interior was filled with synthetic air, and then 2-propanol was injected to prepare a sealed glass container. Immediately, this glass container was placed in a dark place. It was installed and allowed to stand at room temperature for 180 minutes to carry out 2-propanol oxidation reaction. After reacting in the dark at room temperature for 180 minutes, the glass container was once opened to the atmosphere in the dark, and then the glass container was again filled with synthetic air in the dark, and 19 μmol of 2-propanol was injected. The glass container was sealed and allowed to stand at room temperature, whereby 2-propanol oxidation reaction was performed.
While performing the oxidation reaction of 2-propanol as described above, the gas in the glass container is sequentially analyzed by gas chromatography, and the concentration of 2-propanol and the concentration of acetone, which is the oxidation product of 2-propanol, are determined. did. The graph which shows the time-dependent change of 2-propanol concentration and acetone concentration at this time is shown in FIG.

図1から分かるように、2−プロパノールの酸化反応を一定時間行った後、光照射を行なうと、その後の酸化反応における2−プロパノール濃度の減少およびアセトン濃度の増加を示すカーブは、初期の酸化反応とほぼ同じ形状を示す。つまり、光照射を行なうことにより、初期と同等の触媒活性を維持しながら酸化反応を行うことができることが明らかである。なお、2−プロパノールの酸化反応で生じたアセトンは、光照射によって発現される光触媒作用にて分解された。
これに対して、光照射を行わない場合には、大気開放後に再び2−プロパノールの酸化反応を行うと、図2に示すように、2−プロパノール濃度の減少およびアセトン濃度の増加を示すカーブは、明らかに初期の酸化反応に比べ緩やかになっており、触媒活性が低下していることが分かる。
As can be seen from FIG. 1, when the oxidation reaction of 2-propanol is performed for a certain period of time and then light irradiation is performed, a curve indicating a decrease in 2-propanol concentration and an increase in acetone concentration in the subsequent oxidation reaction shows the initial oxidation. Shows almost the same shape as the reaction. That is, it is clear that the oxidation reaction can be carried out while maintaining the catalytic activity equivalent to the initial stage by performing light irradiation. In addition, acetone produced by the oxidation reaction of 2-propanol was decomposed by a photocatalytic action expressed by light irradiation.
On the other hand, in the case where light irradiation is not performed, when the oxidation reaction of 2-propanol is performed again after opening to the atmosphere, as shown in FIG. 2, the curves indicating the decrease in 2-propanol concentration and the increase in acetone concentration are Obviously, it is moderate compared to the initial oxidation reaction, indicating that the catalytic activity is reduced.

実施例1における2−プロパノール濃度およびアセトン濃度の経時変化を示すグラフである。2 is a graph showing changes over time in 2-propanol concentration and acetone concentration in Example 1. FIG. 比較例1における2−プロパノール濃度およびアセトン濃度の経時変化を示すグラフである。4 is a graph showing changes with time in 2-propanol concentration and acetone concentration in Comparative Example 1;

Claims (4)

Pt粒子が光触媒体に担持されてなる触媒を用いて有機物を酸化する方法であって、間欠的に前記光触媒体を光励起するのに充分な波長の光を照射することにより、触媒活性を維持させることを特徴とする有機物の酸化方法。   A method for oxidizing an organic substance using a catalyst in which Pt particles are supported on a photocatalyst, and maintaining the catalytic activity by irradiating light with a wavelength sufficient to photoexcite the photocatalyst intermittently. A method of oxidizing an organic substance, 前記光触媒体が酸化タングステンである請求項1記載の有機物の酸化方法。   The method for oxidizing an organic substance according to claim 1, wherein the photocatalyst is tungsten oxide. Pt粒子が光触媒体に担持されてなる触媒の再活性化方法であって、前記触媒を用いた触媒反応を所定時間行った後、前記光触媒体を光励起するのに充分な波長の光を照射することにより、触媒活性を再生することを特徴とする触媒の再活性化方法。   A method for reactivating a catalyst in which Pt particles are supported on a photocatalyst, and after performing a catalytic reaction using the catalyst for a predetermined time, irradiates light having a wavelength sufficient to photoexcite the photocatalyst. A catalyst reactivation method characterized by regenerating catalyst activity. 前記光触媒体が酸化タングステンである請求項3記載の触媒の再活性化方法。   The method for reactivating a catalyst according to claim 3, wherein the photocatalyst is tungsten oxide.
JP2008242325A 2008-09-22 2008-09-22 Method of oxidizing organic compound and method of reactivating catalyst Pending JP2010069456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242325A JP2010069456A (en) 2008-09-22 2008-09-22 Method of oxidizing organic compound and method of reactivating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242325A JP2010069456A (en) 2008-09-22 2008-09-22 Method of oxidizing organic compound and method of reactivating catalyst

Publications (1)

Publication Number Publication Date
JP2010069456A true JP2010069456A (en) 2010-04-02

Family

ID=42201732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242325A Pending JP2010069456A (en) 2008-09-22 2008-09-22 Method of oxidizing organic compound and method of reactivating catalyst

Country Status (1)

Country Link
JP (1) JP2010069456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079542A (en) * 2017-05-19 2022-05-26 株式会社希少金属材料研究所 Tungsten compound of visible light-responsive photocatalyst and coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079542A (en) * 2017-05-19 2022-05-26 株式会社希少金属材料研究所 Tungsten compound of visible light-responsive photocatalyst and coating
JP7288709B2 (en) 2017-05-19 2023-06-08 株式会社希少金属材料研究所 Visible light responsive photocatalyst tungsten compound and paint

Similar Documents

Publication Publication Date Title
JP4772818B2 (en) Tungsten oxide photocatalyst
JP4878141B2 (en) Composite photocatalyst
WO2009116627A1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and apparatus for production of oxidizing agent
JP2011036770A (en) Method for producing noble metal-supported photocatalyst particle
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
AU7944201A (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
WO2018020344A1 (en) Hydrogen production from aqueous alcohol mixtures over noble metal titanium dioxide supported photo-catalysts
WO2015114862A1 (en) Photocatalyst material and method for producing same
JPWO2007037026A1 (en) Catalyst and method for producing the same
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
JP2010018503A (en) Tungsten oxide exhibiting high photocatalytic activity
Luu et al. One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light
JP5627006B2 (en) Photocatalyst and method for producing the same
JP4048775B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2008280184A (en) Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
JP2010069456A (en) Method of oxidizing organic compound and method of reactivating catalyst
US7608557B2 (en) Highly active photocatalyst and process for producing the same
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2011020009A (en) Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP3689754B2 (en) Photocatalyst material and air purification film
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JPWO2007097220A1 (en) Visible light responsive photocatalyst
KR102224326B1 (en) Platinum colloid-based platinum/vanadium/titania catalyst for removal of gaseous ammonia and method for manufacturing the same
JP2010188240A (en) Photocatalyst